WO2019171503A1 - 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置 - Google Patents

発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置 Download PDF

Info

Publication number
WO2019171503A1
WO2019171503A1 PCT/JP2018/008801 JP2018008801W WO2019171503A1 WO 2019171503 A1 WO2019171503 A1 WO 2019171503A1 JP 2018008801 W JP2018008801 W JP 2018008801W WO 2019171503 A1 WO2019171503 A1 WO 2019171503A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
quantum dot
electrode
emitting device
ligand
Prior art date
Application number
PCT/JP2018/008801
Other languages
English (en)
French (fr)
Inventor
昌行 兼弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/008801 priority Critical patent/WO2019171503A1/ja
Priority to CN201880090484.XA priority patent/CN111788866B/zh
Priority to US16/975,639 priority patent/US11342523B2/en
Publication of WO2019171503A1 publication Critical patent/WO2019171503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light emitting device including a light emitting element including quantum dots.
  • Patent Document 1 describes a technique for preventing oxidation of quantum dots and aggregation of quantum dots due to oxidation of the quantum dots by adding an antioxidant to a solvent in which the quantum dots are dispersed.
  • a light-emitting device includes a first electrode, a second electrode, and a light-emitting device including a quantum dot layer between the first electrode and the second electrode.
  • a method for manufacturing a light-emitting device includes a first electrode, a second electrode, and a quantum dot between the first electrode and the second electrode.
  • a method of manufacturing a light emitting device including a light emitting element including a layer, a synthesis step of synthesizing a quantum dot including a core, a shell covering the core, and a ligand having antioxidant properties;
  • the quantum dot is laminated from a coordination step of coordinating a ligand to the surface of the shell of the quantum dot and a solution in which the quantum dot coordinated by the ligand is dispersed in a solvent.
  • a film forming step of forming a dot layer is forming a dot layer.
  • a light-emitting device manufacturing apparatus includes a first electrode, a second electrode, and a quantum dot between the first electrode and the second electrode.
  • a light-emitting device manufacturing apparatus including a light-emitting element including a layer, a synthesis apparatus for synthesizing a quantum dot including a core, a shell covering the core, and a ligand having antioxidant properties;
  • the quantum dot is laminated from a coordination device that coordinates a ligand to the surface of the shell of the quantum dot and a solution in which the quantum dot coordinated by the ligand is dispersed in a solvent.
  • a film forming apparatus for forming a dot layer.
  • oxidation of quantum dots is efficiently prevented, leading to improvement in reliability and lifetime of a light emitting device provided with quantum dots.
  • Embodiment 1 In this specification, the direction from the quantum dot layer of the light emitting device to the first electrode is described as “downward”, and the direction from the quantum dot layer of the light emitting device to the second electrode is described as “upward”.
  • FIG. 1 shows an enlarged sectional view of a light emitting device 2 according to the present embodiment and an enlarged view of a quantum dot 20 provided in the light emitting device 2.
  • the light-emitting device 2 has a structure in which each layer is laminated on an array substrate 4 on which TFTs (Thin Film Transistor) (not shown) are formed.
  • TFTs Thin Film Transistor
  • the light emitting element P is formed by laminating in order from the lower layer.
  • the array substrate 4 is a substrate on which TFTs for driving the first electrode 6 and the second electrode 18 are formed.
  • the material of the substrate may be glass or bendable plastic. When plastic is used as the array substrate 4, a flexible light emitting device 2 can be obtained.
  • the TFT may be formed on the array substrate 4 by a conventionally known method.
  • the first electrode 6 is an anode and the second electrode 18 is a cathode.
  • At least one of the first electrode 6 and the second electrode 18 is a transparent or translucent electrode, and the transparent electrode may include, for example, a transparent oxide such as ITO, ISO, or ISO.
  • a translucent electrode metal materials, such as Al, Ag, and MgAg, may be included, for example.
  • the first electrode 6 or the second electrode 18 may include a metal material, and the metal material is preferably Al, Cu, Au, Ag, or the like having a high visible light reflectivity.
  • the hole injection layer 8, the hole transport layer 10, the electron transport layer 14, and the electron injection layer 16 may contain materials used for each layer of a conventionally known light emitting device.
  • the hole injection layer for example, PEDOT: PSS, it may include MoO 3, NiO and the like.
  • the hole transport layer may include TPD, poly-TPD, PVK, TFB, CBP, NPD, and the like.
  • ZnO nanoparticle, MgZnO nanoparticle, etc. may be included, for example.
  • Alq 3, PBD, TPBi, BCP, Balq, CDBP may contain Liq, or the like.
  • the quantum dot layer 12 has a plurality of quantum dots 20 (semiconductor nanoparticles). In the quantum dot layer 12, one to several layers of the quantum dots 20 may be stacked.
  • the quantum dot 20 is a light-emitting material that has a valence band level and a conduction band level and emits light by recombination of holes in the valence band level and electrons in the conduction band level.
  • the light emitted from the quantum dot 20 has a narrow spectrum due to the quantum confinement effect, and therefore, light having a relatively deep chromaticity can be obtained.
  • the quantum dot 20 is provided with the core 22, the shell 24 which the said core 22 covers, and the ligand 26 coordinated on the surface of the said shell 24, as shown to (b) of FIG. .
  • the core 22 and the shell 24 may include a quantum dot material having a conventionally known core / shell structure.
  • the core 22 preferably contains C, Si, Ge, Sn, P, Se, Te, Cd, Zn, Mg, S, In, and O.
  • the shell 24 contains Cd, Se, S, Zn, Te, In, P, O, Te, and Mg.
  • the ligand 26 has a long chain portion 28, an antioxidant portion 30, and a coordination portion 32.
  • the ligand 26 has an antioxidant portion 30 at one end of the long chain portion 28 and a coordination portion 32 at the other end.
  • the ligand 26 is coordinated to the quantum dot 20 by the coordinate bond between the surface of the shell 24 and the coordination unit 32.
  • the antioxidant part 30 has antioxidant properties. Specifically, the antioxidant unit 30 has a function of preventing the deactivation of the quantum dots 20 by capturing and deactivating oxygen or radical compounds that can cause the quantum dots 20 to deactivate. For example, the antioxidant unit 30 suppresses the reaction between free radicals and oxygen or captures peroxy radicals generated by the reaction. Or the antioxidant part 30 decomposes
  • the antioxidant unit 30 includes, for example, at least one of a hindered amine compound, a phenol compound, a phosphate compound, and a sulfur compound, or a composite compound thereof.
  • the antioxidant part 30 when the antioxidant part 30 contains a hindered amine compound, the antioxidant part 30 generally has a higher antioxidant function than the antioxidant part 30 containing a phenolic compound.
  • the antioxidant part 30 containing a hindered amine compound has a strong photo-antioxidant action. For this reason, in the device in which the quantum dot 20 itself emits light like the light emitting device 2 of the present embodiment, the ligand 26 having the antioxidant part 30 containing the hindered amine compound having a strong photooxidation preventing action is used as the quantum dot. It is preferable that 20 is provided.
  • the light emitting device 2 includes the quantum dot 20 including the ligand 26 having the antioxidant part 30 including the hindered amine compound, which has a strong photo-oxidation preventing action.
  • the hindered amine compound alone is used for the antioxidant part 30, it is preferable from the point that coloring in the light emitting device 2 can be reduced as compared with the case where the composite compound is used.
  • the light emitting device 2 may be colored due to the phenolic compound having a quinone structure.
  • the hindered amine compound alone is used for the antioxidant part 30, the occurrence of coloring of the light emitting device 2 can be reduced.
  • the antioxidant part 30 is composed of R 1 in the general formula (1) and a 2,2,6,6-tetramethylpiperidinol skeleton.
  • R 1 includes a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, a hydroxyalkyl group, an alkoxy group, a hydroxyalkoxy group or an oxy radical.
  • R 1 may contain at least one of a hindered amine compound, a phenol compound, a phosphate compound, and a sulfur compound.
  • R 2 is the long chain portion 28, and — (CH 2 ) n —, — (CH 2 —O) m —, — (CH 2 ) x — (CH ⁇ CH) — (CH 2 ) y — Or a group consisting of these combinations.
  • FIG. 2 is a process cross-sectional view for explaining the method for manufacturing the light emitting device 2.
  • an array substrate 4 including a TFT and various wirings connected to the TFT is manufactured, and a first electrode 6 electrically connected to the TFT is formed on the array substrate 4 using a sputtering method or the like.
  • a hole injection layer 8 and a hole transport layer 10 are formed in this order on the upper layer of the first electrode 6 from below by coating formation or the like to obtain a stacked structure shown in FIG.
  • FIG. 3 is a flowchart for explaining a method for synthesizing the quantum dots 20 and a method for forming the quantum dot layer 12 including the quantum dots 20.
  • FIG. 4 is a schematic diagram for explaining the method of synthesizing the quantum dots 20 in more detail.
  • a quantum dot 20a having a core / shell structure and having a core 22 and a shell 24 covering the core 22 shown in FIG. S10).
  • the quantum dots 20a may be synthesized by a conventionally known synthesis method such as a chemical synthesis method.
  • the diameter DL is preferably 2 to 10 nm.
  • the ligand 26 shown in FIG. 4B is synthesized (step S12).
  • the ligand 26 represented by the general formula (1) has an alcohol having a 2,2,6,6-tetramethylpiperidinol skeleton and a fatty acid at least at one end, and has a desired length. It is obtained by esterifying a compound having a thickness.
  • the esterification can be performed by direct esterification of a fatty acid and an alcohol, a reaction between a halide of a fatty acid and an alcohol, or an ester exchange reaction between a fatty acid and an alcohol.
  • the obtained ester compound can be purified using distillation, recrystallization, a filter medium, a method using an adsorbent, or the like as appropriate.
  • the length LL of the ligand is preferably 0.5 to 5 nm.
  • step S14 the surface of the shell 24 of the synthesized quantum dot 20a and the coordination portion 32 of the ligand 26 are coordinated to form a quantum coordinated by the ligand 26 shown in FIG. Dot 20 is obtained (step S14).
  • the coordination is a method of adding a solution in which the ligand 26 is dispersed to a solution in which the quantum dots 20a are dispersed, or a method of mixing the above two solutions and then centrifuging to remove a residual. Etc. may be performed.
  • FIG. 4C shows a state in which one ligand 26 is coordinated to the shell 24, but more ligands 26 may be coordinated in one quantum dot 20.
  • the solvent 12a may be a solvent of the above-mentioned mixed solution, for example, an acyclic aliphatic solvent such as hexane, octane, decane, a cyclic aliphatic solvent such as cyclohexane, or an aromatic such as toluene. It may be a system solvent.
  • a solution 12b in which the quantum dots 20 are dispersed is applied to the upper surface of the hole transport layer 10 (step S16).
  • a part of the solvent 12a is desorbed from the solution 12b (step S18).
  • the quantum dot layer 12 shown to (c) of FIG. 2 is obtained, and the formation process of the quantum dot layer 12 is completed.
  • an electron transport layer 14, an electron injection layer 16, and a second electrode 18 are formed on the top of the quantum dot layer 12 in order from the bottom by coating or the like, and the stacked structure shown in FIG. Get. Thereby, the light emitting device 2 according to the present embodiment is obtained.
  • the light emitting device 2 includes the quantum dots 20 in which the ligands 26 having antioxidant properties are coordinated in the quantum dot layer 12. For this reason, in this embodiment, the density of the compound having antioxidant properties around the quantum dots is higher than that of the quantum dot layer formed from the solution in which the quantum dots are dispersed, to which the compound having antioxidant properties is added. Is expensive. For this reason, it is possible to improve the antioxidant function for the quantum dots 20 more efficiently. Therefore, the decrease in the light emission efficiency of the light emitting device 2 due to the oxidation of the quantum dots 20 can be more efficiently reduced.
  • the singlet oxygen quenching rate of the antioxidant portion 30 of the ligand 26 is 1 ⁇ 10 5 or more and 1 ⁇ 10 10 or less.
  • the singlet oxygen quenching rate is an index of the antioxidant action of the antioxidant part 30. If the singlet oxygen quenching rate of the antioxidant 30 is within the above range, it is possible to efficiently prevent the quantum dots 20 from being oxidized.
  • FIG. 5 shows an enlarged top view and an enlarged sectional view of the light emitting device 34 according to the present embodiment.
  • FIG. 5A shows the upper surface of the light emitting device 34 according to the present embodiment through the electron transport layer 14, the electron injection layer 16, and the second electrode 18.
  • FIG. 5B is a cross-sectional view taken along line AA in FIG.
  • the light emitting device 34 further includes an edge cover 36 as compared with the light emitting device 2 in the previous embodiment, and each layer from the first electrode 6 to the quantum dot layer 12 is divided into a plurality of light emitting elements. Except for this point, the same configuration may be provided. That is, each layer from the first electrode 6 to the quantum dot layer 12 is formed for each of a plurality of divided light emitting elements.
  • the electron transport layer 14, the electron injection layer 16, and the second electrode 18 are formed in common for the plurality of divided light emitting elements.
  • each layer from the first electrode 6 to the quantum dot layer 12 is divided into a red light emitting element RP, a green light emitting element GP, and a blue light emitting element BP as shown in FIG.
  • the quantum dot layer 12 in the red light emitting element RP includes, as quantum dots, red quantum dots 20R that emit red light when emitting light.
  • the quantum dot layer 12 in the green light emitting element GP and the blue light emitting element BP includes a green quantum dot 20G and a blue quantum dot 20B that emit green light and blue light when emitting light, respectively, as quantum dots.
  • the blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm.
  • Green light is light having an emission center wavelength in a wavelength band of more than 500 nm and not more than 600 nm.
  • Red light is light having an emission center wavelength in a wavelength band greater than 600 nm and less than 780 nm.
  • FIG. 6 are schematic views showing a red quantum dot 20R, a green quantum dot 20G, and a blue quantum dot 20B, respectively, according to the present embodiment.
  • Each of the red quantum dot 20R, the green quantum dot 20G, and the blue quantum dot 20B is arranged on the core 22, the shell 24 covered by the core 22, and the surface of the shell 24, similarly to the quantum dot 20 in the previous embodiment.
  • the ligand 26 positioned.
  • the wavelength of light emitted from a quantum dot is generally proportional to the size of the core diameter of the quantum dot. Therefore, the red quantum dot 20R, the green quantum dot 20G, and the blue quantum dot 20B have different sizes.
  • the diameter of the core 22 of the green quantum dot 20G is smaller than the diameter of the core 22 of the red quantum dot 20R and larger than the diameter of the core 22 of the blue quantum dot 20B.
  • the length of the ligand 26 of the green quantum dot 20G is shorter than the length of the ligand 26 of the red quantum dot 20R, and the length of the ligand 26 of the blue quantum dot 20B. Longer than that.
  • the diameter of the core of the quantum dot is set to a diameter DLR, a diameter DLG, and a diameter DLB.
  • diameter DLR> diameter DLG> diameter DLB may be satisfied.
  • the lengths of the ligands are set to a length LLR, a length LLG, and a length LLB. In this case, length LLR> length LLG> length LLB may be satisfied.
  • each quantum dot and the length of the ligand in the present embodiment have the dimensions described above, so that it is possible to design a quantum dot that emits light of each wavelength more efficiently.
  • Each of the red quantum dot 20R, the green quantum dot 20G, and the blue quantum dot 20B may be manufactured by the same manufacturing method as the quantum dot 20 in the previous embodiment.
  • the length of the ligand 26 in each quantum dot can be designed by changing the length of the long chain portion 28.
  • the edge cover 36 is formed on the array substrate 4.
  • the first electrode 6, the hole injection layer 8, the hole transport layer 10, and the quantum dot layer 12 are formed for each region divided by the edge cover 36.
  • the quantum dot layer 12 the red quantum dot 20R, the green quantum dot 20G, and the blue quantum dot 20B are dispersed in each of the red light emitting element RP, the green light emitting element GP, and the blue light emitting element BP. Formed from solution.
  • the solution 12b in which the red quantum dots 20R are dispersed is applied to the upper layer of the hole transport layer 10 in the red light emitting element RP, and a part of the solvent 12a in the red light emitting element RP is applied. Detach. Thereby, the quantum dot layer 12 in the red light emitting element RP is formed. The same process is performed on the green light emitting element GP and the blue light emitting element BP, thereby forming the quantum dot layer 12 in each of the green light emitting element GP and the blue light emitting element BP.
  • the hole injection layer 8 and the hole transport layer 10 may contain different materials in each light emitting element, and an appropriate material is selected for each material of the quantum dots 20 in each light emitting element. May be formed.
  • the electron transport layer 14, the electron injection layer 16, and the second electrode 18 are formed in order from the bottom on the quantum dot layer 12 and the edge cover 36 by coating or the like. . Thereby, the light emitting device 34 shown in FIG. 5 is obtained.
  • the light emitting device 34 according to the present embodiment includes the quantum dot layer 12 that includes quantum dots emitting red, green, and blue for each different light emitting element. For this reason, the light emitting device 34 according to the present embodiment can display multiple colors. Moreover, since the ligand 26 having an appropriate length can be coordinated for each quantum dot, oxidation of the quantum dot can be reduced more efficiently.
  • FIG. 7 is a block diagram showing the light emitting device manufacturing apparatus 40 in each of the embodiments described above.
  • the light emitting device manufacturing apparatus 40 includes a controller 42, a synthesizing apparatus 44, a coordination apparatus 46, and a film forming apparatus 48.
  • the controller 42 controls the synthesis device 44, the coordination device 46, and the film formation device 48.
  • the synthesizer 44 synthesizes the quantum dots 20a having the core / shell structure and the ligand 26 in the above-described embodiments.
  • the coordination device 46 coordinates the quantum dot 20a having the core / shell structure and the ligand 26 in the above-described embodiments.
  • the film forming apparatus 48 forms each layer of the light emitting device according to each embodiment described above, including the quantum dot layer 12.
  • the light emitting device is a light emitting device including a light emitting element including a first electrode, a second electrode, and a quantum dot layer between the first electrode and the second electrode, wherein the quantum dot In the layer, quantum dots including a core, a shell covering the core, and a ligand having an antioxidant property coordinated on the surface of the shell are stacked.
  • the ligand includes at least one of a hindered amine compound, a phenol compound, a phosphate compound, and a sulfur compound.
  • the singlet oxygen quenching rate of the ligand is 1 ⁇ 10 5 or more and 1 ⁇ 10 10 or less.
  • the light emitting device includes a plurality of the light emitting devices, each of the light emitting devices includes the first electrode and the quantum dot layer, and the second electrode is common to the plurality of light emitting devices.
  • a red light-emitting element including red quantum dots that emit red light in the quantum dot layer; a green light-emitting element including green quantum dots that emit green light in the quantum dot layer; A blue light emitting element including blue quantum dots emitting blue light in the quantum dot layer.
  • the ligand coordinated to the green quantum dot is shorter than the ligand coordinated to the red quantum dot, and the ligand coordinated to the blue quantum dot is coordinated. It is longer than the length of the scale.
  • a method for manufacturing a light emitting device is a method for manufacturing a light emitting device including a light emitting element including a first electrode, a second electrode, and a quantum dot layer between the first electrode and the second electrode.
  • the light emitting device manufacturing apparatus is a light emitting device manufacturing apparatus including a light emitting element including a first electrode, a second electrode, and a quantum dot layer between the first electrode and the second electrode.
  • a film forming apparatus for forming the quantum dot layer in which the quantum dots are stacked from a solution in which the quantum dots coordinated with the ligand are dispersed in a solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

量子ドットを備えた発光デバイスにおいて、効率的に量子ドットの酸化を防止するため、第1電極(6)と、第2電極(18)と、前記第1電極(6)と前記第2電極(18)との間の量子ドット層(12)とを含む発光素子(P)を備え、量子ドット層(12)において、コア(22)と、該コア(22)を覆うシェル(24)と、該シェル(24)の表面に配位し、酸化防止性を有する配位子(26)とを含む量子ドット(20)が積層する発光デバイス(2)を提供する。

Description

発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置
 本発明は量子ドットを含む発光素子を備えた発光デバイスに関する。
 特許文献1には、量子ドットが分散する溶媒に、酸化防止剤を添加して、量子ドットの酸化、および当該量子ドットの酸化による量子ドットの凝集を防止する技術が記載されている。
日本国公開特許公報「特開2010-9995号(2010年1月14日公開)」
 量子ドットを用いたデバイスとして、量子ドットを備えた発光素子が多く提案されている。当該発光素子においては、量子ドットが酸化すると、当該量子ドットが失活し、発光素子の発光効率が低減する。このため、量子ドットを備えた発光素子においては、量子ドットの酸化をより効率的に防止することが求められる。発明者は、特許文献1に記載されているように、量子ドットが分散する溶媒に酸化防止剤を添加するよりも、より効率的に量子ドットの酸化を防止する方法を見出した。
 上記の課題を解決するために、本発明の一態様に係る発光デバイスは、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスであって、前記量子ドット層において、コアと、該コアを覆うシェルと、該シェルの表面に配位し、酸化防止性を有する配位子とを含む量子ドットが積層する。
 また、上記の課題を解決するために、本発明の一態様に係る発光デバイスの製造方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造方法であって、コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成工程と、前記配位子を前記量子ドットの前記シェルの表面に配位させる配位工程と、前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜工程とを備える。
 また、上記の課題を解決するために、本発明の一態様に係る発光デバイスの製造装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造装置であって、コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成装置と、前記配位子を前記量子ドットの前記シェルの表面に配位させる配位装置と、前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜装置とを備える。
 本発明の一態様によれば、量子ドットの酸化を効率的に防止し、量子ドットを備えた発光デバイスの信頼性および寿命の改善につながる。
本発明の実施形態1に係る発光デバイスの断面図と、当該発光デバイスが備える量子ドットを示す概略図である。 本発明の実施形態1に係る発光デバイスの製造方法の一例を示す工程断面図である。 本発明の実施形態1に係る量子ドット層の形成方法の一例を示すフローチャートである。 本発明の実施形態1に係る量子ドットと配位子との合成方法、および量子ドットと配位子との配位方法を説明するための概略図である。 本発明の実施形態2に係る発光デバイスの上面図および断面図である。 本発明の実施形態2に係る量子ドットの構造を示す概略図である。 本発明の各実施形態に係る発光デバイスの製造装置を示すブロック図である。
 〔実施形態1〕
 本明細書において、発光デバイスの量子ドット層から第1電極への方向を「下方向」、発光デバイスの量子ドット層から第2電極への方向を「上方向」として記載する。
 図1は、本実施形態に係る発光デバイス2の拡大断面図と発光デバイス2が備える量子ドット20の拡大図とを示す。
 図1の(a)に示すように、発光デバイス2は、図示しないTFT(Thin Film Transistor)が形成されたアレイ基板4上に、各層が積層する構造を備える。アレイ基板4上には、第1電極6と、正孔注入層8と、正孔輸送層10と、量子ドット層12と、電子輸送層14と、電子注入層16と、第2電極18とが、下層から順に積層して、発光素子Pを形成する。
 アレイ基板4は、第1電極6と第2電極18とを駆動するTFTが形成された基板である。基板の材質としてはガラスであってもよく、折り曲げ可能なプラスチックであってもよい。プラスチックをアレイ基板4として用いる場合は、フレキシブルな発光デバイス2を得ることができる。TFTは、従来公知の方法によって、アレイ基板4に形成されていてもよい。
 本実施形態においては、第1電極6はアノードであり、第2電極18はカソードである。第1電極6と第2電極18とは、少なくとも一方が透明もしくは半透明電極であり、透明電極としては、例えば、ITO、IZO、またはISO等の透明酸化物を含んでいてもよい。半透明電極としては、例えば、Al、Ag、MgAg等の金属材料を含んでいてもよい。また、第1電極6または第2電極18は金属材料を含んでいてもよく、金属材料としては、可視光の反射率の高いAl、Cu、Au、またはAg等が好ましい。
 正孔注入層8、正孔輸送層10、電子輸送層14、および電子注入層16は、従来公知の発光素子の各層に用いられる材料を含んでいてもよい。正孔注入層としては、例えば、PEDOT:PSS、MoO、NiO等を含んでいてもよい。正孔輸送層としては、例えば、TPD、poly-TPD、PVK、TFB、CBP、NPD等を含んでいてもよい。電子輸送層としては、例えば、ZnOナノ粒子、MgZnOナノ粒子等を含んでいてもよい。電子注入層としては、例えば、Alq、PBD、TPBi、BCP,Balq、CDBP,Liq等を含んでいてもよい。
 量子ドット層12は、複数の量子ドット20(半導体ナノ粒子)を有する。量子ドット20は、量子ドット層12において、1から数層が積層されていてもよい。量子ドット20は、価電子帯準位と伝導帯準位とを有し、価電子帯準位の正孔と伝導帯準位の電子との再結合によって発光する発光材料である。量子ドット20からの発光は、量子閉じ込め効果により狭いスペクトルを有するため、比較的深い色度の発光を得ることが可能である。
 本実施形態において、量子ドット20は、図1の(b)に示すように、コア22と、当該コア22の覆うシェル24と、当該シェル24の表面に配位する配位子26とを備える。
 コア22およびシェル24は、従来公知のコア/シェル構造を有する量子ドットの材料を含んでいてもよい。本実施形態においては、好ましくは、コア22はC、Si、Ge、Sn、P、Se、Te、Cd、Zn、Mg、S、In、Oを含んでいる。シェル24はCd、Se、S、Zn、Te、In、P、O、Te、Mgを含んでいる。なお、コア22はシェル24に覆われているが、図面においては、図示の簡単のため、シェル24を透過してコア22を図示している。
 配位子26は、長鎖部28と、酸化防止部30と、配位部32とを有する。配位子26は、長鎖部28の一端に酸化防止部30を有し、他端に配位部32を有する。配位子26は、シェル24の表面と配位部32とが配位結合することにより、量子ドット20に配位する。
 酸化防止部30は、酸化防止性を有する。具体的には、酸化防止部30は、量子ドット20が失活する要因となり得る、酸素またはラジカル化合物を捕捉および失活させることにより、量子ドット20の失活を防止する機能を有する。酸化防止部30は、例えば、フリーラジカルと酸素との反応の抑制、または当該反応により発生するパーオキシラジカルの捕捉を行う。または、酸化防止部30は、例えば、パーオキシラジカルの水素引き抜き反応により発生するハイドロパーオキサイドの分解を行う。
 酸化防止部30は、例えば、ヒンダードアミン化合物、フェノール系化合物、リン酸系化合物、および硫黄系化合物の内、少なくとも1つ、またはこれらの複合化合物を含む。特に、酸化防止部30がヒンダードアミン化合物を含む場合、酸化防止部30は、一般に、フェノール系化合物を含む酸化防止部30よりも高い酸化防止機能を有する。さらに、ヒンダードアミン化合物を含む酸化防止部30は、強力な光酸化防止作用を有する。このため、本実施形態の発光デバイス2のように、量子ドット20自身が発光するデバイスにおいて、強い光酸化防止作用を有する、ヒンダードアミン化合物を含む酸化防止部30を有する配位子26を、量子ドット20が備えることは好ましい。
 また、発光デバイス2を、スマートフォン、ウェアラブル端末、デジタルサイネージ等、屋外において使用する表示デバイスとして採用することが考えられる。このような場合、強力な光酸化防止作用を有する、ヒンダードアミン化合物を含む酸化防止部30を有する配位子26を含む量子ドット20を、発光デバイス2が備えることは好ましい。
 更に、ヒンダードアミン化合物単独を酸化防止部30に用いた場合においては、上記複合化合物を用いる場合と比較して、発光デバイス2における着色を低減することができる点から好ましい。例えば、酸化防止部30に、ヒンダードアミン化合物とフェノール系化合物との複合化合物を用いた場合、フェノール系化合物がキノン構造を有することに起因して、発光デバイス2が着色されることがある。一方、ヒンダードアミン化合物単独を酸化防止部30に用いた場合、発光デバイス2の着色の発生を低減することができる。
 本実施形態に係る配位子26の一例は、下記の一般式(1)によって表される。
Figure JPOXMLDOC01-appb-C000001
 なお、酸化防止部30は、一般式(1)におけるRと、2,2,6,6-テトラメチルピペリジノール骨格とからなる。ここでRは、水素原子、ヒドロキシル基、炭素原子1~30のアルキル基、ヒドロキシアルキル基、アルコキシ基、ヒドロキシアルコキシ基またはオキシラジカルを含む。また、Rは、ヒンダードアミン化合物、フェノール系化合物、リン酸系化合物、および硫黄系化合物の内、少なくとも1つを含んでいてもよい。
 また、Rは、長鎖部28であり、-(CH-、-(CH-O)-、-(CH-(CH=CH)-(CH-、またはこれらの組み合わせからなる基から選択される。ここで0≦n≦18、0≦m≦18、4≦n+m≦18、4≦x+y≦18、4≦m+x+y≦18である。
 また、Qは、配位部32であり、ヒドロキシル基、チオール基、カルボキシル基、アミノ基、スルホ基、メルカブト基、リン酸基(HPO-)、PH(=O)-、またはPOH(OH)(=O)-である。
 図2を参照して、本実施形態に係る発光デバイス2の製造方法について説明する。図2は、発光デバイス2の製造方法を説明するための工程断面図である。
 はじめに、TFTと、当該TFTに接続する各種配線とを備えたアレイ基板4を作製し、TFTに電気的に接続する第1電極6を、スパッタ法等を使用してアレイ基板4上に形成する。次いで、第1電極6の上層に、正孔注入層8と、正孔輸送層10とを、塗布形成等によって下方から順に形成し、図2の(a)に示す積層構造を得る。
 次いで、量子ドット層12を形成する。図2に加えて、図3および図4を参照し、量子ドット層12の形成について詳細に説明する。図3は、量子ドット20の合成方法および量子ドット20を備えた量子ドット層12の形成方法について説明するためのフローチャートである。図4は、量子ドット20の合成方法をより詳細に説明するための概略図である。
 はじめに、図4の(a)に示す、コア22とコア22を覆うシェル24とを備えた、コア/シェル構造を有する、配位子26が配位する前の量子ドット20aを合成する(ステップS10)。量子ドット20aは、化学合成法等、従来公知の合成方法にて合成してもよい。この際、得られる量子ドット20aのコア22の直径をDLとすると、直径DLは2~10nmが好ましい。
 上述した量子ドット20aの合成とは別に、図4の(b)に示す、配位子26の合成を行う(ステップS12)。例えば、一般式(1)にて表される配位子26は、2,2,6,6-テトラメチルピペリジノール骨格を有するアルコールと、少なくとも一方の末端に脂肪酸を有し、所望の長さを有する化合物とをエステル化させて得られる。例えば、脂肪酸とアルコールとの直接エステル化、脂肪酸のハロゲン化物とアルコールとの反応、または脂肪酸とアルコールとのエステル交換反応等によって、上記エステル化が可能である。得られたエステル化合物は、蒸留、再結晶、ろ過材、または吸着材を用いる方法等を適宜使用して精製できる。この際、得られる配位子26の一端から他端まで、すなわち、酸化防止部30の端部から配位部32の端部までの長さを配位子の長さLLとすると、長さLLは0.5~5nmが好ましい。
 次いで、合成された量子ドット20aのシェル24の表面と、配位子26の配位部32とを配位結合させて、図4の(c)に示す、配位子26が配位した量子ドット20を得る(ステップS14)。上記配位は、量子ドット20aが分散する溶液に、配位子26を分散させた溶液を添加する方法、または、上述の2つの溶液を混合した後、遠心分離して残差を除去する方法等により行ってもよい。図4の(c)は、シェル24に1つの配位子26が配位した状態を示すが、これより多くの配位子26が1つの量子ドット20において配位していてもよい。
 これにより、図4の(d)に示す、溶媒12a中に量子ドット20が分散する溶液12bが得られる。溶媒12aは、上述した混合液の溶媒であってもよく、例えば、ヘキサン、オクタン、デカン等の非環式脂肪族系溶媒、シクロヘキサン等の環式脂肪族系溶媒、または、トルエン等の芳香族系溶媒であってもよい。
 次いで、図2の(b)に示すように、量子ドット20が分散する溶液12bを正孔輸送層10の上面に塗布する(ステップS16)。次いで、溶液12bの内、溶媒12aを一部脱離する(ステップS18)。これにより、図2の(c)に示す量子ドット層12が得られ、量子ドット層12の形成工程が完了する。
 最後に、量子ドット層12の上層に、電子輸送層14と、電子注入層16と、第2電極18とを、塗布形成等によって下方から順に形成し、図2の(d)に示す積層構造を得る。これにより、本実施形態に係る発光デバイス2が得られる。
 本実施形態に係る発光デバイス2は、酸化防止性を有する配位子26が配位する量子ドット20を量子ドット層12において備えている。このため、本実施形態においては、酸化防止性を有する化合物が添加された、量子ドットが分散する溶液から形成された量子ドット層よりも、量子ドットの周囲における、酸化防止性を有する化合物の密度が高い。このため、量子ドット20に対する酸化防止の機能をより効率的に高めることが可能である。したがって、量子ドット20の酸化による、発光デバイス2の発光効率の低下を、より効率よく低減できる。
 なお、配位子26の酸化防止部30が有する一重項酸素消光速度は、1×10以上1×1010以下である。一重項酸素消光速度は、酸化防止部30の酸化防止作用の指標となる。酸化防止部30が有する一重項酸素消光速度が上述の範囲内であれば、効率よく量子ドット20の酸化を防止することが可能である。
 〔実施形態2〕
 図5は、本実施形態に係る発光デバイス34の拡大上面図と拡大断面図とを示す。図5の(a)は、本実施形態に係る発光デバイス34の上面を、電子輸送層14、電子注入層16、および第2電極18を透過して示す。図5の(b)は、図5の(a)におけるA-A線矢視断面図である。
 本実施形態に係る発光デバイス34は、前実施形態における発光デバイス2と比較して、エッジカバー36をさらに備え、第1電極6から量子ドット層12までの各層が、それぞれ複数の発光素子に分割される点を除いて、同一の構成を備えていてもよい。すなわち、第1電極6から量子ドット層12までの各層は、分割された複数の発光素子ごとに形成されている。なお、本実施形態においては、電子輸送層14、電子注入層16、および第2電極18が、分割された複数の発光素子に共通して形成されている。
 本実施形態においては、第1電極6から量子ドット層12までの各層は、図5に示すように、赤色発光素子RPと、緑色発光素子GPと、青色発光素子BPとに分割されている。赤色発光素子RPにおける量子ドット層12は、量子ドットとして、発光の際に赤色光を発する赤色量子ドット20Rを備えている。さらに、緑色発光素子GPおよび青色発光素子BPにおける量子ドット層12は、それぞれ、量子ドットとして、発光の際に緑色光および青色光を発する、緑色量子ドット20Gおよび青色量子ドット20Bを備えている。
 ここで、青色光とは、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、赤色光とは、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 図6の(a)、(b)、および(c)は、それぞれ、本実施形態に係る、赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bを示す概略図である。赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bのそれぞれは、前実施形態における量子ドット20と同様に、コア22と、当該コア22の覆うシェル24と、当該シェル24の表面に配位する配位子26とを備える。
 量子ドットが発する光の波長は、一般に、量子ドットのコアの径の大きさに比例する。そのため、赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bは、互いに異なる大きさを有する。例えば、緑色量子ドット20Gのコア22の直径は、赤色量子ドット20Rのコア22の直径よりも小さく、青色量子ドット20Bのコア22の直径よりも大きい。これに伴い、本実施形態においては、緑色量子ドット20Gの配位子26の長さは、赤色量子ドット20Rの配位子26の長さよりも短く、青色量子ドット20Bの配位子26の長さよりも長い。
 図6に示すように、赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bのそれぞれにおいて、量子ドットのコアの直径を、直径DLR、直径DLG、および直径DLBとおく。この場合、直径DLR>直径DLG>直径DLBであってもよい。また、図6に示すように、赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bのそれぞれにおいて、配位子の長さを、長さLLR、長さLLG、および長さLLBとおく、この場合、長さLLR>長さLLG>長さLLBであってもよい。
 本実施形態における各々の量子ドットの直径および配位子の長さが、上述した寸法を有することにより、より効率的にそれぞれの波長の光を発する量子ドットを設計することが可能である。
 赤色量子ドット20R、緑色量子ドット20G、および青色量子ドット20Bのそれぞれは、前実施形態における量子ドット20と同一の製造方法によって製造されてもよい。ここで、それぞれの量子ドットにおける配位子26の長さは、長鎖部28の長さを変えることにより、設計することが可能である。
 本実施形態における発光デバイス34の製造方法においては、まず、アレイ基板4上に、エッジカバー36を形成する。次いで、エッジカバー36によって分割された領域ごとに、第1電極6と、正孔注入層8と、正孔輸送層10と、量子ドット層12とを形成する。この際、量子ドット層12は、赤色発光素子RPと、緑色発光素子GPと、青色発光素子BPとのそれぞれにおいて、赤色量子ドット20Rと、緑色量子ドット20Gと、青色量子ドット20Bとが分散する溶液から形成される。
 量子ドット層12の形成において、例えば、始めに、赤色量子ドット20Rが分散する溶液12bを、赤色発光素子RPにおける正孔輸送層10の上層に塗布し、赤色発光素子RPにおける溶媒12aを一部脱離する。これにより、赤色発光素子RPにおける量子ドット層12が形成される。同様の工程を、緑色発光素子GPと、青色発光素子BPとにおいても行うことにより、緑色発光素子GPと、青色発光素子BPとのそれぞれにおける量子ドット層12が形成される。
 なお、正孔注入層8と、正孔輸送層10とは、それぞれの発光素子において異なる材料を含んでいてもよく、それぞれの発光素子における量子ドット20の材料ごとに、適切な材料を選択して形成してもよい。
 最後に、前実施形態と同様に、量子ドット層12およびエッジカバー36の上層に、電子輸送層14と、電子注入層16と、第2電極18とを、塗布形成等によって下方から順に形成する。これにより、図5に示す発光デバイス34が得られる。
 本実施形態に係る発光デバイス34は、赤色、緑色、および青色を発する量子ドットを、それぞれ異なる発光素子ごとに含む量子ドット層12を備える。このため、本実施形態に係る発光デバイス34は、複色の表示が可能である。また、各色の量子ドットごとに、適切な長さを有する配位子26を配位させることができるため、より効率的に、量子ドットの酸化を低減できる。
 図7は、上述した各実施形態における発光デバイスの製造装置40を示すブロック図である。発光デバイスの製造装置40は、コントローラ42と、合成装置44と、配位装置46と、成膜装置48とを備える。コントローラ42は、合成装置44と、配位装置46と、成膜装置48とを制御する。合成装置44は、上述した各実施形態における、コア/シェル構造の量子ドット20aと、配位子26とを合成する。配位装置46は、上述した各実施形態における、コア/シェル構造の量子ドット20aと、配位子26とを配位させる。成膜装置48は、量子ドット層12を含む、上述した各実施形態に係る発光デバイスの各層の成膜を行う。
 〔まとめ〕
 様態1の発光デバイスは、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスであって、前記量子ドット層において、コアと、該コアを覆うシェルと、該シェルの表面に配位し、酸化防止性を有する配位子とを含む量子ドットが積層する。
 様態2においては、前記配位子が、ヒンダードアミン化合物、フェノール系化合物、リン酸系化合物、および硫黄系化合物の内、少なくとも1つを含む。
 様態3においては、前記配位子の一重項酸素消光速度が、1×10以上1×1010以下である。
 様態4においては、複数の前記発光素子を含み、該発光素子ごとに、前記第1電極と前記量子ドット層とを備え、前記第2電極が複数の前記発光素子に共通である。
 様態5においては、前記発光素子として、赤色光を発する赤色量子ドットを前記量子ドット層に備えた赤色発光素子と、緑色光を発する緑色量子ドットを前記量子ドット層に備えた緑色発光素子と、青色光を発する青色量子ドットを前記量子ドット層に備えた青色発光素子とを含む。
 様態6においては、前記緑色量子ドットに配位する前記配位子の長さが、前記赤色量子ドットに配位する前記配位子の長さよりも短く、前記青色量子ドットに配位する前記配位子の長さよりも長い。
 様態7の発光デバイスの製造方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造方法であって、コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成工程と、前記配位子を前記量子ドットの前記シェルの表面に配位させる配位工程と、前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜工程とを備える。
 様態8の発光デバイスの製造装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造装置であって、コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成装置と、前記配位子を前記量子ドットの前記シェルの表面に配位させる配位装置と、前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜装置とを備える。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
2、34   発光デバイス
6      第1電極
12     量子ドット層
12a    溶媒
12b    溶液
18     第2電極
20、20a 量子ドット
20B    青色量子ドット
20G    緑色量子ドット
20R    赤色量子ドット
22     コア
24     シェル
26     配位子
40     発光デバイスの製造装置
P      発光素子
RP     赤色発光素子
GP     緑色発光素子
BP     青色発光素子

Claims (8)

  1.  第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスであって、
     前記量子ドット層において、コアと、該コアを覆うシェルと、該シェルの表面に配位し、酸化防止性を有する配位子とを含む量子ドットが積層した発光デバイス。
  2.  前記配位子が、ヒンダードアミン化合物、フェノール系化合物、リン酸系化合物、および硫黄系化合物の内、少なくとも1つを含む請求項1に記載の発光デバイス。
  3.  前記配位子の一重項酸素消光速度が、1×10以上1×1010以下である請求項1または2に記載の発光デバイス。
  4.  複数の前記発光素子を含み、該発光素子ごとに、前記第1電極と前記量子ドット層とを備え、前記第2電極が複数の前記発光素子に共通である請求項1から3の何れか1項に記載の発光デバイス。
  5.  前記発光素子として、赤色光を発する赤色量子ドットを前記量子ドット層に備えた赤色発光素子と、緑色光を発する緑色量子ドットを前記量子ドット層に備えた緑色発光素子と、青色光を発する青色量子ドットを前記量子ドット層に備えた青色発光素子とを含む請求項4に記載の発光デバイス。
  6.  前記緑色量子ドットに配位する前記配位子の長さが、前記赤色量子ドットに配位する前記配位子の長さよりも短く、前記青色量子ドットに配位する前記配位子の長さよりも長い請求項5に記載の発光デバイス。
  7.  第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造方法であって、
     コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成工程と、
     前記配位子を前記量子ドットの前記シェルの表面に配位させる配位工程と、
     前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜工程とを備えた発光デバイスの製造方法。
  8.  第1電極と、第2電極と、前記第1電極と前記第2電極との間の量子ドット層とを含む発光素子を備えた発光デバイスの製造装置であって、
     コアと、該コアを覆うシェルとを含む量子ドットと、酸化防止性を有する配位子とを合成する合成装置と、
     前記配位子を前記量子ドットの前記シェルの表面に配位させる配位装置と、
     前記配位子が配位した前記量子ドットを溶媒に分散させた溶液から、前記量子ドットが積層した、前記量子ドット層を形成する成膜装置とを備えた発光デバイスの製造装置。
PCT/JP2018/008801 2018-03-07 2018-03-07 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置 WO2019171503A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/008801 WO2019171503A1 (ja) 2018-03-07 2018-03-07 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置
CN201880090484.XA CN111788866B (zh) 2018-03-07 2018-03-07 发光装置
US16/975,639 US11342523B2 (en) 2018-03-07 2018-03-07 Light emitting device with oxidation prevented quantum dots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008801 WO2019171503A1 (ja) 2018-03-07 2018-03-07 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置

Publications (1)

Publication Number Publication Date
WO2019171503A1 true WO2019171503A1 (ja) 2019-09-12

Family

ID=67846540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008801 WO2019171503A1 (ja) 2018-03-07 2018-03-07 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置

Country Status (3)

Country Link
US (1) US11342523B2 (ja)
CN (1) CN111788866B (ja)
WO (1) WO2019171503A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111556A1 (ja) * 2019-12-04 2021-06-10 シャープ株式会社 発光デバイス
WO2021245762A1 (ja) * 2020-06-01 2021-12-09 シャープ株式会社 発光素子および表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994629B (zh) * 2017-12-29 2021-01-29 Tcl科技集团股份有限公司 复合薄膜及其制备方法和应用
WO2020174604A1 (ja) * 2019-02-27 2020-09-03 シャープ株式会社 発光素子およびそれを用いた表示装置
WO2022160109A1 (zh) * 2021-01-26 2022-08-04 京东方科技集团股份有限公司 量子点发光器件、显示装置和制作方法
WO2023026348A1 (ja) * 2021-08-24 2023-03-02 シャープディスプレイテクノロジー株式会社 発光素子および発光装置並びに発光素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009995A (ja) * 2008-06-27 2010-01-14 Seiko Epson Corp 吐出液、吐出液セット、薄膜パターン形成方法、薄膜、発光素子、画像表示装置、および、電子機器
US20100117110A1 (en) * 2008-11-11 2010-05-13 Samsung Electronics Co., Ltd. Photosensitive Quantum Dot, Composition Comprising the Same and Method of Forming Quantum Dot-Containing Pattern Using the Composition
KR20140021735A (ko) * 2012-08-09 2014-02-20 엘지디스플레이 주식회사 나노입자 및 그 제조방법
US20150380653A1 (en) * 2014-06-25 2015-12-31 Boe Technology Group Co., Ltd. Electro-Luminescence Display Panel and Fabrication Method Thereof, Display Device
US20160351843A1 (en) * 2015-05-07 2016-12-01 Shenxzhen China Star Optoelectronics Technology Co Ltd. Quantum dot light emitting diodes display
JP2017025220A (ja) * 2015-07-23 2017-02-02 コニカミノルタ株式会社 酸化防止性配位子含有半導体ナノ粒子およびこれを含有する分散液、ならびに酸化防止性配位子含有半導体ナノ粒子の製造方法
JP2017032918A (ja) * 2015-08-05 2017-02-09 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、フィルム及び硬化膜の形成方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112088A2 (en) * 2006-03-24 2007-10-04 Qd Vision, Inc. Hyperspectral imaging device
KR20080074548A (ko) * 2007-02-09 2008-08-13 삼성전자주식회사 양자점 발광 소자 및 이의 제조 방법
JP2009087782A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子の製造方法
US20110079273A1 (en) * 2008-01-10 2011-04-07 Massachusetts Institute Of Technology Photovoltaic devices
WO2009089470A2 (en) * 2008-01-11 2009-07-16 Massachusetts Institute Of Technology Photovoltaic devices
JP5029577B2 (ja) * 2008-11-14 2012-09-19 パナソニック株式会社 空気調和機の室内機
WO2011148791A1 (ja) * 2010-05-24 2011-12-01 株式会社 村田製作所 発光素子、及び発光素子の製造方法、並びに表示装置
JP5761199B2 (ja) * 2010-10-22 2015-08-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP5439418B2 (ja) * 2011-03-15 2014-03-12 株式会社東芝 有機薄膜太陽電池モジュール及びサブモジュール
WO2014097878A1 (ja) * 2012-12-20 2014-06-26 株式会社村田製作所 発光デバイス、及び該発光デバイスの製造方法
JP5955305B2 (ja) * 2012-12-26 2016-07-20 富士フイルム株式会社 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
US9035286B2 (en) * 2013-02-19 2015-05-19 Au Optronics Corporation Multi-color light emitting diode and method for making same
KR102228142B1 (ko) * 2013-04-05 2021-03-22 삼성디스플레이 주식회사 양자점, 양자점의 제조 방법 및 이를 이용한 유기 발광 표시 장치의 제조 방법
CN103236435B (zh) * 2013-04-23 2016-03-02 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置
CN105684555B (zh) * 2013-10-17 2017-06-23 株式会社村田制作所 纳米粒子材料以及发光器件
JP2015187942A (ja) * 2014-03-26 2015-10-29 日本放送協会 発光素子、発光素子の製造方法および表示装置
KR101959486B1 (ko) * 2014-08-14 2019-03-18 주식회사 엘지화학 발광 필름
US10359175B2 (en) * 2014-08-14 2019-07-23 Lg Chem, Ltd. Light-emitting film
JP2016172829A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 被覆半導体ナノ粒子およびその製造方法。
JP6002264B1 (ja) * 2015-03-19 2016-10-05 株式会社東芝 太陽電池モジュール
US10386674B2 (en) * 2015-03-27 2019-08-20 Lg Chem, Ltd. Light-emitting film
KR20170097825A (ko) * 2016-02-18 2017-08-29 시노코 유한회사 나노 금속 또는 반도체 산화물로 캡핑된 양자점 구조 및 그 제조방법
US10700236B2 (en) * 2016-03-17 2020-06-30 Apple Inc. Quantum dot spacing for high efficiency quantum dot LED displays
US9768404B1 (en) * 2016-03-17 2017-09-19 Apple Inc. Quantum dot spacing for high efficiency quantum dot LED displays
US20170352779A1 (en) * 2016-06-07 2017-12-07 Sharp Kabushiki Kaisha Nanoparticle phosphor element and light emitting element
CN106920827B (zh) * 2017-03-08 2019-11-01 京东方科技集团股份有限公司 一种发光二极管、阵列基板、发光器件及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009995A (ja) * 2008-06-27 2010-01-14 Seiko Epson Corp 吐出液、吐出液セット、薄膜パターン形成方法、薄膜、発光素子、画像表示装置、および、電子機器
US20100117110A1 (en) * 2008-11-11 2010-05-13 Samsung Electronics Co., Ltd. Photosensitive Quantum Dot, Composition Comprising the Same and Method of Forming Quantum Dot-Containing Pattern Using the Composition
KR20140021735A (ko) * 2012-08-09 2014-02-20 엘지디스플레이 주식회사 나노입자 및 그 제조방법
US20150380653A1 (en) * 2014-06-25 2015-12-31 Boe Technology Group Co., Ltd. Electro-Luminescence Display Panel and Fabrication Method Thereof, Display Device
US20160351843A1 (en) * 2015-05-07 2016-12-01 Shenxzhen China Star Optoelectronics Technology Co Ltd. Quantum dot light emitting diodes display
JP2017025220A (ja) * 2015-07-23 2017-02-02 コニカミノルタ株式会社 酸化防止性配位子含有半導体ナノ粒子およびこれを含有する分散液、ならびに酸化防止性配位子含有半導体ナノ粒子の製造方法
JP2017032918A (ja) * 2015-08-05 2017-02-09 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、フィルム及び硬化膜の形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111556A1 (ja) * 2019-12-04 2021-06-10 シャープ株式会社 発光デバイス
WO2021245762A1 (ja) * 2020-06-01 2021-12-09 シャープ株式会社 発光素子および表示装置

Also Published As

Publication number Publication date
US11342523B2 (en) 2022-05-24
US20200411785A1 (en) 2020-12-31
CN111788866B (zh) 2023-05-23
CN111788866A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2019171503A1 (ja) 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置
JP6718938B2 (ja) 量子ドットと、これを備える量子ドット発光ダイオードおよび量子ドット発光表示装置
JP7364501B2 (ja) Oledにおける使用のためのナノパッチアンテナアウトカップリング構造
US9424772B2 (en) High resolution low power consumption OLED display with extended lifetime
WO2021100104A1 (ja) 発光素子、発光デバイス
US10374017B2 (en) High resolution low power consumption OLED display with extended lifetime
WO1996019792A3 (en) Multicolor organic light emitting devices
KR20130008892A (ko) 양자 발광 소자 및 이의 제조 방법
KR20200078515A (ko) 표시 장치
WO2020021636A1 (ja) 発光デバイス、発光デバイスの製造方法、及び発光デバイスの製造装置
KR20200085275A (ko) 표시 장치
CN114038893A (zh) 显示面板
WO2015002565A1 (en) Hybrid quantum dot/metal-organic led white light source
CN110098343B (zh) 量子点复合物及其制备方法、发光器件及其制备方法
JP2005277218A (ja) 発光素子及びその製造方法
KR20110108954A (ko) 반도체 나노 결정 및 그 제조 방법
US11716863B2 (en) Hybrid display architecture
JP7469891B2 (ja) 量子ドット発光素子及び表示装置
Lee et al. 46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots
WO2021064822A1 (ja) 発光素子、発光デバイス
KR20210080923A (ko) 양자점 용액 조성물, 양자점 필름 및 양자점 발광표시장치
JP2021027002A (ja) 量子ドット発光素子及び表示装置
JP2000194285A (ja) 発光素子及びディスプレイ
JP2020173937A (ja) 量子ドット発光素子及び表示装置
KR20140070372A (ko) 유기 el 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP