WO2019179110A1 - 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法 - Google Patents

一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法 Download PDF

Info

Publication number
WO2019179110A1
WO2019179110A1 PCT/CN2018/113233 CN2018113233W WO2019179110A1 WO 2019179110 A1 WO2019179110 A1 WO 2019179110A1 CN 2018113233 W CN2018113233 W CN 2018113233W WO 2019179110 A1 WO2019179110 A1 WO 2019179110A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacterial cellulose
test paper
nitrogen
bacterial
catalytic test
Prior art date
Application number
PCT/CN2018/113233
Other languages
English (en)
French (fr)
Inventor
项舟洋
吕发创
李军
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/982,055 priority Critical patent/US20210016264A1/en
Publication of WO2019179110A1 publication Critical patent/WO2019179110A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/861Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only halogen as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/005General concepts, e.g. reviews, relating to methods of using catalyst systems, the concept being defined by a common method or theory, e.g. microwave heating or multiple stereoselectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • B01J2231/4227Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group with Y= Cl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4266Sonogashira-type, i.e. RY + HC-CR' triple bonds, in which R=aryl, alkenyl, alkyl and R'=H, alkyl or aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/005Catalytic metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/061Chiral polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers

Definitions

  • the invention relates to the field of papermaking technology and organic catalysis, in particular to a catalytic test paper prepared by combining bacterial cellulose-supported metal particles with plant fibers and a method thereof.
  • the metal nanoparticles in the heterogeneous catalyst have catalytic reaction efficiencies close to the molecular level because of their small size and large specific surface area.
  • the effective separation and recovery of metal nanoparticles is still a problem.
  • the process is time-consuming and labor-intensive, and the cost is high.
  • the metal nanoparticles tend to aggregate and reduce their catalytic activity. It is a common problem to be solved by supporting metal nanoparticles on a suitable support, improving its stability, and improving its separation and recovery, making it both homogeneous and heterogeneous.
  • Some common supports for metal nanocatalysts used for loading include: mesoporous silicone and grafted silicon foam, layered double hydroxide, clay, zeolite molecular sieves, various metal oxides, active or nitrogen-doped carbon, polymerization Network, graphene, resin, etc.
  • mesoporous silicone and grafted silicon foam layered double hydroxide, clay, zeolite molecular sieves, various metal oxides, active or nitrogen-doped carbon, polymerization Network, graphene, resin, etc.
  • most of these carriers readily leaching or degrading the catalyst, affecting the yield of the reaction, and limiting reuse.
  • most of the supports have a low specific surface area and it is difficult to impart a large contact area between the catalyst and the reactants. Therefore, finding a suitable metal nanoparticle carrier, which can simultaneously impart high catalytic efficiency and strong recyclability and reusability to the catalyst, is still a major technical problem to be solved.
  • Bacterial cellulose is an emerging biological material that is secreted and synthesized by microorganisms. It has extremely high cellulose purity and crystallinity, and a fine microscopic network structure. Uniformly separated and interwoven cellulose microfibril structure (diameter) 2-100 nm It imparts a super-fine three-dimensional network structure of bacterial cellulose. These interwoven fibril structures form a nano-scale tunnel and pore structure with a large number of bacterial cellulose surfaces, and have the potential to lock, disperse and prevent metal nanoparticles from agglomerating.
  • the simple bacterial cellulose as a metal nanoparticle carrier has higher cost, poor mechanical properties, and weak liquid permeability, which weakens the contact of the reactants with the metal particles.
  • bacterial cellulose Due to its fine network structure, bacterial cellulose can be tightly bound to plant fibers through a large number of free hydroxyl groups, so it can enhance the functional properties of the bacterial cellulose by modifying it, and impart special functions to the paper. Therefore, the innovation of the present invention lies in that a catalytic test paper is prepared by compounding a metal nanoparticle-loaded bacterial cellulose with a plant fiber.
  • bacterial cellulose ensures good dispersion and stability of the metal nanoparticles, and the plant fiber serves as a matrix to ensure the mechanical strength of the catalyst carrier and the permeability of the reactants.
  • the catalytic test paper has the advantages of extremely convenient use and recovery, high reusability, simple design, low manufacturing cost, high catalytic efficiency, and green degradable carrier material.
  • the object of the present invention is to provide a bacterial cellulose-loaded metal particle and plant fiber composite.
  • a method of preparing a catalytic test paper In the catalytic test paper, bacterial cellulose ensures good dispersion and stability of the metal nanoparticles, and the plant fiber serves as a matrix to ensure the mechanical strength of the catalyst carrier and the permeability of the reactants.
  • the catalytic test paper has the advantages of extremely convenient use and recovery, high reusability, simple design, low manufacturing cost, high catalytic efficiency, and green degradable carrier material.
  • a method for preparing a catalytic test paper by compounding bacterial cellulose-supported metal particles with plant fibers comprising the following steps:
  • the chemically bonded bacterial nitrogen- or phosphorus-containing organic small molecule compound is chemically bonded to a large amount of hydroxyl groups in the bacterial cellulose structure to obtain a functionalized bacterial cellulose having a nitrogen-containing or phosphorus-containing group;
  • the phosphorus-containing group cooperates with the metal atom to enhance the binding stability of the metal nanoparticle and the bacterial cellulose, and improve the reusability of the catalytic test paper;
  • step (2) disposing the inorganic salt of the transition metal into an aqueous solution, adding the step (1) Functionalized bacterial cellulose prepared in accordance with the solubility of the transition metal inorganic salt, the reaction can be heated and stirred. More than an hour until the nitrogen or phosphorus-containing functional group adsorbs the transition metal ions to the nanoporous surface of the bacterial cellulose to saturation, separates and washes with deionized water; the beneficial effect is that the metal particles are reinforced on the surface of the bacterial cellulose. Disperse and improve catalytic efficiency;
  • the bacterial cellulose is composed of bacterial microorganisms such as Glucosinolate, Acetate, Agrobacterium, Pseudomonas, Achromobacter, Alcaligenes, Aeromonas, Azotobacter, nodules
  • Glucosinolate Acetate
  • Agrobacterium Pseudomonas
  • Achromobacter Achromobacter
  • Alcaligenes Alcaligenes
  • Aeromonas Aeromonas
  • Azotobacter nodules
  • the nitrogen-containing or phosphorus-containing organic small molecule compounds include, but are not limited to, ethylenediamine, tetraethylenepentamine, diethylenetriamine, polyethyleneimine, N-methylimidazole, diphenylphosphonium chloride Wait.
  • Transition metals in the process include, but are not limited to, metals having catalytic properties such as palladium, chromium, nickel, silver, copper, gold, and the like.
  • the step (1) a method for bonding a nitrogen-containing or phosphorus-containing organic small molecule to a bacterial cellulose hydroxyl group, including, but not limited to, using an oxidizing agent such as periodate, tetramethylpiperidine oxynitride TEMPO, etc. C2 and The hydroxyl group at the C3 bond is oxidized to an aldehyde group and then bonded to the nitrogen-containing compound by a reductive amination reaction.
  • an oxidizing agent such as periodate, tetramethylpiperidine oxynitride TEMPO, etc.
  • the step (1) a method for bonding a nitrogen-containing or phosphorus-containing organic small molecule to a bacterial cellulose hydroxyl group, including (but not limited to) using bacterial cellulose in a concentrated alkali (10-20%)
  • a halogen-containing epoxy compound such as epichlorohydrin to bond the epoxy group to the bacterial cellulose hydroxyl group, and then the epoxy group is further reacted with the nitrogen-containing organic small molecule compound.
  • the step (1) a method for bonding a nitrogen-containing or phosphorus-containing organic small molecule to a bacterial cellulose hydroxyl group, including, but not limited to, bacterial cellulose and thionyl chloride in dimethylformamide (DMF) or N, N - Dimethylacetamide (DMF) or N, N - Dimethylacetamide (The reaction is carried out under DMAc), and a chlorine atom is bonded to the hydroxyl group of the bacterial cellulose, followed by reaction with the nitrogen-containing small molecule compound.
  • DMF dimethylformamide
  • the method of bonding a nitrogen-containing or phosphorus-containing organic small molecule to a bacterial cellulose hydroxyl group includes, but is not limited to, using a phenyl group such as diphenylphosphonium chloride to hydroxy bond with bacterial cellulose under the condition of pyridine as a solvent .
  • the method for in situ reduction of transition metal ions adsorbed by bacterial cellulose includes, but is not limited to, immersing bacterial cellulose adsorbing transition metal ions in a reducing agent such as sodium borohydride, sodium cyanoborohydride or hydroxylamine hydrochloride. In the solution.
  • a reducing agent such as sodium borohydride, sodium cyanoborohydride or hydroxylamine hydrochloride.
  • the plant fiber slurry is a papermaking material prepared by mechanical or chemical pulping or the like of wood fiber, non-wood plant fiber or secondary fiber.
  • drying temperature in the step (4) is about 110 °C.
  • the consistency of the slurry after the disintegration in the step (4) is 1% by weight.
  • a catalytic test paper prepared by the above method can be placed into the nylon mesh frame and then added to the reaction medium requiring catalytic reaction, and the reaction efficiency can be enhanced by magnetic stirring or other means; the beneficial effect is that the catalytic test paper is protected and the reusability is improved.
  • the catalytic reaction includes, but is not limited to, a Suzuki-Miyaura reaction, a Heck reaction. (Heck reaction), Sonogashira reaction, or degradation of nitroaromatic compounds.
  • the present invention has the following advantages:
  • the bacterial cellulose ensures good dispersion and stability of the metal nanoparticles, and the plant fiber serves as a matrix to ensure the mechanical strength of the catalyst carrier and the permeability of the reaction medium.
  • the catalytic test paper prepared by the invention has the advantages of extremely convenient use and recovery, high reusability, simple design, low manufacturing cost, high catalytic efficiency and green degradable carrier material.
  • FIG. 1 is a schematic flow chart of a method for preparing a catalytic test paper by combining a bacterial cellulose-supported metal particle with a plant fiber according to the present invention.
  • the bacterial cellulose in the examples is Glucoacetobacter xylinus ) secreted.
  • the components of the bacterial culture medium are: fermented coconut water 50 mL, ammonium sulfate 0.1 g, magnesium sulfate 0.1 g, potassium dihydrogen phosphate 0.1 g, sucrose 3.0 g, distilled water 50 mL, adjust the pH to 4.1 with NaOH, and sterilize at 100 °C for 5 min.
  • Using a static fermentation culture method place the medium in a 250 mL beaker and inoculate 5%.
  • V/V Acetobacter sphaeroides was allowed to stand for 6 days at a temperature of 30 °C.
  • the obtained bacterial cellulose wet film solid content was 1.5% by weight.
  • Pd-BC was mixed with bleached bagasse pulp at a mass ratio of 20% (Pd-BC to dry weight of the paper) and dispersed uniformly with a standard pulp disintegrator at a consistency of 1% (m/m).
  • the catalytic test paper was made from mixed pulp through a standard paper hand copying machine (Messmer 225, Holland). The dry weight of each piece is controlled at 70 g/m 2 . Dry the paper at 120 °C for 20 minutes, and protect it from light and air.
  • the catalytic test paper has a good catalytic effect on the Suzuki-Miyaura coupling reaction.
  • 2 mmol K 2 CO 3 as a base
  • 16 mL of 95% ethanol, 1.1 mmol of phenylboric acid and 1 mmol of iodobenzene were used in a 20 mL screw cap vial to carry out a catalytic reaction for the formation of biphenyl at 80 °C. All reactions are carried out under normal atmospheric conditions and do not require inert gas atmosphere conditions.
  • the reaction vial was capped with a lid and added to an oil bath preheated to 80 °C.
  • the catalytic test paper was cut into pieces of 1 cm ⁇ 3 cm.
  • Epoxidized BC Add 90 mL of deionized water, add 7.6 mL of tetraethylenepentamine and 1.3 g of sodium carbonate, react at room temperature for 3 hours, then filter and wash to obtain tetraethylenepentamine modified BC.
  • Pd-BC was mixed with bleached bagasse pulp at a mass ratio of 20% (Pd-BC to dry weight of the paper) and dispersed uniformly with a standard pulp disintegrator at a consistency of 1% (m/m).
  • the catalytic test paper was made from mixed pulp through a standard paper hand copying machine (Messmer 225, Holland). The dry weight of each piece is controlled at 70 g/m 2 . Dry the paper at 105 °C for 30 minutes, and protect it from light and air.
  • the catalytic test paper has a good catalytic effect on the Heck reaction (Heck reaction) and the Sonogashira reaction.
  • 2 mmol K 2 CO 3 as a base
  • 16 mL of 95% ethanol, 1.1 mmol of styrene or 1.1 mmol of phenylacetylene and 1 mmol of bromobenzene were reacted at 80 °C in a 20 mL screw cap vial. All reactions are carried out under normal atmospheric conditions and do not require inert gas atmosphere conditions.
  • the reaction vial was capped with a lid and added to an oil bath preheated to 80 °C.
  • the catalytic test paper was cut into pieces of 1 cm ⁇ 3 cm.
  • the bacterial cellulose (Bacterial Cellulose, BC) wet film 30 g was separated into small pieces, the same procedure as in Example 1. After filtering the BC water, it was added to 100 mL of pyridine, heated to 80 ° C, and stirred at 500 rpm for 30 min. After cooling to room temperature, 10 mL of diphenylphosphonium chloride was added and reacted at 350 rpm for 3 days at room temperature. After completion of the reaction, it was filtered and washed to obtain diphenylphosphine functionalized BC.
  • the diphenylphosphine functionalized BC was added to 100 mL of a 0.2 M nickel chloride hexahydrate solution (NiCl 2 .6H 2 O), and the reaction was stirred at 350 rpm for 4 hours at room temperature.
  • the obtained solid product was filtered and washed, and added to 100 mL of 0.1 M sodium cyanoborohydride solution, and the reaction was stirred at normal temperature for 1 hour to carry out in situ reduction of supported nickel ions.
  • the resulting nickel nanoparticles loaded BC (Ni-BC) was filtered and washed with deionized water.
  • Ni-BC was mixed with bleached softwood pulp to make a catalytic test paper.
  • the procedure is the same as in Example 1.
  • the catalytic test paper has a good catalytic effect on the degradation reaction of the nitroaromatic compound.
  • Add 0.8 mL to a 20 mL screw cap vial 0.2 M of 2-nitrophenol solution, 1.6 mL of 0.2 M sodium borohydride solution, and 10 mL of deionized water were reacted at room temperature.
  • the use method and dosage of catalytic test paper are the same as examples 1 .
  • the yield of 2-aminophenol was 92%. Using the same catalytic test paper 10 times, you can still get close to 85% yield.
  • the bacterial cellulose (Bacterial Cellulose, BC) wet film 30 g was separated into small pieces, the same procedure as in Example 1. BC was added to a mixed solution of 100 mL of N,N-dimethylacetamide and 20 mL of thionyl chloride, and the reaction was stirred at 95 ° C for 3 hours to prepare chloro BC. 3.28 g of N-methylimidazole was added to 100 mL of dimethyl sulfoxide (DMSO), dissolved, and chlorinated BC was added, heated to 100 °C under inert gas, and stirred at 350 rpm for 12 h. After cooling to room temperature, filtration and washing with acetone gave N-methylimidazole functionalized BC.
  • DMSO dimethyl sulfoxide
  • the N-methylimidazole functionalized BC was added to 100 mL of 0.1 M silver nitrate solution (AgNO 3 ), and the reaction was stirred at 350 rpm for 4 hours at room temperature.
  • the obtained solid product was filtered and washed, and added to 100 mL of 0.1 M sodium cyanoborohydride solution, and the reaction was stirred at normal temperature for 1 hour to carry out in situ reduction of the supported silver ions.
  • the resulting silver nanoparticles loaded BC (Ag-BC) was filtered and washed with deionized water.
  • the Ag-BC was mixed with the secondary fiber wood pulp to form a catalytic test paper, and the procedure was the same as in Example 1.
  • the catalytic test paper has a good catalytic effect on the degradation reaction of the nitroaromatic compound.
  • Add 0.8 mL to a 20 mL screw cap vial 0.2 M of 4-nitrophenol solution, 1.6 mL of 0.2 M sodium borohydride solution, and 10 mL of deionized water were reacted at room temperature.
  • the use method and dosage of catalytic test paper are the same as examples 1 .
  • the yield of 4-aminophenol was 95%. Using the same catalytic test paper 10 times, you can still get close to 90% yield.
  • FIG. 1 A schematic diagram of the flow of the present invention is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Paper (AREA)

Abstract

一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及制备方法。在细菌纤维素的羟基上键合含氮或含磷的有机小分子化合物,通过氮或磷与金属的螯合作用,将过渡金属离子吸附到细菌纤维素的纳米孔隙表面,对过渡金属离子进行原位还原,得到负载金属纳米粒子的细菌纤维素,将细菌纤维素与植物纤维复合,通过造纸法制备催化试纸。催化试纸具有使用及回收方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。

Description

一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法
技术领域
本发明涉及造纸技术以及有机催化领域,具体涉及一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法。
背景技术
非均相催化剂中的金属纳米粒子具有接近分子水平的催化反应效率,因为其尺寸较小,并具有较大的比表面积。然而,金属纳米粒子的有效分离与回收仍然是一个问题,过程往往耗时耗力,花费较高;此外,由于较高的表面能和范德华力,金属纳米粒子容易聚集,降低其催化活性。将金属纳米粒子负载在一个合适的载体上,提高其稳定性,并提高其分离及回收性,使其兼具均相和非均相催化剂的优势,是一个普遍需要解决的问题。一些被用来负载的金属纳米催化剂的常用载体包括:介孔有机硅及接枝硅泡沫、层状双氢氧化物、粘土、沸石分子筛、各种金属氧化物、活性或氮掺杂碳、聚合物网络、石墨烯、树脂等。然而,通过重复使用,这些载体中的大多数很容易使催化剂浸出或降解,影响反应得率,限制了重复利用。此外,大部分载体的比表面积较低,难以赋予催化剂与反应物较大的接触面积。因而寻找合适的金属纳米粒子载体,能够同时赋予催化剂较高的催化效率与较强的可回收及重复使用性仍是需要解决的一个主要技术问题。
细菌纤维素是一种新兴的生物材料,由微生物分泌合成,具有极高的纤维素纯度及结晶度、精细的微观网状结构。微观形态下,均匀分离及相互交织的纤维素微纤丝结构(直径 2-100 nm )赋予了细菌纤维素超精细的三维网络结构,这些交织的纤丝结构形成了细菌纤维素表面数量庞大的纳米级隧道和孔隙结构,具有将金属纳米粒子锁定、分散、防止其聚集的潜能。然而,以单纯的细菌纤维素作为金属纳米粒子载体成本较高,力学性能较差,并且液体通透性较弱,削弱了反应物与金属粒子的接触。
也是由于其精细的网状结构,细菌纤维素能够通过数量庞大的游离羟基与植物纤维紧密地结合,因此可以通过对细菌纤维素的物化改性,提升其功能化特性,赋予纸张特殊功能。因而本发明的创新点在于,将负载金属纳米粒子的细菌纤维素与植物纤维复合制备催化试纸。该催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应物通透性。该催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。
发明内容
为寻找绿色可降解的金属纳米粒子载体,并能够同时赋予催化剂较高的催化效率与较强的可回收及重复使用性,本发明的目的在于提供一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法。该催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应物通透性。该催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。
本发明的目的通过以下技术方案实现。
一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,包括以下步骤:
( 1 )将含氮或含磷的有机小分子化合物通过与细菌纤维素结构中的大量羟基化学键合,得到具有含氮或含磷基团的功能化细菌纤维素;其有益效果为,通过含氮或含磷基团与金属原子的蝥合作用,增强金属纳米粒子与细菌纤维素的结合稳定性,提高催化试纸的可重复使用性;
( 2 )将过渡金属的无机盐配置成水溶液,加入步骤( 1 )中制备的功能化细菌纤维素,根据过渡金属无机盐的溶解度,反应可加热进行,搅拌反应 3 小时以上直至含氮或含磷的功能基团将过渡金属离子吸附到细菌纤维素的纳米孔隙表面至饱和,分离并使用去离子水洗涤;其有益效果为,增强金属粒子在细菌纤维素表面的分散,提高催化效率;
( 3 )对步骤( 2 )中吸附至细菌纤维素表面的过渡金属离子进行原位还原,得到负载过渡金属纳米颗粒的细菌纤维素;其有益效果为,增强金属粒子在细菌纤维素表面的分散,提高催化效率;
( 4 )将植物纤维浆料与步骤( 3 )中制备的负载过渡金属纳米颗粒的细菌纤维素混合,用标准纸浆疏解机分散均匀,将混合浆料抄造成纸,制备成催化试纸;将试纸干燥至衡重,避光及隔绝空气保存;其有益效果为,以植物纤维作为基体可以保证催化剂载体(催化试纸)的力学强度,并且由于植物纤维的多孔性,可以提高载体的反应物通透性,提高反应物与金属粒子的接触几率,进而提高催化效率。
进一步地,所述细菌纤维素由细菌微生物如葡萄糖醋杆菌属、醋酸菌属、土壤杆菌属、假单胞杆菌属、无色杆菌属、产碱杆菌属、气杆菌属、固氮菌属、根瘤菌属和八叠球菌属中的一种体外合成,培养条件为静态或动态发酵培养条件。
更进一步地,步骤( 1 )中的含氮或含磷的有机小分子化合物包括(但是不限于)乙二胺、四乙烯五胺、二乙烯三胺、聚乙烯亚胺、N - 甲基咪唑、二苯基氯化磷等。
进一步地,步骤( 2 )中的过渡金属包括(但是不限于)钯、铬、镍、银、铜、金等具有催化性能的金属。
进一步地,步骤( 1 )中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)使用氧化剂如高碘酸盐、四甲基哌啶氮氧化物 TEMPO 等在水中将细菌纤维素上 C2 及 C3 键位上的羟基氧化成醛基,然后通过还原胺化反应与含氮化合物键合。
进一步地,步骤( 1 )中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)将细菌纤维素在浓碱中( 10-20% 质量分数)与环氧氯丙烷等含卤素的环氧化合物反应,将环氧基团与细菌纤维素羟基键合,接着环氧基团再与含氮有机小分子化合物反应。
进一步地,步骤( 1 )中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)将细菌纤维素与氯化亚砜等在二甲基甲酰胺( DMF )或 N,N- 二甲基乙酰胺( DMAc )下反应,将氯原子键合到细菌纤维素的羟基上,接着再与含氮小分子化合物反应。
进一步地,步骤( 1 )中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)使用二苯基氯化磷等在吡啶作为溶剂的条件下与细菌纤维素的羟基键合。
进一步地,步骤( 3 )中的对细菌纤维素吸附得过渡金属离子进行原位还原的方法包括(但是不限于)将吸附过渡金属离子的细菌纤维素浸泡在硼氢化钠、氰基硼氢化钠、盐酸羟胺等还原剂的溶液中。
进一步地,步骤( 4 )中的植物纤维浆料为木材纤维、非木材植物纤维或二次纤维通过机械或化学制浆法等制备的造纸原料。
进一步地,步骤( 4 )中所述干燥的温度为 110 ℃ 左右。
进一步地,步骤( 4 )中所述疏解后浆液的稠度为 1wt% 。
由以上所述方法制得的一种催化试纸。该催化试纸使用时可以置入尼龙网框架,然后再加入需要催化反应的反应介质中,可以使用磁力搅拌或者其它方式增强反应效率;其有益效果为,保护催化试纸,提高可重复使用性。
进一步地,所述催化反应包括(但是不限于)铃木偶联反应 (Suzuki-Miyaura) 反应、赫克反应 (Heck 反应 ) 、 Sonogashira 反应、或硝基芳烃化合物降解等。
与现有技术相比,本发明具有如下优点:
1 、本发明制备的催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应介质通透性。
2 、本发明制备的催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。
附图说明
图 1 是本发明一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法的流程示意图。
具体实施方式
以下通过实施例对本发明作进一步详细描述,但本发明的实施不限于此。
实施例中的细菌纤维素由葡萄糖醋杆菌( Glucoacetobacter xylinus )分泌而成。细菌培养基的成分主要为:发酵椰子水 50 mL ,硫酸铵 0.1 g ,硫酸镁 0.1 g ,磷酸二氢钾 0.1 g ,蔗糖 3.0 g ,蒸馏水 50 mL ,用 NaOH 调节 pH 值至 4.1 , 100 ℃ 灭菌 5 min 。采用静态发酵培养方法,将培养基置于 250 mL 烧杯中,接种 5% ( V/V )葡萄糖醋杆菌在温度为 30 ℃下静置培养 6 天。获得的细菌纤维素湿膜固含量为 1.5wt% 。
实施例 1
将细菌纤维素 (Bacterial Cellulose, BC) 湿膜 30 g 切割成小块,加入 100 mL 水中,使用组织捣碎机分离成小碎块(各方向尺寸 2 mm ),以静置一段时间后仍不悬浮在水中为准,过滤后加入到 100 mL 质量分数为 0.2% 的高碘酸钠溶液中,并以 350 rpm 转速搅拌。反应在室温及无光条件下进行 2 天。反应完成后,将氧化细菌纤维素过滤并洗涤。将氧化细菌纤维素与 5.6 g 聚乙烯亚胺和 80 mL 去离子水混合到锥形瓶里。加入 0.21 g 氰基硼氢化钠作为催化剂。用 0.1 M 盐酸将混合物的 pH 调节至 5.8-6 。反应在磁力搅拌下以 350 rpm 的转速和室温进行 6 小时。反应后,将聚乙烯亚胺改性的 BC 过滤并洗涤。
将 0.5 g 的氯亚钯酸钾 (K2PdCl4) 溶解在 70 ℃ 的 100 ml 热水中,然后加入聚乙烯亚胺改性的 BC 。将混合物在磁力搅拌 350 rpm 的转速下和 70 ℃ 反应 6 小时。所得固体产物用热水洗涤,并加入到 100 mL 5 mg/mL 硼氢化钠溶液中在常温下反应 1 小时,以对负载的钯离子进行原位还原。将得到的负载钯纳米颗粒的 BC (Pd-BC) 过滤并用去离子水洗涤。经检测, Pd-BC 负载的钯质量分数达到 9.7% 。
将 Pd-BC 与漂白蔗渣浆以 20% 的质量比混合( Pd-BC 占纸张干重),并以 1% (m/m) 的稠度用标准纸浆疏解机分散均匀。催化试纸由混合纸浆通过标准纸业手抄机( Messmer 225 , Holland )制成。每片的干重控制在 70 g/m2 。将纸张在 120 ℃ 下干燥 20 分钟,并避光及隔绝空气保存。
该催化试纸对铃木偶联反应 (Suzuki-Miyaura) 具有较好的催化效果。使用 2 mmol K2CO3 作为碱,在 20 mL 螺旋盖小瓶中使用 16 mL 95% 乙醇, 1.1 mmol 苯基硼酸和 1 mmol 碘苯在 80 ℃ 下进行生成联苯的催化反应研究。所有反应在正常大气条件下进行,不需要惰性气体氛围条件。加入溶剂和化学品后,用盖子封闭反应小瓶,并加入到预热至 80 ℃ 的油浴中。将催化试纸切成 1cm × 3cm 的纸片。每个反应使用四张纸片,并放入尼龙网框架中。待油浴中反应瓶温度达到平衡后,插入装载有催化纸片的尼龙框架,盖紧瓶盖防止空气进入,并用磁力搅拌棒在反应混合物中搅拌。反应 2 小时后的联苯的产率为 99% 。同一张催化试纸使用 26 次时候仍能够获得接近 90% 的产率。同样的,选取几种取代基不同的苯基硼酸和芳基卤化物,该催化试纸也具有较好的催化效率,催化反应时间及得率见下表 1 ( 使用实施例 1 中的催化试纸 ,在 16 mL 的 95% 乙醇中以 2.5 mmol K 2 CO 3 作为碱, 1 mmol 苯基硼酸与 1.1 mmol 芳基卤生成联苯产物的反应时间及得率,其中反应温度 = 80 ℃ ) 。
表 1
Figure P18086HG-appb-C000001
表1
X R 1 R 2 反应时间 h 得率 %
I H H 1.5 95
I 4-COCH3 H 1.5 100
I 4-NO2 H 1.5 100
I 4-NH2 H 3(8) 15(80)
I 4-CH3 H 1.5 98
I 4-OCH3 H 3 98
I H Cl 3 42
I H OCH3 3 36
Br H H 3(6) 56(76)
Br 4-COCH3 H 3 91
Br 4-NO2 H 2 99
Br 4-NH2 H 3 90
Br 4-CH3 H 3 60
Br 4-OCH3 H 3(8) 66(72)
注 : X = 卤素 ; R = 苯环上的取代基。
实施例 2
将细菌纤维素 (Bacterial Cellulose, BC) 湿膜 30 g 切割成小块,加入 90 mL 去离子水中,使用组织捣碎机分离成小碎块(各方向尺寸 2 mm ),以静置一段时间后仍不悬浮在水中为准,过滤后加入 10% 质量分数的氢氧化钠溶液中润胀,并以 350 rpm 转速搅拌 20 min 。接着加入 15 mL 环氧氯丙烷,反应 24 h 后过滤洗涤。将环氧化的 BC 加入 90 mL 去离子水中,并加入 7.6 mL 四乙烯五胺以及 1.3 g 碳酸钠,常温下反应 3 小时后过滤洗涤,得到四乙烯五胺改性的 BC 。
将 0.5 g 的氯亚钯酸钾 (K2PdCl4) 溶解在 80 ℃ 的 100 ml 热水中,然后加入四乙烯五胺改性的 BC 。将混合物在磁力搅拌 350 rpm 的转速下和 80 ℃ 反应 3 小时。所得固体产物用热水洗涤,并加入到 100 mL 5 mg/mL 硼氢化钠溶液中并在常温下反应 1 小时,以对负载的钯离子进行原位还原。将得到的负载钯纳米颗粒的 BC (Pd-BC) 过滤并用去离子水洗涤。经检测, Pd-BC 负载的钯质量分数达到 8.2% 。
将 Pd-BC 与漂白蔗渣浆以 20% 的质量比混合( Pd-BC 占纸张干重),并以 1% (m/m) 的稠度用标准纸浆疏解机分散均匀。催化试纸由混合纸浆通过标准纸业手抄机( Messmer 225 , Holland )制成。每片的干重控制在 70 g/m2 。将纸张在 105 ℃ 下干燥 30 分钟,并避光及隔绝空气保存。
该催化试纸对赫克反应 (Heck 反应 ) 以及 Sonogashira 反应具有较好的催化效果。使用 2 mmol K2CO3 作为碱,在 20 mL 螺旋盖小瓶中使用 16 mL 95% 乙醇, 1.1 mmol 苯乙烯或 1.1 mmol 苯乙炔与 1 mmol 溴苯在 80 ℃ 下进行反应研究。所有反应在正常大气条件下进行,不需要惰性气体氛围条件。加入溶剂和化学品后,用盖子封闭反应小瓶,并加入到预热至 80 ℃ 的油浴中。将催化试纸切成 1cm × 3cm 的纸片。每个反应使用四张纸片,并放入尼龙网框架中。待油浴中反应瓶温度达到平衡后,插入装载有催化纸片的尼龙框架,盖紧瓶盖防止空气进入,并用磁力搅拌棒在反应混合物中搅拌。反应 2 小时后的产率分别为 95% 和 98% 。同一张催化试纸使用 20 次时候仍能够获得接近 90% 的产率。
实施例 3
将细菌纤维素 (Bacterial Cellulose, BC) 湿膜 30 g 分离成小碎块,步骤同实例 1 。过滤 BC 水分后加入 100 mL 吡啶中,加热至 80 ℃,并以 500 rpm 转速搅拌 30 min 。冷却至室温后,加入 10 mL 二苯基氯化磷,以 350 rpm 的转速在室温下反应 3 天。反应结束后,过滤洗涤,得到二苯基膦功能化的 BC 。将二苯基膦功能化的 BC 加入 100 mL 0.2 M 的六水合氯化镍溶液中( NiCl2.6H2O ),在室温下以 350 rpm 的转速搅拌反应 4 小时。过滤洗涤所得的固体产物,并加入到 100 mL 0.1 M 氰基硼氢化钠溶液中,在常温下搅拌反应 1 小时,对负载的镍离子进行原位还原。将所得的负载镍纳米颗粒的 BC (Ni-BC) 过滤并用去离子水洗涤。
将 Ni-BC 与漂白针叶木浆混合抄造成催化试纸,步骤同实例 1 。
该催化试纸对硝基芳烃化合物降解反应具有较好的催化效果。在 20 mL 螺旋盖小瓶中加入 0.8 mL 0.2 M 的 2- 硝基苯酚溶液、 1.6 mL 0.2 M 的硼氢化钠溶液、以及 10 mL 去离子水中在常温下反应。催化试纸的使用方法及用量同实例 1 。反应 30min 后,生成 2- 氨基苯酚的得率达 92% 。同一张催化试纸使用 10 次,仍能获得接近 85% 的得率。
实施例 4
将细菌纤维素 (Bacterial Cellulose, BC) 湿膜 30 g 分离成小碎块,步骤同实例 1 。将 BC 加入 100 mL N,N- 二甲基乙酰胺与 20 mL 氯化亚砜的混合溶液中,在 95 ℃下搅拌反应 3 小时制备氯代 BC 。将 3.28 g N - 甲基咪唑加入 100 mL 二甲基亚砜( DMSO )中,溶解后加入氯代 BC ,在惰性气体的保护下加热至 100 度,并以 350 rpm 转速搅拌 12 h 。冷却至室温后,过滤并用丙酮洗涤,得到N - 甲基咪唑功能化 BC 。将N - 甲基咪唑功能化 BC 加入 100 mL 0.1 M 的硝酸银溶液中( AgNO3 ),在室温下以 350 rpm 的转速搅拌反应 4 小时。过滤洗涤所得的固体产物,并加入到 100 mL 0.1 M 氰基硼氢化钠溶液中,在常温下搅拌反应 1 小时,对负载的银离子进行原位还原。将所得的负载银纳米颗粒的 BC (Ag-BC) 过滤并用去离子水洗涤。
将 Ag-BC 与二次纤维木浆混合抄造成催化试纸,步骤同实例 1 。
该催化试纸对硝基芳烃化合物降解反应具有较好的催化效果。在 20 mL 螺旋盖小瓶中加入 0.8 mL 0.2 M 的 4- 硝基苯酚溶液、 1.6 mL 0.2 M 的硼氢化钠溶液、以及 10 mL 去离子水中在常温下反应。催化试纸的使用方法及用量同实例 1 。反应 30min 后,生成 4- 氨基苯酚的得率达 95% 。同一张催化试纸使用 10 次,仍能获得接近 90% 的得率。
本发明的流程示意图如图 1 所示。
以上列举的仅是本发明的具体实施例。本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (10)

  1. 一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于,包括以下步骤:
    ( 1 )将含氮或含磷的有机小分子化合物与细菌纤维素结构中的羟基化学键合,得到含氮或含磷基团的功能化细菌纤维素;
    ( 2 )将过渡金属的无机盐配置成水溶液,加入步骤( 1 )中制备的功能化细菌纤维素中,根据过渡金属无机盐的溶解度,搅拌反应直至含氮或含磷的功能基团将过渡金属离子吸附到细菌纤维素的纳米孔隙表面至饱和,分离并使用水洗涤;
    ( 3 )对步骤( 2 )中吸附至细菌纤维素表面的过渡金属离子进行原位还原,得到负载过渡金属纳米颗粒的细菌纤维素;
    ( 4 )将植物纤维浆料与步骤( 3 )中制备的负载过渡金属纳米颗粒的细菌纤维素混合,然后分散均匀,再将混合浆料抄造成纸,然后干燥至衡重,得到催化试纸。
  2. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 1 )中所述细菌纤维素由细菌微生物体外合成,培养条件为静态或动态发酵培养条件;所述细菌微生物为葡萄糖醋杆菌属、醋酸菌属、土壤杆菌属、假单胞杆菌属、无色杆菌属、产碱杆菌属、气杆菌属、固氮菌属、根瘤菌属和八叠球菌属中的一种;所述的含氮或含磷的有机小分子化合物为乙二胺、四乙烯五胺、二乙烯三胺、聚乙烯亚胺、N - 甲基咪唑和二苯基氯化磷中的一种或多种。
  3. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 1 )中含氮或含磷的有机小分子化合物与细菌纤维素羟基键合的方法是使用氧化剂在水中将细菌纤维素上 C2 及 C3 键位上的羟基氧化成醛基,然后通过还原胺化反应与含氮化合物键合;所述氧化剂为高碘酸盐和四甲基哌啶氮氧化物中的一种以上。
  4. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 1 )中含氮或含磷的有机小分子化合物与细菌纤维素羟基键合的方法是将细菌纤维素在质量浓度为 10-20% 的浓碱中与含卤素的环氧化合物反应,将环氧基团与细菌纤维素羟基键合,接着环氧基团再与含氮有机小分子化合物反应。
  5. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 1 )中含氮或含磷的有机小分子化合物与细菌纤维素羟基键合的方法为将细菌纤维素与氯化亚砜在二甲基甲酰胺或 N,N- 二甲基乙酰胺下反应,将氯原子键合到细菌纤维素的羟基上,接着再与含氮有机小分子化合物反应。
  6. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 1 )中含氮或含磷的有机小分子化合物与细菌纤维素羟基键合的方法是使用二苯基氯化磷在吡啶作为溶剂的条件下与细菌纤维素的羟基键合。
  7. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 2 )中所述的过渡金属为钯、铬、镍、银、铜和金中的一种或多种。
  8. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 3 )中对细菌纤维素吸附的过渡金属离子进行原位还原的方法为将吸附过渡金属离子的细菌纤维素浸泡在硼氢化钠、氰基硼氢化钠或盐酸羟胺还原剂的溶液中。
  9. 根据权利要求 1 所述的一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,其特征在于:步骤( 4 )中所述的植物纤维浆料为木材纤维、非木材植物纤维或二次纤维通过机械或化学制浆法制备的造纸原料。
  10. 由权利要求 1-9 任一项所述的制备方法制得的催化试纸。
PCT/CN2018/113233 2018-03-19 2018-10-31 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法 WO2019179110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/982,055 US20210016264A1 (en) 2018-03-19 2018-10-31 Catalytic test paper prepared by compositing metal particle-embedded bacterial cellulose with plant fibers, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810224440.3 2018-03-19
CN201810224440.3A CN108543547B (zh) 2018-03-19 2018-03-19 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法

Publications (1)

Publication Number Publication Date
WO2019179110A1 true WO2019179110A1 (zh) 2019-09-26

Family

ID=63516721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113233 WO2019179110A1 (zh) 2018-03-19 2018-10-31 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法

Country Status (3)

Country Link
US (1) US20210016264A1 (zh)
CN (1) CN108543547B (zh)
WO (1) WO2019179110A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473115B2 (en) 2020-03-17 2022-10-18 Hunan Plant Protection Institute Exopolysaccharide from Rhodopseudomonas palustris and method for preparing and use thereof
CN115722268A (zh) * 2022-11-18 2023-03-03 武汉工程大学 一种海绵负载纳米铜银合金复合材料及其制备方法与应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543547B (zh) * 2018-03-19 2019-06-18 华南理工大学 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法
CN110299541B (zh) * 2019-06-10 2020-11-27 北京科技大学 一种微生物燃料电池阴极催化剂的制备方法
CN111118947A (zh) * 2019-12-13 2020-05-08 华南理工大学 一种具有高荧光性能与耐久性的细菌纤维素-植物纤维复合荧光纸及其制备方法
CN111074669B (zh) * 2019-12-25 2022-03-25 华南理工大学 一种细菌纤维素-植物纤维复合导电纸及其制备方法与应用
US11471861B2 (en) 2020-01-02 2022-10-18 King Fahd University Of Petroleum And Minerals Jute stick-palladium nanoparticle dip catalysts useful for aqueous Suzuki-Miyaura and Mizoroki-Heck C—C bond formation
CN112982020B (zh) * 2021-03-22 2022-04-15 中国石油大学(华东) 一种高强度、高效油水分离滤纸的制备方法
CN113477248B (zh) * 2021-06-08 2022-05-24 华南理工大学 一种甲醛催化降解用负载铂单质纸基碳纤维及其制备和应用
CN114042927A (zh) * 2021-11-05 2022-02-15 上海纳米技术及应用国家工程研究中心有限公司 钴纳米颗粒/氮掺杂石墨烯与碳纳米纤维复合材料的制备方法及其产品和应用
CN114835312B (zh) * 2022-04-29 2023-04-18 杭州珩钧环境工程有限公司 一种液体染料废水的资源化处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113610A1 (en) * 2001-12-14 2003-06-19 Evans Barbara R. Metallization of bacterial cellulose for electrical and electronic device manufacture
CN102344496A (zh) * 2011-07-10 2012-02-08 东华大学 一种细菌纤维素的选择性负载抗菌性纳米银方法
CN105970733A (zh) * 2016-06-30 2016-09-28 华南理工大学 一种提高细菌纤维素基纸张增强剂纸张增强效果的方法
CN106084302A (zh) * 2016-05-31 2016-11-09 北京科技大学 自交联醛化纳米细菌纤维素功能性多孔材料及制备方法
CN106299385A (zh) * 2016-08-26 2017-01-04 南京理工大学 氮掺杂碳化细菌纤维素负载纳米铂电极材料及其制备方法
CN106298269A (zh) * 2016-08-15 2017-01-04 东华大学 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用
CN106984280A (zh) * 2017-03-16 2017-07-28 东华大学 一种用细菌纤维素球制备磁性金属吸附材料的方法
CN108543547A (zh) * 2018-03-19 2018-09-18 华南理工大学 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274753B (zh) * 2011-05-16 2013-03-27 南京理工大学 一种细菌纤维素负载纳米钯催化剂制备方法
CN102266583A (zh) * 2011-07-10 2011-12-07 东华大学 一种载银改性细菌纤维素基复配功能湿态敷料的制备方法
CN104492486B (zh) * 2014-12-22 2017-02-22 中国科学院化学研究所 一种生物质负载型纳米金属催化剂及其制备方法与应用
CN107185591B (zh) * 2017-05-16 2019-09-06 郑州轻工业学院 一种可循环使用的纤维素纸基纳米银催化材料的制备方法及其应用
CN107331876A (zh) * 2017-07-10 2017-11-07 佛山市利元合创科技有限公司 一种氮掺杂碳纳米纤维负载金纳米颗粒氧还原催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113610A1 (en) * 2001-12-14 2003-06-19 Evans Barbara R. Metallization of bacterial cellulose for electrical and electronic device manufacture
CN102344496A (zh) * 2011-07-10 2012-02-08 东华大学 一种细菌纤维素的选择性负载抗菌性纳米银方法
CN106084302A (zh) * 2016-05-31 2016-11-09 北京科技大学 自交联醛化纳米细菌纤维素功能性多孔材料及制备方法
CN105970733A (zh) * 2016-06-30 2016-09-28 华南理工大学 一种提高细菌纤维素基纸张增强剂纸张增强效果的方法
CN106298269A (zh) * 2016-08-15 2017-01-04 东华大学 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用
CN106299385A (zh) * 2016-08-26 2017-01-04 南京理工大学 氮掺杂碳化细菌纤维素负载纳米铂电极材料及其制备方法
CN106984280A (zh) * 2017-03-16 2017-07-28 东华大学 一种用细菌纤维素球制备磁性金属吸附材料的方法
CN108543547A (zh) * 2018-03-19 2018-09-18 华南理工大学 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473115B2 (en) 2020-03-17 2022-10-18 Hunan Plant Protection Institute Exopolysaccharide from Rhodopseudomonas palustris and method for preparing and use thereof
CN115722268A (zh) * 2022-11-18 2023-03-03 武汉工程大学 一种海绵负载纳米铜银合金复合材料及其制备方法与应用
CN115722268B (zh) * 2022-11-18 2024-04-05 武汉工程大学 一种海绵负载纳米铜银合金复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN108543547B (zh) 2019-06-18
CN108543547A (zh) 2018-09-18
US20210016264A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2019179110A1 (zh) 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法
Liu et al. Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water
JP5590594B2 (ja) キレート性高分子化合物含有金属吸着材
AU2020101319A4 (en) Method for preparing polystyrene microsphere-type cellulose-based heavy metal adsorbent
Mamba et al. Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water
Ge et al. Microwave preparation and adsorption properties of EDTA‐modified cross‐linked chitosan
JP2021063223A (ja) 多孔質シクロデキストリンポリマー
Xu et al. Adsorption of hydroquinone and Pb (II) from water by β-cyclodextrin/polyethyleneimine bi-functional polymer
Lee et al. Branched polyethylenimine‐polyethylene glycol‐β‐cyclodextrin polymers for efficient removal of bisphenol A and copper from wastewater
WO2013121863A1 (ja) ゲル状金属吸着材およびゲル状金属吸着材担持吸着体
CN113698579A (zh) 卟啉型共轭微孔聚合物及其合成方法和应用
CN115041142A (zh) 一种甲醛吸附用mof气凝胶及其制备方法
CN114950387A (zh) 一种防污染土壤修复剂及其制备方法
Xing et al. Cooperative chiral salen Ti IV catalyst supported on ionic liquid-functionalized graphene oxide accelerates asymmetric sulfoxidation in water
JP2003226737A (ja) シクロデキストリン架橋体及びこれを用いた環境ホルモン除去材
CN109293937A (zh) 一种利用双金属盐常温制备传统zif-90材料的方法
CN116532084A (zh) 一种Nd掺杂Bi2WO6纳米花-生物质多孔碳材料的制备和应用
KR20150114121A (ko) 폐섬유 흡착제의 제조방법 및 이의 의한 흡착제
CN116173913A (zh) 一种用于污水处理的β-环糊精改性海泡石吸附材料的制备方法
CN113231040B (zh) 一种用于水中放射性铯离子去除的石墨烯吸附材料
CN114130367A (zh) 用于放射性污染土壤清洗去污的磁性吸附材料
CN113499791A (zh) 一种负载光催化剂的改性蛭石及其制备方法
Chen et al. A double-crosslinked cyclodextrin-based porous polymer for effective removal of bisphenol A: Preparation, adsorption behavior and mechanism
CN113398775B (zh) 一种功能性离子液体-明胶复合膜及其制备方法
KR20020078175A (ko) 졸-겔법을 이용한 실리카-키토산 복합 물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/01/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 18910731

Country of ref document: EP

Kind code of ref document: A1