WO2019182072A1 - ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 - Google Patents

ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2019182072A1
WO2019182072A1 PCT/JP2019/011908 JP2019011908W WO2019182072A1 WO 2019182072 A1 WO2019182072 A1 WO 2019182072A1 JP 2019011908 W JP2019011908 W JP 2019011908W WO 2019182072 A1 WO2019182072 A1 WO 2019182072A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
carbon atoms
polyurea copolymer
crystal alignment
Prior art date
Application number
PCT/JP2019/011908
Other languages
English (en)
French (fr)
Inventor
尚宏 野田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980019562.1A priority Critical patent/CN111886270B/zh
Priority to KR1020207029471A priority patent/KR20200135405A/ko
Priority to JP2020507907A priority patent/JP7410457B2/ja
Publication of WO2019182072A1 publication Critical patent/WO2019182072A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3259Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts
    • C08G18/3262Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts with carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polyurea copolymer, a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element using the same.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film used industrially is a polyimide liquid crystal aligning agent made of polyamic acid (also called polyimide precursor or polyamic acid) or a polyimide solution applied to a substrate and baked. A film is formed. Further, when the liquid crystal is aligned parallel or inclined with respect to the substrate surface, a surface stretching process (rubbing process) by rubbing is performed after the film formation.
  • rubbing process a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-287324 proposes to use a polyimide resin having a specific repeating structure in order to obtain a high voltage holding ratio (VHR).
  • Patent Document 2 Japanese Patent Laid-Open No. 10-104633 proposes the use of a soluble polyimide having a nitrogen atom in addition to the imide group in order to shorten the time until the afterimage is erased.
  • the material used for the liquid crystal alignment film examples include polyimide precursors such as polyamide acid and polyamide acid ester, and polyimide obtained by dehydrating them by baking or chemical reaction.
  • polyimide precursors such as polyamide acid and polyamide acid ester
  • polyimide obtained by dehydrating them by baking or chemical reaction since the polyamic acid is easy to synthesize and has excellent solubility in a solvent, it is possible to obtain a liquid crystal aligning agent having excellent coating properties and film forming properties on a substrate.
  • polyamic acid is easily decomposed by hydrolysis or the like due to its structure, the liquid crystal alignment film obtained by using it has long-term reliability (high voltage holding ratio and low residual voltage). Etc.) is difficult to secure.
  • soluble polyimide polyimide soluble in a solvent obtained by polyamic acid dehydration reaction
  • soluble polyimide is excellent in chemical stability and heat resistance, so a liquid crystal alignment film obtained using soluble polyimide has long been reliable. It becomes easy to secure the sex.
  • soluble polyimide has few choices of solvent that can be dissolved, and therefore, the solvent that can be used is limited. As a result, when soluble polyimide is used, precipitation or the like occurs during coating and film formation. It is easy to be defective.
  • the liquid crystal display film it is advantageous to improve the electrical characteristics of the obtained liquid crystal display film by using polyimide having a low electric resistance (for example, the accumulated charge of the liquid crystal display film (the voltage is maintained even after the voltage application is released). It may remain, and as a result, the accumulated charge) may be eased).
  • the liquid crystal display film is likely to be colored due to the formation of a charge transfer complex (CT complex)
  • a liquid crystal display obtained using such a liquid crystal display film has a color Reproducibility and contrast tend to decrease.
  • liquid crystal alignment film for example, a material that is unlikely to cause image quality deterioration or malfunction depending on the use environment, a material that can be fired at low temperature, a material with high transparency, and a burn-in at high or low temperature are prevented. Materials that can be done have come to be sought. In the future, as LCDs become more multifunctional, larger, higher definition, and more diverse, it is necessary to search for methods that can solve each problem and improve various characteristics. ing.
  • the present invention has been made in view of the above circumstances, and a problem thereof is to provide a liquid crystal alignment film that is excellent in various characteristics including transparency as well as quick relaxation of accumulated charges. Moreover, it is providing the liquid crystal display element using the said liquid crystal aligning film.
  • the present invention provides a liquid crystal aligning agent that can obtain the liquid crystal alignment film and that can be fired at a low temperature and has good printability (the solubility of the resulting polymer in an organic solvent). Another object is to provide a polyurea copolymer from which the liquid crystal aligning agent can be obtained.
  • the present inventor has found that a polyurea copolymer having a specific structure and a liquid crystal aligning agent using the same are effective for achieving the above object, and completes the present invention. It came to.
  • the said polyurea copolymer is novel,
  • the monomer for obtaining the said polyurea copolymer also contains the novel compound.
  • the present invention is as follows. ⁇ 7. Is the gist.
  • a polyurea copolymer having a structure represented by the following formula (1) 1.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms, which may be branched
  • R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or the following formula (1-1)
  • the organic group represented by these is shown.
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • X represents a divalent organic group represented by the following formula (S), and Y represents a divalent organic group.
  • R 1, Ra and Rb are as defined above R 1, Ra and Rb.
  • Q 1 and Q 2 represent one selected from Formula (Q1-1), Formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one kind selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, L 1 and L 2 represents a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond.
  • a black spot means a bonding point to a nitrogen atom.
  • R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, may form a ring, or may have an unsaturated bond.
  • E represents —NH—, —NMe—, —S—, or —O—, and F and G each independently represent CH or a nitrogen atom.
  • X represents a divalent organic group represented by the following formula: The polyurea copolymer described in 1.
  • a black dot means a bonding point to a nitrogen atom.
  • Y is a divalent organic group represented by the formula (S) or a divalent organic group represented by the following formula (Q-1). Or 2.
  • A represents a divalent organic group of an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • a black spot means a bonding point to a nitrogen atom.
  • Y is a divalent organic group represented by the following formula (Q-2): ⁇ 3.
  • Q-2 The polyurea copolymer as described in any one of these.
  • D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms.
  • a black spot means a bonding point to a nitrogen atom.
  • a liquid crystal display film excellent in various characteristics including transparency as well as quickening of accumulated charge it is possible to provide a liquid crystal display film excellent in various characteristics including transparency as well as quickening of accumulated charge.
  • a liquid crystal display element using the liquid crystal display film can be provided.
  • the liquid crystal display element and the liquid crystal alignment film can be obtained, and a liquid crystal alignment agent that can be fired at a low temperature and has good printability can be provided.
  • the novel polyurea copolymer for obtaining the said liquid crystal aligning agent can be provided.
  • the polyurea copolymer which is one embodiment of the present invention has a structure represented by the following formula (1).
  • R 1 represents an alkyl group having 1 to 4 carbon atoms, which may be branched
  • R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or the following formula (1-1)
  • the organic group represented by these is shown.
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • X represents a divalent organic group represented by the following formula (S), and Y represents a divalent organic group.
  • R 1, Ra and Rb are as defined above R 1, Ra and Rb.
  • Q 1 and Q 2 represent one selected from Formula (Q1-1), Formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one kind selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, L 1 and L 2 represents a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond.
  • a black spot means a bonding point to a nitrogen atom.
  • R 5 represents a hydrogen atom, t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, may form a ring, or may have an unsaturated bond.
  • E represents —NH—, —NMe—, —S—, or —O—, and F and G each independently represent CH or a nitrogen atom.
  • the obtained liquid crystal alignment film obtains desired characteristics (for example, quick relaxation of accumulated charge, excellent transparency, etc.). It becomes easy.
  • Y represents a divalent organic group represented by formula (S), or a divalent group represented by formula (Q-1) below.
  • An organic group is preferable, and Y is more preferably a divalent organic group represented by the following formula (Q-2).
  • A represents a divalent organic group of an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • a black spot means a bonding point to a nitrogen atom.
  • D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms.
  • a black spot means a bonding point to a nitrogen atom.
  • the polyurea copolymer can be obtained by reacting a predetermined diamine derivative (hereinafter sometimes referred to as “diamine”) with a predetermined diisocyanate derivative (hereinafter sometimes referred to as “diisocyanate”).
  • a predetermined diamine derivative hereinafter sometimes referred to as “diamine”
  • a predetermined diisocyanate derivative hereinafter sometimes referred to as “diisocyanate”.
  • X is derived from diisocyanate
  • Y is derived from diamine. Therefore, X and Y can take various structures depending on the structures of diamine and diisocyanate which are the raw materials of the polyurea copolymer.
  • diamines represented by formula (2) One of the diamines that can be used in the present invention is represented by the formula (2).
  • A represents a divalent organic group of an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched.
  • R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1).
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • A is an aromatic hydrocarbon group and B is 1 carbon atom. More preferably, the aliphatic hydrocarbon group of 1 to 3 and C is a single bond.
  • the following formula (3) may be mentioned.
  • Ar represents an aryl group
  • D represents a single bond and a hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
  • Ar is preferably a phenyl group
  • R 2 is preferably a hydrogen atom. Therefore, the formula (3) is preferably a structure represented by the following formula (3-a) ′. Especially, in Formula (3), it is preferable that Ra and Rb are each a hydrogen atom. Therefore, the formula (3) is particularly preferably represented by the formula (3-a).
  • the formula (Q-2) is a structure derived from the formula (3-a), for example.
  • D and R 1 have the same meanings as D and R 1 above.
  • the above formula (3-a) ′ is preferably represented by the following formula (3-1). Is done.
  • Formula (3-1) when B has 1 and 2 carbon atoms, and Ra and Rb are each a hydrogen atom, Formula (3-1) can be represented by Formula (3-1a) and Formula (3-1b) It is represented by
  • R 1 has the same meaning as R 1 described above.
  • the diamine plays an important role in the solubility of the polyurea polymer, the storage stability of the varnish contained in the liquid crystal aligning agent, the printability of the liquid crystal aligning agent, and the reliability when the liquid crystal aligning film is formed.
  • the content of the diamine is, for example, about 10 mol% to 100 mol%, more preferably about 30 mol% to 70 mol%, out of the total amount of diamine used in the present invention.
  • the said diamine should just be contained in the polyurea polymer, The content is not limited to said value.
  • the specific example of the diamine represented by Formula (2) is not limited to the diamine represented by Formula (3).
  • the polyurea polymer is synthesized as long as the effects of the present invention (for example, it is possible to obtain a liquid crystal alignment film excellent in various properties including transparency as well as quickening of accumulated charges) are not impaired.
  • a part of the diamine represented by the formula (2) or the formula (3) may be replaced with a diamine represented by the formula (5) described later.
  • Diamine having a structure represented by the formula (S)) One of the diamines that can be used in the present invention has a structure represented by the formula (S).
  • the diamine having the structure represented by the formula (S) and the diamine represented by the formula (2) can be used in combination.
  • Q 1 and Q 2 represent one selected from Formula (Q1-1), Formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one kind selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, L 1 and L 2 represents a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond.
  • a black spot means a bonding point to a nitrogen atom.
  • R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, may form a ring, or may have an unsaturated bond.
  • E represents —NH—, —NMe—, —S—, or —O—, and F and G each independently represent CH or a nitrogen atom.
  • the diamine having the structure represented by the formula (S) is not particularly limited as long as it contains the structure.
  • specific examples of particularly preferred diamines are particularly preferable from the viewpoint that the diamine can be easily synthesized, reagents for synthesizing the diamine can be easily obtained, and the solubility of the diamine is high.
  • the diisocyanate described later has a structure represented by the formula (S)
  • these diamines may not be used.
  • the resistivity of the liquid crystal alignment film can be lowered, and the relaxation rate of the accumulated charges of the liquid crystal alignment film can be increased.
  • a preferable introduction amount is 0 mol% to 90 mol%, more preferably about 30 mol% to 70 mol%.
  • a liquid crystal aligning agent and a liquid crystal aligning film having even better characteristics can be obtained by increasing or decreasing the amount of use.
  • ⁇ Diisocyanate usable in the present invention The diisocyanate that can be used in the present invention is represented by the formula (4).
  • X represents a divalent organic group.
  • X is, for example, a structure represented by the formula (S) described above in the item of diamine. That is, in the present invention, a diisocyanate having a structure represented by the formula (S) can be used.
  • the diisocyanate having a structure represented by the formula (S) is derived by reacting phosgene or the like with a diamine having a structure represented by the formula (S). Therefore, if the diamine having the structure represented by the formula (S) can be obtained, the diisocyanate can be derived.
  • the structure represented by the formula (S) plays an important role in obtaining the effects of the present invention. Therefore, when the structure represented by the formula (S) is introduced by using diisocyanate, the amount to be introduced is not limited. However, a preferable introduction amount is 10 mol% to 100 mol%, and more preferably 50 mol% to 80 mol%. Depending on the type of diisocyanate used, there is a possibility that a liquid crystal aligning agent and a liquid crystal alignment film having even better characteristics can be obtained by increasing or decreasing the amount used. In addition, when the said diamine has a structure represented by Formula (S), these diisocyanates do not need to be used.
  • a part of the diamine usable in the present invention may be replaced with a diamine (other diamine) represented by the following formula (5).
  • a diamine other diamine
  • the polyurea copolymer can be given further effects. There is.
  • the introduction rate of the other diamines is from 0 to the total mole of the diamine usable in the present invention. About 50 mol% is preferable.
  • Y is a divalent organic group, and examples of the structure of Y are listed as in the following formulas (Y-1) to (Y-147), but are not limited thereto.
  • R 6 each independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • a 1 represents an alkyl group or a fluorine-containing alkyl group having 2 to 24 carbon atoms.
  • a 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • a 3 represents An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms is shown.
  • a 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 — or —CH 2 —
  • a 5 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • a 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 —, —CH 2 —, —O—, or —NH—
  • a 7 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, Or a hydroxyl group is shown.
  • a 8 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 9 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH.
  • -And A 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • n represents an integer of 1 to 10.
  • diisocyanates represented by the formulas (4-1) to (4-11) and the formula (4-13) (other diisocyanates).
  • the fragrance represented by formula (4-6) to formula (4-11) and formula (4-13) Compared to the case of using a group diisocyanate, the resulting polyurea copolymer is better dissolved in the solvent.
  • the aromatic diisocyanate reacts better with diamine than the aliphatic diisocyanate.
  • aromatic diisocyanates such as those represented by formulas (4-6) and (4-7) can react well with diamines and improve the heat resistance of the resulting liquid crystal alignment film.
  • the formula (4) is represented by the formula (4-1), Formula (4-7), formula (4-8), formula (4-9), or formula (4-10) is preferred.
  • the formula (5) is preferably the formula (4-13) from the viewpoint of improving the liquid crystal orientation of the obtained liquid crystal alignment film.
  • diisocyanates can be used depending on the properties desired. However, if the amount of diisocyanate that can be used in the present invention is replaced with other diisocyanate too much, the intended properties may not be obtained. About 0 to 50 mol% is preferable with respect to the total moles of diisocyanate.
  • the reaction solution (organic solvent used in the reaction for obtaining the polyurea copolymer) is not particularly limited as long as it is a solution in which the polyurea copolymer is dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cell
  • reaction solution since water in the reaction solution inhibits the polymerization reaction and further causes hydrolysis of the produced polyurea copolymer, it is preferable to use a dehydrated and dried reaction solution.
  • the reaction solution in which the diamine is dispersed or dissolved is stirred, and the diisocyanate is added as it is or dispersed or dissolved in the reaction solution.
  • the diisocyanate is dispersed.
  • the method of adding diamine to the dissolved reaction solution the method of adding diisocyanate and diamine to a reaction solution alternately, etc. are mentioned, Any of these methods may be used.
  • the diisocyanate or diamine when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted by individually reacting low molecular weight substances. It may be a body.
  • the polymerization temperature can be selected from -20 ° C. to 150 ° C., but it is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polyurea copolymer. If the concentration is too high, the reaction solution will become too viscous and uniform stirring will occur.
  • the total concentration of diisocyanate and diamine in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction can be performed at a high concentration, and then a reaction solution can be added.
  • the ratio of the total number of diisocyanates to the total number of diamines is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyurea copolymer produced.
  • the reaction solution is poured into a poor solvent to precipitate the polyurea copolymer.
  • the poor solvent include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polyurea copolymer that has been deposited in a poor solvent and precipitated can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the recovered polyurea copolymer is redissolved in an organic solvent and reprecipitation and recollection are repeated 2 to 10 times, impurities in the polyurea copolymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more poor solvents selected from these because purification efficiency is further improved.
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent which is 1 aspect of this invention is a coating liquid for forming a liquid crystal aligning film, and the resin component for forming a coating film (resin film) is melt
  • the resin component contains at least one polyurea copolymer.
  • the content of the resin component in the liquid crystal aligning agent is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the polyurea copolymer contained in the resin component may be the above-described polyurea copolymer, and other polymers (other polymers) are within the scope of the present invention. ) May be included.
  • the content of the other polymer is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • examples of such other polymers include acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, polysiloxane and the like.
  • the organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it is an organic solvent that dissolves the resin component.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone,
  • the liquid crystal aligning agent may contain components other than those described above.
  • a coating film formed by applying a liquid crystal aligning agent improves the adhesion between the liquid crystal alignment film and the substrate, or a solvent or compound that improves the film thickness uniformity or surface smoothness. Compounds and the like.
  • Solvents that improve film thickness uniformity and surface smoothness include low surface tension solvents such as isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, Ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol Diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropy
  • Examples of the compound that improves the uniformity of the film thickness and the smoothness of the coating film surface include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the following phenoplast-based additives may be added for the purpose of preventing deterioration of electrical characteristics caused by light irradiation by the backlight.
  • Specific phenoplast additives are shown below, but are not limited to this structure.
  • the usage-amount of the compound shall be 0.1 mass part to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid crystal aligning agent. Is more preferable, and it is 1 to 20 parts by mass. If the amount used is less than the above value, it is difficult to improve the adhesion, and if it is more than the above value, the liquid crystal orientation may be deteriorated.
  • the liquid crystal aligning agent includes dielectric materials for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired.
  • a predetermined crosslinkable compound may be added for the purpose of increasing the hardness and density of the body, the conductive material, and the liquid crystal alignment film.
  • the liquid crystal alignment film according to one embodiment of the present invention is obtained by applying the above liquid crystal alignment agent on a substrate and baking it, and then performing alignment treatment by rubbing, light irradiation, or the like, or without alignment treatment in vertical alignment applications or the like. Can be obtained.
  • a substrate a highly transparent glass substrate, a plastic substrate (for example, an acrylic substrate or a polycarbonate substrate), or the like can be used.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process for manufacturing the liquid crystal display element.
  • an opaque object such as a silicon wafer can be used on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, spin coating printing, screen printing, offset printing, flexographic printing, inkjet printing, and the like are common. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these methods may be used depending on the purpose.
  • Calcination can be performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C., by a heating means such as a hot plate.
  • a coating film can be formed by evaporating the organic solvent in the liquid crystal aligning agent. If the thickness of the coating film is too thick, the power consumption of the liquid crystal display element tends to increase, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, the thickness is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. .
  • the fired coating film is subjected to alignment treatment by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element which is one embodiment of the present invention can be obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent by the above-described method and then manufacturing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers are dispersed on the liquid crystal alignment film of one substrate so that the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, and the liquid crystal is injected under reduced pressure to be sealed.
  • the thickness of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. Since the liquid crystal display element manufactured using the liquid crystal aligning agent is excellent in reliability, it can be suitably used for a large-screen, high-definition liquid crystal television.
  • Second Step To a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirrer, 45.0 g (0.19 mol) of the nitro body obtained above, 300.0 g of THF, and 4.5 g of iron-doped platinum carbon are added, The inside of the vessel was carefully replaced with a hydrogen atmosphere and reacted at room temperature for 24 hours. When the raw material disappeared, the reaction was terminated, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes.
  • activated carbon manufactured by Shirasagi
  • Step 1 To a 1 L four-necked flask equipped with a nitrogen introduction tube and a reflux tube was added 50 g (0.246 mol) of 4-nitrophenethylamine hydrochloride, 500 g of THF, and 62.1 g (0.604 mol) of triethylamine, and a mechanical stirrer was used. The mixture is stirred at room temperature for 1 hour, heated at a temperature at which THF is refluxed (setting 70 ° C.), 25.1 g (0.205 mol) of ethyl 2-chloroacetate is dissolved in 300 g of THF, and this is slowly added dropwise. The mixture was further reacted for 24 hours.
  • Second Step 30.0 g of the nitro compound obtained above, 300 g of THF, and 3.0 g of iron-doped platinum carbon are added to a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirring bar, and the inside of the container is carefully placed under a hydrogen atmosphere. And allowed to react at room temperature for 24 hours. When the raw material disappeared, the reaction was terminated, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes.
  • NG4ABA ethyl (4-aminobenzyl) glycinate
  • NG4APhA ethyl (4-aminophenethyl) glycinate
  • DADDA 4,4′-diaminodiphenylamine
  • Me-DADPA N-methyl-4,4′-diaminodiphenylamine
  • Me-DPPDA N— Methyl-2,5-di-4-aminophenylpyrrole DA-2MG: 1,2-bis (4-aminophenoxy) ethane
  • DADPA, Me-DADPA, and Me-DPPDA are known compounds, and those synthesized by techniques described in the literature were used.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • 13DMCBDA 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • the molecular weight measurement conditions of polyimide are as follows. Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. Column: Column made by Shodex (KD-803, KD-805) Column temperature: 50 ° C Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, THF is 10ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight of about 9,000,150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) (Molecular weight about 12,000, 4,000, 1,000)
  • Example 2 Me-DIDPA / NG4ABA, Me-DADPA In a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, 4.00 g (15.92 mmol) of Me-DIDPA was measured and dissolved by adding 29.9 g of NMP, and 1.59 g (7.63 mmol) of NG4ABA was added at room temperature. The reaction was performed for 1 hour, and 1.70 g (7.96 mmol) of Me-DADPA was further added, and the reaction was performed in a nitrogen atmosphere at 40 ° C. for 10 hours. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 380 mPas was obtained.
  • Example 3 Me-DIDPA / NG4APhA, Me-DADPA In a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirring bar, 4.00 g (15.92 mmol) of Me-DIDPA was measured and dissolved by adding 30.5 g of NMP, and 1.70 g (7.63 mmol) of NG4APhA was added at room temperature. The reaction was performed for 1 hour, and 1.70 g (7.96 mmol) of Me-DADPA was further added, and the reaction was performed in a nitrogen atmosphere at 40 ° C. for 24 hours.
  • Example 4 Me-DIDPA / NG4ABA, Me-DPPDA In a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, 4.00 g (15.92 mmol) of Me-DIDPA was measured and dissolved by adding 32.8 g of NMP, and 1.59 g (7.63 mmol) of NG4ABA was added at room temperature. The mixture was reacted for 1 hour, and 2.09 g (7.96 mmol) of Me-DPPDA was further added, followed by reaction at 23 ° C. in a nitrogen atmosphere for 24 hours. Thereby, a polymer solution having a concentration of 15% by mass and a viscosity of 350 mPas was obtained.
  • a quartz glass substrate (30 mm ⁇ 30 mm) obtained by washing and drying the polyurea copolymers (P-1 to P-4) obtained in Examples and the polymers (PRef-2 to PRef-4) obtained in Comparative Examples. 30 mm, thickness 1.1 mm) by spin coating printing so that the film thickness after firing is 100 nm, and hot plate for 1 minute at a temperature of 80 ° C. and 20 minutes at a temperature of 220 ° C. Baked. Thereby, a sample for measuring transmittance (film for measuring transmittance) was prepared.
  • the transmittance was measured using UV-3600 manufactured by Shimadzu Corporation, and the coloration of the film was evaluated by evaluating the transmittance at 350 nm and 370 nm and the wavelength at the absorption edge of the UV spectrum. Moreover, the color was evaluated visually.
  • Evaluation results are shown in Table 1.
  • the item of UV transmittance means that the larger the value, the smaller the degree of coloring of the film.
  • the item of UV absorption edge means that the degree of coloring of a film
  • membrane is so small that the numerical value is large.
  • Example 5 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polyurea copolymer (P-1) obtained in Example 1 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. Weighed and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-1) having a mass ratio of 7: 3 between the polyurea copolymer (P-3) and the polymer (PRef-4) was obtained.
  • A-1 liquid crystal aligning agent having a mass ratio of 7: 3 between the polyurea copolymer (P-3) and the polymer (PRef-4) was obtained.
  • Example 6 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polyurea copolymer (P-2) obtained in Example 2 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. Weighed and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-2) having a mass ratio of polyurea copolymer (P-2) to polymer (PRef-4) of 7: 3 was obtained.
  • A-2 liquid crystal aligning agent having a mass ratio of polyurea copolymer (P-2) to polymer (PRef-4) of 7: 3 was obtained.
  • Example 7 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polyurea copolymer (P-3) obtained in Example 3 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. Weighed and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-3) having a mass ratio of polyurea copolymer (P-3) to polymer (PRef-4) of 7: 3 was obtained.
  • A-3 liquid crystal aligning agent having a mass ratio of polyurea copolymer (P-3) to polymer (PRef-4) of 7: 3 was obtained.
  • Example 8 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polyurea copolymer (P-4) obtained in Example 4 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. Weighed and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-4) having a mass ratio of 7: 3 between the polyurea copolymer (P-4) and the polymer (PRef-4) was obtained.
  • A-4 liquid crystal aligning agent having a mass ratio of 7: 3 between the polyurea copolymer (P-4) and the polymer (PRef-4) was obtained.
  • Comparative Example 5 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polymer (PRef-2) obtained in Comparative Example 2 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were measured. And stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-5) having a mass ratio of the polymer (PRef-2) to the polymer (PRef-4) of 7: 3 was obtained.
  • A-5 liquid crystal aligning agent having a mass ratio of the polymer (PRef-2) to the polymer (PRef-4) of 7: 3 was obtained.
  • Comparative Example 6 In a 50 ml Erlenmeyer flask equipped with a stir bar, 21.0 g of the polymer (PRef-3) obtained in Comparative Example 3 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were measured. And stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-6) having a mass ratio of the polymer (PRef-3) to the polymer (PRef-4) of 7: 3 was obtained.
  • A-6 liquid crystal aligning agent having a mass ratio of the polymer (PRef-3) to the polymer (PRef-4) of 7: 3 was obtained.
  • liquid crystal aligning agents (AL-1 to AL-4) of Examples 5 to 8 and the liquid crystal aligning agents (AL-5 to AL-6) of Comparative Examples 5 to 6 a liquid crystal aligning film was formed based on the following method. evaluated.
  • the applicability test is performed by performing flexographic printing on the washed Cr plate using an alignment film printing machine (“Nongstromer” manufactured by Nissha Printing Co., Ltd.). went.
  • a substrate with an electrode (a glass substrate with a size of 30 mm wide ⁇ 40 mm long and 1.1 mm thick.
  • the electrode is a rectangle 10 mm wide ⁇ 40 mm long, It was applied by spin coat printing to an ITO electrode having a thickness of 35 nm. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in an IR oven at 220 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • This film is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Chemical Industries) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.5 mm), and then the film surface is confocal. Observed with a laser microscope. The film was evaluated as “good” when no peeling of the film was observed and many scraps and scratches were observed on the film, and “bad” when any defect was confirmed.
  • YA-20R manufactured by Yoshikawa Chemical Industries
  • a substrate with an electrode (a glass substrate with a size of 30 mm wide ⁇ 40 mm long and 1.1 mm thick.
  • the electrode is a rectangle 10 mm wide ⁇ 40 mm long, It was applied by spin coat printing to an ITO electrode having a thickness of 35 nm. After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 180 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • This membrane is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Chemical Industries) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then in pure water for 1 minute.
  • the substrate was washed by irradiating with ultrasonic waves, water droplets were removed by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • the liquid crystal cell for measuring the voltage holding ratio is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to have the same potential.
  • the angle of the liquid crystal cell is adjusted so that the luminance measured by the two polarizing plates (luminance of light transmitted through the LED backlight) is minimized. did.
  • the VT characteristics (voltage-transmittance characteristics) at a temperature of 23 ° C. are measured, and an AC voltage with a relative transmittance of 23% is measured. Calculated. Since this AC voltage corresponds to a region where the change in luminance with respect to the voltage is large, it is convenient for evaluating RDC.
  • the flicker intensity can be calculated by converting the luminance into a DC voltage using a photodiode and an AC-DC converter and reading this with an oscilloscope. When flicker occurs, it is monitored as an alternating voltage correlated with a rectangular wave of 30 Hz, so that the time when this alternating voltage becomes a direct current can be regarded as the relaxation time of RDC. Tables 2 and 3 show the results of various evaluations.
  • the polyurea copolymers (P-1 to P-4) obtained in Examples 1 to 4 and the polymers (PRef-2 to PRef-3) obtained in Comparative Examples 2 to 3 are liquid crystal alignment properties. It is scarce. Therefore, for the sake of convenience, the liquid crystal alignment agents (AL-1 to AL-4) of Examples 5 to 8 and a comparative example, in which a polymer (PRef-4) is blended as a high alignment component for convenience, so that the liquid crystal alignment can be evaluated. 5 to 6 liquid crystal aligning agents (AL-5 to AL-6) were obtained. Therefore, in Examples 5 to 8, it is also possible to obtain a liquid crystal aligning agent without blending the polymer (PRef-4). Even in this case, for example, as shown in Table 3 Presumably excellent in various properties.
  • the liquid crystal aligning agents (AL-1 to AL-4) of Examples 4 to 8 have good compatibility with the polyamic acid in spite of the large difference in structure from the polyamic acid, and accordingly, the applicability by flexographic printing ( The printability was also good. In addition, it was confirmed that the liquid crystal alignment films obtained using these liquid crystal alignment agents (AL-1 to AL-4) are less likely to be whitened and aggregated.
  • polyamic acid As for polyamic acid, it is known that diamine and acid dianhydride are in an equilibrium state, and that the polyamic acid is partially decomposed by heating, and particularly when a material exhibiting rapid relaxation of RDC is used, The voltage holding ratio (VHR) of the obtained liquid crystal alignment film tends to deteriorate. However, it is considered that the polyurea copolymer which is one embodiment of the present invention did not undergo decomposition due to heating and thus exhibited high VHR.
  • liquid crystal alignment films obtained by using the polyurea copolymers obtained in Examples 1 to 4 can be compared with the comparative examples in that the accumulation of RDC can be suppressed in spite of low coloring compared to the comparative examples. Similar or better properties were shown.
  • an unreliable material it is considered that ionic impurities accumulate at the interface between the liquid crystal and the alignment film, forming a state like an electric double layer. It may be confirmed.
  • the liquid crystal alignment film and the liquid crystal display element could be suitably obtained by using any of the liquid crystal aligning agents of Examples 5 to 8.
  • the liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a liquid crystal display device with good color reproducibility and high reliability, such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element,
  • the liquid crystal display device can be suitably used for various display devices such as a VA liquid crystal display device, an IPS liquid crystal display device, and an OCB liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

下式(1)で表される構造を有する、ポリウレア共重合体。 式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。 式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。 式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。 式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。

Description

ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
 本発明は、ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。
 液晶表示素子において液晶配向膜は、液晶を一定の方向に配向させる役割を担う。現在、工業的に利用されている主な液晶配向膜は、ポリアミド酸(ポリイミド前駆体やポリアミック酸ともいわれる。)やポリイミド溶液からなるポリイミド系の液晶配向剤を基板に塗布し、焼成することで成膜される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合、成膜した後、ラビングによる表面延伸処理(ラビング処理)が行われている。ラビング処理に代わる方法として、偏光紫外線の照射等による異方性光化学反応を利用する方法も提案されている。
 液晶表示素子の表示特性の向上のために、数々の技術が提案されてきた。例えば、特許文献1(特開平2-287324号公報)では、高い電圧保持率(VHR)を得るために、特定の繰り返し構造を有するポリイミド樹脂を用いることが提案されている。また、特許文献2(特開平10-104633号公報)では、残像が消去されるまでの時間を短くするために、イミド基以外に窒素原子を有する可溶性ポリイミドを用いることが提案されている。
特開平2-287324号公報 特開平10-104633号公報
 液晶配向膜に用いられる材料としては、ポリアミド酸やポリアミド酸エステル等のポリイミド前駆体や、それらを焼成により或いは化学反応により脱水することで得られるポリイミド等が挙げられる。このうち、ポリアミド酸は、その合成が容易であり、かつ溶媒への溶解性に優れるため、基板への塗布性・成膜性に優れる液晶配向剤を得ることができる。しかし、ポリアミド酸は、その構造上、加水分解等により分解しやすいため、これを用いて得た液晶配向膜では、長期に亘って信頼性(電圧保持率が高いこと、及び残留電圧が低いこと等)を確保することが難しい。
 一方、可溶性ポリイミド(ポリアミド酸の脱水反応により得られる溶媒に可溶なポリイミド)は、化学的安定性・耐熱性に優れるため、可溶性ポリイミドを用いて得た液晶配向膜では、長期に亘って信頼性を確保しやすくなる。しかし、可溶性ポリイミドは、溶解させることができる溶媒の選択肢が少なく、それゆえに、使用できる溶媒が限られ、その結果、可溶性ポリイミドを用いる場合、塗布中・成膜中に析出等が生じ、塗膜に欠陥ができやすい。
 ここで、電気抵抗の低いポリイミドを用いることで、得られる液晶表示膜の電気的特性を向上させるのに有利になる(例えば、液晶表示膜の蓄積電荷(電圧の印加を解除した後も電圧が残留し、その結果、蓄積する電荷をいう。)を緩和しやすくなる)場合がある。しかし、この場合、電荷移動錯体(CT錯体)が形成されることに起因して、液晶表示膜に着色が発生しやすくなるため、そのような液晶表示膜を用いて得られる液晶ディスプレイは、色再現性及びコントラストが低下しやすくなる。
 近年、4Kや8K等の超高精細の液晶ディスプレイに対する需要は益々高まってきており、液晶ディスプレイに対して、高コントラスト、及び高い色再現性等が益々求められている。更に、量子ドット(QD)等を用いた液晶ディスプレイの研究も進んでいる。従って、液晶配向膜を形成する材料として、例えば、使用環境により画質の劣化や不具合が引き起こされにくい材料、低温での焼成が可能な材料、透明度の高い材料、及び高温・低温での焼き付きを防止することができる材料が求められるようになってきた。今後の更なる、液晶ディスプレイの多機能化・大型化・高精細化・使用環境の多様化等に伴い、それぞれの問題を解決するとともに、各種特性を向上させることができる手法の探索が求められている。
 本発明は、上記の事情に鑑みなされたものであって、その課題は、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶配向膜を提供することにある。また、上記液晶配向膜を用いた液晶表示素子を提供することにある。また、上記液晶配向膜を得ることができ、しかも、低温での焼成が可能、かつ印刷性(得られる重合体の、有機溶媒への溶解性)が良好である液晶配向剤を提供することにある、更に、上記液晶配向剤を得ることができるポリウレア共重合体を提供することにある。
 本発明者は、鋭意研究した結果、特定の構造を有するポリウレア共重合体、及びそれを用いた液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。なお、上記ポリウレア共重合体は新規であり、上記ポリウレア共重合体を得るためのモノマーも、新規化合物を含んでいる。
 すなわち、本発明は以下1.~7.を要旨とする。
1. 下式(1)で表される構造を有する、ポリウレア共重合体。
Figure JPOXMLDOC01-appb-C000008
 式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。
Figure JPOXMLDOC01-appb-C000009
 式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure JPOXMLDOC01-appb-C000010
 式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure JPOXMLDOC01-appb-C000011
 式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
2. 前記Xは下式で表される二価の有機基を示す、1.に記載のポリウレア共重合体。
Figure JPOXMLDOC01-appb-C000012
 式中、黒点は窒素原子への結合箇所を意味する。
3. 前記Yは前記式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基である、1.又は2.に記載のポリウレア共重合体。
Figure JPOXMLDOC01-appb-C000013
 式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
4. 前記Yは下式(Q-2)で表される二価の有機基である、1.~3.の何れか1つに記載のポリウレア共重合体。
Figure JPOXMLDOC01-appb-C000014
 式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
5. 1.~4.の何れか1つに記載のポリウレア共重合体を用いた、液晶配向剤。
6. 5.に記載の液晶配向剤から得られる、液晶配向膜。
7. 6.に記載の液晶配向膜を用いた、液晶表示素子。
 本発明によれば、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶表示膜を提供することができる。また、本発明によれば、上記液晶表示膜を用いた液晶表示素子を提供することができる。また、本発明によれば、上記液晶表示素子及び上記液晶配向膜を得ることができ、しかも、低温での焼成が可能、かつ印刷性が良好である液晶配向剤を提供することができる。更に、本発明によれば、上記液晶配向剤を得るための新規なポリウレア共重合体を提供することができる。
 本発明の一態様であるポリウレア共重合体は、下式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000015
 式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。
Figure JPOXMLDOC01-appb-C000016
 式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure JPOXMLDOC01-appb-C000017
 式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure JPOXMLDOC01-appb-C000018
 式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
 式(S)で表される有機基を有するポリウレア共重合体を用いることで、得られる液晶配向膜は、所望の特性(例えば、蓄積電荷の緩和が早い、透明性に優れる、等)を得やすくなる。
 本発明の目的を達成しやすくする観点からは、式(1)中、Yは式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基であることが好ましく、Yは下式(Q-2)で表される二価の有機基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000019
 式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
Figure JPOXMLDOC01-appb-C000020
 式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
 上記ポリウレア共重合体は、所定のジアミン誘導体(以下「ジアミン」と称することがある)と、所定のジイソシアネート誘導体(以下「ジイソシアネート」と称することがある)と、を反応させることで得ることができる。式(1)中、例えば、Xはジイソシアネートに由来し、Yはジアミンに由来する。従って、ポリウレア共重合体の原料となる、ジアミン及びジイソシアネートの構造に応じて、X及びYは種々な構造を採り得る。
 <本発明で使用可能なジアミン(式(2)で表されるジアミン)>
 本発明で使用可能なジアミンの一つは、式(2)で表される。
Figure JPOXMLDOC01-appb-C000021
 式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、二価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
 上記ジアミンを使用すれば、得られる液晶配向剤及び液晶配向膜は、目的とする特性を得やすくなると考えられる。モノマーの重合反応性や、耐熱性や液晶配向性に優れた液晶配向膜を得ることができる、等の観点からは、式(2)中、Aは芳香族炭化水素基、Bは炭素数1~3の脂肪族炭化水素基、Cは単結合、であると更に好ましい。式(2)の具体例としては、下式(3)が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式中、Arはアリール基を示し、Dは単結合、炭素数1~5の炭化水素基を示す。R、R、Ra及びRbは上記のR、R、Ra及びRbと同義である。
 ジアミンを合成するための試薬を入手するのが容易である、ジイソシアネートとの反応性が良好である、得られる上記ポリウレア共重合体の物性が良好になる、等の観点を鑑みた場合、式(3)中、Arはフェニル基が好ましく、Rは水素原子が好ましい。従って、式(3)は、好ましくは下式(3-a)´で表される構造である。なかでも、式(3)中、Ra及びRbはそれぞれ水素原子であることが好ましい。従って、式(3)は、特に好ましくは、式(3-a)で表される。なお、式(Q-2)は、例えば、式(3-a)に由来の構造である。
Figure JPOXMLDOC01-appb-C000023
 式中、D及びRは上記のD及びRと同義である。
 目的とするモノマーを好適に得ることができる、上記の特性のすべてが良好になりやすい、等の観点からは、上記式(3-a)´は、好ましくは下式(3-1)で表される。
Figure JPOXMLDOC01-appb-C000024
 式中、B、R、Ra及びRbは上記のB、R、Ra及びRbと同義である。式(3-1)中、Bが炭素数1及び2であり、Ra及びRbがそれぞれ水素原子であると、式(3-1)は、式(3-1a)及び式(3-1b)で表される。
Figure JPOXMLDOC01-appb-C000025
 式中、Rは上記のRと同義である。
 上記ジアミンは、ポリウレア重合体の溶解性、液晶配向剤に含まれるワニスの保存安定性、液晶配向剤の印刷性、及び液晶配向膜にした際の信頼性等に重要な役割を担う。上記ジアミンの含有量は、本発明に使用するジアミン全量の内、例えば、10mol%~100mol%、より好ましくは、30mol%~70mol%程である。ただし、上記ジアミンは、ポリウレア重合体に含まれていればよく、その含有量は上記の値に限定されない。
 また、式(2)で表されるジアミンの具体例は、式(3)で表されるジアミンに限定されない。本発明の効果(例えば、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶配向膜を得ることができること)が損なわれない範囲であれば、上記ポリウレア重合体を合成するにあたり、式(2)又は式(3)で表されるジアミンの一部を、後述する式(5)で表されるジアミンに置き換えてもよい。
 <本発明で使用可能なジアミン(式(S)で表される構造を有するジアミン)>
 本発明で使用可能なジアミンの一つは、式(S)で表される構造を有する。式(S)で表される構造を有するジアミンと、式(2)で表されるジアミンと、は併用することができる。
Figure JPOXMLDOC01-appb-C000026
 式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure JPOXMLDOC01-appb-C000027
 式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
 式(S)で表される構造を有するジアミンは、該構造を含んでいれば特に限定はない。ただし、そのジアミンを容易に合成することができる、そのジアミンを合成するための試薬を容易に入手することができる、そのジアミンの溶解性が高い、等の観点からは、特に好ましいジアミンの具体例は、式(S-4)~式(S-13)が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 なお、後述するジイソシアネートが式(S)で表される構造を有する場合、これらのジアミンは使用しなくてもよい。式(S)で表される構造をポリウレア共重合体に導入することで、液晶配向膜の抵抗率を下げることができ、また、液晶配向膜の蓄積電荷の緩和速度を早くすることができる。一方、その導入量が多くなり過ぎると、返って蓄積電荷の増加等を招くおそれもある。好ましい導入量としては0mol%~90mol%、より好ましくは30mol%~70mol%程である。使用するジアミンの種類によっては、その使用量を増減させることで、更に良好な特性を有する、液晶配向剤及び液晶配向膜を得ることができる可能性がある。
 <本発明に使用可能なジイソシアネート>
 本発明に使用可能なジイソシアネートは、式(4)で表される。
Figure JPOXMLDOC01-appb-C000029
 式中、Xは2価の有機基を示す。Xは、例えば、ジアミンの項目で上述した式(S)で表される構造である。すなわち、本発明では、式(S)で表される構造を有するジイソシアネートを使用することができる。式(S)で表される構造を有するジイソシアネートは、式(S)で表される構造を有するジアミンにホスゲン等を反応させて誘導される。従って、式(S)で表される構造を有するジアミンを入手することができれば、上記ジイソシアネートは誘導可能である。
 本発明の効果を得る上で、式(S)で表される構造が重要な役割を担う。そのため、ジイソシアネートを用いることで、式(S)で表される構造を導入する場合、その導入される量は限定されない。ただ、好ましい導入量としては10mol%~100mol%であり、より好ましくは50mol%~80mol%である。使用するジイソシアネートの種類によっては、その使用量を増減させることで、更に良好な特性を有する、液晶配向剤及び液晶配向膜を得ることができる可能性がある。なお、上記ジアミンが式(S)で表される構造を有する場合、これらのジイソシアネートは使用しなくてもよい。
 <その他のジアミン>
 上記ポリウレア共重合体を得るにあたり、本発明で使用可能な上記ジアミンの一部を、下式(5)で表されるジアミン(その他のジアミン)に置き換えてもよい。一般に、ジアミンは種類が豊富であり、また様々な機能を有する有機基を持つ化合物が多いため、他のジアミンを併用することで、上記ポリウレア共重合体に更なる効果を付与することができる場合がある。一方、その他のジアミンの導入量が多くなると、目的とする特性が得られなくなるおそれがあるため、その他のジアミンの導入率は、本発明で使用可能な上記ジアミンの全モルに対して、0~50mol%程度が好ましい。
Figure JPOXMLDOC01-appb-C000030
 式中、Yは2価の有機基であり、Yの構造の例は、下式(Y-1)~式(Y-147)のように列挙されるが、これらに限定されない。Rはそれぞれ独立して、水素原子、メチル基、又はエチル基を示す。なお、ジアミンと、テトラカルボン酸二無水物と、の反応ではポリアミド酸を与え、ジアミンと、ジイソシアネートと、の反応ではポリウレアを与える。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 式(Y-108)~式(Y-112)中、Aは炭素数2~24の、アルキル基又はフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000035
 式(Y-113)~式(Y-114)中、Aは-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000036
 式(Y-115)~式(Y-117)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000037
 式(Y-118)~式(Y-119)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基を示す。
Figure JPOXMLDOC01-appb-C000038
 式(Y-120)~式(Y-121)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000039
 式(Y-122)~式(Y-123)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000040
 式(Y-132)~式(Y-137)中、A12は-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、A13は炭素数1~22の、アルキル基又はフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000041
 式(Y-140)、式(Y-144)及び式(Y-145)中、nは1~10の整数を示す。
 <その他のジイソシアネート>
 上記ポリウレア共重合体を得るにあたり、本発明で使用可能なジイソシアネートの一部を、式(4-1)~式(4-11)及び式(4-13)で表されるジイソシアネート(その他のジイソシアネート)に置き換えてもよい。
Figure JPOXMLDOC01-appb-C000042
 式(4-1)~式(4-5)で表される脂肪族ジイソシアネートを用いる場合は、式(4-6)~式(4-11)及び式(4-13)で表される芳香族ジイソシアネートを用いる場合に比べ、得られるポリウレア共重合体が溶媒に良好に溶解するようになる。一方、上記芳香族ジイソシアネートは、上記脂肪族ジイソシアネートに比べ、ジアミンと良好に反応する。例えば、式(4-6)や式(4-7)に示すような芳香族ジイソシアネートは、ジアミンと良好に反応し、得られる液晶配向膜の耐熱性を向上させることができる。
 上記ポリウレア共重合体を得るのに汎用性が高い化合物である、得られる上記ポリウレア共重合体の特性が良好になる、等の観点からは、式(4)は、式(4-1)、式(4-7)、式(4-8)、式(4-9)、又は式(4-10)が好ましい。また、式(5)は、得られる液晶配向膜の液晶配向性が良好になる観点からは、式(4-13)が好ましい。
 得たい特性に応じて、種々のその他のジイソシアネートを使用することができる。ただ、本発明で使用可能なジイソシアネートをその他のジイソシアネートに置き換える量が多過ぎると、目的とする特性が得られなくなる可能性があるため、その他のジイソシアネートの導入率は、本発明で使用可能な上記ジイソシアネートの全モルに対して、0~50mol%程が好ましい。
 <反応溶液>
 反応溶液(上記ポリウレア共重合体を得る為の反応に用いる有機溶媒)としては、上記ポリウレア共重合体が溶解する溶液であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。上記ポリウレア共重合体が析出しない範囲であれば、上記ポリウレア共重合体を溶解させない溶液であっても、上記反応溶液に混合して使用することができる。
 また、反応溶液中の水分は重合反応を阻害し、更には生成したポリウレア共重合体を加水分解させる原因となるので、脱水乾燥させた反応溶液を用いることが好ましい。ジイソシアネートとジアミンとを反応溶液中で反応させる際には、ジアミンを分散或いは溶解させた反応溶液を攪拌させ、ジイソシアネートをそのまま、又は反応溶液に分散或いは溶解させて添加する方法、逆にジイソシアネートを分散又は溶解させた反応溶液にジアミンを添加する方法、ジイソシアネートとジアミンとを反応溶液に交互に添加する方法等が挙げられ、これらの何れの方法を用いてもよい。
 また、ジイソシアネート又はジアミンが複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。その際の重合温度は-20℃から150℃の任意の温度を選択することができるが、好ましくは-5℃から100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量のポリウレア共重合体を得ることが難しくなり、濃度が高すぎると反応溶液の粘性が高くなり過ぎて均一な攪拌が困難となるので、ジイソシアネートとジアミンの反応溶液中での合計濃度は、好ましくは1質量%から50質量%、より好ましくは5質量%から30質量%である。反応初期は高濃度で行い、その後、反応溶液を追加することもできる。
 ポリウレアの重合反応においては、ジイソシアネートの合計モル数と、ジアミンの合計モル数と、の比は0.8から1.2であることが好ましい。通常の重縮合反応と同様、このモル比が1.0に近いほど、生成するポリウレア共重合体の分子量は大きくなる。
 [ポリウレア共重合体の回収]
 反応溶液から、生成した上記ポリウレア共重合体を回収するには、反応溶液を貧溶媒に投入して上記ポリウレア共重合体を沈殿させればよい。貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させた上記ポリウレア共重合体は、濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥させることができる。また、回収した上記ポリウレア共重合体を有機溶媒に再溶解させ、再沈殿及び再回収する操作を2回から10回繰り返すと、上記ポリウレア共重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの内から選ばれる3種以上の貧溶媒を用いると、精製の効率がより一層上がるので好ましい。
 上記ポリウレア共重合体の分子量は、上記ポリウレア共重合体から得られる塗膜の強度、及び、塗膜を形成する時の作業の容易性、塗膜の膜厚の均一性、等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000から1,000,000とするのが好ましく、より好ましくは、10,000から150,000である。
 <液晶配向剤>
 本発明の一態様である液晶配向剤は、液晶配向膜を形成するための塗布液であり、塗膜(樹脂被膜)を形成するための樹脂成分が有機溶媒に溶解している。樹脂成分は、少なくとも一種の上記ポリウレア共重合体を含む。液晶配向剤中の、樹脂成分の含有量は2質量%から20質量%が好ましく、より好ましくは3質量%から15質量%、特に好ましくは3質量%から10質量%である。本発明において、樹脂成分に含まれるポリウレア共重合体は、その全てが上記ポリウレア共重合体であってもよく、本発明の趣旨の範囲内であれば、それ以外の重合体(他の重合体)が含まれていてもよい。樹脂成分中、他の重合体の含有量は0.5質量%から15質量%、好ましくは1質量%から10質量%である。かかる他の重合体は、例えば、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース、ポリシロキサン等が挙げられる。
 上記液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。
 上記液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布して形成される塗膜の、膜厚の均一性や表面の平滑性を向上させる溶媒や化合物、又は、液晶配向膜と基板との密着性を向上させる化合物等である。
 膜厚の均一性や表面の平滑性を向上させる溶媒(貧溶媒)としては、低表面張力を有する溶媒、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの貧溶媒は1種でも複数種を混合して用いてもよい。上記貧溶媒を用いる場合は、液晶配向剤に含まれる有機溶媒全体の5質量%から80質量%であることが好ましく、より好ましくは20質量%から60質量%である。
 膜厚の均一性や塗膜表面の平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤等が挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含まれる樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
 更に、基板と膜の密着性の向上に加え、バックライトによる光の照射が原因となる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系の添加剤を添加してもよい。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。
Figure JPOXMLDOC01-appb-C000043
 基板と膜との密着性を向上させる化合物を使用する場合、その化合物の使用量は、液晶配向剤に含まれる樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が上記値未満であると密着性が向上しにくくなり、上記値よりも多くなると液晶配向性が悪くなる場合がある。
 上記液晶配向剤には、上記のような溶媒や化合物の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、所定の架橋性化合物を添加してもよい。
 <液晶配向膜・液晶表示素子>
 上記液晶配向剤を、基板上に塗布して焼成した後、ラビングや光照射等で配向処理をすることで、又は垂直配向用途等では配向処理無しで、本発明の一態様である液晶配向膜を得ることができる。基板としては、透明性の高いガラス基板、又はプラスチック基板(例えば、アクリル基板やポリカーボネート基板)等を用いることができる。また、液晶を駆動させるためのITO電極等が形成された基板を用いることが、液晶表示素子を製造するプロセスを簡素化させる観点から好ましい。また、反射型の液晶表示素子では、片側の基板にシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミ等の光を反射する材料も使用できる。液晶配向剤を塗布する方法は特に限定されないが、工業的には、スピンコート印刷、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット印刷等が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナー等があり、目的に応じてこれらの方法を用いてもよい。
 焼成は、ホットプレート等の加熱手段により50℃から300℃、好ましくは80℃から250℃で行うことができる。液晶配向剤中の有機溶媒を蒸発させることで、塗膜を形成させることができる。塗膜の厚みは、厚すぎると液晶表示素子の消費電力が増えやすく、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nmから300nm、より好ましくは10nmから150nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜を、ラビング又は偏光紫外線照射等で配向処理する。
 上記した手法により、上記液晶配向剤から、液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製することで、本発明の一態様である液晶表示素子を得ることができる。液晶セルを作製する手法の一例としては、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法が挙げられる。このときのスペーサーの厚みは、好ましくは1μmから30μm、より好ましくは2μmから10μmである。上記液晶配向剤を用いて作製された上記液晶表示素子は、信頼性に優れるため、大画面で高精細の液晶テレビ等に好適に利用できる。
 <ジアミンの合成>
 合成例1
 ethyl(4-aminobenzyl)glycinate[NG4ABA]の合成
Figure JPOXMLDOC01-appb-C000044
 第1工程
 窒素導入管と還流管を備えた1Lの4口フラスコに、グリシンエチル塩酸塩105.6g(0.694mol)、THF500g、トリエチルアミン93.6g(0.925mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌した後、THFが還流する温度(設定70℃)で加熱し、4-ニトロベンジルブロミド50.0g(0.231mol)をTHF500.0gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。4-ニトロベンジルブロミドが消失した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル300.0gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液300gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル300gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去して、目的物(ニトロ体)である薄黄色の粘体46.0g(0.193mol)を得た。目的物が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 8.2(2H)、7.53(2H)、4.22(2H)、3.93(2H)、3.42(2H)、1.89(1H)、1.27(3H)
 第2工程
 窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体45.0g(0.19mol)、THF300.0g、鉄ドープ型白金カーボン4.5gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物である薄黄色の粘体35.4g(0.17mol:収率89%)を得た。目的物(NG4ABA)が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 6.99(2H)、6.63(2H)、4.15(2H)、3.70(2H)、3.38(2H)、3.00(2H)、1.24(3H)
 合成例2
 ethyl(4-aminophenethyl)glycinate[NG4APhA]の合成
Figure JPOXMLDOC01-appb-C000045
 第1工程
 窒素導入管と還流管を備えた1Lの4口フラスコに、4-ニトロフェネチルアミン塩酸塩50g(0.246mol)、THF500g、トリエチルアミン62.1g(0.604mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌し、THFが還流する温度(設定70℃)で加熱し、2-クロロ酢酸エチル25.1g(0.205mol)をTHF300gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。2-クロロ酢酸エチルが消失(HPLCにて確認)した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル500gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液500gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル500gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去し、目的物である薄黄色の粘体34.2g(0.136mol:収率66%)を得た。目的物(ニトロ体)が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 8.14(2H)、7.37(2H)、4.16(2H)、3.43(2H)、2.95(4H)、2.19(1H)、1.25(3H)
 第2工程
 窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体30.0g、THF300g、鉄ドープ型白金カーボン3.0gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物(NG4APhA)である薄黄色の粘体25.1g(0.113mol:収率95%)を得た。目的物が得られたことをH-NMRで確認した。
 H NMR (500MHz、CDCl):δ 6.99(2H)、6.60(2H)、4.18(2H)、3.42(2H)、2.89(2H)、2.86(2H)、2.75(2H)、1.24(3H)
 <略語>
 液晶配向剤の調製で用いる略号は以下の通りである。
 (ジイソシアネート)
 Me-DIDPA:N,N-ビス(4-イソシアナトフェニル)-N-メチルアミン
Figure JPOXMLDOC01-appb-C000046
 (ジアミン)
 NG4ABA:エチル(4-アミノベンジル)グリシネート
 NG4APhA:エチル(4-アミノフェネチル)グリシネート
 DADPA:4,4’-ジアミノジフェニルアミン
 Me-DADPA:N-メチル-4,4’-ジアミノジフェニルアミン
 Me-DPPDA:N-メチル-2,5-ジ-4-アミノフェニルピロール
 DA-2MG:1,2-ビス(4-アミノフェノキシ)エタン
Figure JPOXMLDOC01-appb-C000047
 DADPA、Me-DADPA、Me-DPPDAは公知の化合物であり、文献記載の手法にて合成したものを用いた。
 (テトラカルボン酸二無水物)
 CBDA:1,2,3,4―シクロブタンテトラカルボン酸二無水物
 13DMCBDA:1,3-ジメチル-1,2,3,4―シクロブタンテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000048
 (溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 GBL:γブチロラクトン
 また、ポリイミドの分子量測定条件は、以下の通りである。
 装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)
 カラム:Shodex社製カラム(KD-803、KD-805)
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、THFが10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)
 <ポリウレア共重合体の合成>
 実施例1
 Me-DIDPA/NG4ABA、DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.00g(15.92mmol)を測り取り、NMP29.9gを加え溶解させ、NG4ABA1.49g(7.16mmol)を加え室温で1時間反応させ、更にDADPA1.59g(7.96mmol)を加え、窒素雰囲気40℃で10時間反応させた。これにより、濃度15質量%、粘度420mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え、室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-1)を得た。
 実施例2
 Me-DIDPA/NG4ABA、Me-DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.00g(15.92mmol)を測り取り、NMP29.9gを加え溶解させ、NG4ABA1.59g(7.63mmol)を加え室温で1時間反応させ、更にMe-DADPA1.70g(7.96mmol)を加え、窒素雰囲気40℃で10時間反応させた。これにより、濃度15質量%、粘度380mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え、室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-2)を得た。
 実施例3
 Me-DIDPA/NG4APhA、Me-DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.00g(15.92mmol)を測り取り、NMP30.5gを加え溶解させ、NG4APhA1.70g(7.63mmol)を加え室温で1時間反応させ、更にMe-DADPA1.70g(7.96mmol)を加え、窒素雰囲気40℃で24時間反応させた。これにより、濃度15質量%、粘度420mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-3)を得た。
 実施例4
 Me-DIDPA/NG4ABA、Me-DPPDA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.00g(15.92mmol)を測り取り、NMP32.8gを加え溶解させ、NG4ABA1.59g(7.63mmol)を加え室温で1時間反応させ、更にMe-DPPDA2.09g(7.96mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度350mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-4)を得た。
 比較例1
 Me-DIDPA/Me-DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.00g(15.96mmol)を測り取り、NMP40.5gを加え溶解させ、Me-DADPA3.15g(14.78mmo)を加え、窒素雰囲気下40℃で24時間反応させた。しかし、反応進行に従い攪拌不可能になり、ポリマー希釈溶液(PRef-1)の調整はできなかった。
 比較例2
 CBDA/DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DADPA4.00g(20.01mmol)を測り取り、NMP43.5gを加え溶解させ、CBDA3.67g(18.61mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度520mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-2)を得た。
 比較例3
 CBDA/Me-DADPA
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DADPA4.00g(18.75mmol)を測り取り、NMP42.04gを加え溶解させ、CBDA3.42g(17.44mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度440mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-3)を得た。
 比較例4
 CBDA、13DMCBDA/DA-2MG
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DA-2MG4.00g(16.38mmol)を測り取り、NMP40.91gを加え溶解させ、13DMCBDA1.84g(8.19mmol)とCBDA1.38g(7.04mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度470mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-4)を得た。
 <透過率の測定(膜の着色の評価)>
 実施例で得られたポリウレア共重合体(P-1~P-4)及び比較例で得られた重合体(PRef-2~PRef-4)を、洗浄し乾燥させた石英ガラス基板(30mm×30mm、厚さ1.1mm)に、焼成後の膜厚が100nmの厚さになるようにスピンコート印刷により塗布し、ホットプレートで、80℃の温度で1分、220℃の温度で20分焼成した。これにより、透過率測定用のサンプル(透過率測定用の膜)を作成した。透過率の測定は、島津製作所製のUV-3600を用いて行い、350nm及び370nmの透過率と、UVスペクトルの吸収端の波長と、を評価することで、膜の着色を評価した。また、目視により色目を評価した。
 評価結果を表1に示す。UV透過率の項目は、その数値が大きいほど、膜の着色度合いが小さいことを意味する。また、UV吸収端の項目は、その数値が大きいほど、膜の着色度合いが小さいことを意味する。
Figure JPOXMLDOC01-appb-T000049
 実施例1~4(P-1~P-4)は、重合体全体におけるジフェニルアミン類の比率が比較例2~3(PRef-2~PRef-3)より多いにも関わらず、得られた膜は無色であった。つまり、実施例1~4のポリウレア共重合体を用いることで、比較例2~3の重合体を用いる場合と比べて、透明性の高い膜が得られることが確認された。実施例1~4のポリウレア共重合体を用いて得られた膜と、比較例2~3の重合体を用いて得られた膜と、では、UV透過率及びUV吸収端でも差がみられ、特に、目視で観察した際は色の違いは顕著であった。
 <液晶配向剤の調製>
 実施例5
 撹拌子を備えた50mlの三角フラスコに、実施例1で得られたポリウレア共重合体(P-1)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-3)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-1)を得た。
 実施例6
 撹拌子を備えた50mlの三角フラスコに、実施例2で得られたポリウレア共重合体(P-2)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-2)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-2)を得た。
 実施例7
 撹拌子を備えた50mlの三角フラスコに、実施例3で得られたポリウレア共重合体(P-3)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-3)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-3)を得た。
 実施例8
 撹拌子を備えた50mlの三角フラスコに、実施例4で得られたポリウレア共重合体(P-4)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-4)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-4)を得た。
 比較例5
 撹拌子を備えた50mlの三角フラスコに、比較例2で得られた重合体(PRef-2)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、重合体(PRef-2)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-5)を得た。
 比較例6
 撹拌子を備えた50mlの三角フラスコに、比較例3で得られた重合体(PRef-3)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、重合体(PRef-3)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-6)を得た。
 実施例5~8の液晶配向剤(AL-1~AL-4)及び比較例5~6の液晶配向剤(AL-5~AL-6)を用いて、下記手法に基づき、液晶配向膜を評価した。
 <白化耐性及び塗布性(印刷性)の評価>
 得られた液晶配向剤を、よく洗浄したCr基板にそれぞれ1滴たらし、室温25℃、湿度60%で放置して、白くなる(白化する)までの時間を測定した。測定した時間に基づき、白化耐性を評価した。
 液晶配向剤を1.0μmのフィルターで濾過した後、洗浄したCr板上に配向膜印刷機(日本写真印刷社製「オングストローマー」)を用いてフレキソ印刷を行うことにより、塗布性試験を行った。
 アニロックスロールに約1.0mlの液晶配向剤を滴下し、空運転を10回実施した後、10分間印刷機を止め、印刷版を乾燥させた。その後、Cr基板1枚に印刷を行い、印刷後の基板を70℃のホットプレート上に5分間放置して、塗膜の仮乾燥を行い、膜状態を観察した。目視と、光学顕微鏡(ニコン社製「ECLIPSE ME600」)での倍率50倍とで、主に膜厚ムラやエッジ部の膜厚ムラを観察した。
 <ラビング耐性の評価>
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート印刷により塗布した。80℃のホットプレート上で5分間乾燥させた後、220℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.5mm)した後、膜の表面を共焦点レーザー顕微鏡により観察した。膜の剥離が見られず、かつ膜上に削れカスや傷が多く見られない場合は「良好」と評価し、何らかの不具合が確認された場合は「不良」と評価した。
 <電圧保持率>
 [液晶配向性の観察、及び液晶セルの作製]
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート印刷により塗布した。50℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中で1分間、超音波を照射して洗浄し、エアブローで水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、MLC-2041(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、液晶配向性を観察した後、液晶セルを110℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用の液晶セルを得た。
 上記の手順で得られた電圧保持率測定用の液晶セルを用いて、60℃の温度下で1Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。
 [RDC(残留電圧:電圧の印加を解除した後も残留する電圧をいう)の蓄積に関する特性、及び蓄積電荷の緩和に関する特性の測定]
 上記の電圧保持率測定用の液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定した輝度(LEDバックライトを透過する光の輝度)が最小となるように、液晶セルの角度を調節した。
 次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。この交流電圧は、電圧に対する輝度の変化が大きい領域に相当するため、RDCを評価するのに都合がよい。
 次に、相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を印加しながら、+3.0Vの直流電圧を重畳し1時間駆動させ、1時間後のフリッカー(チラつき)のレベルを測定し、それをRDCの蓄積レベルに変換することで、蓄積電荷の量を見積もった。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加し、このときに発生するフリッカーのレベルと、そのフリッカーが発生しなくなるまでの時間(回復時間)を測定した。
 蓄積電荷の緩和が速いほど、上記回復時間が短く、すなわち、RDCの緩和特性が良好である。なお、フリッカーの強度の算出は、フォトダイオードとAC-DCコンバータを用いて輝度を直流電圧に変換し、これをオシロスコープで読み取ることで行うことができる。フリッカーが発生した場合、30Hzの矩形波に相関した交流電圧としてモニターされるため、この交流電圧が直流になる時間を、RDCの緩和時間とみなすことができる。各種評価の結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 なお、実施例1~4で得られたポリウレア共重合体(P-1~P-4)及び比較例2~3で得られた重合体(PRef-2~PRef-3)は、液晶配向性に乏しい。そのため、液晶配向性の評価を実施できるよう、便宜上、高配向成分として重合体(PRef-4)を配合した、実施例5~8の液晶配向剤(AL-1~AL-4)及び比較例5~6の液晶配向剤(AL-5~AL-6)を得ている。従って、実施例5~8において、重合体(PRef-4)を配合せずに液晶配向剤を得ることも可能であり、この場合の液晶配向剤であっても、例えば表3に示すような各種特性に優れると推察される。
 実施例4~8の液晶配向剤(AL-1~AL-4)は、ポリアミック酸とは大きく構造が異なるにもかかわらず、ポリアミック酸との相溶性がよく、それに伴いフレキソ印刷による塗布性(印刷性)も良好であった。しかも、それらの液晶配向剤(AL-1~AL-4)を用いて得られた液晶配向膜は、白化・凝集が起こりにくいことが確認された。
 ポリアミック酸については、ジアミンと酸二無水物との平衡状態にあること、及び加熱により該ポリアミック酸の一部分解を伴うこと、が知られており、特にRDCの高速緩和を示す材料を用いると、得られる液晶配向膜の電圧保持率(VHR)が悪化する傾向にある。しかし、本発明の一態様であるポリウレア共重合体は加熱による分解を伴わないため、高いVHRを示したと考えられる。
 更に、実施例1~4で得られたポリウレア共重合体を用いて得られた液晶配向膜は、比較例と比べて低着色にも関わらず、RDCの蓄積を抑制できる点では、比較例と同様、又はそれ以上に良好である特性を示した。信頼性の悪い材料の場合、イオン性の不純物が液晶と配向膜界面に蓄積し、電気二重層のような状態を形成することが考えられ、RDCが緩和した後、再度蓄積するような挙動が確認されることがある。しかし、実施例5~8の液晶配向剤を用いて得られた液晶配向膜には、それが見られなかった。なお、実施例5~8の何れの液晶配向剤を用いても、液晶配向膜及び液晶表示素子を好適に得ることができた。
 本発明の液晶配向剤を用いて作製した液晶表示素子は、色再現性がよく、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、VA液晶表示素子、IPS液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いることができる。

Claims (7)

  1.  下式(1)で表される構造を有する、ポリウレア共重合体。
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。
    Figure JPOXMLDOC01-appb-C000002
     式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
    Figure JPOXMLDOC01-appb-C000003
     式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
    Figure JPOXMLDOC01-appb-C000004
     式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
  2.  前記Xは下式で表される二価の有機基を示す、請求項1に記載のポリウレア共重合体。
    Figure JPOXMLDOC01-appb-C000005
     式中、黒点は窒素原子への結合箇所を意味する。
  3.  前記Yは前記式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基である、請求項1又は2に記載のポリウレア共重合体。
    Figure JPOXMLDOC01-appb-C000006
     式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
  4.  前記Yは下式(Q-2)で表される二価の有機基である、請求項1~3の何れか1項に記載のポリウレア共重合体。
    Figure JPOXMLDOC01-appb-C000007
     式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
  5.  請求項1~4の何れか1項に記載のポリウレア共重合体を用いた、液晶配向剤。
  6.  請求項5に記載の液晶配向剤から得られる、液晶配向膜。
  7.  請求項6に記載の液晶配向膜を用いた、液晶表示素子。
PCT/JP2019/011908 2018-03-23 2019-03-20 ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 WO2019182072A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980019562.1A CN111886270B (zh) 2018-03-23 2019-03-20 聚脲共聚物、液晶取向剂、液晶取向膜、及使用该液晶取向膜的液晶显示元件
KR1020207029471A KR20200135405A (ko) 2018-03-23 2019-03-20 폴리우레아 공중합체, 액정 배향제, 액정 배향막, 및 그것을 이용한 액정 표시 소자
JP2020507907A JP7410457B2 (ja) 2018-03-23 2019-03-20 ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057184 2018-03-23
JP2018-057184 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182072A1 true WO2019182072A1 (ja) 2019-09-26

Family

ID=67987355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011908 WO2019182072A1 (ja) 2018-03-23 2019-03-20 ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP7410457B2 (ja)
KR (1) KR20200135405A (ja)
CN (1) CN111886270B (ja)
TW (1) TWI806996B (ja)
WO (1) WO2019182072A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480713B (zh) * 2021-06-30 2023-01-24 上海交通大学 一种聚脲量子点荧光微球的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397253A (en) * 1965-03-23 1968-08-13 Bayer Ag Polyhydantoin polymer prepared by the reaction of glycine derivatives and polyisocyanates
FR1536923A (fr) * 1965-09-02 1968-09-02 Inst Francais Du Petrole Polyhydantoïnes et leur procédé de fabrication
GB1176844A (en) * 1966-06-18 1970-01-07 Bayer Ag Polymers containing Hydantoin Rings
JPS5012085A (ja) * 1973-04-11 1975-02-07
JPS50109291A (ja) * 1974-02-05 1975-08-28
JPS552235A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Liquid crystal sandwiching substrate
JP2006133483A (ja) * 2004-11-05 2006-05-25 Fuji Photo Film Co Ltd 配向膜、位相差板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743460B2 (ja) 1989-04-27 1998-04-22 日産化学工業株式会社 液晶セル用配向処理剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
CN105518521B (zh) * 2013-07-05 2020-04-10 日产化学工业株式会社 聚合物组合物和横向电场驱动型液晶表示元件用液晶取向膜
TWI685525B (zh) * 2014-11-12 2020-02-21 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
JP6666602B2 (ja) * 2016-03-25 2020-03-18 日産化学株式会社 多孔質膜形成用樹脂組成物及び多孔質膜
JP7235209B2 (ja) 2018-03-23 2023-03-08 日産化学株式会社 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
CN111868617B (zh) 2018-03-23 2023-09-12 日产化学株式会社 液晶取向剂、用于得到该液晶取向剂的聚合物、液晶取向膜、以及使用其的液晶显示元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397253A (en) * 1965-03-23 1968-08-13 Bayer Ag Polyhydantoin polymer prepared by the reaction of glycine derivatives and polyisocyanates
FR1536923A (fr) * 1965-09-02 1968-09-02 Inst Francais Du Petrole Polyhydantoïnes et leur procédé de fabrication
GB1176844A (en) * 1966-06-18 1970-01-07 Bayer Ag Polymers containing Hydantoin Rings
JPS5012085A (ja) * 1973-04-11 1975-02-07
JPS50109291A (ja) * 1974-02-05 1975-08-28
JPS552235A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Liquid crystal sandwiching substrate
JP2006133483A (ja) * 2004-11-05 2006-05-25 Fuji Photo Film Co Ltd 配向膜、位相差板およびその製造方法

Also Published As

Publication number Publication date
JP7410457B2 (ja) 2024-01-10
CN111886270B (zh) 2022-06-24
CN111886270A (zh) 2020-11-03
TWI806996B (zh) 2023-07-01
KR20200135405A (ko) 2020-12-02
JPWO2019182072A1 (ja) 2021-03-18
TW201940552A (zh) 2019-10-16

Similar Documents

Publication Publication Date Title
JP5870487B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5382351B2 (ja) 液晶配向処理剤、及びそれを用いた液晶表示素子
WO2014034790A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2009093709A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6083388B2 (ja) 液晶配向剤の製造方法
JPWO2009093711A1 (ja) 液晶配向剤、及び液晶表示素子
WO2012147939A1 (ja) ジカルボン酸無水物で修飾したポリイミド前駆体、イミド化したポリイミド及びそれを用いた液晶配向処理剤
TW201604237A (zh) 含有聚醯胺酸酯-聚醯胺酸共聚物之液晶配向劑,及使用其之液晶配向膜
WO2014142168A1 (ja) 光反応性基を有する架橋性化合物を含有する液晶配向剤
JP6146576B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
JP7004958B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2023052560A (ja) 重合体、それを用いた液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2023052403A (ja) 液晶配向剤、それを得るための重合体、液晶配向膜、及びそれを用いた液晶表示素子
JP7410457B2 (ja) ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP5783166B2 (ja) 液晶配向剤、液晶表示素子及びジアミン化合物
KR20150094711A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029471

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19770925

Country of ref document: EP

Kind code of ref document: A1