WO2019181181A1 - 共振型コンバータの制御装置 - Google Patents

共振型コンバータの制御装置 Download PDF

Info

Publication number
WO2019181181A1
WO2019181181A1 PCT/JP2019/002019 JP2019002019W WO2019181181A1 WO 2019181181 A1 WO2019181181 A1 WO 2019181181A1 JP 2019002019 W JP2019002019 W JP 2019002019W WO 2019181181 A1 WO2019181181 A1 WO 2019181181A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
resonance
signal
output
Prior art date
Application number
PCT/JP2019/002019
Other languages
English (en)
French (fr)
Inventor
建 陳
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2020507379A priority Critical patent/JP6849143B2/ja
Priority to CN201980004095.5A priority patent/CN111052581B/zh
Publication of WO2019181181A1 publication Critical patent/WO2019181181A1/ja
Priority to US16/801,716 priority patent/US10855189B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a control device for a resonant converter, and more particularly to a control device for a resonant converter that is a current resonance type DC-DC converter in which a bulk capacitor that is an output capacitor of a power factor correction circuit is connected to an input.
  • This current resonance type DC-DC converter is used in combination with a power factor correction circuit that suppresses the harmonic current generated by the switching operation to a certain limit value or less and improves the power factor.
  • the power factor correction circuit generates a DC intermediate voltage boosted from the AC input voltage, and the DC-DC converter converts the intermediate voltage into a DC voltage having a predetermined value.
  • a large-capacity bulk capacitor is provided between the power factor correction circuit and the DC-DC converter, and the intermediate voltage generated by the power factor correction circuit is stored in the bulk capacitor and the intermediate voltage stored in the bulk capacitor. Is the input voltage of the DC-DC converter.
  • the DC-DC converter converts its input voltage and supplies it to a load.
  • the resonance is lost and the switching element may be destroyed. That is, in a current resonance type DC-DC converter, a half bridge circuit in which high-side and low-side switching elements are connected in series is used, and the current-resonance circuit is driven by alternately turning on the high-side and low-side switching elements. ing.
  • the current resonance type DC-DC converter when the input voltage is lowered, control is performed to lower the switching operating frequency in order to maintain a predetermined output voltage, and the switching cycle becomes longer. As a result, the on-time of the switching element is too long, and a resonance deviation in which the resonance current is reversed during the on-time may occur, resulting in a phenomenon that a large current flows in the subsequent switching.
  • the direction of the resonance current when turning off in normal operation is a body diode connected in reverse parallel to the high-side switching element (the switching element is The direction is the reverse of the forward direction of the MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • the resonance current is monitored, and when the resonance current exceeds the first threshold, the DC-DC converter is allowed to be forcibly turned off. When falling below the threshold, a forced turn-off of the DC-DC converter is performed. This reliably prevents the resonance of the DC-DC converter before the resonance current is reversed.
  • the resonance current and the resonance voltage are monitored, the polarity inversion of the resonance current is determined based on the resonance voltage, and the forced turn-off of the DC-DC converter is permitted.
  • the forced turn-off of the DC-DC converter is executed. This reliably prevents the resonance of the DC-DC converter before the resonance current is reversed.
  • a DC-DC converter In a DC-DC converter, it is desired that a DC voltage can be supplied to a load as long as possible when the power supplied from the power factor correction circuit is lost. This is because when a power loss occurs, a time called a retention time is required to back up data before a load such as a data processing apparatus shuts down. In order to secure this holding time, it is necessary to make the intermediate voltage of the bulk capacitor available to the lowest possible voltage or increase the capacity of the bulk capacitor.
  • the resonance current threshold value for executing the forced turn-off may be set low.
  • the threshold value of the resonance current for executing the forced turn-off is set low, when the input voltage is high, the current change rate (dI / dt) of the resonance current increases, so that it is difficult to prevent resonance deviation.
  • the threshold value of the resonance current for executing the forced turn-off is set high, the forced turn-off is executed before the input voltage is lowered, so the holding time is shortened, and the energy of the bulk capacitor is not effectively used.
  • the threshold value of the resonance current is set low, it is difficult to prevent resonance deviation, and if the threshold value of the resonance current is set high, it is difficult to ensure the holding time. For this reason, it is preferable to increase the capacity of the bulk capacitor in order to secure the holding time, but there is a problem that the cost of parts of the bulk capacitor increases.
  • the present invention has been made in view of these points, and provides a control device for a resonant converter that can ensure a long holding time without increasing the capacitance of a bulk capacitor while reliably preventing resonance deviation. For the purpose.
  • a control device for a resonant converter that receives a DC voltage of a bulk capacitor as an input.
  • the control unit of the resonance type converter includes a forced turn-off control circuit.
  • the forced turn-off control circuit inputs a resonance current detection signal obtained by diverting the resonance current flowing through the resonance converter into a voltage, and the resonance current detection signal is smaller than the first variable threshold and the second variable threshold.
  • a forced turn-off signal is output when it falls between the variable threshold values.
  • the forced turn-off control circuit varies the first variable threshold value and the second variable threshold value according to the input voltage inputted by dividing the DC voltage of the bulk capacitor.
  • the control device for the resonant converter having the above configuration varies the absolute values of the first variable threshold and the second variable threshold compared with the resonance current detection signal according to the input voltage, thereby resonating at a high input voltage.
  • FIG. 1 is a circuit diagram showing a configuration example of a switching power supply device including a DC-DC converter to which a control device of the present invention is applied
  • FIG. 2 shows a configuration example of a control device for a resonant converter according to an embodiment of the present invention. It is a functional block diagram.
  • the switching power supply according to the present embodiment includes a power factor correction circuit (PFC) 1 and a DC-DC converter 2, and a bulk capacitor C 1 is interposed between the power factor correction circuit 1 and the DC-DC converter 2. Has been placed.
  • PFC power factor correction circuit
  • DC-DC converter 2 DC-DC converter 2
  • the power factor correction circuit 1 has an AC power supply 10 connected to its input terminal and a bulk capacitor C1 connected to its output terminal, which rectifies and boosts the AC voltage, and uses the DC voltage Vi as a charging voltage for the bulk capacitor C1. Generate. This DC voltage Vi becomes a DC input voltage of the DC-DC converter 2.
  • the positive terminal and the negative terminal of the bulk capacitor C1 are connected to a half-bridge circuit in which a high-side switching element Q1 and a low-side switching element Q2 are connected in series.
  • switching elements Q1, Q2 use N-channel MOSFETs.
  • the common connection point of the switching elements Q1 and Q2 is connected to one terminal of the primary winding P1 of the transformer T1, and the other terminal of the primary winding P1 is connected to the ground via the resonance capacitor C6.
  • the leakage inductance component of the transformer T1 and the resonance capacitor C6 constitute a resonance circuit.
  • an inductor different from the inductance constituting the transformer T1 may be connected in series to the resonance capacitor C6, and the inductor may be used as the resonance reactance of the resonance circuit.
  • One terminal of the secondary winding S1 of the transformer T1 is connected to the anode terminal of the diode D3, and one terminal of the secondary winding S2 is connected to the anode terminal of the diode D4.
  • the cathode terminals of the diodes D3 and D4 are both connected to the positive terminal of the output capacitor Co and the output terminal 11p.
  • the negative terminal of the output capacitor Co is connected to the common connection point of the secondary windings S1 and S2 and the output terminal 11n.
  • the secondary windings S1 and S2, the diodes D3 and D4, and the output capacitor Co constitute a circuit that rectifies and smoothes the AC voltage generated in the secondary windings S1 and S2 and converts it into a DC output voltage Vo.
  • An output circuit of the DC-DC converter 2 is configured.
  • the control IC (Integrated Circuit) 12 is a control unit that controls the DC-DC converter 2.
  • the control IC 12 has a VH terminal connected to the positive terminal of the bulk capacitor C1, a GND terminal connected to the ground, and a BO terminal for detecting the input DC voltage Vi.
  • the BO terminal is connected to one terminal of the resistor Rb1 and one terminal of the resistor Rb2, the other terminal of the resistor Rb1 is connected to the positive terminal of the bulk capacitor C1, and the other terminal of the resistor Rb2 is connected to the bulk capacitor C1. Is connected to the negative terminal.
  • the resistors Rb1 and Rb2 constitute a voltage dividing circuit that divides the input DC voltage Vi and supplies the divided voltage to the BO terminal.
  • the control IC 12 also has a HO terminal connected to the gate terminal of the switching element Q1 via the resistor R11 and an LO terminal connected to the gate terminal of the switching element Q2 via the resistor R12.
  • the control IC 12 further includes a VB terminal for high-side power supply, a VS terminal for high-side reference potential, a VCC terminal for power supply for the control IC 12, a VW terminal for resonance voltage detection, and an FB terminal to which information on the output voltage Vo is fed back. And an IS terminal for detecting a resonance current.
  • a capacitor C5 is connected between the VB terminal and the VS terminal of the control IC 12, and the VS terminal is connected to a common connection point of the switching elements Q1 and Q2.
  • the VCC terminal is connected to the positive terminal of the capacitor C3, and the negative terminal of the capacitor C3 is connected to the ground.
  • the VCC terminal is also connected to the anode terminal of the diode D2, and the cathode terminal of the diode D2 is connected to the VB terminal.
  • the VCC terminal is further connected to one terminal of a current limiting resistor R13, and the other terminal of the resistor R13 is connected to the cathode terminal of the diode D1.
  • the anode terminal of the diode D1 is connected to one terminal of the auxiliary winding P2 of the transformer T1, and the other terminal of the auxiliary winding P2 is connected to the ground.
  • the capacitor C3 accumulates the current induced in the auxiliary winding P2 and serves as a power source for the control IC 12.
  • One terminal of the auxiliary winding P2 of the transformer T1 is also connected to one terminal of the resistor R14, the other terminal of the resistor R14 is connected to one terminal of the resistor R15, and the other terminal of the resistor R15 is Connected to ground.
  • a common connection point of the resistor R14 and the resistor R15 is connected to the VW terminal of the control IC 12, and a resonance voltage detection signal is supplied to the VW terminal.
  • a connection point between the other terminal of the primary winding P1 of the transformer T1 and the resonance capacitor C6 is connected to one terminal of the capacitor Cis, and the other terminal of the capacitor Cis is connected to one terminal of the resistor Ris. The other terminal of Ris is connected to the ground.
  • a common connection point between the capacitor Cis and the resistor Ris is connected to the IS terminal of the control IC 12.
  • the resonance current flowing through the resonance capacitor C6 is shunted by the series circuit of the capacitor Cis and the resistor Ris, and the shunt current is converted into a voltage by the resistor Ris and supplied to the IS terminal of the control IC 12 as a resonance current detection signal.
  • the positive terminal of the output capacitor Co is connected to the anode terminal of the light emitting diode of the photocoupler PC1 via the resistor R16, and the cathode terminal of the light emitting diode is connected to the cathode terminal of the shunt regulator SR1.
  • a resistor R17 is connected between the anode terminal and the cathode terminal of the light emitting diode.
  • the anode terminal of the shunt regulator SR1 is connected to the output terminal 11n.
  • the shunt regulator SR1 has a reference terminal connected to a connection point of resistors R18 and R19 connected in series between the positive terminal and the negative terminal of the output capacitor Co.
  • shunt regulator SR1 a series circuit of a resistor R20 and a capacitor C11 is connected between a reference terminal and a cathode terminal.
  • the shunt regulator SR1 allows a current corresponding to the difference between the potential obtained by dividing the output voltage Vo (the voltage across the output capacitor Co) by resistors R18 and R19 and the built-in reference voltage to flow through the light emitting diode of the photocoupler PC1. is there.
  • a current corresponding to an error with respect to the target voltage of the output voltage Vo flows through the light emitting diode.
  • the phototransistor of the photocoupler PC1 has a collector terminal connected to the FB terminal of the control IC 12, an emitter terminal connected to the ground, and a capacitor C2 connected between the collector terminal and the emitter terminal.
  • the FB terminal is pulled up to an internal reference voltage (not shown) via a resistor (not shown).
  • the control IC 12 includes a switch on / off control circuit 21, a forced turn-off control circuit 22, a high side drive circuit 23, a low side drive circuit 24, a start circuit 25, and a voltage regulator 26, as shown in FIG.
  • the VH terminal of the control IC 12 is connected to the input terminal of the starting circuit 25, and the output terminal of the starting circuit 25 is connected to the VCC terminal, the switch on / off control circuit 21, the low side drive circuit 24, and the voltage regulator 26.
  • the voltage regulator 26 generates the voltage VDD of the internal power supply and supplies it to the switch on / off control circuit 21 and the forced turn-off control circuit 22.
  • the FB terminal is connected to the input terminal of the switch on / off control circuit 21, and the high side output terminal of the switch on / off control circuit 21 is connected to the input terminal of the high side drive circuit 23 to receive the high side drive signal hi_pre. Supply.
  • the low-side output terminal of the switch on / off control circuit 21 is connected to the input terminal of the low-side drive circuit 24 and supplies a low-side drive signal lo_pre.
  • the output terminal of the high side drive circuit 23 is connected to the HO terminal, and the output terminal of the low side drive circuit 24 is connected to the LO terminal.
  • the high-side drive circuit 23 is also connected to a high-side power supply VB terminal and a high-side reference potential VS terminal.
  • the VW terminal, IS terminal, and BO terminal are connected to the input terminal of the forced turn-off control circuit 22, and the output terminal of the forced turn-off control circuit 22 is connected to the input terminal of the switch-on / off control circuit 21, and the forced turn-off signal fto. Supply.
  • the forced turn-off control circuit 22 is also connected to the high-side output terminal and the low-side output terminal of the switch-on / off control circuit 21, and receives the high-side drive signal hi_pre and the low-side drive signal lo_pre.
  • the control IC 12 when the charging voltage of the bulk capacitor C1 increases, the control IC 12 first operates the start circuit 25 to output a current for charging the capacitor C3 from its output terminal. This current charges the capacitor C3 connected to the VCC terminal via the VCC terminal to generate the voltage VCC. Then, the voltage regulator 26 generates a constant voltage VDD from the voltage VCC and supplies the voltage VDD to the switch on / off control circuit 21 and the forced turn-off control circuit 22. When the voltage VCC and the voltage VDD are established and the DC-DC converter 2 starts the switching operation, the voltage at the VCC terminal is maintained by the current supplied from the auxiliary winding P2 of the transformer T1.
  • the switch on / off control circuit 21 receives the information of the output voltage Vo input to the FB terminal and controls the ON width of the high side drive signal hi_pre and the low side drive signal lo_pre so that the output voltage Vo becomes a predetermined constant value. Control to be.
  • the forced turn-off control circuit 22 inputs an input voltage detection signal to the BO terminal, inputs a resonance voltage detection signal to the VW terminal, and inputs a resonance current detection signal to the IS terminal.
  • the resonance voltage detection signal input to the VW terminal specifies the direction in which the resonance current changes (increase direction or decrease direction), and the resonance current detection signal input to the IS terminal includes the high side drive signal hi_pre and The timing for forcibly turning off the low-side drive signal lo_pre is determined.
  • the input voltage detection signal at the BO terminal determines a threshold value for turning off the high-side drive signal hi_pre and the low-side drive signal lo_pre.
  • the forced turn-off control circuit 22 is configured such that when the signal at the VW terminal decreases, the signal at the VW terminal falls below the first fixed threshold value, and the signal at the IS terminal falls below the first variable threshold value. Sometimes the high side drive signal hi_pre is turned off. Further, the forced turn-off control circuit 22 is configured such that when the signal at the VW terminal rises, the signal at the VW terminal rises above a second fixed threshold value that is smaller than the first fixed threshold value, and the signal at the IS terminal The low side drive signal lo_pre is turned off when it rises above a second variable threshold value that is less than one variable threshold value.
  • the first variable threshold value and the second variable threshold value are changed depending on the value of the input voltage detection signal of the BO terminal, that is, the value of the input DC voltage Vi, and increase when the DC voltage Vi is high. It is set to be low when the DC voltage Vi is low.
  • the range in which the first variable threshold and the second variable threshold are set low is a range in which the DC-DC converter 2 can maintain the predetermined output voltage Vo.
  • FIG. 3 is a circuit diagram showing a configuration example of the forced turn-off control circuit
  • FIG. 4 is a diagram showing an input / output relationship of a threshold voltage calculation unit of the forced turn-off control circuit
  • FIG. 5 is a timing chart for generating a forced turn-off signal.
  • the VW terminal is connected to the inverting input terminal of the comparator COMP1 and the non-inverting input terminal of the comparator COMP2, as shown in FIG.
  • the non-inverting input terminal of the comparator COMP1 is applied with a fixed threshold voltage Vthvwh (first fixed threshold) for high side, and the output terminal of the comparator COMP1 is connected to the clock input terminal C of the D flip-flop DFF1.
  • Vthvwh first fixed threshold
  • Vthvwl second fixed threshold
  • the voltage VDD of the internal power source is applied to the input terminals D of the D flip-flops DFF1 and DFF2.
  • the output terminal Q of the D flip-flop DFF1 is connected to the set input terminal S of the reset-priority RS flip-flop RSFF1.
  • the output terminal Q of the D flip-flop DFF2 is connected to the set input terminal S of the reset-priority RS flip-flop RSFF2.
  • the low side drive signal lo_pre output from the switch on / off control circuit 21 is input to the reset input terminal R of the D flip-flop DFF1 and the first reset input terminal R1 of the RS flip-flop RSFF1.
  • the high side drive signal hi_pre output from the switch-on / off control circuit 21 is input to the reset input terminal R of the D flip-flop DFF2 and the first reset input terminal R1 of the RS flip-flop RSFF2.
  • the IS terminal is connected to the non-inverting input terminal of the comparator COMP3 and the inverting input terminal of the comparator COMP4 via the level shift circuit 32.
  • the level shift circuit 32 is considered to be unexplained until described later. Therefore, the output signal of the level shift circuit is assumed to be the same as the voltage at the IS terminal and will be described below.
  • the output terminal of the comparator COMP3 is connected to the second reset input terminal R2 of the RS flip-flop RSFF1
  • the output terminal of the comparator COMP4 is connected to the second reset input terminal R2 of the RS flip-flop RSFF2.
  • the inverting input terminal of the comparator COMP3 and the non-inverting input terminal of the comparator COMP4 are input with threshold voltages Vthish (first variable threshold value) and Vthisl (second variable threshold value) that are variable according to the DC voltage Vi, respectively. Is done. That is, the BO terminal is connected to the input terminal of the analog / digital converter ADC, and the output terminal of the analog / digital converter ADC is connected to the input terminal of the threshold voltage calculator 31.
  • the high-side output terminal of the threshold voltage calculation unit 31 is connected to the input terminal of the digital / analog converter DAC1, and the low-side output terminal of the threshold voltage calculation unit 31 is connected to the input terminal of the digital / analog converter DAC2. ing.
  • the output terminal of the digital / analog converter DAC1 is connected to the inverting input terminal of the comparator COMP3, and the output terminal of the digital / analog converter DAC2 is connected to the non-inverting input terminal of the comparator COMP4.
  • the analog / digital converter ADC and the digital / analog converters DAC1 and DAC2 have a resolution of 10 bits.
  • the output terminals Q of the RS flip-flops RSFF1 and RSFF2 are respectively connected to the input terminal of the OR circuit OR1, and the output terminal of the OR circuit OR1 is connected to the output terminal of the forced turn-off control circuit 22 that outputs the forced turn-off signal fto. It is connected.
  • the threshold voltage calculation unit 31 calculates the high-side threshold voltage Vthish and the low-side threshold voltage Vthisl from the voltage Vbo input to the BO terminal according to the relationship shown in FIG.
  • the horizontal axis indicates the voltage Vbo obtained by dividing the DC voltage Vi by the voltage dividing circuit using the resistors Rb1 and Rb2
  • the vertical axis indicates the resonance current comparison threshold voltage Vthis calculated by the threshold voltage calculation unit 31.
  • the threshold voltage calculation unit 31 outputs a threshold voltage Vthis that varies according to the voltage Vbo in a predetermined voltage range of the voltage Vbo, and outputs a threshold voltage Vthis that does not vary according to the voltage Vbo outside the predetermined voltage range.
  • the threshold voltage Vthish for the high side is obtained when the voltage Vbo has a relationship of Vbo2 ⁇ Vbo ⁇ Vbo1.
  • Vthish Vthish1
  • Vthish Vthish2 (3) It becomes.
  • the threshold voltage Vthisl for the low side is obtained when the voltage Vbo is in a relationship of Vbo2 ⁇ Vbo ⁇ Vbo1.
  • Vthisl Vthisl1
  • Vthisl Vthisl2 (6) It becomes.
  • the DC voltage Vi corresponds to a specified voltage of 400 volts (V)
  • Vbo2 corresponds to 260 V when the power supply is reduced when the power is lost.
  • the absolute values of the high-side threshold voltage Vthish1 and the low-side threshold voltage Vthisl1 are 1V
  • the absolute values of the high-side threshold voltage Vthish2 and the low-side threshold voltage Vthisl2 are 0.5V.
  • the threshold voltages Vthvwh and Vthvwl for resonance voltage signal comparison are fixed values, and the threshold voltages Vthish and Vthisl for resonance current signal comparison have variable values calculated by the threshold voltage calculator 31.
  • the resonance current detection signal at the IS terminal is higher than the threshold voltage Vthish for the high side. Therefore, the comparator COMP3 outputs an H level signal, resets the RS flip-flop RSFF1, and the D flip-flop DFF2 and the RS flip-flop RSFF2 are reset by the high-side drive signal hi_pre.
  • the output terminal of the comparator COMP1 becomes H level.
  • the D flip-flop DFF1 latches the voltage VDD (H level signal) at the rising timing and outputs an H level signal to the output terminal Q.
  • This H level signal is input to the set input terminal S of the RS flip-flop RSFF1, but the RS flip-flop RSFF1 is preferentially reset by the output signal of the comparator COMP3. It remains at L level.
  • the RS flip-flop RSFF2 is also reset by the high side drive signal hi_pre, its output terminal Q remains at the L level. Therefore, the forced turn-off signal fto output from the OR circuit OR1 is at the L level.
  • the comparator COMP3 outputs an L level signal.
  • both the first reset input terminal R1 and the second reset input terminal R2 of the RS flip-flop RSFF1 are set to the L level.
  • the reset of the RS flip-flop RSFF1 is released, the signal is set by the H level signal input to the set input terminal S, and the H level signal is output to the output terminal Q.
  • the OR circuit OR1 outputs the H-level forced turn-off signal fto, and the switch-on / off control circuit 21 having received this forcibly outputs the H-side high-side drive signal hi_pre at the L level.
  • the H-level forced turn-off signal fto becomes L level when the low-side drive signal lo_pre becomes H level and the RS flip-flop RSFF1 is reset.
  • the resonance current detection signal at the IS terminal is lower than the low side threshold voltage Vthisl (however, the absolute value is the low side threshold value).
  • the output terminal of the comparator COMP2 becomes H level.
  • the D flip-flop DFF2 latches the voltage VDD (H level signal) at the rising timing and outputs an H level signal to the output terminal Q.
  • This H level signal is input to the set input terminal S of the RS flip-flop RSFF2, but since the RS flip-flop RSFF2 is preferentially reset by the output signal of the comparator COMP4, its output terminal Q is It remains at L level. Also, since the RS flip-flop RSFF1 is also reset by the low-side drive signal lo_pre, its output terminal Q remains at the L level. Therefore, the forced turn-off signal fto output from the OR circuit OR1 is at the L level.
  • the comparator COMP4 outputs an L level signal.
  • both the first reset input terminal R1 and the second reset input terminal R2 of the RS flip-flop RSFF2 are set to the L level.
  • the RS flip-flop RSFF2 is set and outputs an H level signal to the output terminal Q because an H level signal is input to the set input terminal S thereof.
  • the OR circuit OR1 outputs the H-level forced turn-off signal fto, and the switch-on / off control circuit 21 having received this forcibly outputs the H-level low-side drive signal lo_pre at the L level.
  • the H-level forced turn-off signal fto becomes L level when the high side drive signal hi_pre becomes H level and the RS flip-flop RSFF2 is reset.
  • the high side drive signal hi_pre or the low side drive signal lo_pre goes high before the forced turn-off signal fto is output, and the D flip-flop DFF1 or DFF2 is reset again.
  • the forced turn-off signal fto is not output.
  • the high-side threshold voltage Vthish and the low-side threshold voltage Vthisl are varied in accordance with changes in the input DC voltage Vi while repeatedly executing the above operations.
  • FIG. 6 is a circuit diagram showing a configuration example of a switch on / off control circuit
  • FIG. 7 is a timing chart at the time of turn-off by the FB terminal voltage
  • FIG. 8 is a timing chart at the time of forced turn-off.
  • the FB terminal is connected to the inverting input terminal of the comparator COMP5 as shown in FIG.
  • the non-inverting input terminal of the comparator COMP5 is connected to a connection point between one terminal of the constant current source Ios and one terminal of the capacitor Cos, and receives the charging voltage Vos of the capacitor Cos.
  • the other terminal of the constant current source Ios receives the voltage VDD, and the other terminal of the capacitor Cos is connected to the ground.
  • a switch SW1 is connected in parallel to the capacitor Cos.
  • the comparator COMP5 the constant current source Ios, the capacitor Cos, and the switch SW1 constitute a circuit that determines the ON width of the high-side drive signal hi_pre and the low-side drive signal lo_pre, that is, the turn-off timing.
  • the output terminal of the comparator COMP5 is connected to the first input terminal of the OR circuit OR2.
  • the second input terminal of the OR circuit OR2 is connected to a terminal that receives the forced turn-off signal fto output from the forced turn-off control circuit 22.
  • the output terminal of the OR circuit OR2 is connected to the set input terminal S of the reset priority RS flip-flop RSFF3.
  • the output terminal Q of the RS flip-flop RSFF3 is connected to the control input terminal of the switch SW1, the input terminal of the inverter circuit INV3, and the input terminal of the one-shot circuit OS2, and outputs the signal Td.
  • the output terminal of the inverter circuit INV3 is connected to the input terminal of the one-shot circuit OS1.
  • the output terminal of the inverter circuit INV3 is connected to the control input terminal of the switch SW2.
  • One terminal of the switch SW2 is connected to one terminal of the constant current source Itd, one terminal of the capacitor Ctd, and an input terminal of the inverter circuit INV1, and the inverter circuit INV1 receives the charging voltage Vtd of the capacitor Ctd. ing.
  • the other terminal of the constant current source Itd receives the voltage VDD, and the other terminal of the capacitor Ctd and the other terminal of the switch SW2 are connected to the ground.
  • the output terminal of the inverter circuit INV1 is connected to the input terminal of the inverter circuit INV2, and the output terminal of the inverter circuit INV2 is connected to the second reset input terminal R2 of the RS flip-flop RSFF3.
  • the constant current source Itd, the switch SW2, the capacitor Ctd, and the inverter circuits INV1 and INV2 have a dead time, that is, one of the high side drive signal hi_pre and the low side drive signal lo_pre is turned off (becomes an L level signal).
  • a circuit for determining the time from when the other device is turned on to when the other device is turned on (becomes an H level signal).
  • the first reset input terminal R1 of the RS flip-flop RSFF3 is connected to the output terminal of the hysteresis comparator COMP6.
  • the inverting input terminal of the hysteresis comparator COMP6 receives the power supply voltage VCC of the control IC 12, and the non-inverting input terminal of the hysteresis comparator COMP6 receives threshold voltages Vthvcch and Vthvccl.
  • This hysteresis comparator COMP6 is a low voltage malfunction prevention (UVLO: UnderUnVoltage Lock Out) circuit that does not cause abnormal operation when the voltage VCC drops and drops below the operable voltage of the internal circuit of the control IC 12 Is configured.
  • UVLO UnderUnVoltage Lock Out
  • the output terminal of the one-shot circuit OS1 is connected to the set input terminal S of the RS flip-flop RSFF4, and outputs an on trigger signal on_trg that sets the RS flip-flop RSFF4.
  • the output terminal of the one-shot circuit OS2 is connected to the reset input terminal R of the RS flip-flop RSFF4, and outputs an off trigger signal off_trg that resets the RS flip-flop RSFF4.
  • An output terminal Q of the RS flip-flop RSFF4 is connected to first input terminals of the AND circuits AND1 and AND2.
  • the output terminal of the one-shot circuit OS2 is also connected to the input terminal of the inverter circuit INV4.
  • the output terminal of the inverter circuit INV4 is connected to the clock input terminal C of the D flip-flop DFF3.
  • the input terminal D of the D flip-flop DFF3 is connected to the output terminal of the inverter circuit INV5, and the input terminal of the inverter circuit INV5 is connected to the output terminal Q of the D flip-flop DFF3.
  • the output terminal Q of the D flip-flop DFF3 is also connected to the second input terminal of the AND circuit AND1 and the input terminal of the inverter circuit INV6, and outputs the drive selection signal dri_sel.
  • the output terminal of the inverter circuit INV6 is connected to the second input terminal of the AND circuit AND2.
  • the output terminal of the AND circuit AND1 constitutes the output terminal of the switch on / off control circuit 21 that outputs the high side drive signal hi_pre.
  • the output terminal of the AND circuit AND2 constitutes the output terminal of the switch on / off control circuit 21 that outputs the low side drive signal lo_pre.
  • the reset input terminal R of the D flip-flop DFF3 is connected to the output terminal of the hysteresis comparator COMP6.
  • the comparator COMP5 sets the RS flip-flop RSFF3 via the OR circuit OR2.
  • an H-level signal Td is output from the RS flip-flop RSFF3.
  • the signal Td is input to the one-shot circuit OS2, and the one-shot circuit OS2 outputs an off-trigger signal off_trg having a predetermined on-width that rises in synchronization with the rising edge of the signal Td.
  • the off trigger signal off_trg resets the RS flip-flop RSFF4, and the RS flip-flop RSFF4 supplies an L level signal to the first input terminals of the AND circuits AND1 and AND2.
  • the high side drive signal hi_pre and the low side drive signal lo_pre output from the AND circuits AND1 and AND2 become L level.
  • the switch SW1 When the signal Td becomes H level, the switch SW1 is turned on (conductive), and the charge of the capacitor Cos is discharged. Further, since the output of the inverter circuit INV3 becomes L level, the switch SW2 is turned off (cut off), charging of the capacitor Ctd is started, and the charging voltage Vtd rises.
  • the charging voltage Vtd increases and becomes higher than the threshold voltage of the inverter circuit INV1
  • the output of the inverter circuit INV1 becomes L level and the output of the inverter circuit INV2 becomes H level.
  • This H level signal resets the RS flip-flop RSFF3 and changes the output signal Td to L level.
  • the L-level signal Td is logically inverted by the inverter circuit INV3 and input to the one-shot circuit OS1, and the one-shot circuit OS1 is synchronized with the rising edge of the output signal of the inverter circuit INV3, that is, the falling edge of the signal Td.
  • An on trigger signal on_trg having a predetermined on width that rises is output.
  • the on trigger signal on_trg sets the RS flip-flop RSFF4, and the RS flip-flop RSFF4 supplies an H level signal to the first input terminals of the AND circuits AND1 and AND2. Accordingly, the AND circuits AND1 and AND2 output the drive selection signal dri_sel input to the second input terminal or the logical inversion signal thereof as the high side drive signal hi_pre and the low side drive signal lo_pre.
  • the switch SW2 is turned on (conducted) to discharge the capacitor Ctd, and the switch SW1 is turned off (cut off) to start charging the capacitor Cos.
  • the output state of the comparator COMP5 is inverted, and an H level signal is input to the set input terminal S of the RS flip-flop RSFF3.
  • the RS flip-flop RSFF3 outputs an H level signal Td.
  • the one-shot circuit OS2 When the signal Td becomes H level, the one-shot circuit OS2 outputs an off trigger signal off_trg.
  • the off trigger signal off_trg is logically inverted by the inverter circuit INV4 and input to the clock input terminal C of the D flip-flop DFF3. Accordingly, the D flip-flop DFF3 latches the output state of the inverter circuit INV5 in synchronization with the falling edge of the off trigger signal off_trg. That is, when the output state of the D flip-flop DFF3 is L level, the H level signal is latched and the H level signal is output.
  • the L level signal logically inverted by the inverter circuit INV5 is latched and the L level signal is output.
  • the output signal of the D flip-flop DFF3 is input to the AND circuit AND1 as the drive selection signal dri_sel, and is output from the AND circuit AND1 as the high side drive signal hi_pre.
  • a signal obtained by logically inverting the drive selection signal dri_sel output from the D flip-flop DFF3 by the inverter circuit INV6 is input to the AND circuit AND2, and is output from the AND circuit AND2 as the low-side drive signal lo_pre.
  • the hysteresis comparator COMP6 When the hysteresis comparator COMP6 detects an abnormal drop in the voltage VCC, the hysteresis comparator COMP6 outputs an H level signal and forcibly resets the RS flip-flop RSFF3 and the D flip-flop DFF3.
  • the OR circuit OR2 inputs the signal for controlling the ON width by the voltage of the FB terminal from the comparator COMP5 and the forced turn-off signal fto from the forced turn-off control circuit 22, and inputs the set signal to the RS flip-flop RSFF4. .
  • the RS flip-flop RSFF4 is set in response to the signal that has previously become the H level among the signal for controlling the ON width and the forced turn-off signal fto.
  • the RS flip-flop RSFF4 when the forced turn-off signal fto is input before the charging voltage Vos of the capacitor Cos reaches the voltage of the FB terminal, the RS flip-flop RSFF4 outputs a signal Td that rises in synchronization with the rising edge of the forced turn-off signal fto. To do. Subsequent dead time setting and turn-on timing are the same as in normal control, as shown in FIG.
  • FIG. 9 is a circuit diagram showing a configuration example of the level shift circuit.
  • the voltage input to the IS terminal is generated when a shunt current of the resonance current flows through the resistor Ris, and becomes positive or negative depending on the direction of the resonance current.
  • the control IC 12 can cope with a negative voltage input as long as it is supplied with a negative voltage power supply. However, if the control IC 12 is not supplied with a negative voltage power supply, it is latched up when the input becomes a negative voltage.
  • the level shift circuit 32 is configured to handle a voltage (also indicated by IS) that is input to the IS terminal that is positive or negative without causing latch-up even in the control IC 12 that is not supplied with a negative voltage power supply.
  • the IS is level-shifted (leveled up) and converted to a voltage IS2 that is always a positive voltage.
  • the level shift circuit 32 connects the IS terminal to the internal power supply of the voltage VDD via a series circuit composed of resistors Rls1 and Rls2, and level-shifts the potential IS2 at the connection point between the resistors Rls1 and Rls2.
  • the output signal of the circuit 32 is used.
  • the voltage IS2 of the output signal is represented by the following equation.
  • the level shift circuit 32 When the level shift circuit 32 is used, values obtained by substituting Vthish and Vthisl obtained in the above equations (1) to (6) into IS in the equation (7) may be compared with IS2. Further, since the resonance voltage detection signal input to the VW terminal is also a voltage that is positive or negative, when the control IC 12 cannot handle the negative voltage, the level shift (level) connected to the VW terminal is the same as the IS terminal. An up circuit) may be provided, and the threshold voltage compared with the voltage at the VW terminal may be converted in the same manner as in equation (7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

力率改善回路の出力に接続されたバルクコンデンサの電圧を入力の直流電圧とする共振型コンバータにおいて、共振はずれを確実に防止しながらバルクコンデンサの容量を増やすことなく長い保持時間を確保できるようにする。 制御IC(12)は、バルクコンデンサの電圧を分圧した電圧が入力されるBO端子および共振電流を分流して電圧に変換した共振電流検出信号が入力されるIS端子を有する強制ターンオフ制御回路(22)を備えている。強制ターンオフ制御回路(22)では、共振電流検出信号が共振電流反転を判断するための閾値電圧よりも低下したときに強制ターンオフ信号(fto)を出力するが、その閾値電圧は、BO端子の電圧に依存して変化させる。これにより、共振はずれが防止されるとともに、長い保持時間が確保できる。

Description

共振型コンバータの制御装置
 本発明は共振型コンバータの制御装置に関し、特に入力に力率改善回路の出力コンデンサであるバルクコンデンサが接続された電流共振型のDC-DCコンバータである共振型コンバータの制御装置に関する。
 電流共振型のDC-DCコンバータは、高効率化・薄型化に適しているため、液晶テレビ、AC-DCアダプタなどに広く採用されている。この電流共振型のDC-DCコンバータでは、スイッチング動作によって発生する高調波電流をある制限値以下に抑え、力率を改善する力率改善回路と組み合わされて用いられている。力率改善回路は、交流入力電圧から昇圧された直流の中間電圧を生成し、DC-DCコンバータがその中間電圧を所定の値の直流電圧に変換している。
 力率改善回路とDC-DCコンバータとの間には、大容量のバルクコンデンサが設けられ、力率改善回路で生成された中間電圧は、バルクコンデンサに蓄積され、バルクコンデンサに蓄積された中間電圧は、DC-DCコンバータの入力電圧となる。DC-DCコンバータは、その入力電圧を変換して負荷に供給している。
 ここで、たとえば、電源プラグが誤ってコンセントから外れるなどして力率改善回路への交流入力電圧の供給がなくなると、力率改善回路からバルクコンデンサへのエネルギの供給が停止してしまう。この場合、DC-DCコンバータに入力されるエネルギは、バルクコンデンサに蓄積されているエネルギのみとなってしまい、このため、バルクコンデンサの端子間の中間電圧は低下していくことになる。
 DC-DCコンバータは、入力電圧が低下すると、共振はずれ現象が生じ、スイッチング素子が破壊されることがある。すなわち、電流共振型のDC-DCコンバータでは、ハイサイドおよびローサイドのスイッチング素子を直列接続したハーフブリッジ回路が用いられ、ハイサイドおよびローサイドのスイッチング素子を交互にターンオンさせることで電流共振回路を駆動している。電流共振型のDC-DCコンバータでは、入力電圧が低下すると、所定の出力電圧を維持するためにスイッチングの動作周波数を低下させる制御が行われ、スイッチングの周期が長くなる。すると、スイッチング素子のオン時間が長すぎてオン時間中に共振電流が反転する共振はずれが生じてしまい、その後のスイッチングで大電流が流れるという現象が生ずることがある。たとえば、ハイサイドのスイッチング素子がオンからオフに切り替わる場合を考えると、通常動作ではターンオフするときの共振電流の向きは、ハイサイドのスイッチング素子に逆並列に接続されているボディダイオード(スイッチング素子がMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の場合)の順方向とは逆の方向になっている。言い換えれば、ボディダイオードに電流が流れていない状態で、スイッチング素子をターンオフさせるようにしている。しかしながら、スイッチング周期が長くなりすぎて、スイッチング素子のオン時間中に共振電流が反転すると、ボディダイオードに電流が流れるようになってしまう。ボディダイオードに電流が流れている状態でハイサイドおよびローサイドのスイッチング素子のオンオフが反転すると、ハイサイドのボディダイオードの逆回復動作が開始され、ダイオードの逆回復電流がターンオンしたローサイドのスイッチング素子に流れる形で、電源とグランド間に瞬間的に大電流(貫通電流)が流れる。このときに流れる電流がスイッチング素子の定格を超えると、スイッチング素子が破壊される可能性がある。
 そこで、DC-DCコンバータでは、入力電圧が低くなると、共振はずれを起こす前に、スイッチング動作を停止してスイッチング素子を保護することが行われている(たとえば、特許文献1,2参照)。
 特許文献1に記載の共振はずれ防止技術によれば、共振電流を監視し、共振電流が第1の閾値を超えると、DC-DCコンバータの強制ターンオフを許可し、その後、共振電流が第2の閾値より低下すると、DC-DCコンバータの強制ターンオフを実行する。これにより、共振電流が反転する前に確実にDC-DCコンバータの共振はずれを防止している。
 また、特許文献2によれば、共振電流および共振電圧を監視し、共振電圧により共振電流の極性反転を判定してDC-DCコンバータの強制ターンオフを許可し、その後、共振電流が所定の電流閾値より低下すると、DC-DCコンバータの強制ターンオフを実行する。これにより、共振電流が反転する前に確実にDC-DCコンバータの共振はずれを防止している。
 DC-DCコンバータにおいては、力率改善回路から供給される電源の喪失時にできるだけ長い時間、負荷に対して直流電圧を供給できることが望まれている。これは、電源喪失が発生した場合に、データ処理装置のような負荷がシャットダウンする前にデータのバックアップを行う、保持時間と呼ばれる時間が必要であることによる。この保持時間を確保するには、バルクコンデンサの中間電圧をできるだけ低い電圧まで利用できるようにするか、バルクコンデンサの容量を増やすことである。
特許第4386743号公報 特許第5761206号公報
 DC-DCコンバータがバルクコンデンサの中間電圧をできるだけ低い電圧まで利用できるようにするには、強制ターンオフを実行する共振電流の閾値を低く設定すればよい。しかしながら、強制ターンオフを実行する共振電流の閾値を低く設定すると、入力電圧が高いとき、共振電流の電流変化率(dI/dt)が大きくなるため、共振はずれ防止が難しくなる。一方、強制ターンオフを実行する共振電流の閾値を高く設定すると、入力電圧が低下しないうちに強制ターンオフが実行されるため、保持時間が短くなり、その分、バルクコンデンサのエネルギが有効利用されなくなる。つまり、共振電流の閾値を低く設定すると共振はずれ防止が困難になり、共振電流の閾値を高く設定すると保持時間の確保が困難になる。このため、保持時間を確保するにはバルクコンデンサの容量を増やすのがよいが、バルクコンデンサの部品コストが高くなるという問題点があった。
 本発明はこのような点に鑑みてなされたものであり、共振はずれを確実に防止しながらバルクコンデンサの容量を増やすことなく長い保持時間を確保することができる共振型コンバータの制御装置を提供することを目的とする。
 本発明では、上記の課題を解決するために、バルクコンデンサの直流電圧を入力とする共振型コンバータの制御装置が提供される。この共振型コンバータの制御部は、強制ターンオフ制御回路を備えている。強制ターンオフ制御回路は、共振型コンバータに流れる共振電流を分流して電圧に変換した共振電流検出信号を入力してその共振電流検出信号が第1の可変閾値と第1の可変閾値より小さい第2の可変閾値との間に入ると強制ターンオフ信号を出力する。また、強制ターンオフ制御回路は、第1の可変閾値および第2の可変閾値をバルクコンデンサの直流電圧を分圧して入力した入力電圧に応じて可変する。
 上記構成の共振型コンバータの制御装置は、共振電流検出信号と比較される第1の可変閾値および第2の可変閾値の絶対値を入力電圧に応じて可変することで、高入力電圧時の共振はずれ防止機能を実現しながら低入力電圧時の保持時間の確保を両立できるという利点がある。
 本発明の上記および他の目的、特徴および利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の制御装置を適用したDC-DCコンバータを備えるスイッチング電源装置の構成例を示す回路図である。 本発明の実施の形態に係る共振型コンバータの制御装置の構成例を示す機能ブロック図である。 強制ターンオフ制御回路の構成例を示す回路図である。 強制ターンオフ制御回路の閾値電圧算出部の入出力関係を示す図である。 強制ターンオフ信号の生成タイミングチャートである。 スイッチオン・オフ制御回路の構成例を示す回路図である。 FB端子電圧によるターンオフ時のタイミングチャートである。 強制ターンオフ時のタイミングチャートである。 レベルシフト回路の構成例を示す回路図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以下の説明において、回路の端子名とその端子における電圧、信号などは、同じ符号を用いることがある。
 図1は本発明の制御装置を適用したDC-DCコンバータを備えるスイッチング電源装置の構成例を示す回路図、図2は本発明の実施の形態に係る共振型コンバータの制御装置の構成例を示す機能ブロック図である。
 本実施の形態に係るスイッチング電源装置は、力率改善回路(PFC)1とDC-DCコンバータ2とを備え、力率改善回路1とDC-DCコンバータ2との間には、バルクコンデンサC1が配置されている。
 力率改善回路1は、その入力端子に交流電源10が接続され、出力端子にはバルクコンデンサC1が接続されていて、交流電圧を整流および昇圧し、バルクコンデンサC1の充電電圧として直流電圧Viを生成する。この直流電圧Viは、DC-DCコンバータ2の直流入力電圧となる。
 DC-DCコンバータ2では、バルクコンデンサC1の正極端子および負極端子は、ハイサイドのスイッチング素子Q1とローサイドのスイッチング素子Q2とを直列接続したハーフブリッジ回路に接続されている。この実施の形態では、スイッチング素子Q1,Q2は、NチャネルMOSFETを使用している。
 スイッチング素子Q1,Q2の共通の接続点は、トランスT1の一次巻線P1の一方の端子に接続され、一次巻線P1の他方の端子は、共振コンデンサC6を介してグランドに接続されている。ここで、トランスT1のリーケージインダクタンス成分および共振コンデンサC6は、共振回路を構成している。なお、リーケージインダクタンスを利用せずに、共振コンデンサC6にトランスT1を構成するインダクタンスとは別のインダクタを直列に接続し、当該インダクタを共振回路の共振リアクタンスとするようにしてもよい。
 トランスT1の二次巻線S1の一方の端子は、ダイオードD3のアノード端子に接続され、二次巻線S2の一方の端子は、ダイオードD4のアノード端子に接続されている。ダイオードD3,D4のカソード端子は、ともに、出力コンデンサCoの正極端子および出力端子11pに接続されている。出力コンデンサCoの負極端子は、二次巻線S1,S2の共通の接続点および出力端子11nに接続されている。二次巻線S1,S2、ダイオードD3,D4および出力コンデンサCoは、二次巻線S1,S2に生起された交流電圧を整流・平滑して直流の出力電圧Voに変換する回路を構成し、DC-DCコンバータ2の出力回路を構成している。
 制御IC(Integrated Circuit)12は、DC-DCコンバータ2を制御する制御部である。制御IC12は、バルクコンデンサC1の正極端子に接続されたVH端子、グランドに接続されたGND端子、入力の直流電圧Viを検出するBO端子を有している。BO端子は、抵抗Rb1の一方の端子および抵抗Rb2の一方の端子に接続され、抵抗Rb1の他方の端子は、バルクコンデンサC1の正極端子に接続され、抵抗Rb2の他方の端子は、バルクコンデンサC1の負極端子に接続されている。抵抗Rb1,Rb2は、入力の直流電圧Viを分圧し、分圧された電圧をBO端子へ供給する分圧回路を構成している。
 制御IC12は、また、抵抗R11を介してスイッチング素子Q1のゲート端子に接続されたHO端子および抵抗R12を介してスイッチング素子Q2のゲート端子に接続されたLO端子を有している。制御IC12は、さらに、ハイサイド電源用のVB端子、ハイサイド基準電位のVS端子、制御IC12の電源用のVCC端子、共振電圧検出用のVW端子、出力電圧Voの情報がフィードバックされるFB端子および共振電流検出用のIS端子を有している。
 制御IC12のVB端子とVS端子との間には、コンデンサC5が接続され、VS端子は、スイッチング素子Q1,Q2の共通の接続点に接続されている。VCC端子は、コンデンサC3の正極端子に接続され、コンデンサC3の負極端子はグランドに接続されている。VCC端子は、また、ダイオードD2のアノード端子に接続され、このダイオードD2のカソード端子は、VB端子に接続されている。VCC端子は、さらに、電流制限用の抵抗R13の一方の端子に接続され、抵抗R13の他方の端子は、ダイオードD1のカソード端子に接続されている。ダイオードD1のアノード端子は、トランスT1の補助巻線P2の一方の端子に接続され、補助巻線P2の他方の端子は、グランドに接続されている。これにより、コンデンサC3は、このDC-DCコンバータ2が起動した後は、その補助巻線P2に誘起された電流を蓄積して制御IC12の電源にしている。
 トランスT1の補助巻線P2の一方の端子は、また、抵抗R14の一方の端子に接続され、抵抗R14の他方の端子は、抵抗R15の一方の端子に接続され、抵抗R15の他方の端子は、グランドに接続されている。抵抗R14および抵抗R15の共通の接続点は、制御IC12のVW端子に接続され、共振電圧検出信号がVW端子に供給される。トランスT1の一次巻線P1の他方の端子と共振コンデンサC6との接続点は、コンデンサCisの一方の端子に接続され、コンデンサCisの他方の端子は、抵抗Risの一方の端子に接続され、抵抗Risの他方の端子は、グランドに接続されている。コンデンサCisおよび抵抗Risの共通の接続点は、制御IC12のIS端子に接続されている。これにより、共振コンデンサC6を流れる共振電流がコンデンサCisおよび抵抗Risの直列回路によって分流され、その分流された電流が抵抗Risにより電圧に変換され、共振電流検出信号として制御IC12のIS端子に供給される。
 出力コンデンサCoの正極端子は、抵抗R16を介してフォトカプラPC1の発光ダイオードのアノード端子に接続され、発光ダイオードのカソード端子は、シャントレギュレータSR1のカソード端子に接続されている。発光ダイオードのアノード端子およびカソード端子間には、抵抗R17が接続されている。シャントレギュレータSR1のアノード端子は、出力端子11nに接続されている。シャントレギュレータSR1は、出力コンデンサCoの正極端子と負極端子との間に直列接続された抵抗R18,R19の接続点に接続されたリファレンス端子を有している。シャントレギュレータSR1は、リファレンス端子とカソード端子との間に、抵抗R20およびコンデンサC11の直列回路が接続されている。このシャントレギュレータSR1は、出力電圧Vo(出力コンデンサCoの両端電圧)を抵抗R18,R19により分圧した電位と内蔵の基準電圧との差に応じた電流をフォトカプラPC1の発光ダイオードに流すものである。これにより、発光ダイオードには、出力電圧Voの目標の電圧に対する誤差に相当する電流が流れることになる。フォトカプラPC1のフォトトランジスタは、そのコレクタ端子が制御IC12のFB端子に接続され、エミッタ端子がグランドに接続され、コレクタ端子およびエミッタ端子間には、コンデンサC2が接続されている。なお、FB端子は図示しない抵抗を介して図示しない内部基準電圧にプルアップされている。
 制御IC12は、図2に示したように、スイッチオン・オフ制御回路21、強制ターンオフ制御回路22、ハイサイドドライブ回路23、ローサイドドライブ回路24、起動回路25および電圧レギュレータ26を備えている。
 制御IC12のVH端子は、起動回路25の入力端子に接続され、起動回路25の出力端子は、VCC端子と、スイッチオン・オフ制御回路21と、ローサイドドライブ回路24と、電圧レギュレータ26とに接続されている。電圧レギュレータ26は、内部電源の電圧VDDを生成し、スイッチオン・オフ制御回路21および強制ターンオフ制御回路22に供給している。
 FB端子は、スイッチオン・オフ制御回路21の入力端子に接続され、スイッチオン・オフ制御回路21のハイサイド出力端子は、ハイサイドドライブ回路23の入力端子に接続されてハイサイドドライブ信号hi_preを供給する。スイッチオン・オフ制御回路21のローサイド出力端子は、ローサイドドライブ回路24の入力端子に接続されてローサイドドライブ信号lo_preを供給する。ハイサイドドライブ回路23の出力端子は、HO端子に接続され、ローサイドドライブ回路24の出力端子は、LO端子に接続されている。ハイサイドドライブ回路23は、また、ハイサイドの電源用のVB端子およびハイサイドの基準電位となるVS端子に接続されている。
 VW端子、IS端子およびBO端子は、強制ターンオフ制御回路22の入力端子に接続され、強制ターンオフ制御回路22の出力端子は、スイッチオン・オフ制御回路21の入力端子に接続され、強制ターンオフ信号ftoを供給している。強制ターンオフ制御回路22は、また、スイッチオン・オフ制御回路21のハイサイド出力端子およびローサイド出力端子に接続されて、ハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preを受けている。
 このようなDC-DCコンバータ2によれば、バルクコンデンサC1の充電電圧が高くなると、制御IC12では、まず、起動回路25が動作してその出力端子からコンデンサC3を充電する電流を出力する。この電流は、VCC端子を介してVCC端子に接続されたコンデンサC3を充電して電圧VCCを生成する。そして、電圧レギュレータ26により電圧VCCから定電圧の電圧VDDが生成され、スイッチオン・オフ制御回路21および強制ターンオフ制御回路22に供給される。電圧VCCおよび電圧VDDが確立され、DC-DCコンバータ2がスイッチング動作を開始すると、VCC端子の電圧は、トランスT1の補助巻線P2から供給される電流によって維持される。
 スイッチオン・オフ制御回路21は、FB端子に入力された出力電圧Voの情報を受けてハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preのオン幅を制御して、出力電圧Voが所定の一定値になるよう制御する。
 強制ターンオフ制御回路22は、BO端子に入力電圧検出信号を入力し、VW端子に共振電圧検出信号を入力し、IS端子に共振電流検出信号を入力する。VW端子に入力された共振電圧検出信号は、共振電流が変化する方向(増大する方向か減少する方向か)を特定し、IS端子に入力された共振電流検出信号は、ハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preを強制ターンオフするタイミングを決めている。BO端子の入力電圧検出信号は、ハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preをターンオフするときの閾値を決めている。
 したがって、強制ターンオフ制御回路22は、VW端子の信号の減少時に、VW端子の信号が第1の固定閾値より低下したときであって、かつ、IS端子の信号が第1の可変閾値より低下したときにハイサイドドライブ信号hi_preをターンオフする。また、強制ターンオフ制御回路22は、VW端子の信号の上昇時に、VW端子の信号が第1の固定閾値より小さい第2の固定閾値より上昇したときであって、かつ、IS端子の信号が第1の可変閾値より小さい第2の可変閾値より上昇したときにローサイドドライブ信号lo_preをターンオフする。ここで、第1の可変閾値および第2の可変閾値については、BO端子の入力電圧検出信号の値、すなわち入力の直流電圧Viの値に依存して変化され、直流電圧Viが高いとき、高く設定され、直流電圧Viが低くなると低く設定される。なお、第1の可変閾値および第2の可変閾値が低く設定される範囲は、DC-DCコンバータ2が所定の出力電圧Voを維持できる範囲である。これにより、直流電圧Viが高いときには、第1の可変閾値および第2の可変閾値が高く設定されるので、共振はずれを確実に防止することができる。一方、直流電圧Viが低くなると、第1の可変閾値および第2の可変閾値が低く設定され、IS端子の信号が第1の可変閾値および第2の可変閾値に達するまでに時間がかかり、その分、強制ターンオフが遅れて実行されるので、保持時間を長くすることができる。
 次に、強制ターンオフ制御回路22およびスイッチオン・オフ制御回路21の具体的な構成例について説明する。
 図3は強制ターンオフ制御回路の構成例を示す回路図、図4は強制ターンオフ制御回路の閾値電圧算出部の入出力関係を示す図、図5は強制ターンオフ信号の生成タイミングチャートである。
 強制ターンオフ制御回路22では、図3に示したように、VW端子が比較器COMP1の反転入力端子と比較器COMP2の非反転入力端子とに接続されている。比較器COMP1の非反転入力端子は、ハイサイド用の固定の閾値電圧Vthvwh(第1の固定閾値)が印加され、比較器COMP1の出力端子は、DフリップフロップDFF1のクロック入力端子Cに接続されている。比較器COMP2の反転入力端子は、ローサイド用の固定の閾値電圧Vthvwl(第2の固定閾値)が印加され、比較器COMP2の出力端子は、DフリップフロップDFF2のクロック入力端子Cに接続されている。
 DフリップフロップDFF1,DFF2の入力端子Dは、内部電源の電圧VDDがそれぞれ印加されている。DフリップフロップDFF1の出力端子Qは、リセット優先のRSフリップフロップRSFF1のセット入力端子Sに接続されている。DフリップフロップDFF2の出力端子Qは、リセット優先のRSフリップフロップRSFF2のセット入力端子Sに接続されている。DフリップフロップDFF1のリセット入力端子RおよびRSフリップフロップRSFF1の第1のリセット入力端子R1には、スイッチオン・オフ制御回路21が出力するローサイドドライブ信号lo_preが入力されている。DフリップフロップDFF2のリセット入力端子RおよびRSフリップフロップRSFF2の第1のリセット入力端子R1には、スイッチオン・オフ制御回路21が出力するハイサイドドライブ信号hi_preが入力されている。
 IS端子は、レベルシフト回路32を介して比較器COMP3の非反転入力端子と比較器COMP4の反転入力端子とに接続されている。なお、レベルシフト回路32については後で説明するまで無いものとみなし、したがって、レベルシフト回路の出力の信号は、IS端子の電圧と同じとして以下の説明を行う。比較器COMP3の出力端子は、RSフリップフロップRSFF1の第2のリセット入力端子R2に接続され、比較器COMP4の出力端子は、RSフリップフロップRSFF2の第2のリセット入力端子R2に接続されている。
 比較器COMP3の反転入力端子および比較器COMP4の非反転入力端子には、直流電圧Viに応じて可変される閾値電圧Vthish(第1の可変閾値),Vthisl(第2の可変閾値)がそれぞれ入力される。すなわち、BO端子は、アナログ・デジタル変換器ADCの入力端子に接続され、アナログ・デジタル変換器ADCの出力端子は、閾値電圧算出部31の入力端子に接続されている。閾値電圧算出部31のハイサイド用出力端子は、デジタル・アナログ変換器DAC1の入力端子に接続され、閾値電圧算出部31のローサイド用出力端子は、デジタル・アナログ変換器DAC2の入力端子に接続されている。デジタル・アナログ変換器DAC1の出力端子は、比較器COMP3の反転入力端子に接続され、デジタル・アナログ変換器DAC2の出力端子は、比較器COMP4の非反転入力端子に接続されている。なお、アナログ・デジタル変換器ADCおよびデジタル・アナログ変換器DAC1,DAC2は、この実施の形態では、分解能を10ビットにしている。
 RSフリップフロップRSFF1,RSFF2の出力端子Qは、それぞれ、論理和回路OR1の入力端子に接続され、論理和回路OR1の出力端子は、強制ターンオフ信号ftoを出力する強制ターンオフ制御回路22の出力端子に接続されている。
 ここで、閾値電圧算出部31は、図4に示した関係に従って、BO端子に入力された電圧Vboからハイサイド用の閾値電圧Vthishおよびローサイド用の閾値電圧Vthislを算出している。図4において、横軸は、直流電圧Viを抵抗Rb1,Rb2による分圧回路で分圧した電圧Vboを示し、縦軸は、閾値電圧算出部31によって算出される共振電流比較用の閾値電圧Vthis(閾値電圧Vthishおよび閾値電圧Vthislを総称して閾値電圧Vthisとしている)を示している。
 閾値電圧算出部31は、電圧Vboの所定の電圧範囲において電圧Vboに応じて可変する閾値電圧Vthisを出力し、その所定の電圧範囲外では電圧Vboに応じて変化しない閾値電圧Vthisを出力する。
 すなわち、ハイサイド用の閾値電圧Vthishは、電圧VboがVbo2<Vbo<Vbo1の関係にあるとき、
Figure JPOXMLDOC01-appb-M000001
となり、電圧VboがVbo≧Vbo1のとき、
Vthish=Vthish1・・・(2)
となり、電圧VboがVbo≦Vbo2のとき、
Vthish=Vthish2・・・(3)
となる。
 一方、ローサイド用の閾値電圧Vthislは、電圧VboがVbo2<Vbo<Vbo1の関係にあるとき、
Figure JPOXMLDOC01-appb-M000002
となり、電圧VboがVbo≧Vbo1のとき、
Vthisl=Vthisl1・・・(5)
となり、電圧VboがVbo≦Vbo2のとき、
Vthisl=Vthisl2・・・(6)
となる。
 ここで、一数値例を挙げると、直流電圧Viは、Vbo1が規定の電圧の400ボルト(V)に相当し、Vbo2が電源喪失時に低下したときの260Vに相当する。また、ハイサイド用の閾値電圧Vthish1およびローサイド用の閾値電圧Vthisl1の絶対値は1V、ハイサイド用の閾値電圧Vthish2およびローサイド用の閾値電圧Vthisl2の絶対値は0.5Vである。これにより、共振電流比較用の閾値電圧Vthisは、直電圧Viが高いときに高く設定され、直流電圧Viが低いときに低く設定される。
 次に、以上の構成の強制ターンオフ制御回路22の動作について図5を参照しながら説明する。図5において、共振電圧信号比較用の閾値電圧Vthvwh,Vthvwlは、固定値であり、共振電流信号比較用の閾値電圧Vthish,Vthislは、閾値電圧算出部31によって算出された可変の値を有する。
 まず、ハイサイドドライブ信号hi_preがハイ(H)レベル、ローサイドドライブ信号lo_preがロー(L)レベルのとき、IS端子の共振電流検出信号は、ハイサイド用の閾値電圧Vthishより高い状態にある。したがって、比較器COMP3は、Hレベルの信号を出力し、RSフリップフロップRSFF1をリセットし、DフリップフロップDFF2およびRSフリップフロップRSFF2は、ハイサイドドライブ信号hi_preによってリセットされている。
 ここで、VW端子の共振電圧検出信号が閾値電圧Vthvwhより低下すると、比較器COMP1の出力端子がHレベルになる。これにより、DフリップフロップDFF1は、クロック入力端子Cに入力される信号が立ち上がるので、その立ち上がりタイミングで電圧VDD(Hレベルの信号)をラッチし、出力端子QにHレベルの信号を出力する。このHレベルの信号は、RSフリップフロップRSFF1のセット入力端子Sに入力されるが、RSフリップフロップRSFF1は、比較器COMP3の出力信号によって優先的にリセットされているので、その出力端子Qは、Lレベルのままである。また、RSフリップフロップRSFF2も、ハイサイドドライブ信号hi_preによってリセットされているので、その出力端子Qは、Lレベルのままである。したがって、論理和回路OR1が出力する強制ターンオフ信号ftoは、Lレベルである。
 その後、IS端子の共振電流検出信号がハイサイド用の閾値電圧Vthishより低下すると、比較器COMP3は、Lレベルの信号を出力する。これにより、RSフリップフロップRSFF1の第1のリセット入力端子R1および第2のリセット入力端子R2がともにLレベルになる。このとき、RSフリップフロップRSFF1のリセットが解除され、そのセット入力端子Sに入力されているHレベルの信号によってセットされ、出力端子QにHレベルの信号を出力する。これにより、論理和回路OR1は、Hレベルの強制ターンオフ信号ftoを出力し、これを受けたスイッチオン・オフ制御回路21は、そのタイミングでHレベルのハイサイドドライブ信号hi_preを強制的にLレベルにする。
 Hレベルの強制ターンオフ信号ftoは、ローサイドドライブ信号lo_preがHレベルになってRSフリップフロップRSFF1がリセットされるタイミングでLレベルになる。
 同様に、ハイサイドドライブ信号hi_preがLレベル、ローサイドドライブ信号lo_preがHレベルのとき、IS端子の共振電流検出信号は、ローサイド用の閾値電圧Vthislより低い状態(但し、絶対値はローサイド用の閾値電圧Vthislの絶対値より大きい)にある。したがって、比較器COMP4は、Hレベルの信号を出力し、RSフリップフロップRSFF2をリセットし、DフリップフロップDFF1およびRSフリップフロップRSFF1は、ローサイドドライブ信号lo_preによってリセットされている。
 ここで、VW端子の共振電圧検出信号が閾値電圧Vthvwlより高くなると、比較器COMP2の出力端子がHレベルになる。これにより、DフリップフロップDFF2は、クロック入力端子Cに入力される信号が立ち上がるので、その立ち上がりタイミングで電圧VDD(Hレベルの信号)をラッチし、出力端子QにHレベルの信号を出力する。このHレベルの信号は、RSフリップフロップRSFF2のセット入力端子Sに入力されるが、RSフリップフロップRSFF2は、比較器COMP4の出力信号によって優先的にリセットされているので、その出力端子Qは、Lレベルのままである。また、RSフリップフロップRSFF1も、ローサイドドライブ信号lo_preによってリセットされているので、その出力端子Qは、Lレベルのままである。したがって、論理和回路OR1が出力する強制ターンオフ信号ftoは、Lレベルである。
 その後、IS端子の共振電流検出信号がローサイド用の閾値電圧Vthislより高くなると、比較器COMP4は、Lレベルの信号を出力する。これにより、RSフリップフロップRSFF2の第1のリセット入力端子R1および第2のリセット入力端子R2がともにLレベルになる。このとき、RSフリップフロップRSFF2は、そのセット入力端子SにHレベルの信号が入力されているので、セットされ、出力端子QにHレベルの信号を出力する。これにより、論理和回路OR1は、Hレベルの強制ターンオフ信号ftoを出力し、これを受けたスイッチオン・オフ制御回路21は、そのタイミングで、Hレベルのローサイドドライブ信号lo_preを強制的にLレベルにする。
 Hレベルの強制ターンオフ信号ftoは、ハイサイドドライブ信号hi_preがHレベルになって、RSフリップフロップRSFF2をリセットするタイミングでLレベルになる。
 なお、共振はずれが起こらない通常動作では、強制ターンオフ信号ftoが出力される前にハイサイドドライブ信号hi_preまたはローサイドドライブ信号lo_preがハイレベルになって、DフリップフロップDFF1またはDFF2が再度リセットされるので、強制ターンオフ信号ftoが出力されることはない。
 強制ターンオフ制御回路22は、以上の動作を繰り返し実行しながら、ハイサイド用の閾値電圧Vthishおよびローサイド用の閾値電圧Vthislが入力の直流電圧Viの変化に応じて可変される。
 図6はスイッチオン・オフ制御回路の構成例を示す回路図、図7はFB端子電圧によるターンオフ時のタイミングチャート、図8は強制ターンオフ時のタイミングチャートである。
 スイッチオン・オフ制御回路21は、図6に示したように、FB端子が比較器COMP5の反転入力端子に接続されている。比較器COMP5の非反転入力端子は、定電流源Iosの一方の端子とコンデンサCosの一方の端子との接続点に接続され、コンデンサCosの充電電圧Vosを受けている。定電流源Iosの他方の端子は、電圧VDDを受けており、コンデンサCosの他方の端子は、グランドに接続されている。コンデンサCosには、スイッチSW1が並列に接続されている。ここで、比較器COMP5、定電流源Ios、コンデンサCosおよびスイッチSW1は、ハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preのオン幅、すなわちターンオフのタイミングを決める回路を構成している。
 比較器COMP5の出力端子は、論理和回路OR2の第1の入力端子に接続されている。論理和回路OR2の第2の入力端子は、強制ターンオフ制御回路22から出力される強制ターンオフ信号ftoを受ける端子に接続されている。論理和回路OR2の出力端子は、リセット優先のRSフリップフロップRSFF3のセット入力端子Sに接続されている。
 RSフリップフロップRSFF3の出力端子Qは、スイッチSW1の制御入力端子と、インバータ回路INV3の入力端子と、ワンショット回路OS2の入力端子とに接続され、信号Tdを出力している。インバータ回路INV3の出力端子は、ワンショット回路OS1の入力端子に接続されている。
 インバータ回路INV3の出力端子は、スイッチSW2の制御入力端子に接続されている。スイッチSW2の一方の端子は、定電流源Itdの一方の端子と、コンデンサCtdの一方の端子と、インバータ回路INV1の入力端子とに接続され、インバータ回路INV1は、コンデンサCtdの充電電圧Vtdを受けている。定電流源Itdの他方の端子は、電圧VDDを受け、コンデンサCtdの他方の端子とスイッチSW2の他方の端子は、グランドに接続されている。インバータ回路INV1の出力端子は、インバータ回路INV2の入力端子に接続され、インバータ回路INV2の出力端子は、RSフリップフロップRSFF3の第2のリセット入力端子R2に接続されている。ここで、定電流源Itd、スイッチSW2、コンデンサCtd、インバータ回路INV1,INV2は、デッドタイム、すなわち、ハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preの一方がターンオフ(Lレベルの信号になる)してから他方がターンオン(Hレベルの信号になる)するまでの時間を決める回路を構成している。
 RSフリップフロップRSFF3の第1のリセット入力端子R1は、ヒステリシス比較器COMP6の出力端子に接続されている。ヒステリシス比較器COMP6の反転入力端子は、この制御IC12の電源の電圧VCCを受けており、ヒステリシス比較器COMP6の非反転入力端子は、閾値電圧Vthvcch,Vthvcclを受けている。このヒステリシス比較器COMP6は、電圧VCCが低下して制御IC12の内部回路が動作可能な電圧以下に低下したときに異常動作を引き起こさないようにする低電圧誤動作防止(UVLO:Under Voltage Lock Out)回路を構成している。
 ワンショット回路OS1の出力端子は、RSフリップフロップRSFF4のセット入力端子Sに接続され、RSフリップフロップRSFF4をセットするオントリガ信号on_trgを出力する。ワンショット回路OS2の出力端子は、RSフリップフロップRSFF4のリセット入力端子Rに接続され、RSフリップフロップRSFF4をリセットするオフトリガ信号off_trgを出力する。RSフリップフロップRSFF4の出力端子Qは、論理積回路AND1,AND2の第1の入力端子に接続されている。
 ワンショット回路OS2の出力端子は、また、インバータ回路INV4の入力端子に接続されている。インバータ回路INV4の出力端子は、DフリップフロップDFF3のクロック入力端子Cに接続されている。DフリップフロップDFF3の入力端子Dは、インバータ回路INV5の出力端子に接続され、インバータ回路INV5の入力端子は、DフリップフロップDFF3の出力端子Qに接続されている。DフリップフロップDFF3の出力端子Qは、また、論理積回路AND1の第2の入力端子とインバータ回路INV6の入力端子とに接続され、ドライブ選択信号dri_selを出力している。インバータ回路INV6の出力端子は、論理積回路AND2の第2の入力端子に接続されている。論理積回路AND1の出力端子は、ハイサイドドライブ信号hi_preを出力するスイッチオン・オフ制御回路21の出力端子を構成している。論理積回路AND2の出力端子は、ローサイドドライブ信号lo_preを出力するスイッチオン・オフ制御回路21の出力端子を構成している。DフリップフロップDFF3のリセット入力端子Rは、ヒステリシス比較器COMP6の出力端子に接続されている。
 次に、このスイッチオン・オフ制御回路21の動作について、図7を参照しながら説明する。まず、FB端子の電圧よりもコンデンサCosの充電電圧Vosが高くなると、比較器COMP5が論理和回路OR2を介してRSフリップフロップRSFF3をセットする。これにより、RSフリップフロップRSFF3からHレベルの信号Tdが出力される。この信号Tdは、ワンショット回路OS2に入力され、ワンショット回路OS2は、信号Tdの立ち上がりエッジに同期して立ち上がる所定のオン幅を有するオフトリガ信号off_trgを出力する。このオフトリガ信号off_trgは、RSフリップフロップRSFF4をリセットし、RSフリップフロップRSFF4は、論理積回路AND1,AND2の第1の入力端子にLレベルの信号を供給する。これにより、論理積回路AND1,AND2が出力するハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preは、Lレベルになる。
 信号TdがHレベルになると、スイッチSW1がオン(導通)してコンデンサCosの電荷は放電される。また、インバータ回路INV3の出力がLレベルになるので、スイッチSW2がオフ(遮断)し、コンデンサCtdの充電が開始され、その充電電圧Vtdが上昇する。充電電圧Vtdが上昇して、インバータ回路INV1の閾値電圧より高くなると、インバータ回路INV1の出力がLレベルになり、インバータ回路INV2の出力がHレベルになる。このHレベルの信号は、RSフリップフロップRSFF3をリセットして、その出力の信号TdをLレベルにする。このLレベルの信号Tdは、インバータ回路INV3により論理反転されてワンショット回路OS1に入力され、ワンショット回路OS1は、インバータ回路INV3の出力信号の立ち上がり、すなわち信号Tdの立ち下がりエッジに同期して立ち上がる所定のオン幅のオントリガ信号on_trgを出力する。このオントリガ信号on_trgは、RSフリップフロップRSFF4をセットし、RSフリップフロップRSFF4は、論理積回路AND1,AND2の第1の入力端子にHレベルの信号を供給する。これにより、論理積回路AND1,AND2は、その第2の入力端子に入力されるドライブ選択信号dri_selまたはその論理反転信号をハイサイドドライブ信号hi_preおよびローサイドドライブ信号lo_preとして出力する。
 また、信号TdがLレベルになると、スイッチSW2がオン(導通)してコンデンサCtdの電荷が放電されるとともに、スイッチSW1がオフ(遮断)し、コンデンサCosの充電が開始され、その充電電圧Vosが上昇する。充電電圧VosがFB端子の電圧に達したタイミングで、比較器COMP5は、その出力状態が反転され、RSフリップフロップRSFF3のセット入力端子SにHレベルの信号が入力される。このタイミングでは、RSフリップフロップRSFF3の第2のリセット入力端子R2がLレベルであるので、RSフリップフロップRSFF3は、Hレベルの信号Tdを出力する。
 信号TdがHレベルになることにより、ワンショット回路OS2は、オフトリガ信号off_trgを出力する。このオフトリガ信号off_trgは、インバータ回路INV4により論理反転されてDフリップフロップDFF3のクロック入力端子Cに入力される。これにより、DフリップフロップDFF3は、オフトリガ信号off_trgの立ち下がりエッジに同期してインバータ回路INV5の出力状態をラッチする。すなわち、DフリップフロップDFF3の出力状態がLレベルのとき、Hレベルの信号をラッチし、Hレベルの信号を出力する。逆に、DフリップフロップDFF3の出力状態がHレベルのときには、インバータ回路INV5によって論理反転されたLレベルの信号をラッチし、Lレベルの信号を出力する。このDフリップフロップDFF3の出力信号は、ドライブ選択信号dri_selとして論理積回路AND1に入力され、論理積回路AND1からハイサイドドライブ信号hi_preとして出力される。また、DフリップフロップDFF3の出力のドライブ選択信号dri_selをインバータ回路INV6で論理反転された信号は、論理積回路AND2に入力され、論理積回路AND2からローサイドドライブ信号lo_preとして出力される。
 なお、ヒステリシス比較器COMP6が電圧VCCの異常低下を検出したときには、ヒステリシス比較器COMP6は、Hレベルの信号を出力し、RSフリップフロップRSFF3およびDフリップフロップDFF3を強制的にリセットする。
 ここで、強制ターンオフ制御回路22から強制ターンオフ信号ftoが入力された場合について説明する。論理和回路OR2は、比較器COMP5からFB端子の電圧によってオン幅を制御する信号と強制ターンオフ制御回路22からの強制ターンオフ信号ftoとを入力し、RSフリップフロップRSFF4にセット信号を入力している。このため、RSフリップフロップRSFF4は、オン幅を制御する信号および強制ターンオフ信号ftoのうち、先にHレベルとなった信号に応答してセットされる。
 ここで、コンデンサCosの充電電圧VosがFB端子の電圧に達する前に強制ターンオフ信号ftoが入力されると、RSフリップフロップRSFF4は、強制ターンオフ信号ftoの立ち上がりエッジに同期して立ち上がる信号Tdを出力する。これ以降の、デッドタイムの設定およびターンオンのタイミングは、図8に示したように、通常制御時と同じである。
 次に、図3に示したレベルシフト回路32について説明する。
 図9はレベルシフト回路の構成例を示す回路図である。まず、IS端子に入力される電圧は、共振電流の分流が抵抗Risに流れることによって生じるが、共振電流の向きによって正にも負にもなる。制御IC12は、負電圧電源を供給されているものであれば負電圧の入力に対応できるが、負電圧電源を供給されていないものだと、入力が負電圧になるとラッチアップしてしまう。レベルシフト回路32は、負電圧電源を供給されていない制御IC12でもラッチアップを起こすことなく正にも負にもなるIS端子に入力される電圧(これもISで示す)を扱えるように、電圧ISをレベルシフト(レベルアップ)して常に正電圧となる電圧IS2に変換するものである。
 レベルシフト回路32は、図9に示したように、抵抗Rls1,Rls2からなる直列回路を介してIS端子を電圧VDDの内部電源に接続し、抵抗Rls1とRls2の接続点の電位IS2をレベルシフト回路32の出力信号とするものである。ここで、出力信号の電圧IS2は、以下の式となる。
Figure JPOXMLDOC01-appb-M000003
 レベルシフト回路32を用いる場合は、上述の(1)~(6)式で求めたVthish,Vthislを(7)式のISに代入して得られる値を、IS2と比較すればよい。
 また、VW端子に入力される共振電圧検出信号も正にも負にもなる電圧なので、制御IC12が負電圧を扱えない場合は、IS端子と同様に、VW端子に接続されるレベルシフト(レベルアップ回路)を設け、VW端子の電圧と比較される閾値電圧に対し(7)式と同様な変換をすればよい。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 力率改善回路
 2 DC-DCコンバータ
 10 交流電源
 11n 出力端子
 11p 出力端子
 12 制御IC
 21 スイッチオン・オフ制御回路
 22 強制ターンオフ制御回路
 23 ハイサイドドライブ回路
 24 ローサイドドライブ回路
 25 起動回路
 26 電圧レギュレータ
 31 閾値電圧算出部
 32 レベルシフト回路
 ADC アナログ・デジタル変換器
 AND1,AND2 論理積回路
 C1 バルクコンデンサ
 C2,C3,C5,C11 コンデンサ
 C6 共振コンデンサ
 COMP1,COMP2,COMP3,COMP4,COMP5 比較器
 COMP6 ヒステリシス比較器
 Cis コンデンサ
 Co 出力コンデンサ
 Cos,Ctd コンデンサ
 D1,D2,D3,D4 ダイオード
 DAC1,DAC2 デジタル・アナログ変換器
 DFF1,DFF2,DFF3 Dフリップフロップ
 INV1,INV2,INV3,INV4,INV5,INV6 インバータ回路
 Ios,Itd 定電流源
 OR1,OR2 論理和回路
 OS1,OS2 ワンショット回路
 P1 一次巻線
 P2 補助巻線
 PC1 フォトカプラ
 Q1,Q2 スイッチング素子
 R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,Rb1,Rb2,Ris,Rls1,Rls2 抵抗
 RSFF1,RSFF2,RSFF3,RSFF4 RSフリップフロップ
 S1,S2 二次巻線
 SR1 シャントレギュレータ
 SW1,SW2 スイッチ
 T1 トランス

Claims (7)

  1.  バルクコンデンサの直流電圧を入力とする共振型コンバータの制御装置において、
     前記共振型コンバータに流れる共振電流を分流して電圧に変換した共振電流検出信号を入力して前記共振電流検出信号が第1の可変閾値と前記第1の可変閾値より小さい第2の可変閾値との間に入ると強制ターンオフ信号を出力し、前記第1の可変閾値および前記第2の可変閾値を前記バルクコンデンサの直流電圧を分圧して入力した入力電圧に応じて可変するようにした強制ターンオフ制御回路を備えている、共振型コンバータの制御装置。
  2.  前記強制ターンオフ制御回路は、前記第1の可変閾値および前記第2の可変閾値を、前記入力電圧の所定の変化範囲において、それぞれ、前記入力電圧が規定の電圧以上のときに第1共振電流値および前記第1共振電流値とは符合が逆の第2共振電流値に相当する閾値に設定し、前記入力電圧が規定の電圧より低くなるにつれて前記第1共振電流値より絶対値がより低い電流値および前記第2共振電流値より絶対値がより低い電流値に相当する閾値に設定する、請求項1記載の共振型コンバータの制御装置。
  3.  前記強制ターンオフ制御回路は、前記第1の可変閾値および前記第2の可変閾値の絶対値の可変の範囲を、前記共振型コンバータが所定の動作を維持できる範囲とした、請求項2記載の共振型コンバータの制御装置。
  4.  前記強制ターンオフ制御回路は、前記共振型コンバータの共振電圧を検出した共振電圧検出信号を入力して前記共振電圧検出信号の減少時に前記共振電圧検出信号が第1の固定閾値を超える、または前記共振電圧検出信号の上昇時に前記共振電圧検出信号が第2の固定閾値を超えると前記強制ターンオフ信号の出力を有効にする、請求項2記載の共振型コンバータの制御装置。
  5.  前記強制ターンオフ制御回路は、
     前記共振電圧検出信号と前記第1の固定閾値とを比較する第1の比較器と、
     前記共振電圧検出信号と前記第2の固定閾値とを比較する第2の比較器と、
     前記第1の比較器の出力をクロック入力に受けたときにハイレベルの信号をラッチし、前記DC-DCコンバータを構成するハーフブリッジ回路のローサイド用スイッチング素子を駆動するローサイドドライブ信号を受けてリセットされる第1のDフリップフロップと、
     前記第2の比較器の出力をクロック入力に受けたときにハイレベルの信号をラッチし、前記ハーフブリッジ回路のハイサイド用スイッチング素子を駆動するハイサイドドライブ信号を受けてリセットされる第2のDフリップフロップと、
     前記第1のDフリップフロップの出力をセット入力に受け、前記ローサイドドライブ信号を第1のリセット入力に受ける第1のRSフリップフロップと、
     前記第2のDフリップフロップの出力をセット入力に受け、前記ハイサイドドライブ信号を第1のリセット入力に受ける第2のRSフリップフロップと、
     前記第1のRSフリップフロップの出力と前記第2のRSフリップフロップの出力とを入力して前記強制ターンオフ信号を出力する論理和回路と、
     前記入力電圧を分圧した信号をデジタルに変換するアナログ・デジタル変換器と、
     前記アナログ・デジタル変換器の出力を受けて前記入力電圧に応じたハイサイド用閾値およびローサイド用閾値を算出する算出部と、
     前記共振電流検出信号と前記ハイサイド用閾値とを比較し、出力が前記第1のRSフリップフロップの第2のリセット入力に接続された第3の比較器と、
     前記共振電流検出信号と前記ローサイド用閾値とを比較し、出力が前記第2のRSフリップフロップの第2のリセット入力に接続された第4の比較器と、
     を有している、請求項4記載の共振型コンバータの制御装置。
  6.  前記共振電流検出信号は、前記共振型コンバータに流れる共振電流を分流した電流を電流検出抵抗に流し、前記電流検出抵抗により生成された電圧をレベルシフト回路によりレベルシフトした信号である、請求項1記載の共振型コンバータの制御装置。
  7.  前記第1の可変閾値および前記第2の可変閾値は、絶対値が等しく符合が逆の電流をそれぞれ前記レベルシフト回路によりレベルシフトした値に相当する、請求項6記載の共振型コンバータの制御装置。
PCT/JP2019/002019 2018-03-23 2019-01-23 共振型コンバータの制御装置 WO2019181181A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020507379A JP6849143B2 (ja) 2018-03-23 2019-01-23 共振型コンバータの制御装置
CN201980004095.5A CN111052581B (zh) 2018-03-23 2019-01-23 谐振型转换器的控制装置
US16/801,716 US10855189B2 (en) 2018-03-23 2020-02-26 Control apparatus for resonant converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055895 2018-03-23
JP2018-055895 2018-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/801,716 Continuation US10855189B2 (en) 2018-03-23 2020-02-26 Control apparatus for resonant converter

Publications (1)

Publication Number Publication Date
WO2019181181A1 true WO2019181181A1 (ja) 2019-09-26

Family

ID=67987729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002019 WO2019181181A1 (ja) 2018-03-23 2019-01-23 共振型コンバータの制御装置

Country Status (4)

Country Link
US (1) US10855189B2 (ja)
JP (1) JP6849143B2 (ja)
CN (1) CN111052581B (ja)
WO (1) WO2019181181A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017130213B4 (de) * 2017-12-15 2021-10-21 Infineon Technologies Ag Planarer feldeffekttransistor
JP7200727B2 (ja) * 2019-02-14 2023-01-10 富士電機株式会社 スイッチング電源の制御装置
US11258352B2 (en) * 2019-05-10 2022-02-22 Dell Products L.P. Systems and methods for fast response and low total harmonic distortion power factor correction
US11418125B2 (en) 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210759A (ja) * 2004-01-19 2005-08-04 Sanken Electric Co Ltd 共振型スイッチング電源装置
JP2006174571A (ja) * 2004-12-15 2006-06-29 Fuji Electric Device Technology Co Ltd 電流共振コンバータ
US20150263602A1 (en) * 2014-03-17 2015-09-17 Semiconductor Components Industries, Llc Method and semiconductor device for a dedicated startup sequence in a resonant converter
JP2016163386A (ja) * 2015-02-27 2016-09-05 株式会社日立製作所 電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164554A (ja) * 1997-11-28 1999-06-18 Toshiba Corp 電流共振電源回路
JP4386743B2 (ja) 2004-01-09 2009-12-16 新電元工業株式会社 共振回路
JP4830467B2 (ja) * 2005-11-29 2011-12-07 ミツミ電機株式会社 共振形コンバータ
JP4793484B2 (ja) * 2009-09-29 2011-10-12 サンケン電気株式会社 共振型コンバータ装置
JP5589701B2 (ja) * 2010-09-15 2014-09-17 富士電機株式会社 力率改善電流共振コンバータ
US9093904B2 (en) 2011-02-01 2015-07-28 Fuji Electric Co., Ltd. Resonant switching power supply device
JP6106963B2 (ja) * 2012-06-20 2017-04-05 富士電機株式会社 スイッチング電源装置
JP6218467B2 (ja) 2013-07-12 2017-10-25 キヤノン株式会社 電源装置及び画像形成装置
JP6241334B2 (ja) * 2014-03-14 2017-12-06 Tdk株式会社 電流共振型dcdcコンバータ
JP6938854B2 (ja) * 2016-05-10 2021-09-22 富士電機株式会社 スイッチング電源装置
JP6743518B2 (ja) * 2016-06-24 2020-08-19 富士電機株式会社 スイッチング電源装置
US10236680B2 (en) * 2016-08-30 2019-03-19 Fuji Electric Co., Ltd. Control circuit of switching power supply device
JP6271049B1 (ja) * 2017-01-13 2018-01-31 入野 晃一 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210759A (ja) * 2004-01-19 2005-08-04 Sanken Electric Co Ltd 共振型スイッチング電源装置
JP2006174571A (ja) * 2004-12-15 2006-06-29 Fuji Electric Device Technology Co Ltd 電流共振コンバータ
US20150263602A1 (en) * 2014-03-17 2015-09-17 Semiconductor Components Industries, Llc Method and semiconductor device for a dedicated startup sequence in a resonant converter
JP2016163386A (ja) * 2015-02-27 2016-09-05 株式会社日立製作所 電力変換装置

Also Published As

Publication number Publication date
US10855189B2 (en) 2020-12-01
JPWO2019181181A1 (ja) 2020-10-22
CN111052581B (zh) 2023-01-24
JP6849143B2 (ja) 2021-03-24
US20200195151A1 (en) 2020-06-18
CN111052581A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN109088544B (zh) 开关电源装置
JP6849143B2 (ja) 共振型コンバータの制御装置
US10461649B2 (en) Switched-mode power supply circuit
KR100790185B1 (ko) 스위칭 파워 서플라이 장치
CN105991034B (zh) 具省电与高转换效率机制的电源转换装置
JP6743518B2 (ja) スイッチング電源装置
JP4797637B2 (ja) 共振型スイッチング電源装置
CN106452124B (zh) 电源转换装置
JP5488274B2 (ja) 半導体集積回路およびスイッチング電源装置
CN108880296B (zh) 电源转换系统
JP7095784B2 (ja) スイッチング電源装置
US11005376B2 (en) Switching power supply controller
US20100232183A1 (en) Control circuit of resonant power converter with asymmetrical phase shift to improve the operation
JP3954481B2 (ja) 直流−交流変換装置、及びそのコントローラic
CN106602879A (zh) 具有半桥节点的dc‑dc转换器、用于其的控制器以及控制其的方法
JP6848446B2 (ja) スイッチング電源装置
WO2010125751A1 (ja) スイッチング電源装置
EP2517341B1 (en) Start-up supply for a switch mode power supply
JP2015171212A (ja) 電流共振型電源装置
JP5207841B2 (ja) スイッチング電源装置
TWI422132B (zh) 提供過溫度保護之控制器、功率轉換器及其方法
CN111066235B (zh) 电源装置、电源控制装置、以及电源控制方法
TWI669893B (zh) LLC quasi-resonant switching power supply
JP7275695B2 (ja) スイッチング電源の制御装置
JP2001292571A (ja) 同期整流回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770870

Country of ref document: EP

Kind code of ref document: A1