WO2019176721A1 - ヒータ装置 - Google Patents

ヒータ装置 Download PDF

Info

Publication number
WO2019176721A1
WO2019176721A1 PCT/JP2019/009086 JP2019009086W WO2019176721A1 WO 2019176721 A1 WO2019176721 A1 WO 2019176721A1 JP 2019009086 W JP2019009086 W JP 2019009086W WO 2019176721 A1 WO2019176721 A1 WO 2019176721A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat generating
temperature sensor
unit
detection
Prior art date
Application number
PCT/JP2019/009086
Other languages
English (en)
French (fr)
Inventor
田中 祐介
公威 石川
関 秀樹
弘和 山抱
立志 土門
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019001265.7T priority Critical patent/DE112019001265T5/de
Priority to CN201980018375.1A priority patent/CN111886147B/zh
Publication of WO2019176721A1 publication Critical patent/WO2019176721A1/ja
Priority to US17/015,459 priority patent/US20200406712A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2226Electric heaters using radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2228Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
    • B60H2001/2231Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters for proper or safe operation of the heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2293Integration into other parts of a vehicle

Definitions

  • the present disclosure relates to a heater device that generates radiant heat when energized.
  • Patent Document 1 does not mention a temperature sensor for detecting the temperature of the heat generating portion and adjusting the heater output to the heat generating portion based on the detected temperature. According to the inventor's study, it is desirable to study the configuration on the premise that a temperature sensor is installed.
  • An object of the present disclosure is to provide a heater device in which a temperature sensor is appropriately installed so as to control a heat generating portion without hindering detection of contact with an object.
  • the heater device includes: A heat generating part that generates heat when energized; An outer surface that radiates heat from the heat generating part; A detection unit that detects that an object has contacted the outer surface; When the direction connecting the heat generating portion and the outer surface is the first direction, it is determined whether or not the object has contacted the first region of the outer surface that overlaps the detecting portion in the first direction based on the detection of the detecting portion. When it is detected that an object is in contact with the first area, the energization of the heat generating part is stopped or compared with the case where it is not detected that the object is in contact with the first area.
  • a first control unit for reducing the amount; When the direction intersecting the first direction is the second direction, a temperature sensor that is arranged offset in the second direction with respect to the detection unit and detects the temperature of the heating unit; A second control unit for controlling the temperature of the heat generating unit based on the temperature detected by the temperature sensor; When it is determined based on the temperature detected by the temperature sensor whether or not the object has contacted the second region of the outer surface that overlaps the temperature sensor in the first direction, and when it is determined that the object has contacted the second region A third control unit that reduces an energization amount to the heat generating unit or stops energization to the heat generating unit as compared with a case where it is determined that an object is not in contact with the second region; Is provided.
  • the heat generation amount of the heat generating unit is reduced or compared with a case where it is determined that the object is not in contact with the first region.
  • the fever can be stopped.
  • the heat generation amount of the heat generating part is reduced or the heat generation of the heat generating part is stopped as compared with the case where it is determined that the object is not in contact with the second area. can do.
  • the temperature sensor is arranged offset in the second direction with respect to the detection unit.
  • the distance between a temperature sensor and a heat-emitting part can be shortened. Therefore, the temperature sensor can accurately detect the temperature of the heat generating portion. For this reason, the temperature of the heat generating portion can be controlled with high accuracy.
  • the temperature sensor is arranged offset in the second direction with respect to the detection unit. For this reason, the outer surface of the heater device is not greatly uneven by the temperature sensor. Accordingly, it is possible to suppress the heater device from deteriorating the appearance of the outer surface.
  • the detection unit is disposed on the opposite side of the outer surface with respect to the heat generation unit. For this reason, the distance between a heat generating part and an outer surface can be shortened compared with the case where a detection part is arrange
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the temperature of the heat generating unit, the temperature detected by the temperature sensor, and the operating state of the heat generating unit (that is, on and off).
  • FIG. 3 is a cross-sectional view showing a cross-sectional configuration of a heater device in a third proportionality and corresponding to FIG. 2. It is the perspective view which looked at the internal structure of the heater apparatus in 2nd Embodiment from the passenger
  • FIG. 12 is a sectional view taken along line XII-XII in FIG. It is sectional drawing which shows the cross-sectional structure of the heater apparatus in 3rd Embodiment, and respond
  • shaft is the temperature of a heat-emitting part and the detection temperature of a temperature sensor, and it is a timing chart which uses a horizontal axis as time.
  • FIG. 5th Embodiment It is sectional drawing which shows the cross-sectional structure of the heater apparatus in 5th Embodiment, and respond
  • DELTA temperature control range
  • shaft is made into the detection temperature of two temperature sensors
  • a horizontal axis is made into time, and it is a timing chart which shows the change of the detection temperature of two temperature sensors at the time of the passenger
  • FIG. 25 is a sectional view taken along line XXV-XXV in FIG. 24.
  • a heater device 1 in FIG. 1, constitutes a part of a heating device that heats the interior of a vehicle.
  • the heater device 1 is an electric heater that generates heat by being fed from a power source such as a battery or a generator mounted on an automobile.
  • the heater device 1 of the present embodiment is opposed to an object that is a leg portion of the occupant 5 such as a thigh, a knee, and a shin on the lower surface of the steering column 2 that supports the steering 3 in the vehicle interior and the lower surface of the instrument panel 4. It is installed to do.
  • the occupant 5 in FIG. 1 is shown seated on the driver's seat 6.
  • the heater device 1 generates heat when electric power is supplied.
  • the heater device 1 radiates radiant heat mainly in a direction perpendicular to the surface in order to warm an object positioned in a direction perpendicular to the outer surface 14a.
  • the heater device 1 is formed in a thin plate shape that extends along an XY plane defined by an X direction and a Y direction perpendicular to the Z direction, with the Z direction being the thickness direction. .
  • the X direction corresponds to the second direction.
  • the Z direction corresponds to a direction connecting the outer surface 14 a and the heat generating portion 12 in the heater device 1.
  • the occupant's leg side of the Z direction is the occupant side
  • the opposite side of the Z direction to the occupant side is the anti-occupant side.
  • the heater device 1 is formed in a rectangular shape when viewed from the Z direction.
  • the heater device 1 includes an insulating base portion 11, a heat generating portion 12, a detecting portion 13, an insulating layer 14, a temperature sensor 15, and electrodes 16a and 16b.
  • the insulating base portion 11 is formed in a thin film shape that extends along the XY plane by an electrically insulating material such as a resin material.
  • the insulating base 11 includes a temperature sensor 15, a detection unit 13, and a heat generation unit 12.
  • the heat generating part 12 is arranged on the passenger side in the Z direction in the insulating base part 11.
  • the heat generating part 12 includes meandering parts 12a and 12b.
  • the meandering portions 12a and 12b are each formed in a meandering shape with a heating element formed in a linear shape.
  • the meandering portions 12a and 12b are arranged with an interval in the X direction.
  • the meandering parts 12a and 12b are connected by a connecting part 12c.
  • the connecting portion 12c is disposed on one side in the Y direction (specifically, the upper side in FIG. 2) in the region between the meandering portions 12a and 12b.
  • the other side in the Y direction with respect to the connecting portion 12c (specifically, the lower side in FIG. 2) is an intermediate region as a region where the heat generating portion 12 is not provided. 20 is formed.
  • the heat generating portion 12 of the present embodiment is formed on the insulating base portion 11 by vapor deposition, printing, or the like.
  • the heat generating part 12 is made of an alloy of copper and tin (Cu—Sn), a metal such as silver, tin, stainless steel, nickel, nichrome, and an alloy containing these metals.
  • the detection part 13 is arrange
  • the detector 13 is formed in a thin film shape along the insulating base 11.
  • the detection unit 13 constitutes a capacitor including a pair of electrodes and an insulator sandwiched between the pair of electrodes.
  • the detection unit 13 in the actual child form constitutes a capacitance-type short-range sensor that detects that a detection target (for example, the occupant's finger 5a) has approached the surrounding area by a change in capacitance.
  • the detector 13 is formed on the insulating base 11 by vapor deposition or printing.
  • a hole portion 13a opened to the Z direction counter occupant side is formed. That is, on the side opposite to the occupant in the Z direction of the insulating base 11, a portion where the detection unit 13 is not formed is formed as the hole 13 a in the intermediate portion in the X direction.
  • the hole 13a is formed so as to overlap the intermediate region 20 in the Z direction.
  • the temperature sensor 15 is disposed on the side opposite to the outer surface 14a with respect to the heat generating portion 12 in the Z direction. That is, the temperature sensor 15 is disposed on the non-occupant side of the insulating base 11 in the Z direction. The temperature sensor 15 is arranged offset with respect to the detection unit 13 in the X method. The temperature sensor 15 is disposed in the hole 13a. For example, a thermistor is used as the temperature sensor 15 of the present embodiment.
  • the insulating base 11 of this embodiment is disposed between the temperature sensor 15 and the detection unit 13 and the heat generating unit 12.
  • the electrodes 16a and 16b are arranged on the non-occupant side of the insulating base 11 in the Z direction.
  • the electrodes 16a and 16b are arranged so as to overlap the intermediate region 20 in the Z direction.
  • the electrodes 16a and 16b are made of a conductive metal material such as copper.
  • the electrodes 16a and 16b are patterns formed on the insulating base 11 by vapor deposition or printing.
  • the electrodes 16a and 16b and the temperature sensor 15 are joined by a solder material.
  • the electrodes 16a and 16b constitute an electrode of the temperature sensor 15 (that is, an electrode portion for the temperature sensor).
  • the electrodes 16 a and 16 b are disposed between the temperature sensor 15 and the insulating base 11.
  • the electrodes 16a and 16b constitute a part of wiring for outputting the detection signal of the temperature sensor 15 to the electronic control device 30 through the wiring 16c and 16d.
  • the wirings 16 c and 16 d are arranged on the Z direction half occupant side with respect to the insulating base 11.
  • the wiring 16c is connected to the electrode 16a.
  • the wiring 16d is connected to the electrode 16b.
  • the wirings 16 c and 16 d are formed in a thin film shape along the insulating base 11.
  • the wirings 16c and 16d are made of a conductive material such as copper.
  • the wirings 16c and 16d are patterns formed by vapor deposition or printing.
  • the heat generating part 12 is formed on the surface on the Z direction occupant side of the insulating base 11, and the electrodes 16a and 16b and the wirings 16c and 16d of the temperature sensor 15 are formed on the surface of the insulating base 11 on the side opposite to the Z direction. , And a detection unit 13 are formed.
  • the insulating base 11, the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15, the wirings 16c and 16d, and the detecting part 13 constitute an integrally molded product. That is, a circuit board is configured in which the heat generating unit 12, the electrodes 16 a and 16 b of the temperature sensor 15, and the detection unit 13 are integrated with the insulating base 11.
  • the heat generating portion 12 and the wirings 16c and 16d are connected to the electronic control device 30 on the intermediate portion in the X direction of the insulating base 11 and on the other side in the Y direction (specifically, the lower side in FIG. 2).
  • a connector 21 is formed.
  • the insulating layer 14 is formed in a thin film shape so as to cover the insulating base 11, the heat generating part 12, the detecting part 13, the temperature sensor 15, and the electrodes 16a and 16b from the periphery.
  • the insulating layer 14 of this embodiment is formed of an electrically insulating material.
  • the Z-direction occupant side of the insulating layer 14 forms an outer surface 14 a that faces an object that is a leg portion of the occupant 5 such as the thigh, knee, and shin.
  • the insulating layer 14 of the present embodiment has a sensor cover portion 14d that covers the temperature sensor 15 from the side opposite to the Z direction occupant.
  • the heater device 1 includes an electronic control device 30 and a switch 31.
  • the electronic control unit 30 includes a memory and a microcomputer, and executes a temperature control process and a contact control process of the heat generating unit 12 described later according to a computer program stored in the memory in advance.
  • a memory is a non-transitional physical storage medium.
  • the electronic control device 30 controls the heating unit 12 via the switch 31 according to the detection value of the temperature sensor 15 or the detection value of the detection unit 13 when executing the temperature control process or the contact control process.
  • the switch 31 is configured by a transistor, a relay switch, or the like, and connects or opens between the positive electrode of the battery Ba and the heat generating part 12.
  • the switch 31 and the heat generating unit 12 are connected in series between the positive electrode of the battery Ba and the ground.
  • the electronic control device 30 alternately executes the temperature control process and the contact control process.
  • the temperature control process and the contact control process will be described separately.
  • the electronic control unit 30 executes the temperature control process according to the flowchart of FIG.
  • step S100 it is determined according to the detection of the temperature sensor 15 whether or not the temperature of the heat generating portion 12 is equal to or lower than the A temperature.
  • step S100 if YES is determined in step S100 because the temperature of the heat generating portion 12 is equal to or lower than the A temperature, the switch 31 is controlled to connect the positive electrode of the battery Ba and the heat generating portion 12 in step S110. That is, the heat generating part 12 is turned on via the switch 31.
  • the heat generating part 12 generates heat when energized.
  • the generated heat is radiated from the outer surface 14a as radiant heat to the thigh, knee, shin, etc. of the occupant 5.
  • the temperature of the heat generating part 12 rises with the generation of heat by the heat generating part 12.
  • step S120 it is determined according to the detection of the temperature sensor 15 whether or not the temperature of the heat generating part 12 is equal to or higher than the B temperature.
  • the B temperature a temperature higher than the A temperature ( ⁇ B temperature) is set.
  • step S120 assuming that the temperature of the heat generating unit 12 is lower than the B temperature, the process returns to step S100 while the switch 31 is kept on.
  • step S100 and the NO determination in step S120 are repeated. For this reason, the state where the positive electrode of the battery Ba and the heat generating part 12 are connected by the switch 31 is continued. Thereby, the heat generating unit 12 is continuously energized, and the heat generating unit 12 continuously generates heat.
  • the switch 31 is controlled to open the positive electrode of the battery Ba and the heat generating unit 12. That is, the heat generating part 12 is turned off via the switch 31.
  • the energization of the heat generating part 12 is controlled by turning on and off the switch 31 in accordance with the temperature of the heat generating part 12. Accordingly, radiant heat is intermittently generated from the heat generating portion 12. As a result, the temperature of the heat generating portion 12 is converged to a predetermined range.
  • the electronic control unit 30 executes the contact control process according to the flowchart of FIG.
  • step S200 it is determined whether or not the temperature detected by the temperature sensor 15 has decreased by a certain temperature Ta or more during a certain period. That is, it is determined whether or not the temperature detected by the temperature sensor 15 has rapidly decreased.
  • the occupant's finger 5a comes into contact with the region 14b of the outer surface 14a that overlaps the hole 13a in the Z direction, the occupant's finger 5a passes through the region 14b of the outer surface 14a from within the hole 13a (for example, the temperature sensor 15). Heat moves.
  • the region 14b is a region where the temperature sensor 15 overlaps in the Z direction on the outer surface 14a. For this reason, when the passenger
  • the detected temperature of the temperature sensor 15 suddenly increases when the occupant's finger 5a contacts the region 14b of the outer surface 14a, with the vertical axis representing the detected temperature of the temperature sensor 15 and the horizontal axis representing time. It shows that it has declined.
  • step S200 the change amount ⁇ T of the detected temperature of the temperature sensor 15 during a certain period becomes equal to or higher than the certain temperature Ta, and YES is determined in step S200. Accordingly, in step S220, the switch 31 is controlled to open the positive electrode of the battery Ba and the heat generating part 12. That is, the heat generating part 12 is turned off via the switch 31.
  • step S200 if any one of the following (a), (b), and (c) is determined, NO is determined in step S200.
  • (A) This is a case where the temperature detected by the temperature sensor 15 rises during a certain period.
  • (B) This is a case where the temperature detected by the temperature sensor 15 is constant for a certain period.
  • (C) The case where the temperature detected by the temperature sensor 15 decreases during a certain period and the change amount ⁇ T of the temperature sensor 15 is less than the certain temperature Ta.
  • step S210 the detection value of the detection unit 13 determines whether or not the occupant's finger 5a has contacted (or approached) the region 14c of the outer surface 14a that overlaps the detection unit 13 in the Z direction. Judgment is made accordingly.
  • the region 14c corresponds to the first region.
  • the capacitance of the detection unit 13 rapidly increases.
  • step S220 the switch 31 is controlled to open the positive electrode of the battery Ba and the heat generating part 12. That is, the heat generating part 12 is turned off via the switch 31. Thereby, the temperature of the heat generating part 12 can be lowered (see FIGS. 7A and 7C).
  • steps S210 and S220 correspond to the first control unit.
  • steps S100, S110, S120, and S130 correspond to the second control unit.
  • Steps S200 and S220 correspond to the third control unit.
  • FIG. 7A is a timing chart in which the vertical axis represents the temperature of the heat generating unit 12 and the horizontal axis represents time.
  • FIG. 7C is a timing chart in which the vertical axis indicates the operating state of the heat generating unit 12 (specifically, on and off) and the horizontal axis indicates time.
  • the heat generating unit 12 is turned off via the switch 31 in step S220.
  • the heater device 1 includes the heat generating portion 12 that generates radiant heat by energization and the outer surface 14a that radiates radiant heat from the heat generating portion 12 toward the user.
  • a direction connecting the heat generating portion 12 and the outer surface 14a is defined as a Z direction.
  • the Z direction corresponds to the first direction.
  • the heater device 1 is disposed on the opposite side of the outer surface 14a with respect to the heat generating portion 12, and an occupant's finger 5a as a detection target is placed in a region 14c of the outer surface 14a that overlaps the detection portion 13 itself in the Z direction.
  • a detection unit 13 that detects contact and an electronic control unit 30 are provided.
  • the electronic control unit 30 determines that the occupant's finger 5a is in contact with the region 14c based on the detection signal of the detection unit 13, the electronic control unit 30 stops energization of the heat generation unit 12 (step S210).
  • the heater device 1 is arranged on the opposite side of the outer surface 14a with respect to the heat generating part 12 and offset in the X direction with respect to the detecting part 13 when the direction intersecting the Z direction is the Y direction and the X direction.
  • a temperature sensor 15 for detecting the temperature of the heat generating part 12 is provided.
  • the electronic control unit 30 controls the temperature of the heat generating unit 12 based on the temperature detected by the temperature sensor 15 (steps S100 to S130).
  • the region on the other side in the X direction with respect to the connecting portion 12c is defined as an intermediate region 20.
  • the temperature sensor 15 is disposed so as to overlap the intermediate region 20 in the Z direction.
  • the electronic control unit 30 determines whether or not the occupant's finger 5a is in contact with the region 14b of the outer surface 14a where the temperature sensor 15 overlaps in the Z direction, based on the temperature detected by the temperature sensor 15.
  • the electronic control unit 30 determines that the detection target is in contact with the region 14b, the electronic control unit 30 stops energization of the heat generating unit 12 (step S200).
  • a temperature sensor 15 is arranged on the side opposite to the occupant in the Z direction with respect to the heat generating portion 12. For this reason, the temperature of the heat generating part 12 can be accurately detected by the temperature sensor 15. Therefore, the temperature controllability of the heat generating part 12 can be ensured satisfactorily. In addition to this, the appearance of the temperature sensor 15 can ensure good appearance.
  • FIG. 9 shows the temperature sensor 15 installed on the passenger side in the Z direction with respect to the heat generating part 12.
  • the temperature sensor 15 can accurately detect the temperature of the heat generating unit 12. Therefore, although the temperature controllability of the heat generating part 12 can be ensured satisfactorily, the appearance of the outer surface 14a side is deteriorated due to the thickness of the temperature sensor 15.
  • the heat generating portion 12 is disposed on the side opposite to the occupant in the Z direction with respect to the outer surface 14a via the insulating layer 14. For this reason, the distance between the heat generating part 12 and the outer surface 14a can be shortened. Therefore, since a temperature fall is suppressed, favorable heating performance is ensured.
  • FIG. 10 shows that the detection unit 13 and the temperature sensor 15 are installed on the side opposite to the passenger in the Z direction with respect to the heat generation unit 12.
  • the detection unit 13 is interposed between the heat generating unit 12 and the temperature sensor 15, the temperature detected by the temperature sensor 15 deviates from the actual temperature, so that accuracy in temperature controllability cannot be ensured.
  • the heat generating portion 12 is disposed on the side opposite to the occupant in the Z direction with respect to the outer surface 14a via the insulating layer 14. For this reason, the favorable heating performance is ensured similarly to the above-mentioned (e).
  • the heat generating portion 12 is disposed on the side opposite to the occupant in the Z direction with respect to the outer surface 14a via the insulating layer 14. For this reason, the distance between the heat generating part 12 and the outer surface 14a can be shortened. Therefore, the heat from the heat generating part 12 can be transmitted to the outer surface 14a satisfactorily. For this reason, the calorie
  • the detection unit 13 is disposed on the side opposite to the Z direction from the heat generation unit 12.
  • the temperature sensor 15 is arranged in the hole 13a of the detection unit 13 (that is, the region where the detection unit 13 is not arranged).
  • the distance between the heat generating part 12 and the temperature sensor 15 can be shortened, the temperature of the heat generating part 12 can be detected with high accuracy. Therefore, the temperature controllability of the heat generating part 12 can be ensured satisfactorily.
  • the temperature sensor 15 is disposed on the side opposite to the occupant in the Z direction with respect to the heat generating portion 12, the outer surface 14 a side is not uneven by the temperature sensor 15. For this reason, when the outer surface 14a of the heater device 1 is viewed from the Z-direction occupant side, a good appearance can be ensured.
  • the heater device 1 in which the temperature sensor 15 is appropriately installed and satisfies all temperature controllability, performance, and appearance without hindering detection of contact or proximity of the detection target is obtained. Can be provided.
  • the insulating base 11, the heat generating unit 12, the electrodes 16a and 16b of the temperature sensor 15, and the detecting unit 13 of the present embodiment constitute an integrally molded product. For this reason, since the number of parts can be reduced as compared with the case where the insulating base part 11, the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15 and the detecting part 13 are composed of separate parts, the manufacturing cost is reduced. Can do.
  • the temperature sensor 15 is arranged so as to overlap the heat generating portion 12 in the Z direction. For this reason, compared with the said 1st Embodiment, the distance between the heat generating part 12 and the temperature sensor 15 can be shortened. Therefore, the temperature of the heat generating part 12 can be detected with high accuracy by the temperature sensor 15. Thereby, the temperature of the heat generating part 12 can be controlled with high accuracy by the electronic control unit 30.
  • the heat generating part 12 of the present embodiment is constituted by one meandering part.
  • the sensor cover portion 14d in FIG. 2 is deleted. For this reason, as shown in FIG. 13, the insulating layer 14 is formed so that the temperature sensor 15 is exposed on the side opposite to the Z direction.
  • the heat capacity in the hole 13a of the heater device 1 (that is, around the temperature sensor 15) is smaller than that in the first embodiment. For this reason, when the occupant's finger 5a comes into contact with the region 14b of the outer surface 14a that overlaps the hole 13a, a large amount of heat moves from the region 14b of the outer surface 14a to the occupant's finger 5a in a short time.
  • the temperature detected by the temperature sensor 15 is greatly reduced in a short time compared to the first embodiment. Therefore, it is possible to increase the sensitivity of detecting that the occupant's finger 5a contacts the region 14b of the outer surface 14a.
  • graphs Ka and Kb in FIG. 14 show changes in the detected temperature of the temperature sensor 15 after the occupant's finger 5a contacts the region 14b of the outer surface 14a.
  • the graph Ka shows the detected temperature of the temperature sensor 15 when the sensor cover portion 14d is provided.
  • the graph Kb shows the detected temperature of the temperature sensor 15 when the sensor cover portion 14d is not provided.
  • the detection unit 13 of this embodiment includes a fixed substrate 130, a fixed contact 131, and a movable contact 132.
  • the movable contact 132 includes a plurality of divided movable contacts 132a. Each of the plurality of movable movable contacts 132 a is disposed on the side opposite to the Z direction in the insulating base 11. The plurality of divided movable contacts 132 a are arranged along the insulating base 11 along the X direction and the Y direction, respectively.
  • the plurality of divided movable contacts 132a are joined to the detection electrode unit 133 by solder.
  • the detection electrode part 133 is arranged on the side opposite to the Z direction in the insulating base part 11.
  • the detection electrode unit 133 is a detection unit electrode unit that constitutes a part of wiring for outputting a detection signal of the detection unit 13 to the electronic control device 30.
  • the detection electrode portion 133 is formed in a thin film shape along the insulating base portion 11 with a conductive metal material such as copper.
  • the detection electrode part 133 is a pattern formed on the insulating base part 11 by vapor deposition or printing.
  • the insulating base part 11, the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15 and the detection electrode part 133 constitute an integrally molded product. That is, a circuit board in which the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15, and the detection electrode part 133 are integrated with the insulating base part 11 is configured.
  • the fixed substrate 130 is arranged at an interval on the side opposite to the Z-direction occupant with respect to the insulating base 11.
  • the fixed substrate 130 is formed in a thin film shape along the insulating base 11 by an electrically insulating material.
  • the fixed contact 131 includes a plurality of divided fixed electrode portions 131a.
  • the plurality of divided fixed electrode portions 131a are respectively disposed on the Z-direction occupant side of the fixed substrate 130.
  • Each of the plurality of divided fixed electrode portions 131a is supported by the fixed substrate 130.
  • the plurality of divided fixed electrode portions 131a are arranged so as to face the corresponding divided movable contact 132a among the plurality of divided movable contacts 132a with a gap therebetween.
  • the fixed contact 131 (specifically, the plurality of divided fixed electrode portions 131a) and the movable contact 132 (specifically, the plurality of divided movable contacts 132a) of the present embodiment are the occupant 5's contact with the outer surface 14a.
  • a switch that turns on and off depending on whether or not the finger 5a is touched is configured (see FIG. 17).
  • the fixed substrate 130 and the insulating base 11 are supported by the insulating layer 14 such that a gap is formed between the fixed substrate 130 and the insulating base 11.
  • the through-hole 134 which accommodates the temperature sensor 15 is provided in the fixed board
  • the heater device 1 of the present embodiment configured as described above, when the occupant 5 does not touch the region 14c of the outer surface 14a, the distance between the plurality of divided fixed electrode portions 131a and the plurality of divided movable contacts 132a. Is opened. As a result, the detection unit 13 as a switch is turned off.
  • the finger 5 a of the occupant 5 touches the region 14 c of the outer surface 14 a of the heater device 1
  • the force is transmitted from the finger 5 a of the occupant 5 to the insulating base 11 through the outer surface 14 a and the heat generating portion 12.
  • the insulating base 11 is elastically deformed.
  • any one of the plurality of divided movable contacts 132a is displaced to the side opposite to the Z direction and contacts the corresponding divided fixed electrode portion 131a among the plurality of divided fixed electrode portions 131a.
  • the detection unit 13 as a switch is turned on.
  • the detection unit 13 as an on / off switch is configured depending on whether or not the finger 5a of the occupant 5 is touching the region 14c of the outer surface 14a.
  • the detection unit 13 constitutes a switch that is turned on and off by contact or non-contact of the occupant 5 with the outer surface 14a.
  • the electronic control unit 30 can detect contact or non-contact of the occupant 5 with the outer surface 14a by turning the detection unit 13 on and off.
  • the insulating base 11, the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15, and the detection electrode part 133 of the present embodiment constitute an integrally molded product. For this reason, since the number of parts can be reduced as compared with the case where the insulating base part 11, the heat generating part 12, the electrodes 16a and 16b of the temperature sensor 15 and the detection electrode part 133 are composed of separate parts, the manufacturing cost is reduced. be able to.
  • the two temperature sensors 15 of the heater device 1 of the present embodiment are respectively disposed on the side opposite to the Z direction with respect to the insulating base 11 and the heat generating part 12.
  • the two temperature sensors 15 are respectively arranged on the opposite side of the outer surface 14a with respect to the heat generating part 12 and are offset in the X direction with respect to the detecting part 13.
  • the two temperature sensors 15 are each supported by the insulating base 11.
  • the detection unit 13 of the present embodiment is provided with two holes 13a that are open on the side opposite to the Z direction. That is, the detection part 13 is not formed inside each of the two hole parts 13a.
  • One of the two temperature sensors 15 is housed in one of the two holes 13a, and the other temperature sensor 15 is other than one of the two holes 13a. In the hole 13a.
  • the two temperature sensors 15 are arranged to be offset in the X direction and the Y direction with respect to the detection unit 13.
  • two regions 14b overlapping each of the two hole portions 13a in the outer surface 14a are formed.
  • the two temperature sensors 15 are arranged offset with respect to the detection unit 13 in the X direction.
  • the heater device 1 of the present embodiment has a configuration in which two temperature sensors 15 are provided in place of the one temperature sensor 15 in the heater device 1 of the third embodiment. For this reason, since configurations other than the twelve temperature sensors 15 in the heater device of the present embodiment are substantially the same as those of the third embodiment, description thereof is omitted.
  • the electronic control device 30 alternately executes the temperature control process and the contact control process.
  • the temperature control process and the contact control process will be described separately.
  • the electronic control unit 30 executes the temperature control process according to the flowchart of FIG. 20 instead of FIG.
  • step S101 it is determined according to the detection of the two temperature sensors 15 whether or not the higher detection temperature (hereinafter referred to as the MAX value) of the detection temperatures of the two temperature sensors 15 is equal to or lower than the A temperature.
  • the MAX value the higher detection temperature
  • step S101 if it is determined that the MAX value is equal to or lower than the A temperature and YES in step S101, the switch 31 is controlled to connect the positive electrode of the battery Ba and the heat generating unit 12 in step S110. That is, the heat generating part 12 is turned on via the switch 31.
  • step S121 it is determined according to the detection of the two temperature sensors 15 whether or not the MAX value is equal to or higher than the B temperature.
  • the B temperature a temperature higher than the A temperature is set.
  • step S120 if it is determined NO in step S120 because the MAX value is lower than the B temperature, the process returns to step S101 while the switch 31 is kept on.
  • the switch 31 is controlled to open the space between the positive electrode of the battery Ba and the heat generating portion 12. That is, the heat generating part 12 is turned off via the switch 31.
  • the switch 31 is turned on and off by using a higher detection temperature of the detection temperatures of the two temperature sensors 15 as a representative temperature of the heat generation unit 12 to control the energization of the heat generation unit 12.
  • a temperature sensor that detects a low detection temperature of the two temperature sensors 15 is a low temperature detection temperature sensor. Then, when temperature unevenness occurs on the outer surface 14a due to the usage status of the heater device 1 or the external environment, the actual temperature of the heat generating portion 12 other than the region where the temperature is detected by the low temperature detection temperature sensor increases. Is done.
  • the actual temperature of a part of the heat generating portion 12 exceeds the specified temperature.
  • the electronic control unit 30 generates heat by turning on and off the switch 31 using a higher detected temperature of the detected temperatures of the two temperature sensors 15 as a representative temperature of the heat generating unit 12.
  • the unit 12 is controlled.
  • the actual temperature of the heat generating part 12 is converged within the temperature control range ⁇ TW (see FIG. 22), and it is possible to prevent the actual temperature of the heat generating part 12 from exceeding the specified temperature.
  • the heat-emitting part 12 it can prevent beforehand giving a passenger
  • the electronic control unit 30 executes the contact control process according to the flowchart of FIG. 21 instead of FIG.
  • step S230 it is determined whether or not a temperature difference between detected temperatures of the two temperature sensors 15 (hereinafter referred to as a detected temperature difference) is equal to or higher than a certain temperature Tb.
  • the occupant's finger 5a is not in contact with the other region 14b of the two regions 14b other than the one region 14b. For this reason, the temperature detected by the temperature sensor 15 overlapping the other region 14b in the Z direction is not affected by the occupant's finger 5a.
  • step S230 the switch 31 is controlled to open the space between the positive electrode of the battery Ba and the heat generating portion 12. That is, the heat generating part 12 is turned off via the switch 31.
  • step 240 it is determined whether or not the state in which the detected temperature difference is equal to or higher than a certain temperature Tb continues for a certain time Tw or more.
  • Step 240 when the state where the detected temperature difference is equal to or higher than the constant temperature Tb continues for a predetermined time Tw or longer, it is determined as NO in Step 240 because the heater device 1 has failed. In connection with this, it progresses to step S250 and the operation
  • step 240 when the duration for which the detected temperature difference continues to be equal to or higher than the predetermined temperature Tb is less than the predetermined time Tw, it is determined in step 240 that the heater device 1 has not failed and YES is determined. Accordingly, the process returns to step S230.
  • step S210 the process proceeds to step S210.
  • YES may be determined in step S210, assuming that the occupant's finger 5a touches or approaches the region 14c of the outer surface 14a that overlaps the detection unit 13 according to the detection value of the detection unit 13.
  • the switch 31 is controlled to open the positive electrode of the battery Ba and the heat generating part 12.
  • the heat generating part 12 is turned off via the switch 31. Thereby, the temperature of the heat generating part 12 can be lowered. Accordingly, the process returns to step S230.
  • steps S101, S110, S121, and S1130 correspond to the third control unit.
  • steps S230 and S221 correspond to the third control unit.
  • the electronic control unit 30 determines whether or not the detected temperature difference between the detected temperatures of the two temperature sensors 15 is equal to or higher than the constant temperature Tb, thereby determining the region 14b of the outer surface 14a. It is determined whether or not the occupant's finger 5a has touched. Therefore, this makes it possible to determine with high accuracy whether or not the occupant's finger 5a has contacted the second region 14B.
  • the heat generation unit 12, the electrodes 16a and 16b of the temperature sensor 15, the wirings 16c and 16d, and the detection unit are provided on both sides of the insulating base 11 on the Z direction passenger side and the Z direction opposite passenger side.
  • the example in which 13 is formed has been described.
  • the present embodiment is different from the first embodiment mainly in the positions of the heat generating portion 12, the electrodes 16a and 16b of the temperature sensor 15, the wirings 16c and 16d, and the detecting portion 13.
  • the heat generating unit 12, the detection unit 13, the electrodes 16a and 16b of the temperature sensor 15, and the wirings 16c and 16d are arranged in the same layer.
  • the heating unit 12, the detection unit 13, the electrodes 16a and 16b of the temperature sensor 15, and the wirings 16c and 16d are arranged offset in the X direction and the Y direction, respectively.
  • the insulating layer 14 of the present embodiment is disposed on the side opposite to the Z direction with respect to the insulating base 11.
  • the insulating layer 14 is formed so as to cover the heat generating part 12, the detection part 13, the electrodes 16 a and 16 b of the temperature sensor 15, and the wirings 16 c and 16 d from the side opposite to the Z direction occupant.
  • a hole 13a that is open on the side opposite to the Z direction occupant is formed in the intermediate portion of the insulating layer 14 in the X direction.
  • the hole 13a is formed on the side opposite to the Z direction with respect to the insulating base 11 as a portion where the detection unit 13 is not formed.
  • a temperature sensor 15 is disposed in the hole 13a. That is, the temperature sensor 15 is arranged offset in the X direction and the Y direction with respect to the heat generation unit 12 and the detection unit 13.
  • the detection unit 13 of the present embodiment is formed to meander along the heat generation unit 12.
  • the detection part 13 comprises a capacitor
  • the outer surface 14a of the present embodiment is formed not on the Z direction occupant side of the insulating layer 14 but on the Z direction occupant side with respect to the insulating base 11. That is, the outer surface 14 a is configured by a surface on the Z direction occupant side of the insulating base 11.
  • the temperature sensor 15, the detection unit 13, and the heat generation unit 12 are disposed on the side opposite to the Z direction in the insulating base 11 (that is, one side in the thickness direction).
  • the electronic control device 30 executes a contact control process in the same manner as in the first embodiment.
  • step S200 determines with YES by step S200, transfers to step S220, and turns off the heat generating part 12 via the switch 31.
  • step S210 determines whether the occupant's finger 5a has touched or approached the region 14c of the outer surface 14a that overlaps the detection unit 13 in the Z direction.
  • the electronic control unit 30 turns off the heat generating unit 12 via the switch 31 in step S220.
  • the electronic control unit 30 turns off the heating unit 12 via the switch 31.
  • the electronic control device 30 performs a temperature control process as in the first embodiment. Description of this temperature control process is abbreviate
  • the heat generating portion 12 is disposed on the side opposite to the passenger in the Z direction with respect to the outer surface 14a. For this reason, the distance between the heat generating part 12 and the outer surface 14a can be shortened. Therefore, the heat from the heat generating part 12 can be transmitted to the outer surface 14a satisfactorily. For this reason, the calorie
  • the heat generating part 12 and the temperature sensor 15 are arranged on the side opposite to the Z direction in the insulating base 11. For this reason, since the distance between the heat generating part 12 and the temperature sensor 15 can be shortened, the temperature of the heat generating part 12 can be detected with high accuracy. Therefore, the temperature controllability of the heat generating part 12 can be ensured satisfactorily.
  • the temperature sensor 15 is disposed on the side opposite to the occupant in the Z direction with respect to the outer surface 14a, the outer surface 14a side is not uneven by the temperature sensor 15. For this reason, when the outer surface 14a of the heater device 1 is viewed from the Z-direction occupant side, a good appearance can be ensured.
  • the heater device 1 in which the temperature sensor 15 is appropriately installed and satisfies all temperature controllability, performance, and appearance without hindering detection of contact or proximity of the detection target is obtained. Can be provided.
  • the heat generating unit 12, the detection unit 13, the electrodes 16a and 16b of the temperature sensor 15, and the wirings 16c and 16d are arranged in the same layer. For this reason, the Z direction dimension of the heater apparatus 1 can be made small.
  • the electronic control unit 30 may be configured as follows. That is, the switch 31 is subjected to switching control, so that the current flowing from the battery Ba to the heat generating portion 12 (that is, the energization amount) is smaller than when the occupant's finger 5a is not in contact with or close to the region 14c. May be.
  • the electronic control unit 30 performs switching control of the switch 31 when the occupant's finger 5a contacts the region 14b, as compared with the case where the occupant's finger 5a does not detect the contact with the region 14b.
  • the current flowing from the battery Ba to the heat generating unit 12 (that is, the energization amount) may be reduced.
  • the electronic control unit 30 has been described with respect to the example in which the temperature of the heat generating unit 12 is controlled using a higher detected temperature of the detected temperatures of the two temperature sensors 15 as a representative temperature. Then, it may be as follows.
  • three or more temperature sensors 15 are employed for one heat generating unit 12, and the electronic control unit 30 uses the highest detected temperature among the detected temperatures of the three or more temperature sensors 15 as a representative temperature. To control the temperature.
  • the electronic control unit 30 obtains a temperature difference between the highest detected temperature and the lowest detected temperature among the detected temperatures of the three or more temperature sensors 15 as a detected temperature difference, and the obtained detected temperature difference is a constant temperature Tb. It is determined whether it is above.
  • the electronic control unit 30 determines whether or not the occupant's finger 5a has touched the region 14b of the outer surface 14a by determining whether or not the detected temperature difference is equal to or greater than a certain temperature Tb.
  • the switch 31 is turned on / off according to the comparison between the temperature detected by the temperature sensor 15 and the threshold value (ie, A temperature, B temperature), and the temperature of the heat generating part 12 is set.
  • the threshold value ie, A temperature, B temperature
  • the switch 31 is controlled to control the temperature of the heat generating unit 12.
  • the duty ratio indicating the ratio between the ON period Ton of the switch 31 and the OFF period Toff of the switch 31 is controlled according to the comparison between the temperature detected by the temperature sensor 15 and a threshold (that is, A temperature, B temperature). . Therefore, the amount of heat generated by the heat generating part 12 is controlled by controlling the average current flowing through the heat generating part 12.
  • the duty ratio is set by Ton / (Ton + Toff).
  • the detection unit 13 configures a capacitance type short-range sensor that detects that the detection target has approached the surrounding area by a change in capacitance has been described.
  • the detection unit 13 that detects contact and non-contact of the detection target by turning on and off the switch may be configured.
  • the outer surface 14a is configured by the surface on the Z direction occupant side of the insulating base 11 has been described, but instead, the insulating base 11 is insulated on the Z direction occupant side.
  • a layer may be formed, and the outer surface 14a may be constituted by the formed insulating layer.
  • the heater device includes a heat generating portion that generates heat by energization, and heat from the heat generating portion. And an outer surface that radiates the light and a detection unit that detects that an object has contacted the outer surface.
  • the object when the direction connecting the heat generating portion and the outer surface is the first direction, the object contacts the first region (14c) that overlaps the detecting portion of the outer surface in the first direction based on the detection of the detecting portion.
  • the 1st control part which judges whether it was done is provided.
  • the first control unit detects that the object is in contact with the first region, the first control unit stops energization to the heat generating unit or does not detect that the object is in contact with the first region. Reduce the amount of electricity to the heat generating part.
  • the heater device When the direction intersecting the first direction is the second direction, the heater device is disposed offset with respect to the detection unit in the second direction and detects the temperature of the heat generation unit, and the temperature detected by the temperature sensor And a second control unit that controls the temperature of the heat generating unit.
  • the heater device includes a third control unit that determines whether an object has contacted the second region of the outer surface that overlaps the temperature sensor in the first direction based on the temperature detected by the temperature sensor.
  • the third control unit determines that the object is in contact with the second region
  • the third control unit reduces the energization amount to the heat generating unit or generates heat compared to the case where it is determined that the object is not in contact with the second region. Stop energizing the part.
  • the detection unit is disposed on the opposite side of the outer surface with respect to the heat generation unit.
  • the temperature sensor is disposed so as to overlap the heat generating portion in the first direction. Thereby, the temperature of the heat generating part can be accurately detected by the temperature sensor.
  • the temperature sensor is exposed on the side opposite to the outer surface in the first direction. For this reason, since the heat capacity around the temperature sensor is reduced, it is possible to increase the sensitivity of detecting that the object is in contact with the second region based on the temperature detection of the temperature sensor.
  • the heater device is formed of an electronic control device constituting the first control unit, the second control unit, and the third control unit, and an electrically insulating material, and includes a temperature sensor, a detection unit, and And an insulating base on which the heat generating portion is mounted.
  • the heater device includes a temperature sensor electrode unit for transmitting a temperature sensor detection signal to the electronic control unit, and a detection unit electrode unit for transmitting the detection signal of the detection unit to the electronic control unit.
  • the insulating base, the heat generating part, the temperature sensor electrode part, and the detection part electrode part constitute an integrally molded product.
  • the detection unit configures a switch that is turned on when an object comes into contact with the first region and is turned off when the object leaves the first region.
  • the heater device is formed of an electronic control device that constitutes the second control unit, the second control unit, and the third control unit, and an electrically insulating material, and includes a temperature sensor, a detection unit, and And an insulating base on which the heat generating portion is mounted.
  • the heater device includes a temperature sensor electrode section for transmitting a detection signal of the temperature sensor to the electronic control device.
  • the insulating base, the heat generation unit, the temperature sensor electrode unit, and the detection unit constitute an integrally molded product.
  • the detection unit detects that an object is in contact with the first region by a change in capacitance.
  • the temperature sensor is the first temperature sensor, and is arranged offset in the second direction with respect to the first temperature sensor and the detection unit, and one or more second sensors that detect the temperature of the heat generation unit.
  • a temperature sensor is provided.
  • the third control unit determines whether or not an object has contacted the second region by determining whether or not the temperature difference between the detected temperature of the first temperature sensor and the detected temperature of the second temperature sensor is equal to or greater than a threshold value. Determine. Thereby, it can be determined with high accuracy whether or not an object has contacted the second region.
  • the insulating base is disposed between the temperature sensor and the detection unit and the heat generating unit.
  • the insulating base is formed in a thin film shape, and a temperature sensor, a detecting part, and a heat generating part are arranged on one side in the thickness direction of the insulating base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

ヒータ装置は、発熱部(12)と、外表面(14a)と、外表面に物体(5a)が接触したことを検出する検出部(13)と、外表面のうち検出部と発熱部および外表面を結ぶ第1方向(Z)にて重なる第1領域(14c)に物体が接触した場合には、発熱部への通電を停止するか通電量を小さくする第1制御部(S210、S220)と、検出部に対して第1方向に交差する第2方向(X)にオフセットして配置され、発熱部の温度を検出する温度センサ(15)と、温度センサの検出温度に基づいて発熱部の温度を制御する第2制御部(S100、S110、S120、S130、S101、S121)と、外表面のうち温度センサと第1方向にて重なる第2領域(14b)に物体が接触したと温度センサの検出温度に基づいて判定した場合には、発熱部への通電量を小さくするか停止する第3制御部(S200、S220、S230、S221)と、を備える。

Description

ヒータ装置 関連出願への相互参照
 本出願は、2018年3月13日に出願された日本特許出願番号2018-45704号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、通電により輻射熱を発生するヒータ装置に関するものである。
 従来、ヒータ装置では、物体が当該ヒータ装置に接触又は近接した事を検出部が検出した場合には、発熱部へのヒータ出力を低下又は停止して、接触又近接した物体の温度上昇を抑えることを狙いとしているものがある(例えば、特許文献1参照)。
特開2014-190674号公報
 しかしながら、上記特許文献1には、発熱部の温度を検知してこの検知した温度を基に、発熱部へのヒータ出力を調整するための温度センサの言及はない。発明者の検討によれば、温度センサの設置を前提とした、構成の検討が望まれる。
 本開示は、温度センサを適切に設置して、物体の接触の検出を阻害することなく、発熱部を制御するようにしたヒータ装置を提供することを目的とする。
 本開示の1つの観点によれば、ヒータ装置は、
 通電により熱を発生する発熱部と、
 発熱部からの熱を輻射する外表面と、
 外表面に物体が接触したことを検出する検出部と、
 発熱部および外表面を結ぶ方向を第1方向としたとき、検出部の検出に基づいて外表面のうち検出部と第1方向にて重なる第1領域に物体が接触したか否かを判定し、第1領域に物体が接触したことを検出した場合には、発熱部への通電を停止する、或いは第1領域に物体が接触したことを検出していない場合に比べて発熱部への通電量を小さくする第1制御部と、
 第1方向に交差する方向を第2方向としたとき、検出部に対して第2方向にオフセットして配置され、発熱部の温度を検出する温度センサと、
 温度センサの検出温度に基づいて発熱部の温度を制御する第2制御部と、
 外表面のうち温度センサと第1方向にて重なる第2領域に物体が接触したか否かについて温度センサの検出温度に基づいて判定し、第2領域に物体が接触したと判定した場合には、第2領域に物体が接触していないと判定した場合に比べて発熱部への通電量を小さくする、或いは発熱部への通電を停止する第3制御部と、
 を備える。
 上記観点によれば、第1領域に物体が接触したと判定した場合には、第1領域に物体が接触していないと判定した場合に比べて発熱部の発熱量を小さくする、或いは発熱部の発熱を停止することができる。
 さらに、第2領域に物体が接触したと判定した場合には、第2領域に物体が接触していないと判定した場合に比べて発熱部の発熱量を小さくする、或いは発熱部の発熱を停止することができる。
 これにより、第1領域および第2領域のうち一方の領域に物体が接触したとときには、第2領域に物体が接触していない場合に比べて発熱部の発熱量を小さくする、或いは発熱部の発熱を停止することができる。このため、温度センサが物体の接触の検出を阻害することを避けることができる。
 さらに、上記観点によれば、温度センサは、検出部に対して第2方向にオフセットして配置されている。これにより、温度センサを検出部に対して第1方向に重なるように配置する場合に比べて、温度センサおよび発熱部の間の距離を短くすることができる。したがって、温度センサが発熱部の温度を精度よく検出することができる。このため、発熱部の温度を精度よく制御することができる。
 以上により、温度センサを適切に設置して、物体の接触の検出を阻害することなく、発熱部を制御するようにしたヒータ装置を提供することができる。
 これに加えて、上記観点によれば、温度センサは、検出部に対して第2方向にオフセットして配置されている。このため、ヒータ装置における外表面が温度センサによって大きく凸凹になることはない。よって、ヒータ装置を外表面の見栄えを損ねることを抑制することができる。
 これに加えて、上記観点によれば、検出部が発熱部に対して外表面の反対側に配置されている。このため、検出部が発熱部および外表面の間に配置される場合に比べて、発熱部および外表面の間の距離を短くすることができる。よって、発熱部から外表面に熱を良好に伝えることができる。これにより、外表面から多くの熱量を輻射することができる。このため、良好な暖房性能を確保することができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態におけるヒータ装置が自動車の車室内に設置された例を示す図である。 第1実施形態におけるヒータ装置の内部構成を厚み方向の乗員側から視た透視図である。 図2中III-III断面図である。 第1実施形態におけるヒータ装置の電気的構成を示すブロック図である。 図4の電子制御装置による温度制御処理を示すフローチャートである。 図4の電子制御装置による接触検知処理を示すフローチャートである。 第1実施形態において、横軸を時間として、縦軸を発熱部の温度、温度センサの検知温度、および発熱部の作動状態(すなわち、オン、オフ)を示すタイミングチャートである。 第1対比例におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 第2対比例におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 第3対比例におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 第2実施形態におけるヒータ装置の内部構成を厚み方向の乗員側から視た透視図である。 図11中XII-XII断面図である。 第3実施形態におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 第3実施形態において、縦軸を発熱部の温度、および温度センサの検知温度とし、横軸を時間とするタイミングチャートである。 第4実施形態におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 図15中の部位XVIの拡大図である。 第4実施形態におけるヒータ装置の電気的構成を示すブロック図である。 第5実施形態におけるヒータ装置の断面構成を示し、かつ図2に対応した断面図である。 第5実施形態におけるヒータ装置の電気的構成を示すブロック図である。 第5実施形態における電子制御装置による温度制御処理を示すフローチャートである。 第5実施形態における電子制御装置による接触検知処理を示すフローチャートである。 第5実施形態において、縦軸を温度とし、横軸を時間とし、発熱部の温度制御範囲ΔTW、および温度センサの検知温度T1、T2を示すタイミングチャートである。 第5実施形態において、縦軸を2つの温度センサの検知温度とし、横軸を時間とし、ヒータ装置への乗員の接触した場合の2つの温度センサの検知温度の変化を示すタイミングチャートである。 第6実施形態におけるヒータ装置の内部構成を厚み方向の乗員側から視た透視図である。 図24中XXV-XXV断面図である。
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 ヒータ装置の第1実施形態に関して、図1~図10を用いて説明する。
 図1において、本実施形態のヒータ装置1は、自動車の車室内を暖房する暖房装置の一部を構成している。ヒータ装置1は、自動車に搭載された電池、発電機などの電源から給電されて発熱する電気ヒータである。
 本実施形態のヒータ装置1は、車室内のステアリング3を支持するステアリングコラム2の下面やインストルメントパネル4の下面に、乗員5の太腿、膝、脛等の脚部である対象物に対向するように設置されている。図1中の乗員5は運転座席6に着座した状態を示している。
 ヒータ装置1は、電力が供給されると発熱する。ヒータ装置1は、その外表面14aと垂直な方向に位置付けられた対象物を暖めるために、主としてその表面と垂直な方向へ向けて輻射熱を放射する。
 次に、図2および図3を用いて、ヒータ装置1の具体的な構成に関して説明する。図2および図3中において、ヒータ装置1は、Z方向を厚み方向とし、Z方向に直交するX方向とY方向とによって規定されるX-Y平面に沿って拡がる薄板状に形成されている。X方向が第2方向に対応する。
 ここで、Z方向は、ヒータ装置1において外表面14aと発熱部12とを結ぶ方向に相当している。以下説明の便宜上、Z方向のうち対象物である乗員の脚部側を乗員側とし、Z方向のうち乗員側に対して反対側を反乗員側とする。
 ヒータ装置1は、Z方向から視て矩形状に形成されている。ヒータ装置1は、絶縁基部11、発熱部12、検出部13、絶縁層14、温度センサ15、および電極16a、16bを備える。
 絶縁基部11は、例えば樹脂材料等の電気絶縁性材料によってX-Y平面に沿って拡がる薄膜状に形成されている。絶縁基部11は、温度センサ15、検出部13、および発熱部12を搭載してなる。発熱部12は、絶縁基部11のうちZ方向の乗員側に配置されている。発熱部12は、蛇行部12a、12bを備える。
 蛇行部12a、12bは、それぞれ、線状に形成される発熱体を蛇行状に形成されている。蛇行部12a、12bは、X方向に間隔を開けて配置されている。蛇行部12a、12bは、連結部12cによって連結されている。連結部12cは、蛇行部12a、12bの間の領域うちY方向一方側(具体的には、図2中上側)に配置されている。
 ここで、蛇行部12a、12bの間の領域のうち連結部12cに対してY方向他方側(具体的には、図2中下側)は、発熱部12が設けられていない領域として中間領域20が形成されている。
 本実施形態の発熱部12は、絶縁基部11に対して蒸着や印刷等によって形成されている。発熱部12は、銅とスズとの合金(Cu-Sn)、銀、スズ、ステンレス鋼、ニッケル、ニクロムなどの金属およびこれらを含む合金によって形成されている。
 検出部13は、Z方向において発熱部12に対して外表面14aと反対側に配置されている。すなわち、検出部13は、絶縁基部11のうちZ方向の反乗員側に配置されている。検出部13は、絶縁基部11に沿って薄膜状に形成されている。検出部13は、1対の電極と、1対の電極の間に挟まれる絶縁体とを備えるコンデンサを構成する。
 本実子形態の検出部13は、その周囲に被検出対象(例えば、乗員の指5a)が近づいたことを静電容量の変化によって検出する静電容量型の近距離センサを構成する。検出部13は、絶縁基部11に対して蒸着や印刷等によって成形されている。
 ここで、検出部13のうちX方向中間部には、Z方向反乗員側に開口した穴部13aが形成されている。つまり、絶縁基部11のうちZ方向の反乗員側において、X方向中間部には検出部13が形成されていない部位が穴部13aとして形成されていることになる。穴部13aは、中間領域20に対してZ方向に重なるように形成されている。
 温度センサ15は、Z方向において発熱部12に対して外表面14aと反対側に配置されている。すなわち、温度センサ15は、絶縁基部11のうちZ方向の反乗員側に配置されている。温度センサ15は、X方法において検出部13に対してオフセットして配置されている。温度センサ15は、穴部13a内に配置されている。本実施形態の温度センサ15は、例えば、サーミスタが用いられる。
 本実施形態の絶縁基部11は、温度センサ15および検出部13と、発熱部12との間に配置されている。
 電極16a、16bは、絶縁基部11のうちZ方向の反乗員側に配置されている。電極16a、16bは、Z方向において中間領域20に重なるように配置されている。電極16a、16bは、銅等の導電性金属材料によって形成されている。
 電極16a、16bは、絶縁基部11に対して蒸着や印刷等によって成形されているパターンである。電極16a、16bと温度センサ15とは、はんだ材によって接合されている。
 ここで、電極16a、16bは、温度センサ15の電極(すなわち、温度センサ用電極部)を構成するものである。電極16a、16bは、温度センサ15と絶縁基部11との間に配置されている。
 電極16a、16bは、温度センサ15の検出信号を配線16c、16dを通して電子制御装置30に出力するための配線の一部を構成する。配線16c、16dは、絶縁基部11に対してZ方向半乗員側に配置されている。
 ここで、配線16cは、電極16aに接続されている。配線16dは、電極16bに接続されている。配線16c、16dは、絶縁基部11に沿って薄膜状に形成されている。配線16c、16dは、銅等の導電性材料から構成されている。配線16c、16dは、蒸着や印刷等によって成形されているパターンである。
 このように、絶縁基部11のうちZ方向乗員側の面に発熱部12が形成され、かつ絶縁基部11のうちZ方向反乗員側の面に温度センサ15の電極16a、16b、配線16c、16d、および検出部13が形成されている。
 本実施形態では、絶縁基部11、発熱部12、温度センサ15の電極16a、16b、配線16c、16d、および検出部13が一体成型品を構成する。すなわち、発熱部12、温度センサ15の電極16a、16b、および検出部13が絶縁基部11に一体化された回路基板が構成されていることになる。
 本実施形態では、絶縁基部11のうちX方向中間部で、かつY方向他方側(具体的には図2中下側)には、発熱部12および配線16c、16dを電子制御装置30に接続するためのコネクタ21が形成されている。
 絶縁層14は、絶縁基部11、発熱部12、検出部13、温度センサ15、および電極16a、16bを周囲から覆うように薄膜状に形成されている。本実施形形態の絶縁層14は、電気絶縁性材料によって形成されている。絶縁層14のうちZ方向乗員側は、乗員5の太腿、膝、脛等の脚部である対象物に対向する外表面14aを形成する。
 本実施形態の絶縁層14は、温度センサ15をZ方向反乗員側から覆うセンサカバー部14dを有している。
 次に、図4を用いて、本実施形態のヒータ装置1の電気的構成に関して説明する。ヒータ装置1は、電子制御装置30、およびスイッチ31を備える。
 電子制御装置30は、メモリやマイクロコンピュータによって構成され、メモリに予め記憶されているコンピュータプログラムにしたがって、後述する発熱部12の温度制御処理や接触制御処理を実行する。メモリは、非遷移的実体的記憶媒体である。
 電子制御装置30は、温度制御処理や接触制御処理を実行する際に、温度センサ15の検出値や検出部13の検出値に応じて、スイッチ31を介して発熱部12を制御する。
 スイッチ31は、トランジスタやリレースイッチ等によって構成され、バッテリBaの正側電極と発熱部12との間を接続、或いは開放する。スイッチ31および発熱部12は、バッテリBaの正側電極とグランドとの間に直列接続されている。
 電子制御装置30は、温度制御処理および接触制御処理を交互に実行する。以下、温度制御処理および接触制御処理を別々に説明する。
 (温度制御処理)
 電子制御装置30は、図5のフローチャートにしたがって、温度制御処理を実行する。
 まず、ステップS100において、発熱部12の温度がA温度以下であるか否かについて温度センサ15の検出に応じて判定する。
 このとき、発熱部12の温度がA温度以下であるとしてステップS100でYESと判定すると、ステップS110において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を接続させる。すなわち、スイッチ31を介して発熱部12をオンさせることになる。
 このため、バッテリBaから電流がスイッチ31、発熱部12の蛇行部12a、連結部12c、蛇行部12bを通してグランドに流れる。これに伴い、蛇行部12a、連結部12c、蛇行部12bから熱が発生される。
 つまり、発熱部12は通電により発熱する。この発生した熱は、外表面14aから輻射熱として、乗員5の太腿、膝、脛等に輻射される。このとき、発熱部12による熱の発生に伴って、発熱部12の温度が上昇する。
 次に、ステップS120において、発熱部12の温度がB温度以上であるか否かについて温度センサ15の検出に応じて判定する。B温度としては、A温度(<B温度)よりも高い温度が設定されている。
 このとき、発熱部12の温度がB温度未満であるとしてステップS120でNOと判定すると、スイッチ31をオンさせたまま、ステップS100に戻る。
 このとき、発熱部12の温度がA温度よりも高く、かつ発熱部12の温度がB温度未満である状態が継続されると、ステップS100のNO判定、およびステップS120のNO判定が繰り返される。このため、スイッチ31によってバッテリBaの正側電極と発熱部12との間が接続された状態が継続される。これにより、発熱部12に継続して通電されて発熱部12が継続して発熱する。
 その後、発熱部12の温度がB温度以上になると、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。すなわち、スイッチ31を介して発熱部12をオフさせることになる。
 このため、バッテリBaからスイッチ31、発熱部12を通してグランドに電流が流れることが停止される。これに伴って、発熱部12から熱が発生されることが停止される。このため、外表面14aから輻射熱が輻射されることが停止される。これに伴い、発熱部12の温度は低下する。
 このように発熱部12の温度に応じてスイッチ31をオン、オフさせることにより、発熱部12の通電を制御する。これに伴い、発熱部12から輻射熱を間欠的に発生させることになる。このことにより、発熱部12の温度を所定範囲に収束させることになる。
 (接触制御処理)
 電子制御装置30は、図6のフローチャートにしたがって、接触制御処理を実行する。
 まず、ステップS200において、温度センサ15の検知温度が一定期間の間で一定温度Ta以上低下したか否かを判定する。つまり、温度センサ15の検知温度が急激に低下したか否かを判定することになる。
 換言すれば、温度センサ15の検知温度が一定期間の間で低下した場合において、温度センサ15の最大検知温度T1と最小検知温度T2との差分である変化量ΔT(=T1-T2)が一定温度Ta以上であるか否かを判定する。
 例えば、外表面14aのうちZ方向において穴部13aに重なる領域14bに乗員の指5aが接触すると、穴部13a内(例えば、温度センサ15)から外表面14aの領域14bを通して乗員の指5aに熱が移動する。領域14bは、外表面14aのうち温度センサ15がZ方向に重なる領域である。このため、領域14bに乗員の指5aが接触すると、温度センサ15の検知温度が急激に低下する(図7(b)参照)。
 図7(b)は、縦軸を温度センサ15の検出温度とし、横軸を時間とし、外表面14aの領域14bに乗員の指5aが接触したときに、温度センサ15の検出温度が急激に低下したことを示している。
 この際、一定期間の間における温度センサ15の検知温度の変化量ΔTが一定温度Ta以上となり、ステップS200において、YESと判定する。これに伴い、ステップS220において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。すなわち、スイッチ31を介して発熱部12をオフさせることになる。
 このため、バッテリBaからスイッチ31、発熱部12を通してグランドに電流が流れることが停止される。これに伴って、発熱部12から熱が発生されることが停止される。このため、外表面14aから輻射熱が輻射されることが停止される。これに伴い、発熱部12の温度は低下する。
 一方、下記の(a)(b)(c)のうちいずれか1つの場合には、ステップS200において、NOと判定する。
 (a)温度センサ15の検知温度が一定期間の間で上昇した場合である。(b)温度センサ15の検知温度が一定期間の間で一定である場合である。(c)温度センサ15の検知温度が一定期間の間で低下し、かつ温度センサ15の変化量ΔTが一定温度Ta未満である場合である。
 この場合には、ステップS210に進んで、外表面14aのうちZ方向において検出部13に重なる領域14cに乗員の指5aが接触(或いは、近接)したか否かについて検出部13の検出値に応じて、判定する。領域14cは第1領域に対応する。
 ここで、外表面14aのうちZ方向において検出部13に重なる領域14cに乗員の指5aが接触(或いは近接)すると、検出部13の静電容量が急激に大きくなる。
 そこで、本実施形態では、一定期間の間で検出部13の静電容量が所定値Cs以上、変化したか否かを判定する。
 一定期間の間における検出部13の静電容量が所定値Cs以上、変化したとき、ステップS210でYESと判定する。
 この場合、ステップS220において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。すなわち、スイッチ31を介して発熱部12をオフさせることになる。これにより、発熱部12の温度を低下させることができる(図7(a)(c)参照)。
 ここで、ステップS210、S220は、第1制御部に対応する。ステップS100、S110、S120、S130は、第2制御部に対応する。ステップS200、S220は、第3制御部に対応する。
 なお、図7(a)は、縦軸を発熱部12の温度とし、横軸を時間とするタイミングチャートである。図7(c)は、縦軸を発熱部12の作動状態(具体的にはオン、オフ)とし、横軸を時間とするタイミングチャートである。
 このように、外表面14aのうち検出部13に重なる領域14cに乗員の指5aが接触或いは近接したり、外表面14aのうち穴部13aに重なる領域14bに乗員の指5aが接触する場合がある。この場合、ステップS220において、スイッチ31を介して発熱部12をオフさせる。
 一方、外表面14aのうち検出部13に重なる部位から乗員の指5aが離れているときには、検出部13の静電容量の変化量が所定値Cs未満となる。このため、ステップS210でNOと判定して、接触検知処理を終了する。
 以上説明した本実施形態によれば、ヒータ装置1は、通電によって輻射熱を発生させる発熱部12と、発熱部12からの輻射熱を使用者に向けて輻射する外表面14aと、を備える。発熱部12および外表面14aを結ぶ方向をZ方向とする。Z方向が第1方向に対応する。
 ヒータ装置1は、発熱部12に対して外表面14aの反対側に配置されて、外表面14aのうち検出部13自体とZ方向にて重なる領域14cに被検出対象としての乗員の指5aが接触したことを検出する検出部13と電子制御装置30とを備える。
 電子制御装置30は、検出部13の検出信号に基づいて、乗員の指5aが領域14cに接触したことを判定したときには、発熱部12への通電を停止する(ステップS210)。
 ヒータ装置1は、Z方向に交差する方向をY方向、X方向としたとき、発熱部12に対して外表面14aの反対側で、かつ検出部13に対してX方向にオフセットして配置され、発熱部12の温度を検出する温度センサ15を備える。電子制御装置30は、温度センサ15の検出温度に基づいて発熱部12の温度を制御する(ステップS100~ステップS130)。
 発熱部12の蛇行部12a、12bの間の領域のうち連結部12cに対してX方向他方側の領域を中間領域20とする。温度センサ15は、中間領域20に対してZ方向にて重なるように配置されている。
 電子制御装置30は、外表面14aのうち温度センサ15がZ方向にて重なる領域14bに乗員の指5aが接触したか否かについて温度センサ15の検出温度に基づいて判定する。
 電子制御装置30は、領域14bに被検出対象が接触したと判定した場合には、発熱部12への通電を停止する(ステップS200)。
 ここで、出願人は、上述の特許文献1をベースに、温度センサ15の設置を(d)(e)(f)のように検討した。
 (d)図8のように、Z方向の乗員側に検出部13を配置し、検出部13に対してZ方向の反乗員側に発熱部12を設置した場合、発熱部12からの輻射熱が伝わる乗員側の外表面14aまでの間に検出部13が介在する事で、温度低下があり暖房性能が低下する。
 図8においては、発熱部12に対してZ方向の反乗員側に温度センサ15が配置されている。このため、温度センサ15によって発熱部12の温度を精度よく検出することができる。よって、発熱部12の温度制御性を良好に確保することができる。これに加えて、温度センサ15の配置によって良好な見栄えを確保することができる。
 (e)図9は、発熱部12に対してZ方向の乗員側に温度センサ15を設置したものである。この場合、温度センサ15によって発熱部12の温度を精度よく検出することができる。よって、発熱部12の温度制御性を良好に確保することができるものの、温度センサ15の厚みにより、外表面14a側の凹凸により見栄えが悪化する。
 図9では、発熱部12が外表面14aに対してZ方向の反乗員側に絶縁層14を介して配置されている。このため、発熱部12と外表面14aとの間の距離を短くすることができる。よって、温度低下が抑制されるため、良好な暖房性能が確保される。
 (f)図10は、発熱部12に対してZ方向の反乗員側に検出部13と温度センサ15を設置したものである。これでは、発熱部12と温度センサ15間に検出部13が介在する事で、温度センサ15による発熱部12の検知温度が実温度と乖離する事で、温度制御性における精度が確保できない。
 図10では、発熱部12が外表面14aに対してZ方向の反乗員側に絶縁層14を介して配置されている。このため、上述の(e)と同様に、良好な暖房性能が確保される。
 これらより、図8~図10の構成では、発熱部12の全領域において、被検出対象の接触を検出する事を阻害せず、温度制御性、暖房性能、見栄えを同時に満たすことは困難である。
 これに対して、本実施形態では、発熱部12が外表面14aに対してZ方向の反乗員側に絶縁層14を介して配置されている。このため、発熱部12と外表面14aとの間の距離を短くすることができる。よって、発熱部12からの熱を外表面14aに良好に伝えることができる。このため、外表面14aから輻射される輻射熱の熱量を確保することができる。このため、良好な暖房性能が確保される。
 これに加えて、本実施形態では、発熱部12に対してZ方向反乗員側に検出部13が配置されている。検出部13の穴部13a内(すなわち、検出部13が配置されていない領域)に温度センサ15が配置されている。
 ここで、本実施形態では、発熱部12および温度センサ15の間の距離を短くすることができるので、発熱部12の温度を精度よく検出することができる。よって、発熱部12の温度制御性を良好に確保することができる。
 さらに、本実施形態では、発熱部12に対してZ方向の反乗員側に温度センサ15が配置されているので、外表面14a側が温度センサ15によって凸凹になることはない。このため、ヒータ装置1の外表面14aをZ方向乗員側から視た際に、良好な見栄えを確保することができる。
 以上により、本実施形態によれば、温度センサ15が適切に設置されて、被検出対象の接触または近接の検出を阻害することなく、温度制御性、性能、見栄えを全て満たしたヒータ装置1を提供することができる。
 本実施形態の絶縁基部11、発熱部12、温度センサ15の電極16a、16b、および検出部13が一体成型品を構成する。このため、絶縁基部11、発熱部12、温度センサ15の電極16a、16b、および検出部13を別々の部品で構成する場合に比べて、部品点数を減らすことができるので、製造コストを下げることができる。
 (第2実施形態)
 上記第1実施形態では、発熱部12の蛇行部12a、12bの間の中間領域20に対してZ方向に重なるように温度センサ15を配置した例について説明した。しかし、これに代えて、次のように温度センサ15を配置した本第2実施形態について図11を参照して説明する。
 すなわち、本実施形態のヒータ装置1では、発熱部12に対してZ方向に重なるように温度センサ15が配置されている。このため、上記第1実施形態に比べて、発熱部12および温度センサ15の間の距離を短くすることができる。したがって、温度センサ15によって発熱部12の温度を精度よく検出することができる。これにより、電子制御装置30により発熱部12の温度を高精度に制御することができる。
 本実施形態の発熱部12は、1つの蛇行部によって構成されている。
 (第3実施形態)
 上記第1、第2実施形態では、絶縁層14において温度センサ15をZ方向反乗員側から覆うセンサカバー部14dを形成した例を説明したが、これに代えて、センサカバー部14dを削除した本第3実施形態について図13を用いて説明する。
 本実施形態のヒータ装置1では、図2中のセンサカバー部14dが削除されている。このため、図13に示すように、温度センサ15はZ方向反乗員側に露出するように絶縁層14が形成されている。
 この場合、ヒータ装置1の穴部13a内(すなわち、温度センサ15の周囲)の熱容量が上記第1実施形態に比べて小さくなる。このため、外表面14aのうち穴部13aに重なる領域14bに乗員の指5aが接触すると、外表面14aの領域14bから短時間で乗員の指5aに熱が大量に移動する。
 これにより、図14中のグラフKa、Kbに示すように、温度センサ15の検知温度が上記第1実施形態に比べて短時間で大きく低下する。したがって、外表面14aのうち領域14bに乗員の指5aが接触することを検出する感度を高めることができる。
 ここで、図14中のグラフKa、Kbは、外表面14aの領域14bに乗員の指5aが接触した以降における、温度センサ15の検知温度の変化を示す。グラフKaは、センサカバー部14dを設けた場合の温度センサ15の検知温度を示す。グラフKbは、センサカバー部14dを設けていない場合の温度センサ15の検知温度を示す。
 (第4実施形態)
 上記第1~第3実施形態では、静電容量の変化によって被検出対象の接触・近接を検出する検出部13を用いた例を説明したが、これに代えて、スイッチのオン、オフによって被検出対象の接触、非接触を検出する検出部13を用いた本第4実施形態について説明する。
 図15、図16に本実施形態のヒータ装置1の検出部13の具体的な構成を示す。本実施形態の検出部13は、固定基板130、固定接点131、および可動接点132を備える。
 可動接点132は、複数の分割可動接点132aを備える。複数の分割可動接点132aは、それぞれ、絶縁基部11のうちZ方向反乗員側に配置されている。複数の分割可動接点132aは、それぞれ、絶縁基部11に沿ってX方向、およびY方向に沿って並べられている。
 複数の分割可動接点132aは、それぞれ、検出電極部133に半田によって接合されている。検出電極部133は、絶縁基部11のうちZ方向反乗員側に配置されている。検出電極部133は、検出部13の検出信号を電子制御装置30に出力するための配線の一部を構成する検出部用電極部である。
 検出電極部133は、銅等の導電性の金属材料によって絶縁基部11に沿うように薄膜状に形成されている。検出電極部133は、絶縁基部11に対して蒸着や印刷等によって形成されているパターンである。
 本実施形態では、絶縁基部11、発熱部12、温度センサ15の電極16a、16b、および検出電極部133が一体成型品を構成する。すなわち、発熱部12、温度センサ15の電極16a、16b、および検出電極部133が絶縁基部11に一体化された回路基板が構成されていることになる。
 固定基板130は、絶縁基部11に対してZ方向反乗員側に間隔を開けて配置されている。固定基板130は、電気絶縁性材料によって絶縁基部11に沿うように薄膜状に形成されている。
 固定接点131は、複数の分割固定電極部131aを備える。複数の分割固定電極部131aは、それぞれ固定基板130のうちZ方向乗員側に配置されている。複数の分割固定電極部131aは、それぞれ、固定基板130に支持されている。複数の分割固定電極部131aは、複数の分割可動接点132aのうち対応する分割可動接点132aに対して間隔を開けて対向するように並べられている。
 本実施形態の固定接点131(具体的には、複数の分割固定電極部131a)と、可動接点132(具体的には、複数の分割可動接点132a)とは、外表面14aへの乗員5の指5aの接触の有無によってオン、オフするスイッチを構成する(図17参照)。固定基板130および絶縁基部11の間に間隔が形成されるように固定基板130および絶縁基部11が絶縁層14によって支持されている。
 本実施形態の固定基板130には、温度センサ15を収納する貫通穴134が設けられている。このため、後述するように、ヒータ装置1の外表面14aに乗員5の指5aが触れて、絶縁層14が絶縁基部11とともに弾性変形した際に、温度センサ15が固定基板130に干渉することを未然に防止することができる。
 このように構成される本実施形態のヒータ装置1では、外表面14aのうち領域14cに乗員5が触れていないときには、複数の分割固定電極部131aと複数の分割可動接点132aとの間の間隔が開けられている。このことにより、スイッチとしての検出部13がオフされることになる。
 一方、ヒータ装置1の外表面14aのうち領域14cから乗員5の指5aが触れると、乗員5の指5aから力が外表面14a、および発熱部12を通して絶縁基部11に伝わる。これに伴い、絶縁基部11が弾性変形する。このため、複数の分割可動接点132aのうちいずれか分割可動接点132aが、Z方向反乗員側に変位して、複数の分割固定電極部131aのうち対応する分割固定電極部131aに接触する。このことにより、スイッチとしての検出部13がオンされることになる。
 次に、外表面14aのうち領域14cから乗員5の指5aが離れると、乗員5の指5aからの力が絶縁基部11に伝わることが停止される。これに伴い、絶縁基部11の弾性変形が戻る。このため、複数の分割可動接点132aのうちいずれか分割可動接点132aが、Z方向乗員側に変位する。このため、複数の分割固定電極部131aと複数の分割可動接点132aとの間の間隔が開けられている。このことにより、スイッチとしての検出部13がオフされることになる。
 以上により、外表面14aのうち領域14cに乗員5の指5aが触れているか否かによって、オン、オフするスイッチとしての検出部13が構成されることになる。
 以上説明した本実施形態によれば、検出部13は、乗員5による外表面14aへの接触、非接触によってオン、オフするスイッチを構成する。このため、電子制御装置30は、検出部13のオン、オフによって乗員5による外表面14aへの接触、非接触を検出することができる。
 本実施形態の絶縁基部11、発熱部12、温度センサ15の電極16a、16b、および検出電極部133が一体成型品を構成する。このため、絶縁基部11、発熱部12、温度センサ15の電極16a、16b、および検出電極部133を別々の部品で構成する場合に比べて、部品点数を減らすことができるので、製造コストを下げることができる。
 (第5実施形態)
 上記第1~第4実施形態では、1つの発熱部12に対して1つの温度センサ15を用いた例について説明したが、これに代えて、1つの発熱部12に対して2つの以上の温度センサ15を用いた本第5実施形態について図18~図23を用いて説明する。2つの以上の温度センサ15のうち一方が第1温度センサに対応し、他方が第2温度センサに対応する。
 本実施形態のヒータ装置1の2つの温度センサ15は、それぞれ、絶縁基部11および発熱部12に対してZ方向反乗員側に配置されている。2つの温度センサ15は、それぞれ、発熱部12に対して外表面14aと反対側に配置され、かつ検出部13に対してX方向にオフセットされている。2つの温度センサ15は、それぞれ、絶縁基部11に支持されている。
 本実施形態の検出部13には、Z方向反乗員側に開口した2つの穴部13aが設けられている。すなわち、2つの穴部13aのそれぞれの内側には、検出部13が形成されていないことになる。
 2つの温度センサ15のうち一方の温度センサ15は、2つの穴部13aのうち一方の穴部13aに収納され、他方の温度センサ15は、2つの穴部13aのうち一方の穴部13a以外の穴部13aに収納されている。
 このため、2つの温度センサ15は、検出部13に対してX方向およびY方向にオフセットして配置されていることになる。本実施形形態では、外表面14aのうち2つの穴部13aのそれぞれに重なる2つの領域14bが形成されることになる。
 このことにより、2つの温度センサ15は、検出部13に対してX方向においてオフセットして配置されることになる。
 本実施形態のヒータ装置1は、上記第3実施形態のヒータ装置1において、1つの温度センサ15に代えて2つの温度センサ15を設けた構成になっている。このため、本実施形態のヒータ装置のうち12つの温度センサ15以外の他の構成は、上記第3実施形態と実質的に同じであるため、その説明を省略する。
 このように構成される本実施形態のヒータ装置1の作動について説明する。
 本実施形態の電子制御装置30は、温度制御処理および接触制御処理を交互に実行する。以下、温度制御処理および接触制御処理を別々に説明する。
 (温度制御処理)
 電子制御装置30は、図5に代わる図20のフローチャートにしたがって、温度制御処理を実行する。
 まず、ステップS101において、2つの温度センサ15の検出温度のうち高い検出温度(以下、MAX値という)がA温度以下であるか否かについて2つの温度センサ15の検出に応じて判定する。
 このとき、MAX値がA温度以下であるとしてステップS101でYESと判定すると、ステップS110において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を接続させる。すなわち、スイッチ31を介して発熱部12をオンさせることになる。
 このため、バッテリBaから電流がスイッチ31、発熱部12を通してグランドに流れる。これに伴い、発熱部12から熱が発生される。この熱は、外表面14aから輻射熱として乗員5の太腿、膝、脛等に輻射される。これに伴い、発熱部12の温度は上昇する。
 次に、ステップS121において、MAX値がB温度以上であるか否かについて2つの温度センサ15の検出に応じて判定する。B温度としては、A温度よりも高い温度が設定されている。
 このとき、MAX値がB温度未満であるとしてステップS120でNOと判定すると、スイッチ31をオンさせたまま、ステップS101に戻る。
 このとき、MAX値がA温度よりも高く、かつ発熱部12の温度がB温度未満である状態が継続されると、ステップS100のNO判定、およびステップS120のNO判定が繰り返される。このため、スイッチ31がバッテリBaの正側電極と発熱部12との間を接続した状態が継続されることになる。これにより、発熱部12に継続して通電されて発熱部12が継続して発熱する。
 その後、MAX値がB温度以上になると、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。すなわち、スイッチ31を介して発熱部12をオフさせることになる。
 このため、バッテリBaからスイッチ31、発熱部12を通してグランドに電流が流れることが停止される。これに伴って、発熱部12から射熱が発生されることが停止される。これに伴い、発熱部12の温度は低下する。
 このように2つの温度センサ15の検出温度のうち高い検出温度を発熱部12の代表温度としてスイッチ31をオン、オフさせることにより、発熱部12の通電を制御する。
 一方、電子制御装置30が2つの温度センサ15の検出温度のうち低い検出温度を発熱部12の代表温度として発熱部12を制御すると、次のような問題が生じる。
 すなわち、説明の便宜上、2つの温度センサ15のうち低い検出温度を検出する温度センサを低温検出温度センサとする。すると、ヒータ装置1の使用状況や外部環境によって外表面14aに温度ムラが生じる場合、発熱部12のうち低温度検出温度センサによって温度が検出される領域以外の他の領域の実際の温度が上昇される。
 このことにより、発熱部12のうち一部の領域の実際の温度が規定温度を超えることになる。
 これに対して、本実施形態によれば、電子制御装置30は、2つの温度センサ15の検出温度のうち高い検出温度を発熱部12の代表温度としてスイッチ31をオン、オフさせることにより、発熱部12を制御する。
 このため、発熱部12の実際の温度を温度制御範囲ΔTW(図22参照)内に収束させて、発熱部12の実際の温度が規定温度以上になることを防ぐことが可能になる。これにより、発熱部12において、規定温度を超えた高温化による熱的な不快感を乗員に与えることを未然に防ぐことができる。
 (接触制御処理)
 電子制御装置30は、図6に代わる図21のフローチャートにしたがって、接触制御処理を実行する。
 まず、ステップS230において、2つの温度センサ15の検知温度の温度差(以下、検知温度差という)が一定温度Tb以上であるか否かを判定する。
 例えば、外表面14aのうち2つの領域14bのうち、一方の領域14bに乗員の指5aが接触すると、外表面14aの領域14bから乗員の指5aに熱が移動する。この場合、上記一方の領域14bに対してZ方向に重なる温度センサ15から熱が外表面14aの領域14bを通して乗員の指5aに熱が移動することになる。このため、上記一方の領域14bに対してZ方向に重なる温度センサ15の検知温度が急激に低下する。
 このとき、2つの領域14bのうち、上記一方の領域14b以外の他方の領域14bには、乗員の指5aが接触されていない。このため、他方の領域14bに対してZ方向に重なる温度センサ15の検知温度は、乗員の指5aの影響を受けない。
 これにより、検知温度差が一定温度Tb以上となるので、ステップS230において、YESと判定する。これに伴い、ステップS221において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。すなわち、スイッチ31を介して発熱部12をオフさせることになる。
 このため、バッテリBaからスイッチ31、発熱部12を通してグランドに電流が流れることが停止される。これに伴って、発熱部12から熱が発生されることが停止される。これに伴い、発熱部12の温度は低下する。
 次に、ステップ240において、検知温度差が一定温度Tb以上となる状態が一定時間Tw以上継続するか否かを判定する。
 このとき、検知温度差が一定温度Tb以上となる状態が一定時間Tw以上継続したときには、ステップ240において、ヒータ装置1に故障が生じているとして、NOと判定する。これに伴い、ステップS250に進んで、ヒータ装置1の作動を停止する。これに加えて、ヒータ装置1に故障が生じた旨をメモリに記憶させる。
 一方、検知温度差が継続して一定温度Tb以上となる継続時間が一定時間Tw未満であるときには、ステップ240において、ヒータ装置1に故障が生じていないとして、YESと判定する。これに伴い、ステップS230に戻る。
 また、外表面14aのうち2つの領域14bに対して乗員の指5aが接触していない場合には、2つの温度センサ15の検知温度は、それぞれ、乗員の指5aの影響を受けない。このため、2つの温度センサ15の検知温度差が一定温度Tb未満となる。これに伴い、ステップ230においてNOと判定される。これに伴い、ステップS210に移行する。
 このとき、検出部13の検出値に応じて外表面14aのうち検出部13に重なる領域14cに乗員の指5aが接触或いは、近接したとして、ステップS210でYESと判定される場合がある。このときには、ステップS220において、スイッチ31を制御してバッテリBaの正側電極と発熱部12との間を開放させる。
 すなわち、スイッチ31を介して発熱部12をオフさせることになる。これにより、発熱部12の温度を低下させることができる。これに伴い、ステップS230に戻る。
 なお、ステップS101、S110、S121、S1130は、第3制御部に対応する。ステップS230、S221は、おける第3制御部に対応する。
 以上説明した本実施形態によれば、電子制御装置30は、2つの温度センサ15の検知温度の検知温度差が一定温度Tb以上であるか否かを判定することにより、外表面14aの領域14bに乗員の指5aが触れたか否かを判定する。このため、これにより、第2領域14Bに乗員の指5aが接触したか否かについて高精度に判定することができる。
 (第6実施形態)
 上記第1~第5実施形態では、絶縁基部11のうちZ方向乗員側およびZ方向反乗員側の両面に、発熱部12、温度センサ15の電極16a、16b、配線16c、16d、および検出部13を形成した例について説明した。
 これに代えて、絶縁基部11のうちZ方向反乗員側の片面に、発熱部12、温度センサ15の電極16a、16b、配線16c、16d、および検出部13を形成した本第6実施形態について図24、図25を参照して説明する
 図24、図25において、図2、図3と同一符号は、同一のものを示し、その説明を省略する。
 本実施形態と上記第1実施形態とは、発熱部12、温度センサ15の電極16a、16b、配線16c、16d、および検出部13の位置が主に相違する。
 本実施形態では、発熱部12、検出部13、温度センサ15の電極16a、16b、および配線16c、16dは、同一層に配置されている。発熱部12、検出部13、温度センサ15の電極16a、16b、および配線16c、16dは、それぞれ、X方向およびY方向にオフセットして配置されている。
 本実施形態の絶縁層14は、絶縁基部11に対してZ方向反乗員側に配置されている。絶縁層14は、発熱部12、検出部13、温度センサ15の電極16a、16b、および配線16c、16dをZ方向反乗員側から覆うように形成されている。
 本実施形態では、絶縁層14のうちX方向中間部には、Z方向反乗員側に開口した穴部13aが形成されている。穴部13aは、検出部13が形成されていない部位として絶縁基部11に対してZ方向反乗員側に形成されている。穴部13a内には、温度センサ15が配置されている。すなわち、温度センサ15は、発熱部12、および検出部13に対してX方向およびY方向にオフセットして配置されている。
 本実施形態の検出部13は、発熱部12に沿うように蛇行するように形成されている。検出部13は、1対の電極の間に挟まれる絶縁体とを備えるコンデンサを構成する。すなわち、検出部13は、その周囲に被検出対象(例えば、乗員の指5a)が近づいたことを静電容量の変化によって検出する静電容量型の近距離センサを構成することになる。
 本実施形態の外表面14aは、絶縁層14のうちZ方向乗員側ではなく、絶縁基部11に対してZ方向乗員側に形成されている。すなわち、外表面14aは、絶縁基部11のうちZ方向乗員側の面によって構成されている。
 さらに、絶縁基部11のうちZ方向反乗員側(すなわち、厚み方向一方側)に、温度センサ15、検出部13、および発熱部12が配置されている。
 このように構成される本実施形態では、電子制御装置30は、上記第1実施形態と同様に、接触制御処理を実行する。
 すなわち、外表面14aのうちZ方向において穴部13aに重なる領域14bに乗員の指5aが接触すると、温度センサ15の検知温度が急激に低下する。このため、ステップS200でYESと判定して、ステップS220に移行して、スイッチ31を介して発熱部12をオフさせることになる。
 一方、検出部13の検出値に応じて、外表面14aのうちZ方向において検出部13に重なる領域14cに乗員の指5aが接触或いは、近接したとしてステップS210でYESと判定する場合がある。その場合電子制御装置30は、ステップS220において、スイッチ31を介して発熱部12をオフさせる。
 このように外表面14aのうち領域14b、或いは領域14cに乗員の指5aが接触すると、電子制御装置30は、スイッチ31を介して発熱部12をオフさせる。
 さらに、本実施形態の電子制御装置30は、上記第1実施形態と同様に、温度制御処理を実行する。この温度制御処理の説明は省略する。
 以上説明した本実施形態によれば、発熱部12が外表面14aに対してZ方向の反乗員側に配置されている。このため、発熱部12と外表面14aとの間の距離を短くすることができる。よって、発熱部12からの熱を外表面14aに良好に伝えることができる。このため、外表面14aから輻射される輻射熱の熱量を確保することができる。このため、良好な暖房性能が確保される。
 本実施形態では、絶縁基部11のうちZ方向反乗員側に発熱部12と温度センサ15とが配置されている。このため、発熱部12および温度センサ15の間の距離を短くすることができるので、発熱部12の温度を精度よく検出することができる。よって、発熱部12の温度制御性を良好に確保することができる。
 さらに、本実施形態では、外表面14aに対してZ方向の反乗員側に温度センサ15が配置されているので、外表面14a側が温度センサ15によって凸凹になることはない。このため、ヒータ装置1の外表面14aをZ方向乗員側から視た際に、良好な見栄えを確保することができる。
 以上により、本実施形態によれば、温度センサ15が適切に設置されて、被検出対象の接触または近接の検出を阻害することなく、温度制御性、性能、見栄えを全て満たしたヒータ装置1を提供することができる。
 本実施形態では、発熱部12、検出部13、温度センサ15の電極16a、16b、および配線16c、16dは、同一層に配置されている。このため、ヒータ装置1のZ方向寸法を小さくすることができる。
 (他の実施形態)
 (1)上記第1~第4実施形態では、外表面14aのうち検出部13がZ方向に重なる領域14cに乗員の指5aが接触(或いは、近接)した場合には、発熱部12への通電を停止した例について説明したが、これに限らず、次のようにしてもよい。
 すなわち、電子制御装置30は、乗員の指5aが領域14cに接触或いは、近接した場合には、以下のようにしてもよい。すなわち、スイッチ31をスイッチング制御して、乗員の指5aが領域14cに接触或いは、近接したことを検出していない場合に比べてバッテリBaから発熱部12に流れる電流(すなわち、通電量)を小さくしてもよい。
 (2)上記第1~第4実施形態では、外表面14aのうち温度センサ15がZ方向に重なる領域14bに乗員の指5aが接触した場合には、発熱部12への通電を停止した例について説明したが、これに限らず、次のようにしてもよい。
 すなわち、電子制御装置30は、乗員の指5aが領域14bに接触した場合には、スイッチ31をスイッチング制御して、乗員の指5aが領域14bに接触したことを検出していない場合に比べてバッテリBaから発熱部12に流れる電流(すなわち、通電量)を小さくしてもよい。
 (3)上記第5実施形態では、電子制御装置30は、2つの温度センサ15の検出温度のうち高い検知温度を代表温度として発熱部12の温度を制御した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、1つの発熱部12に対して3つ以上の温度センサ15を採用し、電子制御装置30は、3つ以上の温度センサ15の検出温度のうち最も高い検知温度を代表温度として発熱部12の温度を制御する。
 さらに、電子制御装置30は、3つ以上の温度センサ15の検出温度のうち最も高い検知温度と最も低い検知温度との温度差を検知温度差として求め、この求めた検知温度差が一定温度Tb以上であるか否かを判定する。
 ここで、電子制御装置30は、検知温度差が一定温度Tb以上であるか否かを判定することにより、外表面14aの領域14bに乗員の指5aが触れたか否かを判定する。
 (4)上記第1~第4実施形態では、温度センサ15の検出温度と閾値(すなわち、A温度、B温度)との比較に応じてスイッチ31をオン、オフして発熱部12の温度を制御した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、温度センサ15の検出温度と閾値(すなわち、A温度、B温度)との比較に応じて、スイッチ31をスイッチング制御して発熱部12の温度を制御する。
 具体的には、スイッチ31のオン期間Tonとスイッチ31のオフ期間Toffの比率を示すデューテイ比を温度センサ15の検出温度と閾値(すなわち、A温度、B温度)との比較に応じて制御する。このため、発熱部12に流れる平均電流を制御して発熱部12の発熱量を制御する。デューテイ比は、Ton/(Ton+Toff)によって設定されている。
 (5)上記第6実施形態では、検出部13は、その周囲に被検出対象が近づいたことを静電容量の変化によって検出する静電容量型の近距離センサを構成した例について説明した。しかし、これに代えて、上記第6実施形態において、上記第4実施形態と同様に、被検出対象の接触、非接触をスイッチのオン、オフによって検出する検出部13を構成してもよい。
 (6)上記第6実施形態では、絶縁基部11のうちZ方向乗員側の面によって外表面14aを構成した例について説明したが、これに代えて、絶縁基部11のうちZ方向乗員側に絶縁層を形成し、この形成される絶縁層によって外表面14aを構成してもよい。
 (7)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記第1~第5実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、ヒータ装置は、通電により熱を発生する発熱部と、発熱部からの熱を輻射する外表面と、外表面に物体が接触したことを検出する検出部とを備える。
 ヒータ装置は、発熱部および外表面を結ぶ方向を第1方向としたとき、検出部の検出に基づいて外表面のうち検出部と第1方向にて重なる第1領域(14c)に物体が接触したか否かを判定する第1制御部を備える。第1制御部は、第1領域に物体が接触したことを検出した場合には、発熱部への通電を停止する、或いは第1領域に物体が接触したことを検出していない場合に比べて発熱部への通電量を小さくする。
 ヒータ装置は、第1方向に交差する方向を第2方向としたとき、検出部に対して第2方向にオフセットして配置され、発熱部の温度を検出する温度センサと、温度センサの検出温度に基づいて発熱部の温度を制御する第2制御部とを備える。
 ヒータ装置は、外表面のうち温度センサと第1方向にて重なる第2領域に物体が接触したか否かについて温度センサの検出温度に基づいて判定する第3制御部を備える。第3制御部は、第2領域に物体が接触したと判定した場合には、第2領域に物体が接触していないと判定した場合に比べて発熱部への通電量を小さくする、或いは発熱部への通電を停止する。
 第2の観点によれば、検出部は、発熱部に対して外表面の反対側に配置されている。
 第3の観点によれば、温度センサは、発熱部に対して第1方向にて重なるように配置されている。これにより、温度センサによって発熱部の温度を精度よく検出することができる。
 第4の観点によれば、温度センサは、第1方向のうち外表面と反対側に露出している。このため、温度センサの周囲の熱容量が小さくなるため、温度センサの温度検出に基づいて、第2領域に物体が接触することを検出する感度を高めることができる。
 第5の観点によれば、ヒータ装置は、第1制御部、第2制御部、および第3制御部を構成する電子制御装置と、電気絶縁性材料によって形成され、温度センサ、検出部、および発熱部を搭載する絶縁基部とを備える。
 ヒータ装置は、温度センサの検出信号を電子制御装置に伝えるための温度センサ用電極部と、検出部の検出信号を電子制御装置に伝えるための検出部用電極部を備える。絶縁基部、発熱部、温度センサ用電極部、および検出部用電極部が一体成形品を構成している。
 第6の観点によれば、検出部は、第1領域に物体が接触したときオンし、第1領域から物体が離れるとオフするスイッチを構成する。
 第7の観点によれば、ヒータ装置は、第2制御部、第2制御部、および第3制御部を構成する電子制御装置と、電気絶縁性材料によって形成され、温度センサ、検出部、および発熱部を搭載する絶縁基部とを備える。
 ヒータ装置は、温度センサの検出信号を電子制御装置に伝えるための温度センサ用電極部を備える。絶縁基部、発熱部、温度センサ用電極部、および検出部が一体成形品を構成している。
 第8の観点によれば、検出部は、第1領域に物体が接触したことを静電容量の変化によって検出する。
 第9の観点によれば、温度センサを第1温度センサとし、第1温度センサおよび検出部に対して第2方向にオフセットして配置され、発熱部の温度を検出する1つ以上の第2温度センサを備える。第3制御部は、第1温度センサの検出温度と第2温度センサの検出温度との温度差が閾値以上であるか否かを判定することにより、第2領域に物体が接触したか否かを判定する。これにより、第2領域に物体が接触したか否かについて高精度に判定することができる。
 第10の観点によれば、絶縁基部は、温度センサおよび検出部と、発熱部との間に配置されている。
 第11の観点によれば、絶縁基部は、薄膜状に形成されており、絶縁基部のうち厚み方向一方側に、温度センサ、検出部、および発熱部が配置されている。

Claims (11)

  1.  通電により熱を発生する発熱部(12)と、
     前記発熱部からの熱を輻射する外表面(14a)と、
     前記外表面に物体(5a)が接触したことを検出する検出部(13)と、
     前記発熱部および前記外表面を結ぶ方向を第1方向(Z)としたとき、前記検出部の検出に基づいて前記外表面のうち前記検出部と前記第1方向にて重なる第1領域(14c)に前記物体が接触したか否かを判定し、前記第1領域に前記物体が接触したことを検出した場合には、前記発熱部への通電を停止する、或いは前記第1領域に前記物体が接触したことを検出していない場合に比べて前記発熱部への通電量を小さくする第1制御部(S210、S220)と、
     前記第1方向に交差する方向を第2方向(X)としたとき、前記検出部に対して前記第2方向にオフセットして配置され、前記発熱部の温度を検出する温度センサ(15)と、
     前記温度センサの検出温度に基づいて前記発熱部の温度を制御する第2制御部(S100、S110、S120、S130、S101、S121)と、
     前記外表面のうち前記温度センサと前記第1方向にて重なる第2領域(14b)に前記物体が接触したか否かについて前記温度センサの検出温度に基づいて判定し、前記第2領域に前記物体が接触したと判定した場合には、前記第2領域に前記物体が接触していないと判定した場合に比べて前記発熱部への通電量を小さくする、或いは前記発熱部への通電を停止する第3制御部(S200、S220、S230、S221)と、
     を備えるヒータ装置。
  2.  前記検出部は、前記発熱部に対して前記外表面の反対側に配置されている請求項1に記載のヒータ装置。
  3.  前記温度センサは、前記発熱部に対して前記第1方向にて重なるように配置されている請求項1または2に記載のヒータ装置。
  4.  前記温度センサは、前記第1方向のうち前記外表面と反対側に露出している請求項1ないし3のいずれか1つに記載のヒータ装置。
  5.  前記第1制御部、前記第2制御部、および前記第3制御部を構成する電子制御装置(30)と、
     電気絶縁性材料によって形成され、前記温度センサ、前記検出部、および前記発熱部を搭載してなる絶縁基部(11)と、
     前記温度センサの検出信号を前記電子制御装置に伝えるための温度センサ用電極部(16a、16b)と、
     前記検出部の検出信号を前記電子制御装置に伝えるための検出部用電極部(133)と、を備え、
     前記絶縁基部、前記発熱部、前記温度センサ用電極部、および前記検出部用電極部が一体成形品を構成している請求項1ないし4のいずれか1つに記載のヒータ装置。
  6.  前記検出部は、前記第1領域に前記物体が接触したときオンし、前記第1領域から前記物体が離れるとオフするスイッチを構成する請求項1ないし5のいずれか1つに記載のヒータ装置。
  7.  前記第2制御部、前記第2制御部、および前記第3制御部を構成する電子制御装置(30)と、
     電気絶縁性材料によって形成され、前記温度センサ、前記検出部、および前記発熱部を搭載してなる絶縁基部(11)と、
     前記温度センサの検出信号を前記電子制御装置に伝えるための温度センサ用電極部(16a、16b)と、備え、
     前記絶縁基部、前記発熱部、前記温度センサ用電極部、および前記検出部が一体成形品を構成している請求項1ないし3のいずれか1つに記載のヒータ装置。
  8.  前記検出部は、前記第1領域に前記物体が接触したことを静電容量の変化によって検出する請求項1ないし4、7のいずれか1つに記載のヒータ装置。
  9.  前記温度センサを第1温度センサとし、前記第1温度センサおよび前記検出部に対して前記第2方向にオフセットして配置され、前記発熱部の温度を検出する1つ以上の第2温度センサ(15)を備え、
     前記第3制御部は、前記第1温度センサの検出温度と前記第2温度センサの検出温度との温度差が閾値以上であるか否かを判定することにより、前記第2領域に前記物体が接触したか否かを判定する請求項1ないし8のいずれか1つに記載のヒータ装置。
  10.  前記絶縁基部は、前記温度センサおよび前記検出部と、前記発熱部との間に配置されている請求項5または7に記載のヒータ装置。
  11.  前記絶縁基部は、薄膜状に形成されており、
     前記絶縁基部のうち厚み方向一方側に、前記温度センサ、前記検出部、および前記発熱部が配置されている請求項5または7に記載のヒータ装置。
PCT/JP2019/009086 2018-03-13 2019-03-07 ヒータ装置 WO2019176721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019001265.7T DE112019001265T5 (de) 2018-03-13 2019-03-07 Heizvorrichtung
CN201980018375.1A CN111886147B (zh) 2018-03-13 2019-03-07 加热器装置
US17/015,459 US20200406712A1 (en) 2018-03-13 2020-09-09 Heater apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045704A JP6919605B2 (ja) 2018-03-13 2018-03-13 ヒータ装置
JP2018-045704 2018-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/015,459 Continuation US20200406712A1 (en) 2018-03-13 2020-09-09 Heater apparatus

Publications (1)

Publication Number Publication Date
WO2019176721A1 true WO2019176721A1 (ja) 2019-09-19

Family

ID=67907200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009086 WO2019176721A1 (ja) 2018-03-13 2019-03-07 ヒータ装置

Country Status (5)

Country Link
US (1) US20200406712A1 (ja)
JP (1) JP6919605B2 (ja)
CN (1) CN111886147B (ja)
DE (1) DE112019001265T5 (ja)
WO (1) WO2019176721A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199988A (ja) * 2019-06-13 2020-12-17 トヨタ自動車株式会社 車両の暖房装置
JP7268559B2 (ja) * 2019-09-26 2023-05-08 株式会社オートネットワーク技術研究所 給電制御装置
JP2022150761A (ja) * 2021-03-26 2022-10-07 株式会社デンソー ヒータ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320849A (ja) * 1999-05-13 2000-11-24 Matsushita Electric Ind Co Ltd 採暖具
JP2002039561A (ja) * 2000-07-26 2002-02-06 Matsushita Electric Works Ltd 面状発熱装置
JP2010201040A (ja) * 2009-03-04 2010-09-16 Toyota Boshoku Corp シートヒータ温度調節装置
WO2012004971A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 輻射暖房装置
WO2016117375A1 (ja) * 2015-01-22 2016-07-28 株式会社デンソー ヒータ装置
WO2016167075A1 (ja) * 2015-04-15 2016-10-20 株式会社デンソー ヒータ装置
JP2017087883A (ja) * 2015-11-06 2017-05-25 本田技研工業株式会社 接触判定処理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087928A (ja) * 2007-09-13 2009-04-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US8986359B2 (en) * 2007-10-12 2015-03-24 Augustine Temperature Management LLC Multi-zone electric warming blanket
JP4579282B2 (ja) * 2007-10-26 2010-11-10 カルソニックカンセイ株式会社 電気ヒータ装置
US8362398B2 (en) * 2009-11-30 2013-01-29 Nissan North America, Inc. Vehicle radiant heating control system
JP2012056531A (ja) * 2010-09-13 2012-03-22 Denso Corp 車両用輻射熱暖房装置
US20120234932A1 (en) * 2011-03-16 2012-09-20 Denso Corporation Vehicular heating system
JP2012228896A (ja) * 2011-04-25 2012-11-22 Denso Corp 車両用輻射熱暖房装置
JP5724768B2 (ja) * 2011-09-03 2015-05-27 株式会社デンソー 車両用空調装置
JP5842781B2 (ja) * 2012-05-23 2016-01-13 株式会社デンソー 輻射ヒータ装置
US9266433B2 (en) * 2012-07-23 2016-02-23 Ford Global Technologies, Llc Low cost charger circuit with precharge
JP5954235B2 (ja) * 2013-03-28 2016-07-20 株式会社デンソー ヒータ装置
JP6127913B2 (ja) * 2013-03-29 2017-05-17 株式会社デンソー 輻射ヒータ装置
JP6011430B2 (ja) * 2013-04-12 2016-10-19 株式会社デンソー 輻射ヒータ空調システム
JP6245101B2 (ja) * 2014-07-22 2017-12-13 株式会社デンソー 輻射ヒータ装置
JP6447245B2 (ja) * 2014-07-25 2019-01-09 株式会社デンソー 輻射ヒータ装置
CN105984353B (zh) * 2015-02-09 2018-12-25 台达电子工业股份有限公司 电池电源整合装置以及具有该装置的油电混合车电源系统
JP6432687B2 (ja) * 2015-08-27 2018-12-05 株式会社デンソー ヒータ装置
CN107926081B (zh) * 2015-09-15 2021-07-09 株式会社电装 加热器装置
JP6443377B2 (ja) * 2016-03-31 2018-12-26 株式会社豊田自動織機 流体機械
JP6687127B2 (ja) * 2016-12-20 2020-04-22 株式会社デンソー 輻射ヒータ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320849A (ja) * 1999-05-13 2000-11-24 Matsushita Electric Ind Co Ltd 採暖具
JP2002039561A (ja) * 2000-07-26 2002-02-06 Matsushita Electric Works Ltd 面状発熱装置
JP2010201040A (ja) * 2009-03-04 2010-09-16 Toyota Boshoku Corp シートヒータ温度調節装置
WO2012004971A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 輻射暖房装置
WO2016117375A1 (ja) * 2015-01-22 2016-07-28 株式会社デンソー ヒータ装置
WO2016167075A1 (ja) * 2015-04-15 2016-10-20 株式会社デンソー ヒータ装置
JP2017087883A (ja) * 2015-11-06 2017-05-25 本田技研工業株式会社 接触判定処理装置

Also Published As

Publication number Publication date
US20200406712A1 (en) 2020-12-31
CN111886147B (zh) 2023-02-17
JP6919605B2 (ja) 2021-08-18
DE112019001265T5 (de) 2021-04-22
JP2019156162A (ja) 2019-09-19
CN111886147A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2019176721A1 (ja) ヒータ装置
US9381789B2 (en) Heater apparatus
JP6376286B2 (ja) ヒータ装置
JP6288310B2 (ja) ヒータ装置
US20220001720A1 (en) Heater device
WO2019198413A1 (ja) ヒータ装置
CN111096067B (zh) 加热器装置
CN106576399B (zh) 辐射加热器装置
US20210206230A1 (en) Heater device
WO2017047301A1 (ja) ヒータ装置
JP6863387B2 (ja) 輻射ヒータ装置
US20210140644A1 (en) Heater device
WO2018150769A1 (ja) ヒータ装置
JP2019207753A (ja) ヒータ装置
JP6669271B2 (ja) 輻射ヒータ装置
WO2019045104A1 (ja) ヒータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767880

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19767880

Country of ref document: EP

Kind code of ref document: A1