CN113162365B - 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法 - Google Patents

双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法 Download PDF

Info

Publication number
CN113162365B
CN113162365B CN202110511905.5A CN202110511905A CN113162365B CN 113162365 B CN113162365 B CN 113162365B CN 202110511905 A CN202110511905 A CN 202110511905A CN 113162365 B CN113162365 B CN 113162365B
Authority
CN
China
Prior art keywords
primary module
current
motor
phase
bilateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110511905.5A
Other languages
English (en)
Other versions
CN113162365A (zh
Inventor
张志锋
武岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN202110511905.5A priority Critical patent/CN113162365B/zh
Publication of CN113162365A publication Critical patent/CN113162365A/zh
Application granted granted Critical
Publication of CN113162365B publication Critical patent/CN113162365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

本发明提供一种双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法,涉及轨道交通等长定子场合技术领域。该电动机包括长次级支撑体、支撑壳体、上初级模块和下初级模块;上初级模块连接在支撑壳体的内上部,下初级模块设置在支撑壳体的内下部,上初级模块与下初级模块上下对称。稳定运行时,位置速度传感器测量上初级模块速度和位置变化,采用id=0控制策略,控制电机电流转矩分量iq实现对电磁推力的增加或减少。稳定悬浮控制时,重力加速度传感器获得电机动子重力的变化,下初级模块采用iq=0控制策略,控制电机电流励磁分量id实现对磁场的増磁或去磁。本发明结构简单、成本低、效率高,解决了稳定悬浮问题,消除了电机运行中的摩擦。

Description

双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法
技术领域
本发明涉及轨道交通等长定子场合技术领域,尤其涉及一种双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法。
背景技术
随着城市轨道交通的快速发展,直线电机在该领域的应用得到广泛关注。对于长行程轨道交通领域,传统的永磁同步电机无论是将线圈还是永磁体沿轨道铺设,成本都将非常昂贵,后期维护也会很麻烦,而磁通切换型直线电机却可以将其导磁铁心沿轨道铺设,将其永磁体和电枢绕组都放置于初级动子上,可以大大降低轨道的铺设成本和后期维护费用,而且兼具永磁同步直线电机功率密度高和直线感应电机定子结构简单的优点。
申请号为201210497711.5的发明专利“一种磁通切换型磁悬浮永磁直线同步电机及其控制方法”,将磁悬浮原理引入到磁通切换型永磁直线电机中,该电机只有一套绕组。利用电机的永磁磁场,控制电机电流的励磁分量对永磁磁场进行増磁或者去磁,使电机的法向力(磁悬浮力)与电机动子的重力平衡,实现电机动子的稳定悬浮,解决了电机运行中的摩擦问题。然而该电机只有一套绕组,需要在控制中对其解耦,控制起来相当复杂,不容易使其稳定,并且该电机无法解决磁通切换型电机的自身固有的推力波动大的问题。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法,解决仅有一套绕组的磁通切换型磁悬浮永磁直线同步电动机控制复杂、以及推力波动大的问题。
为解决上述技术问题,本发明所采取的技术方案是:
一方面,本发明提供一种双边磁通切换型磁悬浮永磁直线同步电动机,包括长次级支撑体和支撑壳体,还包括上初级模块和下初级模块;上初级模块和下初级模块均对称设有左右两个,左右两个上初级模块连接在支撑壳体的内上部,左右两个下初级模块设置在支撑壳体的内下部,两个上初级模块与两个下初级模块上下对称;
所述上初级模块和下初级模块的组成结构完全一致,且同时同向运动;上初级模块和下初级模块均包括m个或者2m个初级模块,m为电动机的相数;
长次级支撑体的左右两端设置有双边长次级,所述双边长次级包括上组双边长次级和下组双边长次级,上、下两组双边长次级均包括左右两个长次级;上组双边长次级的位置对应上初级模块,下组双边长次级的位置对应下初级模块,上组双边长次级与上初级模块之间、下组双边长次级与下初级模块之间均设有气隙;
初级模块包括两个U型导磁材料和设置在两个U型导磁材料之间的永磁体,不同初级模块的永磁体交替平行充磁;初级模块还包括电枢绕组,设置在初级模块的U型槽中,且套住永磁体;
相邻初级模块之间填充非导磁材料;同一相的两个初级模块的距离为λ1=(n±1/2)τ;相邻相的两个初级模块的距离为λ2=(j±1/m)τ,其中j、n为整数,τ为双边长次级的极距;双边长次级固定不动,由导磁铁心组成;上组双边长次级与下组双边长次级在位置上错开τ/k的距离,其中k为整数。
另一方面,本发明还提供一种上述双边磁通切换型磁悬浮永磁直线同步电动机的控制方法,该方法包括电机速度控制方法和悬浮控制方法两部分;
电机速度控制方法中,稳定运行时,由上初级模块提供电磁推力,具体如下:
步骤1.1:通过位置速度传感器测量上初级模块的速度和位置的变化;
步骤1.2:采用电动机的电流励磁分量id=0的控制策略,通过控制电动机的电流转矩分量iq来实现对上初级模块的电磁推力的增加或减少,实现稳定运行;
悬浮控制方法中,稳定悬浮控制时,由下初级模块提供悬浮力,具体如下:
步骤2.1:通过重力加速度传感器,获得电动机动子重力的变化;
步骤2.2:采用电动机的电流转矩分量iq=0的控制策略,通过控制电动机的电流励磁分量id来实现对下初级模块磁场的増磁或去磁,使悬浮力和初级重力平衡,保持电动机的气隙高度不变,实现稳定悬浮。
进一步地,步骤1.1中根据位置速度传感器测量上初级模块的速度v和位置θ的变化;测量实际的两相电流ia和ib,并且计算第三相电流ic
进一步地,步骤1.2的执行步骤如下:
步骤1.2.1:根据输出的三相电流ia、ib、ic和位置θ,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤1.2.2:给定速度v*与实际速度v形成速度偏差,通过速度控制器得到q轴给定电流q轴给定电流/>与实际电流iq形成电流偏差,同时d轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤1.2.3:根据在两相同步旋转坐标系下的电压ud、uq以及位置θ,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤1.2.4:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从三相逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机速度的跟踪控制。
进一步地,步骤2.1中根据重力加速度传感器测量实际下初级模块的重力G的变化;测量实际的两相电流ia和ib,并且计算第三相电流ic
进一步地,步骤2.2的执行步骤如下:
步骤2.2.1:确定下初级模块的位置θ*:下初级模块的位置θ*为位置速度传感器测得的位置θ与错齿角度之和;
步骤2.2.2:根据输出的三相电流ia、ib、ic和位置θ*,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤2.2.3:根据实验测出下初级模块的重力G与电流的关系,得出d轴给定电流与实际电流id形成电流差,同时q轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤2.2.4:根据在两相同步旋转坐标系下的电压ud、uq以及位置θ*,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤2.2.5:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机磁悬浮的跟踪控制。
采用上述技术方案所产生的有益效果在于:本发明提供的双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法,从电机本体结构优化与先进控制策略一体化综合分析,不仅保留了磁通切换型永磁直线同步电机在长行程应用场合具有的结构简单、成本低、功率密度高、效率高、功率因数高等优点,并且引用磁悬浮技术,解决了双边磁通切换型永磁直线同步电机电机动子的稳定悬浮问题,消除了电机运行中的摩擦,还采用双边错齿结构,有效的减小了电机的推力波动。
附图说明
图1为本发明实施例提供的双边磁通切换型磁悬浮永磁直线同步电动机的三维结构示意图;
图2为本发明实施例提供的双边磁通切换型磁悬浮永磁直线同步电动机的正面图;
图3为本发明实施例提供的双边磁通切换型磁悬浮永磁直线同步电动机O-O剖视图;
图4为本发明实施例提供的双边磁通切换型磁悬浮永磁直线同步电动机控制系统的原理示意图。
图中:1-1、上组双边长次级;1-2、下组双边长次级;2-1、上初级模块;2-2、下初级模块;2-3、初级模块;2-4、U型导磁材料;3、电枢绕组;4、永磁体;5、非导磁材料;6、气隙;7、长次级支撑体;8、支撑壳体;9、滑道。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例提供一种针对轨道交通等长定子直线电机应用场合的双边磁通切换型磁悬浮永磁直线同步电动机,包括长次级支撑体7、支撑壳体8、上初级模块2-1和下初级模块2-2。上初级模块2-1和下初级模块2-2均对称设有左右两个,左右两个上初级模块2-1连接在支撑壳体8的内上部,左右两个下初级模块2-2设置在支撑壳体8的内下部,两个上初级模块2-1与两个下初级模块2-2上下对称。
上初级模块2-1和下初级模块2-2的组成结构完全一致,在外部用支撑壳体8连接,同时同向运动。上初级模块2-1包括m个或者2m个初级模块2-3,m为电机的相数。初级模块2-3包括两个U型导磁材料2-4和设置在两个U型导磁材料2-4之间的永磁体4,不同初级模块2-3的永磁体4交替平行充磁。初级模块2-3还包括电枢绕组3,所述电枢绕组3设置在初级模块2-3的槽中且套住永磁体4。
长次级支撑体7的左右两端设置有双边长次级,所述双边长次级包括上组双边长次级1-1和下组双边长次级1-2,上、下两组双边长次级均包括左右两个长次级;上组双边长次级1-1的位置对应上初级模块2-1,下组双边长次级1-2的位置对应下初级模块2-2,上组双边长次级1-1与上初级模块2-1之间、下组双边长次级1-2与下初级模块2-2之间均设有气隙6。
相邻初级模块2-3之间填充非导磁材料5。同一相的两个初级模块2-3的距离为λ1=(n±1/2)τ。相邻相的两个初级模块2-3的距离为λ2=(j±1/m)τ,其中j、n为整数,τ为双边长次级极距。双边长次级固定不动,结构简单,仅由导磁铁心组成。上组双边长次级1-1与下组双边长次级1-2在位置上错开τ/k的距离,能有效的抑制推力波动,其中k为整数。
一种针对轨道交通等长定子直线电机应用场合的双边磁通切换型磁悬浮永磁直线同步电动机的控制方法,包括电机速度控制方法和悬浮控制方法两部分。
在电机运行时,由上初级模块2-1提供电磁推力,下初级模块2-2提供悬浮力。稳定运行时,通过位置速度传感器测量上初级模块2-1的速度和位置的变化,推力系统上初级模块2-1采用id=0的控制策略,通过控制电机的电流转矩分量iq来实现对电磁推力的增加或减少,实现稳定运行。将磁悬浮技术引入到磁通切换型永磁直线电动机设计及其控制中,实现无摩擦运行。稳定悬浮控制时,通过重力加速度传感器,获得电机动子重力的变化(主要由负载变化引起),下初级模块2-2采用iq=0的控制策略,通过控制电机的电流励磁分量id来实现对磁场的増磁或去磁,使悬浮力和初级重力平衡,保持电机的气隙高度不变,实现稳定悬浮。
电机速度控制方法中,包括以下步骤:
步骤一:根据位置速度传感器测量初级(2-1)的速度v和位置θ的变化,测量实际的两相电流ia和ib,并且计算第三相电流ic
步骤二:根据输出的三相电流ia、ib、ic和位置θ,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤三:给定速度v*与实际速度v形成速度偏差,通过速度控制器得到q轴给定电流q轴给定电流/>与实际电流iq形成电流偏差,同时d轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤四:根据在两相同步旋转坐标系下的输入电压值ud、uq以及位置θ,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤五:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机速度的跟踪控制。
悬浮控制方法中,包括以下步骤:
步骤一:根据重力加速度传感器测量实际下初级模块2-2的重力G的变化,测量实际的两相电流ia和ib,并且计算第三相电流ic
步骤二:由于采用的错齿结构,下初级模块2-2的位置θ*为位置速度传感器测得的位置θ与错齿角度之和;
步骤三:根据输出的三相电流ia、ib、ic和位置θ*,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤四:根据实验测出下初级模块2-2的重力G与电流的关系,得出d轴给定电流与实际电流id形成电流差,同时q轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤五:根据在两相同步旋转坐标系下的输入电压值ud、uq以及位置θ*,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤六:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机磁悬浮的跟踪控制。
如图1和图2所示,一个长次级支撑体7不仅支撑着两个相同的长次级铁心1-1和1-2,还有滑道9。一个支撑壳体8连接两个相同的双边磁通切换型磁悬浮永磁直线同步电动机的四个初级铁心2-1和2-2。本实施例通过合理的控制通入两个电枢绕组3中的电流励磁分量id的大小和方向来磁场进行增磁和去磁,从而控制悬浮力的大小,使其和四个初级连同支撑壳体8的重力相等,实现在气隙6中稳定的悬浮。通过合理的控制通入两个电枢绕组3中的电流转矩分量iq的大小和方向,使电机能够沿着长次级铁心的方向稳定运行。
如图3所示,为图2中双边磁通切换型磁悬浮永磁直线同步电动机的O-O剖视图。图中上初级模块2-1包括6个初级模块2-3,电机的相数为3。同一相的两个初级模块2-3的距离为λ1=(n±1/2)τs,相邻相的两个初级模块2-3的距离为λ2=(j±1/m)τs,其中j=5,n=2,τs为双边长次级极距。双边长次级固定不动,结构简单,仅由导磁铁心组成。上组双边长次级1-1与下组双边长次级1-2在位置上错开τs/k距离,能有效的抑制推力波动,其中k=6。
图4为双边磁通切换型磁悬浮永磁直线同步电动机控制系统的原理示意图。稳定运行时,根据位置速度传感器测量上初级模块2-1的速度v和位置θ,并且测量实际的两相电流ia和ib,并且计算ic。然后经过坐标变换将电流变成两相同步旋转坐标系下的电流id和iq。推力系统上初级模块2-1采用id=0的控制策略,通过控制电机的电流转矩分量iq来实现对电磁推力的增加或减少,然后将id和iq通过PI调节器后得到两相同步旋转坐标系电压ud和uq,再通过坐标变换得到两相静止坐标系下的电压值uα和uβ,通入到电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,最后实现稳定运行。将磁悬浮技术引入到磁通切换型永磁直线电动机设计及其控制中,实现无摩擦运行。稳定悬浮控制时,根据重力加速度传感器测量实际下初级模块2-2的重力G,获得电机动子重力的变化(主要由负载变化引起)。测量实际的两相电流ia和ib,并且计算ic。然后经过坐标变换将电流变成两相同步旋转坐标系下的电流id和iq。下初级模块2-2采用iq=0的控制策略,通过控制电机的电流励磁分量id来实现对磁场的増磁或去磁,然后将id和iq通过PI调节器后得到两相同步旋转坐标系电压ud和uq,再通过坐标变换得到两相静止坐标系下的电压值uα和uβ,通入到电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,使悬浮力和初级重力平衡,保持电机的气隙高度不变,实现稳定悬浮。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (6)

1.一种双边磁通切换型磁悬浮永磁直线同步电动机,包括长次级支撑体(7)和支撑壳体(8),其特征在于:还包括上初级模块(2-1)和下初级模块(2-2);上初级模块(2-1)和下初级模块(2-2)均对称设有左右两个,左右两个上初级模块(2-1)连接在支撑壳体(8)的内上部,左右两个下初级模块(2-2)设置在支撑壳体(8)的内下部,两个上初级模块(2-1)与两个下初级模块(2-2)上下对称;
所述上初级模块(2-1)和下初级模块(2-2)的组成结构完全一致,且同时同向运动;上初级模块(2-1)和下初级模块(2-2)均包括m个或者2m个初级模块(2-3),m为电动机的相数;
长次级支撑体(7)的左右两端设置有双边长次级,所述双边长次级包括上组双边长次级(1-1)和下组双边长次级(1-2),上、下两组双边长次级均包括左右两个长次级;上组双边长次级(1-1)的位置对应上初级模块(2-1),下组双边长次级(1-2)的位置对应下初级模块(2-2),上组双边长次级(1-1)与上初级模块(2-1)之间、下组双边长次级(1-2)与下初级模块(2-2)之间均设有气隙(6);
初级模块(2-3)包括两个U型导磁材料(2-4)和设置在两个U型导磁材料(2-4)之间的永磁体(4),不同初级模块(2-3)的永磁体(4)交替平行充磁;初级模块(2-3)还包括电枢绕组(3),设置在初级模块(2-3)的U型槽中,且套住永磁体(4);
相邻初级模块(2-3)之间填充非导磁材料(5);同一相的两个初级模块(2-3)的距离为λ1=(n±1/2)τ;相邻相的两个初级模块(2-3)的距离为λ2=(j±1/m)τ,其中j、n为整数,τ为双边长次级的极距;双边长次级固定不动,由导磁铁心组成;上组双边长次级(1-1)与下组双边长次级(1-2)在位置上错开τ/k的距离,其中k为整数。
2.一种权利要求1所述双边磁通切换型磁悬浮永磁直线同步电动机的控制方法,其特征在于:该方法包括电机速度控制方法和悬浮控制方法两部分;
电机速度控制方法中,稳定运行时,由上初级模块(2-1)提供电磁推力,具体如下:
步骤1.1:通过位置速度传感器测量上初级模块(2-1)的速度和位置的变化;
步骤1.2:采用电动机的电流励磁分量id=0的控制策略,通过控制电动机的电流转矩分量iq来实现对上初级模块(2-1)的电磁推力的增加或减少,实现稳定运行;
悬浮控制方法中,稳定悬浮控制时,由下初级模块(2-2)提供悬浮力,具体如下:
步骤2.1:通过重力加速度传感器,获得电动机动子重力的变化;
步骤2.2:采用电动机的电流转矩分量iq=0的控制策略,通过控制电动机的电流励磁分量id来实现对下初级模块(2-2)磁场的増磁或去磁,使悬浮力和初级重力平衡,保持电动机的气隙高度不变,实现稳定悬浮。
3.根据权利要求2所述的控制方法,其特征在于:所述步骤1.1中根据位置速度传感器测量上初级模块(2-1)的速度v和位置θ的变化;测量实际的两相电流ia和ib,并且计算第三相电流ic
4.根据权利要求3所述的控制方法,其特征在于:所述步骤1.2的执行步骤如下:
步骤1.2.1:根据输出的三相电流ia、ib、ic和位置θ,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤1.2.2:给定速度v*与实际速度v形成速度偏差,通过速度控制器得到q轴给定电流q轴给定电流/>与实际电流iq形成电流偏差,同时d轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤1.2.3:根据在两相同步旋转坐标系下的电压ud、uq以及位置θ,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤1.2.4:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从三相逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机速度的跟踪控制。
5.根据权利要求2所述的控制方法,其特征在于:所述步骤2.1中根据重力加速度传感器测量实际下初级模块(2-2)的重力G的变化;测量实际的两相电流ia和ib,并且计算第三相电流ic
6.根据权利要求5所述的控制方法,其特征在于:所述步骤2.2的执行步骤如下:
步骤2.2.1:确定下初级模块(2-2)的位置θ*:下初级模块(2-2)的位置θ*为位置速度传感器测得的位置θ与错齿角度之和;
步骤2.2.2:根据输出的三相电流ia、ib、ic和位置θ*,通过Clark坐标变换得到两相静止坐标系下的电流iα和iβ,然后通过Park坐标变换得到电动机在两相同步旋转坐标系下的电流id和iq
步骤2.2.3:根据实验测出下初级模块(2-2)的重力G与电流的关系,得出d轴给定电流与实际电流id形成电流差,同时q轴给定电流/>等于0,由PI调节器作用后得到两相同步旋转坐标系电压ud和uq
步骤2.2.4:根据在两相同步旋转坐标系下的电压ud、uq以及位置θ*,通过Park坐标反变换得到在两相静止坐标系下的电压值uα和uβ
步骤2.2.5:根据在两相静止坐标系下的电压值uα和uβ,利用电压空间矢量PWM控制技术,得到用于控制三相逆变器的PWM控制信号,进而将从逆变器得到的输出电压作用于双边磁通切换型磁悬浮永磁直线同步电动机,实现对电动机磁悬浮的跟踪控制。
CN202110511905.5A 2021-05-11 2021-05-11 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法 Active CN113162365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110511905.5A CN113162365B (zh) 2021-05-11 2021-05-11 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110511905.5A CN113162365B (zh) 2021-05-11 2021-05-11 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法

Publications (2)

Publication Number Publication Date
CN113162365A CN113162365A (zh) 2021-07-23
CN113162365B true CN113162365B (zh) 2023-10-13

Family

ID=76874551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110511905.5A Active CN113162365B (zh) 2021-05-11 2021-05-11 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法

Country Status (1)

Country Link
CN (1) CN113162365B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622300B (zh) * 2022-10-26 2023-06-13 浙江大学 磁极错位型双励磁源双边永磁直线电机及其优化设置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027369A (ja) * 2003-06-30 2005-01-27 Hitachi Ltd 電動機
CN103595217A (zh) * 2013-11-15 2014-02-19 南京航空航天大学 次级无轭部双边磁通切换永磁直线电机
CN103633809A (zh) * 2013-11-18 2014-03-12 江苏大学 一种双边磁通切换永磁直线电机
CN103856112A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 一种磁通切换型磁悬浮永磁直线同步电机及其控制方法
CN105429423A (zh) * 2015-11-17 2016-03-23 中国石油大学(华东) 抽油机用双边长次级初级永磁型场调制直线电机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683586C1 (ru) * 2018-03-20 2019-03-29 Дмитрий Валерьевич Хачатуров Способ управления синхронным электродвигателем на постоянных магнитах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027369A (ja) * 2003-06-30 2005-01-27 Hitachi Ltd 電動機
CN103856112A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 一种磁通切换型磁悬浮永磁直线同步电机及其控制方法
CN103595217A (zh) * 2013-11-15 2014-02-19 南京航空航天大学 次级无轭部双边磁通切换永磁直线电机
CN103633809A (zh) * 2013-11-18 2014-03-12 江苏大学 一种双边磁通切换永磁直线电机
CN105429423A (zh) * 2015-11-17 2016-03-23 中国石油大学(华东) 抽油机用双边长次级初级永磁型场调制直线电机

Also Published As

Publication number Publication date
CN113162365A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Limsuwan et al. Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine
US11532963B2 (en) Torque tunnel Halbach Array electric machine
CN106533103B (zh) 永磁辅助式无轴承同步磁阻电机
Huang et al. Detent-force minimization of double-sided permanent magnet linear synchronous motor by shifting one of the primary components
CN102096042B (zh) 具有直线电磁阻尼器的直线电机特性测试系统
CN104038002B (zh) 一种永磁偏置式混合磁轴承开关磁阻电机
CN103490572A (zh) 一种三自由度磁悬浮开关磁阻电机
CN108199639B (zh) 六相和三相双绕组悬浮互补型无轴承磁通电机驱动方法
Xu et al. Characteristics analysis and comparison of conventional and segmental rotor type 12/8 switched reluctance motors
Liu et al. Analysis and evaluation of a linear primary permanent magnet vernier machine with multiharmonics
CN112968642B (zh) 六相单绕组无轴承磁通切换电机线性自抗扰控制方法
CN102522865B (zh) 一种能够减少力矩波动的多定子弧形直线电机
CN108809030B (zh) 一种外绕组控制的两自由度无轴承开关磁阻电机
CN113162365B (zh) 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法
CN108199640A (zh) 缺相容错型六相和三相双绕组悬浮无轴承磁通电机驱动方法
CN203014718U (zh) 一种磁通切换型磁悬浮永磁直线同步电机
CN114598225A (zh) 一种轴向分相混合励磁式磁悬浮电机控制系统
CN108599521A (zh) 一种具有轴向偏置磁通的混合式磁阻型磁悬浮直线电机
CN102255471B (zh) 一种低定位力高推力直线开关磁通永磁电动机
CN113162315B (zh) 一种四自由度磁悬浮开关磁阻电机及共励磁驱动方法
CN101051784B (zh) 一种宽调速范围永磁磁阻式同步电机及其调速方法
CN101539167A (zh) 一种永磁偏置轴向径向磁轴承
CN100592610C (zh) 动磁型同步表面电机
Jung et al. Performance evaluation of slotless permanent magnet linear synchronous motor energized by partially excited primary current
CN102291060A (zh) 一种常导旋转磁场电动式磁悬浮系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant