WO2021111556A1 - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
WO2021111556A1
WO2021111556A1 PCT/JP2019/047493 JP2019047493W WO2021111556A1 WO 2021111556 A1 WO2021111556 A1 WO 2021111556A1 JP 2019047493 W JP2019047493 W JP 2019047493W WO 2021111556 A1 WO2021111556 A1 WO 2021111556A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
emitting element
light
emitting device
Prior art date
Application number
PCT/JP2019/047493
Other languages
English (en)
French (fr)
Inventor
峻之 中
上田 吉裕
岩田 昇
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/781,336 priority Critical patent/US20230006166A1/en
Priority to PCT/JP2019/047493 priority patent/WO2021111556A1/ja
Publication of WO2021111556A1 publication Critical patent/WO2021111556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • This disclosure relates to a light emitting device.
  • Non-Patent Document 1 blue quantum dots are used for the light emitting layer, and in a light emitting device using an organic material for the hole injection layer and the hole transport layer, the ligand of the blue quantum dots is replaced with a shorter ligand. It is disclosed that quantum efficiency can be improved.
  • Non-Patent Document 1 the distance from the carrier transport layer to the quantum dot core is shortened in order to improve the characteristics of the light emitting device.
  • Non-Patent Document 2 contrary to Non-Patent Document 1, the distance from the carrier transport layer to the core of the quantum dot is increased in order to improve the characteristics of the light emitting element.
  • Non-Patent Document 1 uses a general organic material for the hole injection layer and the hole transport layer.
  • Non-Patent Document 2 uses NiO for the hole transport layer as described above.
  • NiO is a kind of metal chalcogenide (metal oxide, metal sulfide, etc.).
  • the inventors of the present application have found the following problems. That is, in a light emitting device provided with light emitting elements having different emission wavelengths, when metal chalcogenide is used for the layer having hole transporting property and the thickness of the quantum dot shell in each light emitting element is increased, the emission peak wavelength is the shortest. The brightness of the light emitting element that emits light in the wavelength band becomes low.
  • one aspect of the present disclosure includes a light emitting element that emits light in a wavelength band having the shortest emission peak wavelength in a light emitting device including a light emitting element having a layer containing a metal chalcogenide having a hole transporting property, and another light emitting element.
  • the purpose is to balance the brightness with the light emitting element.
  • the light emitting element includes a plurality of types of light emitting elements having emission peak wavelengths in different wavelength bands, and the plurality of types of light emitting elements are each provided with an anode.
  • a light emitting layer containing quantum dots and a cathode are provided in this order, and a layer containing a metal chalcogenide having a hole transporting property is provided between the anode and the light emitting layer, and the plurality of types of light emitting elements are described above.
  • an intermediate layer containing an organic material is provided between the layer containing the metal chalcogenide and the light emitting layer.
  • the distance between the layer containing the metal chalcogenide and the light emitting layer in the light emitting element that emits light in the wavelength band having the shortest emission peak wavelength is the metal chalcogenide in the other light emitting element. It is larger than the distance between the layer containing the above and the light emitting layer.
  • a light emitting element including a light emitting element having a layer containing a metal chalcogenide having a hole transporting property and emitting light in a wavelength band having the shortest emission peak wavelength, and another light emitting element. It is possible to provide a light emitting device capable of balancing brightness.
  • FIG. It is a figure which shows typically an example of the laminated structure of the light emitting device which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows typically the schematic structure of the quantum dot and the ligand contained in each light emitting layer of the light emitting device which concerns on Embodiment 1.
  • FIG. It is a figure which shows the energy band and the layer thickness of each layer in the red light emitting element which concerns on Embodiment 1.
  • FIG. It is a figure which shows the energy band and the layer thickness of each layer in the green light emitting element which concerns on Embodiment 1.
  • FIG. It is a figure which shows the energy band and the layer thickness of each layer in the blue light emitting element which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows typically the schematic structure of the quantum dot and the ligand contained in each light emitting layer of the light emitting device which concerns on Embodiment 2.
  • FIG. It is a figure which shows the energy band and the layer thickness of each layer in the red light emitting element which concerns on Embodiment 2. It is a figure which shows the energy band and the layer thickness of each layer in the green light emitting element which concerns on Embodiment 2. It is a figure which shows the energy band and the layer thickness of each layer in the blue light emitting element which concerns on Embodiment 2.
  • the layer formed in the process before the layer to be compared is referred to as the “lower layer”, and the layer formed in the process after the layer to be compared is referred to as the “upper layer”.
  • FIG. 1 is a diagram schematically showing an example of a laminated structure of the light emitting device 100 according to the present embodiment.
  • the light emitting device 100 is a display device (QLED display) provided as a light emitting element 10 with a quantum dot light emitting diode (hereinafter referred to as "QLED") using quantum dots (semiconductor nanoparticles) QD as a light emitting material.
  • QLED quantum dot light emitting diode
  • the light emitting device 100 includes a plurality of pixels P, and a light emitting element 10 is provided for each pixel P corresponding to the pixel P.
  • the light emitting element 10 includes an anode 2, a light emitting layer (hereinafter referred to as “EML”) 5, and a cathode 7 in this order.
  • a hole transport layer (hereinafter referred to as “HTL”) 3 is provided between the anode 2 and the EML 5 as a layer containing a metal chalcogenide having a hole transport property.
  • HTL3 and EML5 an insulating layer (hereinafter, referred to as “IL”) 4 containing an organic material is provided as an intermediate layer between HTL3 and EML5.
  • An electron transport layer (hereinafter referred to as “ETL”) 6 may be provided between the EML 5 and the cathode 7 as a layer having electron transportability.
  • the light emitting element 10 shown in FIG. 1 includes an anode 2, HTL3, IL4, EML5, ETL6, and a cathode 7 in this order from the array substrate 1 side (that is, the lower layer side).
  • Each of the anode 2, HTL3, IL4, and EML5 is separated into islands for each pixel P by a bank (not shown).
  • the light emitting device 100 is provided with a plurality of QLEDs as the light emitting element 10 corresponding to the pixel P.
  • the bank functions as a pixel separation wall and also functions as an edge cover that covers each edge of the anodes 2R, 2G, and 2B.
  • an insulating material such as an acrylic resin or a polyimide resin is used.
  • the light emitting device 100 shown in FIG. 1 has a red pixel RP, a green pixel GP, and a blue pixel BP as the pixel P.
  • the pixel RP is provided with a light emitting element 10R (red light emitting element) that emits red light as the light emitting element 10.
  • the green pixel GP is provided with a light emitting element 10G (green light emitting element) that emits green light as the light emitting element 10.
  • the blue pixel BP is provided with a light emitting element 10B (blue light emitting element) that emits blue light as the light emitting element 10.
  • the island-shaped anode 2 separated from each other corresponding to the pixel RP, the pixel GP, and the pixel BP by the above bank will be referred to as an anode 2R, an anode 2G, and an anode 2B, respectively.
  • the island-shaped HTL3s separated from each other corresponding to the pixel RP, the pixel GP, and the pixel BP by the above bank are referred to as HTL3R, HTL3G, and HTL3B, respectively.
  • the island-shaped IL4s separated from each other corresponding to the pixel RP, the pixel GP, and the pixel BP by the above bank are referred to as IL4R, IL4G, and IL4B in this order.
  • the island-shaped EML5s separated from each other corresponding to the pixel RP, the pixel GP, and the pixel BP by the above bank are referred to as EML5R, EML5G, and EML5B, respectively.
  • the ETL 6 and the cathode 7 are not separated by the bank, and are formed as a common layer in a solid shape in the display region in common with all the pixels P.
  • the light emitting element 10R is formed by island-shaped anodes 2R, HTL3R, IL4R, EML5R, and common layers ETL6 and cathode 7, respectively.
  • the light emitting element 10G is formed by island-shaped anodes 2G, HTL3G, IL4G, EML5G, and common layers ETL6 and cathode 7, respectively.
  • the light emitting element 10B is formed by an island-shaped anode 2B, HTL3B, IL4B, EML5B, and common layers ETL6 and cathode 7, respectively.
  • the anodes 2R, 2G, and 2B which are the lower electrodes formed on the array substrate 1, are pattern anodes provided for each pixel P, and are electrically connected to the TFT of the array substrate 1, respectively.
  • the cathode 7, which is the upper electrode, is a common cathode common to all pixels P.
  • the layers of the light emitting elements 10R, 10G, and 10B are the layers corresponding to each other in the light emitting elements 10R, 10G, and 10B, except for EML5R, 5G, and 5B, and may be formed of the same material.
  • the EML5R has a quantum dot QR that emits red light as a quantum dot QR.
  • the EML5G includes a quantum dot QG that emits green light as a quantum dot QD.
  • the EML5B includes a quantum dot QB that emits blue light as a quantum dot QD.
  • red light refers to light having an emission peak wavelength in a wavelength band of 600 nm or more and 780 nm or less.
  • green light refers to light having an emission peak wavelength in a wavelength band of 500 nm or more and 600 nm or less.
  • Blue light refers to light having an emission peak wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • the light emitting element 10R preferably has a light emitting peak wavelength in a wavelength band of 620 nm or more and 650 nm or less.
  • the light emitting element 10G preferably has an emission peak wavelength in a wavelength band of 520 nm or more and 540 nm or less.
  • the light emitting element 10B preferably has an emission peak wavelength in a wavelength band of 440 nm or more and 460 nm or less.
  • the light emitting device 100 may include, as the light emitting element 10, a light emitting element that emits light having a light emitting peak wavelength in a wavelength band other than the above wavelength band.
  • the ETL6 may be separated into islands for each pixel P by the bank.
  • the stacking order from the anode 2 to the cathode 7 may be reversed. Therefore, the light emitting element 10 may include the anode 2, HTL3, IL4, EML5, ETL6, and cathode 7 in this order from the upper layer side.
  • the cathode 7 is a lower electrode formed on the array substrate 1, the cathode 7 is electrically connected to the TFT of the array substrate 1 as a pattern cathode.
  • the anode 2 serving as the upper electrode is used as a common anode common to all pixels P.
  • the light emitting device 100 has the configuration shown in FIG. 1 will be described as an example.
  • HTL3R, 3G, and 3B When it is not necessary to distinguish between HTL3R, 3G, and 3B, these HTL3R, 3G, and 3B are collectively referred to simply as "HTL3".
  • HTL3R, 3G, and 3B When it is not necessary to distinguish IL4R, 4G, and 4B, these IL4R, 4G, and 4B are collectively referred to as "IL4".
  • EML5R, 5G and 5B these EML5R, 5G and 5B are collectively referred to as "EML5".
  • quantum dots QR, QG, and QB When it is not necessary to distinguish between the quantum dots QR, QG, and QB, these quantum dots QR, QG, and QB are collectively referred to simply as "quantum dot QD”.
  • the anode 2 is made of a conductive material and has a function of a hole injection layer (hereinafter referred to as “HIL”) for injecting holes into HTL3.
  • the cathode 7 is made of a conductive material and has a function of an electron injection layer (hereinafter referred to as “EIL”) for injecting electrons into the ETL6.
  • HIL hole injection layer
  • EIL electron injection layer
  • Either the anode 2 or the cathode 7 is made of a light-transmitting material. Either one of the anode 2 and the cathode 7 may be made of a light-reflecting material.
  • the light emitting device 100 is a top emission type light emitting device
  • the upper layer cathode 7 is formed of a light transmitting material
  • the lower layer anode 2 is formed of a light reflecting material.
  • the cathode 7 which is the upper layer is formed of a light reflecting material
  • the anode 2 which is a lower layer is formed of a light transmitting material.
  • the light-reflecting material for example, a metal material can be used.
  • a metal material for example, Al (aluminum), Ag (silver), Cu (copper), Au (gold) and the like can be used. Since these materials have high visible light reflectance, the luminous efficiency is improved.
  • one of the anode 2 and the cathode 7 may be a light-reflecting electrode by forming a laminate of a light-transmitting material and a light-reflecting material.
  • ETL6 transports electrons to EML5.
  • the ETL6 may have a function of inhibiting the transport of holes.
  • the ETL 6 may also serve as an EIL that promotes the injection of electrons from the cathode 7 into the EML 5.
  • the light emitting element 10 may be provided with EIL and ETL6 in this order from the cathode 7 side, or may be provided with only ETL6.
  • a known electron transporting material can be used for ETL6.
  • the electron transporting material for example, zinc oxide (for example, ZnO), titanium oxide (for example, TiO 2 ), strontium oxide titanium (for example, SrTiO 3 ) and the like are used. Only one kind of these electron transporting materials may be used, or two or more kinds may be mixed and used as appropriate. Further, nanoparticles may be used as the electron transporting material.
  • HTL3 transports holes to EML5 via IL4.
  • HTL3 may have a function of inhibiting the transport of electrons.
  • HTL3 may also serve as HIL that promotes the injection of holes from the anode 2 into the EML5.
  • HTL3 is a layer containing a metal chalcogenide having a hole transporting property.
  • HTL3 mainly contains metallic chalcogenide, it may further contain other materials.
  • Metallic chalcogenide is particularly durable among inorganic materials.
  • Metal chalcogenides for example, nickel oxide (eg NiO), copper oxide (e.g., Cu 2 O), include copper sulfide (e.g., CuS), and the like. Only one kind of these metal chalcogenides may be used, or two or more kinds may be mixed and used as appropriate. Therefore, the metal chalcogenide may be at least one selected from the group consisting of nickel oxide, copper oxide, and copper sulfide.
  • HTL3 can be formed by, for example, a sol-gel method, a sputtering method, a CVD (chemical vapor deposition) method, a spin coating method (coating method), or the like.
  • IL4 is provided between HTL3 and EML5 in contact with HTL3 and EML5.
  • IL4 mainly contains an organic material, it may further contain other materials.
  • IL4 is formed by using an insulating material that can be uniformly laminated without any trouble such as disappearance due to dissolution of the lower layer or repelling when the material is applied to the lower layer in the manufacturing process.
  • the insulating material an organic material that is not a good conductor is desirable, and an organic material that does not have a hydroxyl group is more desirable.
  • the electron affinity value of IL4 is preferably 0.5 eV or more smaller than the electron affinity value of EML5.
  • the value of the ionization potential of IL4 is larger than the value of the value of the ionization potential of EML5 minus 0.5 eV because it facilitates the injection of holes from HTL3 to EML5.
  • the electron affinity of IL4 and EA IL when the electron affinity of EML5 with EA EML, it is preferable that EA IL ⁇ EA EML -0.5eV.
  • the IP IL ionization potential of IL4 when the ionization potential of EML5 the IP EML, it is preferable that the IP IL ⁇ IP EML -0.5eV.
  • insulating material examples include polymethylmethacrylate (abbreviation: PMMA), polyvinylpyrrolidone (abbreviation: PVP), and poly [(9,9-bis (3'-(N, N-dimethylamino) propyl))-. 2,7-Fluorene) -alt-2,7- (9,9-dioctylfluorene)] (abbreviation: PFN) and the like can be mentioned. Only one kind of these insulating materials may be used, or two or more kinds may be mixed and used as appropriate. Therefore, IL4 may consist of at least one insulating material selected from the group consisting of PMMA, PVP, PFN.
  • the electron affinity, ionization potential, and band gap of these PMMA, PVP, and PFN are shown in Table 1.
  • the bandgap corresponds to the difference between the ionization potential of the layer and the electron affinity.
  • IL4 can be formed by, for example, a spin coating method (coating method), a dip coating method, an inkjet method, or the like.
  • metal chalcogenide has durability. Further, as described above, a light emitting device using quantum dot QD for EML is different from a light emitting device using organic EL for EML, and can be manufactured at low cost by a manufacturing process that does not use a high vacuum device. However, if a light emitting device using quantum dot QD as described above is manufactured by a manufacturing process using metal chalcogenide for HTL and without using a high vacuum device, the surface of the metal chalcogenide may be exposed by a gas containing water. is there. When the surface of the metal chalcogenide is exposed to even a small amount of a gas containing water, it is assumed that hydroxyl groups are adsorbed on the surface of the metal chalcogenide.
  • the manufacturing process of the light emitting device 100 includes a step of exposing the metal chalcogenide surface of HTL3 to a gas containing water, but each layer in the light emitting element 10 It is desirable that the manufacturing equipment is separated from each other. Then, in the step of exposing the surface of the metal chalcogenide of HTL3 to a gas containing water, it is assumed that a hydroxyl group is adsorbed on the surface of the metal chalcogenide.
  • the manufacturing process of the light emitting device 100 includes a step of exposing the metal chalcogenide surface of HTL3 to a gas containing water includes a step of adsorbing a hydroxyl group on the surface of the metal chalcogenide. It is presumed to mean that.
  • IL4 suppresses the charging of the quantum dot QD by the hydroxyl group on the surface of the metal chalcogenide, and suppresses the deterioration of the light emission characteristic due to the charging of the quantum dot QD.
  • the method for forming EML5 is not particularly limited, but for example, a solution method is preferably used instead of crystal growth or the like.
  • a dispersion liquid in which quantum dot QD is dispersed in a solvent (dispersion medium) is applied to the upper surface of a layer to be a lower layer of EML5 to form a coating film containing quantum dot QD, and then the solvent is volatilized. It can be formed by solidifying (curing) the coating film.
  • the solvent water; an organic solvent such as hexane or toluene; can be used.
  • the dispersion liquid is separately applied to each pixel P by using a spin coating method, an inkjet method, or the like.
  • a dispersion material such as thiol or amine may be mixed with the dispersion liquid.
  • the light emitting device 100 includes a plurality of types of quantum dot QDs, and the same pixel P includes the same types of quantum dot QDs.
  • the EML5R has, for example, a configuration in which a plurality of layers of quantum dot QR are laminated.
  • the EML5G has, for example, a configuration in which a plurality of layers of quantum dot QGs are laminated.
  • the EML5B has, for example, a configuration in which a plurality of layers of quantum dots QB are laminated.
  • FIG. 2 is a cross-sectional view schematically showing a schematic configuration of quantum dots QR / QG / QB and ligands LR / LG / LB contained in EML5R / 5G / 5B of the light emitting device 100.
  • the quantum dots QR, QG, and QB as the receptacles used in the present embodiment are core-shell type quantum dots (core-shell particles), and each of them has a core and a shell covering the core. (Core shell particles).
  • the quantum dot QR includes a core CR and a shell SR that covers the core CR.
  • the quantum dot QG includes a core CG and a shell SG that covers the core CG.
  • the quantum dot QB includes a core CB and a shell SB that covers the core CB.
  • EML5R has a ligand LR adsorbed on the surface of the quantum dot QR.
  • EML5G has a ligand LG adsorbed on the surface of the quantum dot QG.
  • EML5B has a ligand LB adsorbed on the surface of the quantum dot QB.
  • Quantum dots QR / QG / QB are, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus). , As (arsenic), Sb (antimony), aluminum (Al), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), Mg (magnesium), at least one selected from the group. It may contain at least one kind of semiconductor material composed of the above elements.
  • the material of the shell SR / SG / SB it is desirable to use a shell material having a band gap larger than that of the material of the core CR / CG / CB covered by the shell SR / SG / SB.
  • PLQY photoluminescence quantum yield
  • ZnS meets these requirements.
  • the material of the shell SR / SG / SB is not limited to ZnS, and other suitable materials may be used.
  • the combination (core / shell) of the core CR / CG / CB and the shell SR / SG / SB in each quantum dot QR / QG / QB includes, for example, CdSe (cadmium selenide) / ZnSe (zinc selenide), CdSe. / ZnS, CdS (cadmium sulfide) / ZnSe, CdS / ZnS, ZnSe / ZnS, InP (indium phosphate) / ZnS, ZnO (zinc oxide) / MgO (magnesium oxide) and the like can be mentioned.
  • the wavelength of light emitted by the core-shell type quantum dot QD depends on the particle size of the core, which is the light emitting part, and does not depend on the particle size of the shell.
  • the wavelength of light emitted by the quantum dots QR, QG, and QB can be controlled by the particle sizes of the cores CR, CG, and CB of each quantum dot QR, QG, and QB.
  • quantum dot QD when the particle size of the core, which is the light emitting part, is increased, the emission wavelength tends to be longer, and when the particle size of the core is decreased, the emission wavelength tends to be shorter.
  • the particle size (diameter size) of the core CR is d1
  • the particle size (diameter size) of the core CG is d11
  • the particle size (diameter size) of the core CB is d21
  • d1> d11> It is d21.
  • the particle sizes of these cores CR, CG, and CB (hereinafter referred to as "core diameters") d1, d11, and d21 can be appropriately set so that a desired emission wavelength can be obtained depending on the material of the core CR, CG, and CB.
  • core diameters d1, d11, and d21 can be set in the same manner as in the conventional case.
  • the core diameters d1, d11, and d21 can be calculated from the quantum size effect by analyzing the materials of the cores CR, CG, and CB. Further, the outermost particle diameters d13, d13, and d23 can be measured from a TEM (transmission electron microscope) image of a cross section of EML5R, 5G, and 5B. The thickness of the shell SR / SG / SB and the length of the ligands LR / LG / LB will be described later.
  • the layer thickness of the anodes 2R, 2G, and 2B is preferably 20 nm to 200 nm.
  • the layer thickness of HTL3R / 3G / 3B is preferably 20 nm to 150 nm.
  • the IL4R layer thickness and the IL4G layer thickness are preferably 12 nm or less.
  • the layer thickness of IL4B is preferably 0.5 to 12.5 nm.
  • IL4R, 4G, and 4B are set so that the layer thickness of IL4B> the layer thickness of IL4R and the layer thickness of IL4B> the layer thickness of IL4G.
  • the layer thickness of EML5R / 5G / 5B is preferably 15 nm to 80 nm.
  • the layer thickness of ETL6 is preferably 20 nm to 150 nm.
  • the layer thickness of the cathode 7 is preferably 50 nm to 200 nm.
  • an array substrate 1 as a support is prepared, and an ITO layer having a layer thickness of 100 nm as anodes 2R, 2G, and 2B is formed in a matrix by a sputtering method on the array substrate 1. (Anode forming step).
  • a PMMA layer was formed on HTL3R / 3G / 3B as IL4R / 4G / 4B by a spin coating method using a solution of PMMA dissolved in acetone (IL formation step).
  • the part other than the target of film formation is formed by using a mask, and the layer thickness of IL4R / 4G / 4B is adjusted by changing the concentration of PMMA in the above solution, the rotation speed at the time of spin coating, and the like.
  • a PMMA layer having a layer thickness of 8 nm was formed as IL4B, and a PMMA layer having a layer thickness of 6 nm was formed as IL4R and IL4G, respectively.
  • quantum dot QD layers having a layer thickness of 40 nm were formed on IL4R / 4G / 4B as EML5R / 5G / 5B by a spin coating method (EML forming step).
  • a ZnO layer having a layer thickness of 50 nm which is made of ZnO-NP (nanoparticles) as ETL6 so as to cover the EML5R, 5G, 5B and the above bank, is subjected to a spin coating method to form a common layer common to each pixel P.
  • ETL forming step the ETL6 is obtained by forming the ETL6 in at least a part of the light emitting elements 10R, 10G, and 10B using the same electron transporting material as described above. It can be a common layer in the light emitting element of. According to the present embodiment, as described above, the ETL6 can be formed more easily by sharing the material of the ETL6 with the light emitting elements 10R, 10G, and 10B.
  • an Al layer having a layer thickness of 100 nm was formed as a cathode 7 as a common layer common to each pixel P by a vacuum deposition method (cathode forming step).
  • the light emitting device 100 according to the present embodiment is manufactured by sealing the light emitting elements 10R, 10G, and 10B with a sealing layer (not shown) after the cathode forming step.
  • Non-Patent Document 2 uses NiO for the hole transport layer as described above.
  • NiO is a type of metallic chalcogenide.
  • the distance from the carrier transport layer to the core of the quantum dot is increased because the presence of hydroxyl groups on the surface of the metal chalcogenide causes the quantum dots to be charged and the characteristics of the light emitting device to deteriorate. It is estimated to be.
  • the inventors of the present application repeated diligent studies. As a result, the inventors of the present application set the thickness of the intermediate layer between the layer made of the metal chalcogenide of the light emitting device that emits light in the wavelength band having the shortest emission peak wavelength and the EML to correspond to the thickness of the other light emitting device. It has been found that the above problems can be solved by making the thickness larger than that of the intermediate layer. Therefore, in the present embodiment, as described above, the layer thicknesses of ILR, 4G, and 4B are set so that the layer thickness of IL4B> the layer thickness of IL4R and the layer thickness of IL4B> the layer thickness of IL4G. ing. The reason for this will be described in more detail below with reference to FIGS. 2 to 5.
  • FIG. 3 to 5 are diagrams showing the energy band and layer thickness of each layer in the light emitting elements 10R, 10G, and 10B according to the present embodiment, which are manufactured by the above-mentioned method.
  • FIG. 3 shows the energy band and layer thickness of each layer in the light emitting element 10R.
  • FIG. 4 shows the energy band and layer thickness of each layer in the light emitting element 10G.
  • FIG. 5 shows the energy band and layer thickness of each layer in the light emitting element 10B.
  • the ITO layer as an anode 2R ⁇ 2G ⁇ 2B Fermi level (hereinafter, referred to as "E F1”) is 4.7 eV
  • the Fermi level of the Al layer as a cathode 7 The rank (hereinafter referred to as " EF2 ”) is 4.3 eV.
  • the electron affinity of the NiO layer as HTL3R / 3G / 3B (hereinafter referred to as "EA HTL ”) is 1.9 eV
  • the ionization potential (hereinafter referred to as "IP HTL ”) is 5.4 eV.
  • EA ETL The electron affinity of the ZnO layer as ETL6 (hereinafter referred to as “EA ETL ”) is 4.0 eV, and the ionization potential (hereinafter referred to as “IP ETL ”) is 7.5 eV.
  • EA EMLR The electron affinity of the quantum dot QD layer as EML5R (hereinafter referred to as “EA EMLR ”) is 5.9 eV, and the ionization potential IP EML (hereinafter referred to as "IP EMLR ”) is 3.9 eV.
  • EA EMLG The electron affinity of the quantum dot QD layer as EML5G (hereinafter referred to as "EA EMLG ”) is 5.9 eV, and the ionization potential (hereinafter referred to as "IP EMLG ”) is 3.2 eV.
  • EA EMLB The electron affinity of the quantum dot QD layer as EML5R / 5G / 5B (hereinafter referred to as "EA EMLB ”) is 5.9 eV, and the ionization potential (hereinafter referred to as "IP EMLB ”) is 3.2 eV.
  • EA IL of PMMA as IL4R / 4G / 4B is 2.6 eV as shown in Table 1, and the ionization potential IP IL is 5.8 eV.
  • the electron affinity EA HTL corresponds to the energy difference between the vacuum level (not shown) and the CBM (lower end of the conduction band) of HTL3R / 3G / 3B.
  • the ionization potential IP HTL corresponds to the energy difference between the vacuum level and the VBM (upper end of the valence band) of HTL3R / 3G / 3B.
  • the electron affinity EA IL corresponds to the energy difference between the vacuum level and the CBM of IL4R / 4G / 4B.
  • the ionization potential IP IL corresponds to the energy difference between the vacuum level and the VBM of IL4R / 4G / 4B.
  • the electron affinity EA EMLR corresponds to the energy difference between the vacuum level and the CBM of EML5R.
  • the ionization potential IP EMLR corresponds to the energy difference between the vacuum level and the VBM of EML5R.
  • the electron affinity EA EMLG corresponds to the energy difference between the vacuum level and the CBM of EML5G.
  • the ionization potential IP EMLG corresponds to the energy difference between the vacuum level and the VBM of EML5G.
  • the electron affinity EA EMLB corresponds to the energy difference between the vacuum level and the CBM of EML5B.
  • the ionization potential IP EMLB corresponds to the energy difference between the vacuum level and the VBM of EML5B.
  • the electron affinity EA ETL corresponds to the energy difference between the vacuum level and the CBM of the ETL6R.
  • the ionization potential IP ETL corresponds to the energy difference between the vacuum level and the VBM of ETL6R / 6G / 6B.
  • holes from the anodes 2R, 2G, and 2B reach EML5R, 5G, and 5B via HTL3R, 3G, and 3B and IL4R, 4G, and 4B.
  • the holes and electrons that have reached EML5R, 5G, and 5B are recombined at the quantum dots QR, QG, and QB in the respective pixels PR, PG, and PB, and emit light.
  • the light emitted from the quantum dots QR, QG, and QB is reflected by, for example, the cathode 7 which is a metal electrode, passes through the anodes 2R, 2G, and 2B which are transparent electrodes, and is radiated to the outside of the light emitting device 100.
  • the holes conduct IL4R / 4G / 4B by tunneling.
  • the hole injection barrier from HTL3R to EML5R is indicated by the energy difference (IP EMLR- IP HTL ) between the ionization potential IP EMLR of EML5R and the ionization potential IP HTL of HTL3R.
  • the hole injection barrier from HTL3G to EML5G is indicated by the energy difference (IP EMLG- IP HTL ) between the ionization potential IP EMLG of EML5G and the ionization potential IP HTL of HTL3G.
  • the hole injection barrier from HTL3B to EML5B is indicated by the energy difference (IP EMLB- IP HTL ) between the ionization potential IP EMLB of EML5B and the ionization potential IP HTL of HTL3B.
  • the VBM of the quantum dot QD layer has substantially the same ionization potential, and the hole injection efficiency into the quantum dot QD layer does not depend on the emission wavelength.
  • the hole injection barrier from HTL3R / 3G / 3B to EML5R / 5G / 5B is as small as 0.5 eV or less, and from HTL3R / 3G / 3B to EML5R / 5G / 5B. High efficiency of hole injection into.
  • the CBM of the quantum dot QD layer differs depending on the emission wavelength.
  • the energy level of the conduction band level of the quantum dot QD used as the quantum dot QR / QG / QB becomes deeper as the emission wavelength of the quantum dot QD is longer, and the emission wavelength of the quantum dot QD.
  • the shorter the value the shallower the energy level. This is because the conduction band level is deeper in the quantum dot QD having a small bandgap.
  • the light emitting element 10B that emits light in the wavelength band having the shortest emission peak wavelength has a larger electron injection barrier than the other light emitting elements 10R / 10G.
  • the electron injection barrier from ETL6 to EML5R is indicated by the energy difference (EA ETL- EA EMLR ) between the electron affinity EA ETL of ETL6 and the electron affinity EA EMLR of EML5R.
  • the electron injection barrier from ETL6 to EML5G is indicated by the energy difference (EA ETL- EA EMLG) between the electron affinity EA ETL of ETL6 and the electron affinity EA EMLG of EML5G.
  • the electron injection barrier from ETL6 to EML5B is indicated by the energy difference (EA ETL- EA EMLB) between the electron affinity EA ETL of ETL6 and the electron affinity EA EMLB of EML5B.
  • the electron injection barriers from ETL6 to EML5R, EML5G, and EML5B are, respectively, 0.1 eV, 0.5 eV, and 0.8 eV, and the electron injection is R ⁇ G ⁇ . It becomes more difficult in the order of B.
  • the electron injection barrier from ETL6 to EML5R and EML5G is as small as 0.5 eV or less, and the electron injection transport from ETL6 to EML5R / 5G is high.
  • the electron injection barrier from ETL6 to EML5B is larger than 0.5 eV, and the light emitting element 10B has lower electron injection efficiency as compared with other light emitting elements 10R / 10G.
  • the injection of holes into EML5B is suppressed by making the layer thickness of IL4B larger than the layer thickness of IL4R / 4G.
  • the carrier balance between the holes and the electrons can be balanced, and the recombination probability between the holes and the electrons can be improved.
  • the light emitting element 10B can obtain the same brightness as the other light emitting elements 10R / 10G.
  • the layer thickness of IL4B by making the layer thickness of IL4B larger than the layer thickness of IL4R / 4G, it is possible to achieve the same carrier balance in the light emitting element 10B as in other light emitting elements 10R / 10G. Therefore, according to the present embodiment, it is not necessary to change the material of the ETL6 by the light emitting element 10 to change the CBM of the ETL6, and the ETL6 can be shared.
  • IL4 as an intermediate layer between HTL3 and EML5 as described above, it is not necessary to consider the hole transport property of IL4, and the light emitting element 10R at the time of manufacture.
  • the hole transportability of 10G and 10B can be easily controlled.
  • the IL4R layer thickness and the IL4G layer thickness are preferably 12 nm or less.
  • the layer thickness of IL4B is preferably 0.5 to 12.5 nm.
  • the difference between them is preferably 0.5 to 12.5 nm.
  • the layer thickness of IL4R, the layer thickness of IL4G, and the layer thickness of IL4B are T ILR , T ILG , and T ILB in this order, (T ILR +0.5 nm) ⁇ T ILB ⁇ (T ILR + 12.5 nm), Moreover, it is desirable that (T ILG + 0.5 nm) ⁇ T ILB ⁇ (T ILG + 12.5 nm).
  • IL4 is formed with a significant difference between the light emitting element 10B and the light emitting elements 10R / 10G other than the light emitting element 10B.
  • the difference in layer thickness between IL4B and IL4R / 4G to 12.5 nm or less as described above, hole injection by tunneling from HTL3B to EML5B can be effectively performed. That is, in the above formula, (T ILR + 12.5 nm) and (T ILG + 12.5 nm) indicate desirable upper limit values at which holes can be effectively tunneled.
  • the layer thickness T ILB of IL4B is larger than the layer thickness T ILR of IL4R and the layer thickness T ILG of IL4G. Therefore, the difference in layer thickness between IL4B and IL4R / 4G indicates T ILB- T ILR (where T ILB > T ILR ) or T ILB- T ILG (where T ILB > T ILR ).
  • IL4 is preferably EA IL ⁇ EA EML ⁇ 0.5 eV. Further, it is preferable that IL4 is IP IL ⁇ IP EML ⁇ 0.5 eV. In other words, if the electron affinity of IL4B is EA ILB and the ionization potential of IL4B is IP ILB , IL4B is EA ILB ⁇ EA EMLB -0.5 eV and IP ILB ⁇ IP EMLB -0.5 eV. preferable.
  • IL4R is preferably EA ILR ⁇ EA EMLR -0.5 eV and IP ILR ⁇ IP EMLR -0.5 eV. ..
  • IL4G is preferably EA ILG ⁇ EA EMLG -0.5 eV and IP ILG ⁇ IP EMLG -0.5 eV. ..
  • the shell thickness of the shell SR is d2
  • the shell thickness of the shell SG is d12
  • the shell thickness of the shell SB is d22
  • these shell thicknesses d2, d12, and d22 are d22 ⁇ d2.
  • / or d22 ⁇ d12 is desirable. That is, the shell thickness d22 of the quantum dots QB in the light emitting element 10B that emits light in the wavelength band having the shortest emission peak wavelength is thinner than the shell thickness d2 / d12 of the quantum dots QR / QG in the other light emitting elements 10R / 10G. Is desirable.
  • d2 d3- (d1 ⁇ 2).
  • the shell thickness d2, d12, and d22 can be easily calculated by subtracting the core diameters d1, d11, and d21 from the outermost particle sizes d3, d13, and d23.
  • the ligand length of the ligand LR is d4
  • the ligand length of the ligand LG is d14
  • the ligand length of the ligand LB is d24
  • these ligand lengths d4, d14, and d24 are d24 ⁇ d4 and / or d24 ⁇ d14.
  • the ligand length d24 of the quantum dot QB in the light emitting element 10B that emits light in the wavelength band having the shortest emission peak wavelength is shorter than the ligand lengths d4 and d14 in the other light emitting elements 10R and 10G.
  • the ligand lengths d4, d14, and d24 can be measured by obtaining the distance between the quantum dots QDs adjacent to each other in the same pixel P from the TEM image of the cross section of the EML5R, 5G, and 5B.
  • Table 3 summarizes the shell thicknesses d2, d12, d22 and ligand lengths d4, d14, d24 of each quantum dot QR, QG, and QB.
  • the values in parentheses indicate suitable ranges for shell thickness d2, d12, d22 and ligand lengths d4, d14, d24.
  • the values in parentheses are specific values of the shell thickness d2, d12, d22 and the ligand length d4, d14, d24 used in the present embodiment, and are the shell thickness d2, d12, d22 and the ligand length d4, d14. -An example of the combination of d24 is shown.
  • the shell thickness d2 / d12 of the quantum dot QR / QG is preferably 1.5 to 5.0 nm, and the shell thickness d22 of the quantum dot QB is preferably 0.5 to 3.0 nm.
  • the ligand lengths d4 and d14 of the quantum dot QR / QG are preferably 1.5 to 2.5 nm, and the ligand length d24 of the quantum dot QB is preferably 0.5 to 1.5 nm.
  • the light emitting element 10B has a lower electron injection efficiency than the light emitting elements 10R and 10G. Therefore, in the present embodiment, by making the layer thickness T ILB of IL4B larger than the layer thickness T ILR of IL4R and the layer thickness T ILG of IL4G, hole injection into EML5B is suppressed and carriers in EML5B are suppressed. It's balanced. Therefore, it is difficult for carriers to be injected from IL4 and ETL6 in the quantum dot QB of the light emitting element 10B as compared with the quantum dots QR / QG of other light emitting elements 10R / 10G.
  • the shell thickness d22 of the quantum dot QB is made thinner than the shell thickness d2 / d12 of the quantum dot QR / QG, the distance from the IL4B and ETL6 to the core CB of the quantum dot QB can be shortened. it can. As a result, it is possible to inject carriers into the quantum dot QB as effectively as the quantum dot QR / QB, and it is possible to improve the light emission characteristics.
  • the distance from the IL4B and ETL6 to the core CB of the quantum dot QB is also shortened. can do. Therefore, also in this case, it is possible to perform carrier injection equivalent to the quantum dots QR / QB into the quantum dots QB, and it is possible to improve the light emission characteristics.
  • the thickness T ILR of IL4R for a light emitting element 10R, and HTL3R a layer containing a metal chalcogenides can be words and EML5R, the distance between. Therefore, when the layer thickness T ILR of IL4R is 0 nm, it means that the distance between HTL3R and EML5R is 0 nm, and HTL3R and EML5R are in contact with each other.
  • the difference in layer thickness between IL4B and IL4R can be rephrased as the difference between the distance between the HTL3B and EML5B in the light emitting element 10B and the distance between the HTL3R and EML5R in the light emitting element 10R. ..
  • the difference in layer thickness between IL4B and IL4G can be rephrased as the difference between the distance between the HTL3B and EML5B in the light emitting element 10B and the distance between the HTL3G and EML5G in the light emitting element 10G. it can.
  • the distance from the HTL3 to the core of the quantum dot QD may be increased. Therefore, for the quantum dot QR / QG, for example, at least one of the shell thickness d2 / d12 of the quantum dot QR / QG and the ligand length d4 / d14 of the quantum dot QR / QG is in the numerical range shown in Table 3. It may be set to the value in. As a result, unlike the quantum dot QB, it is possible to suppress the deterioration of the characteristics of the quantum dots QR / QG due to charging. Further, as described above, unlike the quantum dot QB, the quantum dot QR / QG has high hole injection efficiency and electron injection efficiency. Therefore, IL4R and IL4G do not necessarily have to be provided.
  • the layer thickness of IL4R / 4G / 4B may be set so that the layer thickness of IL4B is T ILB > the layer thickness of IL4G is T ILG > the layer thickness of IL4R is T ILR.
  • a hole injection layer (hereinafter referred to as “HIL”) 11 is provided between the anode 2 and the EML 5 as a layer containing a metal chalcogenide having a hole transporting property.
  • HIL11 and EML5 HTL12 containing an organic material is provided as an intermediate layer between HIL11 and EML5.
  • HIL11 mainly contains metal chalcogenide, it may also contain other substances.
  • HTL12 mainly contains an organic material, but may also contain other materials.
  • the light emitting element 10R is formed by island-shaped anodes 2R, HIL11R, HTL12R, EML5R, and common layers ETL6 and cathode 7, respectively.
  • the light emitting element 10G is formed by an island-shaped anode 2G, HIL11G, HTL12G, EML5G, and common layers ETL6 and cathode 7, respectively.
  • the light emitting element 10B is formed by an island-shaped anode 2B, HIL11B, HTL12B, EML5B, and common layers ETL6 and cathode 7, respectively.
  • the above configuration is an example, and the configuration of the light emitting device 100 is not necessarily limited to the above configuration.
  • the light emitting device 100 may include, as the light emitting element 10, a light emitting element that emits light having a light emitting peak wavelength in a wavelength band other than the wavelength band described in the first embodiment.
  • the ETL6 may be separated into islands for each pixel P by the bank.
  • the stacking order from the anode 2 to the cathode 7 may be reversed. Therefore, the light emitting element 10 may include the anode 2, the HIL 11, the HTL 12, the EML 5, the ETL 6, and the cathode 7 in this order from the upper layer side.
  • the light emitting device 100 has the configuration shown in FIG. 6 will be described as an example.
  • HIL11 when it is not necessary to distinguish HIL11R / 11G / 11B, these HIL11R / 11G / 11B are collectively referred to as "HIL11”.
  • HTL12 When it is not necessary to distinguish HTL12R / 12G / 12B, these HTL12R / 12G / 12B are collectively referred to as "HTL12”.
  • the metal chalcogenide examples include nickel oxide (eg NiO), copper oxide (e.g., Cu 2 O), include copper sulfide (e.g., CuS), and the like. Only one kind of these metal chalcogenides may be used, or two or more kinds may be mixed and used as appropriate. Therefore, the metal chalcogenide may be at least one selected from the group consisting of nickel oxide, copper oxide, and copper sulfide.
  • HIL11 can be formed by, for example, a sol-gel method, a sputtering method, a CVD (chemical vapor deposition) method, a spin coating method (coating method), or the like.
  • HTL12 is, for example, poly (N-vinylcarbazole) (abbreviation: PVK), poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-(N-4-). sec-butylphenyl)) diphenylamine)] (abbreviation: TFB), which mainly contains organic materials having hole transporting properties. Only one kind of these organic materials may be used, or two or more kinds may be mixed and used as appropriate. Therefore, HTL12 is at least one kind of organic hole transporting material selected from the group consisting of PVK and TFB. It may consist of.
  • the manufacturing apparatus of each layer of the light emitting element 10 is separated from each other. Therefore, it is desirable that the HIL11 manufacturing apparatus and the film forming apparatus used in the next step (that is, the film forming apparatus on the HIL11) are separated from each other.
  • the substrate on which the HIL 11 is formed is conveyed to the manufacturing apparatus separated from the apparatus for producing the HIL 11 after the formation of the HIL 11, the substrate on which the HIL 11 is formed is exposed to the atmosphere between the two manufacturing apparatus.
  • the manufacturing process of the light emitting device 100 includes a step of exposing the metal chalcogenide surface of HIL 11 to a gas containing water, each layer of the light emitting element 10 It is desirable that the manufacturing equipment is separated from each other. Then, in the step of exposing the metal chalcogenide surface of HIL11 to a gas containing water, it is assumed that a hydroxyl group is adsorbed on the surface of the metal chalcogenide.
  • HTL12 suppresses the charging of the quantum dot QD by the hydroxyl group on the surface of the metal chalcogenide, and suppresses the deterioration of the light emission characteristic due to the charging of the quantum dot QD.
  • the layer thickness of the layers other than HTL12R / 12G / 12B can be set in the same manner as the conventional light emitting element.
  • the layer thickness of HIL11R / 11G / 11B is preferably 5 nm to 50 nm.
  • the layer thickness of HTL12R / 12G is preferably 30 to 59.5 nm.
  • the layer thickness of HTL12B is preferably 30.5 to 60 nm.
  • HTL12R / 12G / 12B is set so that the layer thickness of HTL12B> the layer thickness of HTL12R and the layer thickness of HTL12B> the layer thickness of HTL12G.
  • the process until the grid-like bank is formed is the same as that in the first embodiment. Also in the present embodiment, in the same manner as in the first embodiment, an ITO layer having a layer thickness of 100 nm is formed as the anodes 2R, 2G, and 2B on the array substrate 1, and then a grid-like bank is formed.
  • NiO is then spin-coated on the anodes 2R, 2G, and 2B, and then heated in the air to form a NiO layer having a layer thickness of 15 nm as HIL11R, 11G, and 11B. HIL formation step).
  • FIG. 7 to 9 are diagrams showing the energy band and layer thickness of each layer in the light emitting elements 10R, 10G, and 10B according to the present embodiment manufactured in this manner.
  • FIG. 7 shows the energy band and layer thickness of each layer in the light emitting element 10R.
  • FIG. 8 shows the energy band and layer thickness of each layer in the light emitting element 10G.
  • FIG. 9 shows the energy band and layer thickness of each layer in the light emitting element 10B.
  • the differences between the light emitting elements 10R / 10G / 10B according to the present embodiment and the light emitting elements 10R / 10G / 10B according to the first embodiment are the anodes 2R / 2G / 2B and the EML5R. Only the layer between 5G and.
  • HIL11R / 11G / 11B and HTL12R / 12G / 12B are provided in this order between the anodes 2R / 2G / 2B and the EML5R / 5G. ..
  • EA HIL The electron affinity of the NiO layer as HIL11R / 11G / 11B (hereinafter referred to as "EA HIL ”) is 1.9 eV, and the ionization potential (hereinafter referred to as "IP HIL ”) is 5.4 eV. Further, the electron affinity EA HTL of the PVK layer as HTL12R / 12G / 12B is 2.2 eV, and the ionization potential IP HTL is 5.8 eV.
  • the electron affinity EA HIL corresponds to the energy difference between the vacuum level (not shown) and the CBM of HIL11R / 11G / 11B.
  • the ionization potential IP HIL corresponds to the energy difference between the vacuum level and the VBM of HIL11R / 11G / 11B.
  • the electron affinity EA HTL corresponds to the energy difference between the vacuum level (not shown) and the CBM of HTL12R / 12G / 12B.
  • the ionization potential IP HTL corresponds to the energy difference between the vacuum level and the VBM of HTL12R / 12G / 12B.
  • holes from the anodes 2R, 2G, and 2B are transferred to EML5R, 5G, and 5B via HIL11R, 11G, and 11B and HTL12R, 12G, and 12B. To reach.
  • the conduction band level of the quantum dot QD used as the quantum dot QR / QG / QB becomes deeper as the emission wavelength of the quantum dot QD is longer. , The shorter the emission wavelength of the quantum dot QD, the shallower the energy level.
  • the injection of electrons in the light emitting element 10B becomes more difficult than the injection of electrons in other light emitting elements 10R / 10G.
  • the light emitting element 10B that emits light in the wavelength band having the shortest emission peak wavelength among the light emitting elements 10R, 10G, and 10B is another light emitting element 10R.
  • the electron injection barrier is larger than 10G.
  • the layer thickness of HTL12B is made larger than the layer thickness of HTL12R / 12G.
  • the hole mobility of organic materials is smaller than that of inorganic materials (metal chalcogenides). Therefore, by making the layer thickness of HTL12B larger than the layer thickness of HTL12R / 12G, injection of holes into EML5B can be suppressed. Therefore, also in the present embodiment, in the light emitting device 10B, the carrier balance between the holes and the electrons can be balanced, and the recombination probability between the holes and the electrons can be improved. As a result, the light emitting element 10B can obtain the same brightness as the other light emitting elements 10R / 10G.
  • the light emitting element 10B and the other light emitting elements 10R / 10G can suppress the same charge. Become. Further, the brightness can be balanced between the light emitting element 10B and the other light emitting elements 10R / 10G.
  • the light emitting element 10B can achieve the same carrier balance as the other light emitting elements 10R / 10G. Therefore, also in this embodiment, it is not necessary to change the material of the ETL6 by the light emitting element 10 to change the CBM of the ETL6, and the ETL6 can be shared.
  • the HTL 12 as an intermediate layer between the HIL 11 and the EML 5 as described above, it is possible to easily control the layer thickness at the time of manufacturing the HTL 12.
  • the layer thickness of HTL12R / 12G is preferably 30 to 59.5 nm.
  • the layer thickness of HTL12B is preferably 30.5 to 60 nm.
  • a suitable layer thickness of HTL12 is several tens of nm or more, and good hole transportability can be obtained by setting the lower limit of the layer thickness of HTL12R / 12G, which is the lower limit of the layer thickness of HTL12, to 30 nm. it can.
  • the drive voltage is preferably 15 V or less.
  • the upper limit of the layer thickness of HTL12B which is the upper limit of the layer thickness of HTL12, is 60 nm.
  • the difference between them is preferably 0.5 to 30 nm.
  • T HTLR T HTLR + 0.5nm
  • T HTLB T HTLB + 30nm
  • THTLG + 0.5 nm T HTLB ⁇ ( THTLG + 30 nm).
  • the layer thickness T HTLB of HTL12B is greater than the layer thickness T HTLG layer thickness T hTLR and HTL12G of HTL12R. Therefore, the difference in layer thickness between HTL12B and HTL12R / 12G indicates THTLB - THTLR (however, THTLB > THTLR ) or THTLB - THTLG (however, THTLB > THTLR ).
  • the thickness of HTL12R ⁇ 12G ⁇ 12B may be set such that the thickness T HTLB> HTL12G the thickness T HTLG> HTL12R layer thickness T hTLR of HTL12B.
  • the layer thickness THTLB of HTL12B can be rephrased as the distance between HIL11B, which is a layer containing a metal chalcogenide, and EML5B in the light emitting device 10B.
  • the layer thickness THTLR of HTL12R can be rephrased as the distance between HIL11R, which is a layer containing a metal chalcogenide, and EML5R in the light emitting element 10R.
  • the layer thickness THTLG of HTL12G can be rephrased as the distance between HIL11G, which is a layer containing a metal chalcogenide, and EML5G in the light emitting device 10G.
  • the difference in layer thickness between HTL12B and HTL12R can be rephrased as the difference between the distance between the HIL11B and EML5B in the light emitting element 10B and the distance between the HIL11R and EML5R in the light emitting element 10R. ..
  • the difference in layer thickness between HTL12B and HTL12G can be rephrased as the difference between the distance between the HIL11B and EML5B in the light emitting element 10B and the distance between the HIL11G and EML5G in the light emitting element 10G. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光デバイス(100)は、陽極(2)とEML(5)との間に、金属カルコゲナイドを含むHTL(3)を有し、少なくとも、HTLとEMLとの間に、有機材料を含むIL(4)を有している。発光ピーク波長が最も短い波長帯域の光を発光する発光素子(10B)における、HTLとEMLとの間の距離は、他の発光素子(10R、10G)における、HTLとEMLとの間の距離よりも大きい。

Description

発光デバイス
 本開示は、発光デバイスに関する。
 非特許文献1には、発光層に青色量子ドットを使用し、正孔注入層及び正孔輸送層に有機材料を用いた発光素子において、青色量子ドットのリガンドをより短いリガンドに置き換えることで、量子効率を向上させることができることが開示されている。
 また、非特許文献2には、発光層に緑色量子ドットを使用し、正孔輸送層にNiO(酸化ニッケル)を用いた発光素子において、緑色量子ドットのシェルの厚さを厚くすることで、発光消光及びデバイス性能の低下を抑制することが開示されている。
Huaibin Shen, 外5名, "High-Efficiency, Low Turn-on Voltage Blue-violet Quantum-Dot-based Light-Emitting Diodes", Nano Lett., 2015, 15, 1211-1216 Ting Wang, 外8名, "Influence of Shell Thickness on the Performance of NiO based All-Inorganic Quantum-Dot Light-Emitting Diodes", ACS Appl. Mater. Interfaces, 2018, 10, 14894-14900
 このように、非特許文献1では、発光素子の特性向上のために、キャリア輸送層から量子ドットのコアまでの距離を短くしている。一方で、非特許文献2では、非特許文献1とは逆に、発光素子の特性向上のために、キャリア輸送層から量子ドットのコアまでの距離を長くしている。
 なお、非特許文献1は、上述したように、正孔注入層及び正孔輸送層に、一般的な有機材料を使用している。一方、非特許文献2は、上述したように、正孔輸送層にNiOを使用している。NiOは、金属カルコゲナイド(金属酸化物、金属硫化物等)の一種である。
 しかしながら、本願発明者らが鋭意検討した結果、本願発明者らは、以下の問題点を見出した。すなわち、発光波長が異なる発光素子を備えた発光デバイスにおいて、正孔輸送性を有する層に金属カルコゲナイドを使用し、各発光素子における量子ドットのシェルの厚さを厚くすると、発光ピーク波長が最も短い波長帯域の光を発光する発光素子の輝度が低くなる。
 そこで、本開示の一態様は、正孔輸送性を有する金属カルコゲナイドを含む層を有する発光素子を備えた発光デバイスにおいて、発光ピーク波長が最も短い波長帯域の光を発光する発光素子と、他の発光素子との輝度のバランスをとることを目的とする。
 上記の課題を解決するために、本開示の一態様に係る発光素子は、互いに異なる波長帯域に発光ピーク波長を有する複数種類の発光素子を備え、上記複数種類の発光素子は、それぞれ、陽極と、量子ドットを含む発光層と、陰極とを、この順に備え、上記陽極と上記発光層との間に、正孔輸送性を有する、金属カルコゲナイドを含む層を有し、上記複数種類の発光素子のうち、少なくとも、発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間に、有機材料を含む中間層を有し、上記複数種類の発光素子のうち、上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離が、他の発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離よりも大きい。
 本開示の一態様によれば、正孔輸送性を有する金属カルコゲナイドを含む層を有する発光素子を備え、発光ピーク波長が最も短い波長帯域の光を発光する発光素子と、他の発光素子との輝度のバランスをとることができる発光デバイスを提供することができる。
実施形態1に係る発光デバイスの積層構造の一例を模式的に示す図である。 実施形態1に係る発光デバイスの各発光層に含まれる量子ドット及びリガンドの概略構成を模式的に示す断面図である。 実施形態1に係る赤色の発光素子における各層のエネルギーバンド及び層厚を示す図である。 実施形態1に係る緑色の発光素子における各層のエネルギーバンド及び層厚を示す図である。 実施形態1に係る青色の発光素子における各層のエネルギーバンド及び層厚を示す図である。 実施形態2に係る発光デバイスの各発光層に含まれる量子ドット及びリガンドの概略構成を模式的に示す断面図である。 実施形態2に係る赤色の発光素子における各層のエネルギーバンド及び層厚を示す図である。 実施形態2に係る緑色の発光素子における各層のエネルギーバンド及び層厚を示す図である。 実施形態2に係る青色の発光素子における各層のエネルギーバンド及び層厚を示す図である。
 〔実施形態1〕
 以下に、本開示の実施の一形態について説明する。以下では、比較対象の層よりも先のプロセスで形成されている層を「下層」とし、比較対象の層よりも後のプロセスで形成されている層を「上層」とする。
 図1は、本実施形態に係る発光デバイス100の積層構造の一例を模式的に示す図である。
 図1に示すように、発光デバイス100は、支持体としてのアレイ基板1と、互いに異なる波長帯域に発光ピーク波長を有する複数種類の発光素子10と、を備えている。発光デバイス100は、図示しないTFT(薄膜トランジスタ)が形成されたアレイ基板1上に、発光素子10の各層が積層された構造を備えている。なお、本開示では、アレイ基板1側から発光素子10側に向かう方向を「上方」とし、発光素子10側からアレイ基板1側に向かう方向を「下方」として記載する。
 発光デバイス100は、発光素子10として、発光材料に量子ドット(半導体ナノ粒子)QDを用いた量子ドット発光ダイオード(以下、「QLED」と記す)を備えた表示装置(QLEDディスプレイ)である。発光デバイス100は、複数の画素Pを備え、画素Pに対応して、画素P毎に、発光素子10を備えている。
 発光素子10は、陽極2と、発光層(以下、「EML」と記す)5と、陰極7とを、この順に備えている。陽極2とEML5との間には、正孔輸送性を有する、金属カルコゲナイドを含む層として、正孔輸送層(以下、「HTL」と記す)3が設けられている。HTL3とEML5との間には、これらHTL3とEML5との間の中間層として、有機材料を含む絶縁層(以下、「IL」と記す)4が設けられている。なお、EML5と陰極7との間には、電子輸送性を有する層として、電子輸送層(以下、「ETL」と記す)6が設けられていてもよい。
 図1に示す発光素子10は、陽極2、HTL3、IL4、EML5、ETL6、陰極7を、アレイ基板1側(つまり、下層側)から、この順に備えている。
 陽極2、HTL3、IL4、及びEML5のそれぞれは、図示しないバンクによって、画素P毎に島状に分離されている。これにより、発光デバイス100には、発光素子10として、画素Pに対応して、複数のQLEDが設けられている。
 上記バンクは、画素分離壁として機能するとともに、陽極2R・2G・2Bの各エッジを覆うエッジカバーとして機能する。上記バンクには、例えば、アクリル樹脂、ポリイミド樹脂等の絶縁材料が用いられる。
 図1に示す発光デバイス100は、画素Pとして、赤色の画素RP、緑色の画素GP、青色の画素BPを有している。画素RPには、発光素子10として、赤色光を発光する発光素子10R(赤色の発光素子)が設けられている。緑色の画素GPには、発光素子10として、緑色光を発光する発光素子10G(緑色の発光素子)が設けられている。青色の画素BPには、発光素子10として、青色光を発光する発光素子10B(青色の発光素子)が設けられている。
 以下、上記バンクによって画素RP、画素GP、画素BPにそれぞれ対応して互いに分離された島状の陽極2を、順に、陽極2R、陽極2G、陽極2Bと称する。同様に、上記バンクによって画素RP、画素GP、画素BPにそれぞれ対応して互いに分離された島状のHTL3を、順に、HTL3R、HTL3G、HTL3Bと称する。上記バンクによって画素RP、画素GP、画素BPにそれぞれ対応して互いに分離された島状のIL4を、順に、IL4R、IL4G、IL4Bと称する。上記バンクによって画素RP、画素GP、画素BPにそれぞれ対応して互いに分離された島状のEML5を、順に、EML5R、EML5G、EML5Bと称する。なお、ETL6及び陰極7は、上記バンクによって分離されず、共通層として、全ての画素Pに共通して、表示領域にベタ状に形成されている。
 発光素子10Rは、それぞれ島状の、陽極2R、HTL3R、IL4R、EML5R、並びに、共通層であるETL6及び陰極7によって形成されている。発光素子10Gは、それぞれ島状の、陽極2G、HTL3G、IL4G、EML5G、並びに、共通層であるETL6及び陰極7によって形成されている。発光素子10Bは、それぞれ島状の、陽極2B、HTL3B、IL4B、EML5B、並びに、共通層であるETL6及び陰極7によって形成されている。
 アレイ基板1上に形成された下部電極である陽極2R・2G・2Bは、画素P毎に設けられたパターン陽極であり、アレイ基板1のTFTとそれぞれ電気的に接続されている。一方、上部電極である陰極7は、全ての画素Pに共通な共通陰極である。
 発光素子10R・10G・10Bの各層は、EML5R・5G・5Bを除いて、発光素子10R・10G・10Bにおける互いに対応する各層で、同一の材料から形成されていてもよい。
 EML5Rは、量子ドットQDとして、赤色光を発光する量子ドットQRを備えている。EML5Gは、量子ドットQDとして、緑色光を発光する量子ドットQGを備えている。EML5Bは、量子ドットQDとして、青色光を発光する量子ドットQBを備えている。
 なお、本開示において、赤色光とは、600nm以上、780nm以下の波長帯域に発光ピーク波長を有する光を示す。また、緑色光とは、500nm以上、600nm以下の波長帯域に発光ピーク波長を有する光を示す。青色光とは、400nm以上、500nm以下の波長帯域に発光ピーク波長を有する光を示す。
 発光素子10Rは、620nm以上、650nm以下の波長帯域に発光ピーク波長を有することが好ましい。発光素子10Gは、520nm以上、540nm以下の波長帯域に発光ピーク波長を有することが好ましい。発光素子10Bは、440nm以上、460nm以下の波長帯域に発光ピーク波長を有することが好ましい。
 但し、上記構成は一例であって、発光デバイス100の構成は、必ずしも上記構成に限定されるものではない。発光デバイス100は、発光素子10として、上記波長帯域以外の波長帯域に発光ピーク波長を有する光を発光する発光素子を備えていてもよい。ETL6は、前記バンクによって、画素P毎に島状に分離されていてもよい。陽極2から陰極7までの積層順は、逆であってもよい。したがって、発光素子10は、陽極2、HTL3、IL4、EML5、ETL6、陰極7を、上層側からこの順に備えていてもよい。陰極7がアレイ基板1上に形成された下部電極である場合には、陰極7が、パターン陰極として、アレイ基板1のTFTと電気的に接続される。一方、上部電極となる陽極2は、全ての画素Pに共通な共通陽極として用いられる。以下では、発光デバイス100が図1に示す構成を有する場合を例に挙げて説明する。
 なお、以下の説明において、発光素子10R・10G・10Bをそれぞれ区別する必要がない場合、上述したように、これら発光素子10R・10G・10Bを総称して単に「発光素子10」と称する。同様に、画素RP・GP・BPをそれぞれ区別する必要がない場合、これら画素RP・GP・BPを総称して単に「画素P」と称する。陽極2R・2G・2Bをそれぞれ区別する必要がない場合、これら陽極2R・2G・2Bを総称して単に「陽極2」と称する。HTL3R・3G・3Bをそれぞれ区別する必要がない場合、これらHTL3R・3G・3Bを総称して単に「HTL3」と称する。IL4R・4G・4Bをそれぞれ区別する必要がない場合、これらIL4R・4G・4Bを総称して単に「IL4」と称する。EML5R・5G・5Bをそれぞれ区別する必要がない場合、これらEML5R・5G・5Bを総称して単に「EML5」と称する。量子ドットQR・QG・QBをそれぞれ区別する必要がない場合、これら量子ドットQR・QG・QBを総称して単に「量子ドットQD」と称する。
 陽極2は、導電性材料からなり、HTL3に正孔を注入する正孔注入層(以下、「HIL」と記す)の機能を有する。陰極7は導電性材料からなり、ETL6に電子を注入する電子注入層(以下、「EIL」と記す)の機能を有する。
 陽極2及び陰極7の何れか一方は、光透過性材料からなる。なお、陽極2及び陰極7の何れか一方は、光反射性材料で形成してもよい。発光デバイス100をトップエミッション型の発光デバイスとする場合、上層である陰極7を光透過性材料で形成し、下層である陽極2を光反射性材料で形成する。発光デバイス100をボトムエミッション型の発光デバイスとする場合、上層である陰極7を光反射性材料で形成し、下層である陽極2を光透過性材料で形成する。
 光透過性材料としては、例えば、透明な導電性材料を用いることができる。光透過性材料としては、具体的には、例えば、ITO(インジウムスズ酸化物)、IZO(インジウム亜鉛酸化物)、SnO(酸化スズ)、FTO(フッ素ドープ酸化スズ)等を用いることができる。これらの材料は可視光の透過率が高いため、発光効率が向上する。
 光反射性材料としては、例えば、金属材料を用いることができる。光反射性材料としては、具体的には、例えば、Al(アルミニウム)、Ag(銀)、Cu(銅)、Au(金)等を用いることができる。これらの材料は、可視光の反射率が高いため、発光効率が向上する。
 また、陽極2及び陰極7の何れか一方を、光透過性材料と光反射性材料との積層体とすることで、光反射性を有する電極としてもよい。
 陽極2及び陰極7は、例えば、スパッタ法、真空蒸着法等、陽極2及び陰極7の形成方法として従来公知の各種方法により形成することができる。
 ETL6は、EML5に電子を輸送する。なお、ETL6は、正孔の輸送を阻害する機能を有していてもよい。また、ETL6は、陰極7からEML5への電子の注入を促進するEILを兼ねていてもよい。陰極7とEML5との間に電子輸送性を有する層を設ける場合、発光素子10は、陰極7側から、EIL、ETL6を、この順に備えていてもよく、ETL6のみを備えていてもよい。
 ETL6には、公知の電子輸送性材料を用いることができる。上記電子輸送性材料としては、例えば、酸化亜鉛(例えばZnO)、酸化チタン(例えばTiO)、酸化ストロンチウムチタン(例えばSrTiO)等が用いられる。これら電子輸送性材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。また、上記電子輸送性材料には、ナノ粒子を用いてもよい。
 HTL3は、IL4を介してEML5に正孔を輸送する。なお、HTL3は、電子の輸送を阻害する機能を有していてもよい。また、HTL3は、陽極2からEML5への正孔の注入を促進するHILを兼ねていてもよい。
 HTL3は、前述したように、正孔輸送性を有する、金属カルコゲナイドを含む層である。なお、HTL3は、金属カルコゲナイドを主として含むが、他の材料をさらに含んでいてもよい。金属カルコゲナイドは、無機材料のなかでも特に耐久性が高い。金属カルコゲナイドとしては、例えば、酸化ニッケル(例えばNiO)、酸化銅(例えばCuO)、硫化銅(例えばCuS)等が挙げられる。これら金属カルコゲナイドは、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。したがって、上記金属カルコゲナイドは、酸化ニッケル、酸化銅、硫化銅からなる群より選ばれる少なくとも一種であってもよい。
 HTL3は、例えば、ゾルゲル法、スパッタ法、CVD(化学蒸着)法、スピンコート法(塗布法)等によって形成することができる。
 IL4は、HTL3とEML5との間に、HTL3とEML5とに接して設けられている。なお、IL4は、有機材料を主として含むが、他の材料をさらに含んでいてもよい。
 IL4は、製造プロセスにおいて、下層の溶解による消失、あるいは、下層に対する材料塗布時のはじき等の支障がなく、均一に積層が可能な絶縁材料を用いて形成される。上記絶縁材料としては、良導体でない有機材料が望ましく、水酸基を有していない有機材料であることが、より望ましい。また、EML5からHTL3への電子のオーバーフローを抑制するため、IL4の電子親和力の値は、EML5の電子親和力の値より0.5eV以上小さいことが好ましい。さらに、IL4のイオン化ポテンシャルの値は、EML5のイオン化ポテンシャルの値から0.5eV引いた値よりも大きいことが、HTL3からEML5への正孔の注入が容易になることから、望ましい。
 つまり、IL4の電子親和力をEAILとし、EML5の電子親和力をEAEMLとすると、EAIL≦EAEML-0.5eVであることが好ましい。また、IL4のイオン化ポテンシャルをIPILとし、EML5のイオン化ポテンシャルをIPEMLとすると、IPIL≧IPEML-0.5eVであることが好ましい。
 このような絶縁材料としては、例えば、ポリメチルメタクリレート(略称:PMMA)、ポリビニルピロリドン(略称:PVP)、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)](略称:PFN)等が挙げられる。これら絶縁材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。したがって、IL4は、PMMA、PVP、PFNからなる群より選ばれる少なくとも一種の絶縁材料からなっていてもよい。
 一例として、これらPMMA、PVP、PFNの電子親和力、イオン化ポテンシャル、及びバンドギャップを、表1に示す。バンドギャップは、当該層のイオン化ポテンシャルと、電子親和力との差に相当する。
Figure JPOXMLDOC01-appb-T000001
 IL4は、例えば、スピンコート法(塗布法)、ディップコート法、インクジェット法等によって形成することができる。
 上述したように、金属カルコゲナイドは、耐久性を有している。また、上述したようにEMLに量子ドットQDを用いた発光デバイスは、EMLに有機ELを用いた発光デバイスとは異なり、高真空装置を用いない製造プロセスにより、低コストで製造が可能である。しかしながら、HTLに金属カルコゲナイドを使用し、高真空装置を用いない製造プロセスにより、上述したように量子ドットQDを用いた発光デバイスを製造すると、水分を含むガスによって金属カルコゲナイド表面が暴露されるおそれがある。金属カルコゲナイド表面が、水分を含むガスに僅かでも暴露されると、金属カルコゲナイド表面に水酸基が吸着することが想定される。
 特に、製造装置の汎用性の観点からは、発光素子10における各層の製造装置は、互いに分離していることが望ましい。したがって、HTL3の製造装置と、次工程で用いられる成膜装置(つまり、HTL3上に成膜される層の製造装置)とは、互いに分離していることが望ましい。しかしながら、HTL3を形成後に、HTL3の製造装置とは分離された製造装置に、HTL3が形成された基板を搬送すると、両製造装置の間で、HTL3が形成された基板が大気に曝される。
 このように、製造装置の汎用性の観点からは、発光デバイス100の製造工程が、HTL3の金属カルコゲナイド表面が水分を含むガスに暴露される工程を含むことになるものの、発光素子10における各層の製造装置は、互いに分離していることが望ましい。そして、HTL3の金属カルコゲナイド表面が水分を含むガスに暴露される工程では、金属カルコゲナイドの表面に水酸基が吸着されることが想定される。したがって、発光デバイス100の製造工程が、HTL3の金属カルコゲナイド表面が水分を含むガスに暴露される工程を含むことは、発光デバイス100の製造工程が、金属カルコゲナイドの表面に水酸基が吸着する工程を含むことを意味すると推定される。
 IL4は、金属カルコゲナイド表面の水酸基による量子ドットQDの帯電を抑制し、量子ドットQDの帯電による発光特性の低下を抑制する。
 また、IL4は、HTL3からEML5への正孔の輸送を制御するとともに、陰極7から注入される電子の輸送を阻害する効果を有している。このため、EML5内での正孔及び電子の再結合効率を高めることができ、発光効率を向上させることができる。
 EML5は、発光材料を含み、陰極7から輸送された電子と、陽極2から輸送された正孔との再結合により発光する層である。発光デバイス100は、発光材料として、複数層積層された量子ドットQDを、各画素Pにおいて備える。
 EML5の形成方法は、特に限定されるものではないが、例えば結晶成長等ではなく、好適には、溶液法が用いられる。EML5は、溶媒(分散媒)に量子ドットQDを分散させた分散液を、EML5の下層となる層の上面に塗布して量子ドットQDを含む塗布膜を形成した後、上記溶媒を揮発させて上記塗布膜を固体化(硬化)させることにより形成することができる。上記溶媒には、水;ヘキサン、トルエン等の有機溶媒;を用いることができる。上記分散液は、スピンコート法、またはインクジェット法等を用いて、画素P毎に塗り分けられる。なお、分散液には、チオール、アミン等の分散材料を混合してもよい。
 上記分散液は、量子ドットQDと、該量子ドットQDをレセプタとして該量子ドットQDの表面に吸着(配位)するリガンドと、上記溶媒と、を含むコロイド溶液である。リガンドは、量子ドットQDの表面を修飾する表面修飾基である。量子ドットQDの表面は、リガンドで保護されている。
 このように溶液法で形成されたEML5は、球状の量子ドットQDと、リガンドと、を含む。このように溶液法で形成された塗布型の量子ドットQDは、その形状が、結晶成長させた場合のような島状(レンズ状)ではなく球状であることで、発光の偏光特性を小さくすることができる。また、EML5がリガンドを含むことで、量子ドットQDを含む塗布膜の形成時に、量子ドットQDの凝集を抑制し、量子ドットQDを良好に分散させることができる。
 発光デバイス100は、複数種類の量子ドットQDを備え、同一の画素Pにおいては、同種の量子ドットQDを備えている。EML5Rは、例えば量子ドットQRが複数層積層された構成を有している。EML5Gは、例えば量子ドットQGが複数層積層された構成を有している。EML5Bは、例えば量子ドットQBが複数層積層された構成を有している。
 図2は、発光デバイス100のEML5R・5G・5Bに含まれる量子ドットQR・QG・QB及びリガンドLR・LG・LBの概略構成を模式的に示す断面図である。
 本実施形態で用いられるレセプタとしての量子ドットQR・QG・QBは、コアシェル型の量子ドット(コアシェル粒子)であり、それぞれ、コアと、該コアを覆うシェルとを備えた、コアシェル型の量子ドット(コアシェル粒子)である。
 図2に示すように、量子ドットQRは、コアCRと、該コアCRを覆うシェルSRとを備える。同様に、量子ドットQGは、コアCGと、該コアCGを覆うシェルSGとを備える。量子ドットQBは、コアCBと、該コアCBを覆うシェルSBとを備える。
 また、EML5Rは、量子ドットQRの表面に吸着したリガンドLRを有している。EML5Gは、量子ドットQGの表面に吸着したリガンドLGを有している。EML5Bは、量子ドットQBの表面に吸着したリガンドLBを有している。
 量子ドットQR・QG・QBは、例えば、Cd(カドミウム)、S(硫黄)、Te(テルル)、Se(セレン)、Zn(亜鉛)、In(インジウム)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、アルミニウム(Al)、Ga(ガリウム)、Pb(鉛)、Si(ケイ素)、Ge(ゲルマニウム)、Mg(マグネシウム)、からなる群より選択される少なくとも一種の元素で構成されている少なくとも一種の半導体材料を含んでいてもよい。
 シェルSR・SG・SBには、例えばZnS(硫化亜鉛)が用いられる。シェルSR・SG・SBの材料としては、該シェルSR・SG・SBが覆うコアCR・CG・CBと類似した格子定数を有する材料が好適に用いられる。コアCR・CG・CBの格子定数と、該コアCR・CG・CBを覆うシェルSR・SG・SBの格子定数との相性がよい場合には、結晶体における欠陥の量を少なくすることができる。また、シェルSR・SG・SBの材料としては、該シェルSR・SG・SBが覆うコアCR・CG・CBの材料よりも大きなバンドギャップを有するシェル材料を使用することが望ましい。このような材料を使用することで、PLQY(フォトルミネッセンス量子収量)を大きくすることができ、励起状態を保護することができる。ZnSはこれらの要求を満たす。但し、シェルSR・SG・SBの材料は、ZnSに限定されず、他の好適な材料を使用してもよい。
 各量子ドットQR・QG・QBにおけるコアCR・CG・CBとシェルSR・SG・SBとの組み合わせ(コア/シェル)としては、例えば、CdSe(セレン化カドミウム)/ZnSe(セレン化亜鉛)、CdSe/ZnS、CdS(硫化カドミウム)/ZnSe、CdS/ZnS、ZnSe/ZnS、InP(リン化インジウム)/ZnS、またはZnO(酸化亜鉛)/MgO(酸化マグネシウム)等が挙げられる。
 リガンドLR・LG・LBは、各量子ドットQR・QG・QBの表面に吸着(配位)する吸着基と、該吸着基に結合するアルキル基とで構成される。上記吸着基としては、例えば、アミノ基、ホスフィン基、カルボキシル基、ヒドロキシル基、チオール基等が挙げられる。また、上記アルキル基としては、炭素数2~50のアルキル基が挙げられる。
 リガンドLR・LG・LBとしては、例えば、ヘキサデシルアミン、オレイルアミン、オクチルアミン、ヘキサデカンチオール、ドデカンチオール、トリオクチルホスフィン、トリオクチルホスフィンオキシド、ミリスチン酸、オレイン酸等が挙げられる。リガンドLR・LG・LBは、前記分散液中における量子ドットQR・QG・QBの分散性を向上させる分散剤としての役割も有している。
 コアシェル型の量子ドットQDの特徴として、該コアシェル型の量子ドットQDが発する光の波長は、発光部であるコアの粒径に依存し、シェルの粒径には依存しない。量子ドットQR・QG・QBが発する光の波長は、各量子ドットQR・QG・QBのコアCR・CG・CBの粒径によって制御することができる。
 量子ドットQDは、発光部であるコアの粒径を大きくすると、発光波長が長波長化し、コアの粒径を小さくすると、発光波長が短波長化する傾向にある。
 図2に示すようにコアCRの粒径(直径サイズ)をd1とし、コアCGの粒径(直径サイズ)をd11とし、コアCBの粒径(直径サイズ)をd21とすると、d1>d11>d21である。これらコアCR・CG・CBの粒径(以下、「コア径」と称する)d1・d11・d21は、コアCR・CG・CBの材料によって、所望の発光波長が得られるように適宜設定すればよく、特に限定されるものではない。これらコア径d1・d11・d21は、従来と同様に設定することができる。
 上記コア径d1・d11・d21は、例えば1~10nmである。量子ドットQR・QG・QBは、そのバンドギャップ(禁止帯幅)及び量子準位(励起準位)に対応した波長の光を発光する。上述したように本実施形態に係る量子ドットQR・QG・QBは球状であり、実質的に均一な粒径を有している。量子ドットQR・QG・QBは、発光部である、それぞれのコアCR・CG・CBのコア径d1・d11・d21に対応した波長の光を発光する。
 また、シェルSRを含めた量子ドットQRの最外粒径をd3とし、シェルSGを含めた量子ドットQGの最外粒径をd13とし、シェルSBを含めた量子ドットQBの最外粒径をd23とすると、これら最外粒径d3・d13・d23は、例えば、2~20nmである。EML5R・5G・5Bの層厚は、各量子ドットQR・QG・QBの最外粒径d3・d13・d23の数倍程度であることが好ましく、EML5R・5G・5Bにおける各量子ドットQR・QG・QBの重なり層数は、例えば、1~9層である。
 上記コア径d1・d11・d21は、コアCR・CG・CBの材料を分析して量子サイズ効果から算出することができる。また、上記最外粒径d13・d13・d23は、EML5R・5G・5Bの断面のTEM(透過型電子顕微鏡)像から測定することができる。なお、シェルSR・SG・SBの厚さ並びにリガンドLR・LG・LBの長さについては、後で説明する。
 本実施形態に係る発光素子10R・10G・10Bにおいて、IL4R・4G・4B以外の層の層厚は、従来の発光素子と同様に設定することができる。
 表2に、本実施形態に係る発光素子10R・10G・10Bにおける各層の層厚を示す。表2中、括弧内の層厚は、各層の層厚の好適な範囲を示す。また、括弧外の層厚は、本実施形態で用いた発光素子10R・10G・10Bにおける各層の具体的な層厚であり、発光素子10R・10G・10Bにおける各層の層厚の組み合わせの一例を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、陽極2R・2G・2Bの層厚は、好ましくは、20nm~200nmである。また、HTL3R・3G・3Bの層厚は、好ましくは、20nm~150nmである。IL4Rの層厚及びIL4Gの層厚は、好ましくは、12nm以下である。IL4Bの層厚は、好ましくは、0.5~12.5nmである。但し、IL4R・4G・4Bは、IL4Bの層厚>IL4Rの層厚、かつ、IL4Bの層厚>IL4Gの層厚となるように設定される。EML5R・5G・5Bの層厚は、好ましくは、15nm~80nmである。ETL6の層厚は、好ましくは、20nm~150nmである。陰極7の層厚は、好ましくは、50nm~200nmである。
 以下に、本実施形態に係る発光素子10R・10G・10B及び発光デバイス100の製造方法の一例について、図1及び表2を参照して説明する。
 本実施形態では、まず、支持体としてのアレイ基板1を準備し、該アレイ基板1上に、陽極2R・2G・2Bとして、層厚100nmのITO層を、スパッタ法にて、マトリクス状に形成した(陽極形成工程)。
 次いで、陽極2R・2G・2Bの各エッジを覆うように、画素分離壁兼エッジカバーとして、図示しない、格子状のバンクを形成した(バンク形成工程)。
 次いで、陽極2R・2G・2B上に、NiOをそれぞれスピンコートした後、大気中で加熱することにより、HTL3R・3G・3Bとして、層厚50nmのNiO層をそれぞれ形成した(HTL形成工程)。
 次いで、アセトンにPMMAを溶解させた溶液を用いて、HTL3R・3G・3B上に、IL4R・4G・4Bとして、PMMA層を、スピンコート法にてそれぞれ形成した(IL形成工程)。なお、成膜対象以外の部分はマスクを用いて成膜を行い、IL4R・4G・4Bの層厚は、上記溶液中のPMMAの濃度、スピンコート時の回転数、等を変更することで調整を行った。これにより、IL4Bとして、層厚8nmのPMMA層を形成し、IL4R及びIL4Gとして、それぞれ、層厚6nmのPMMA層を形成した。
 次いで、IL4R・4G・4B上に、EML5R・5G・5Bとして、層厚40nmの量子ドットQD層を、スピンコート法にて、それぞれ形成した(EML形成工程)。
 次いで、EML5R・5G・5B及び上記バンクを覆うように、ETL6として、ZnO-NP(ナノ粒子)からなる、層厚50nmのZnO層を、スピンコート法にて、各画素Pに共通な共通層として形成した(ETL形成工程)。本実施形態によれば、このように、発光素子10R・10G・10Bのうち少なくとも一部の発光素子において、同じ電子輸送性材料を用いてETL6を形成することで、ETL6を、上記少なくとも一部の発光素子において共通層とすることができる。本実施形態によれば、上述したように、ETL6の材料を、発光素子10R・10G・10Bで共通化することで、ETL6をより容易に形成することができる。
 次いで、ETL6上に、陰極7として、層厚100nmのAl層を、真空蒸着法にて、各画素Pに共通な共通層として形成した(陰極形成工程)。
 これにより、本実施形態に係る発光素子10R・10G・10Bを製造した。本実施形態に係る発光デバイス100は、上記陰極形成工程後に、図示しない封止層による発光素子10R・10G・10Bの封止を行うことで製造される。
 次に、本実施形態に係る発光デバイス100による効果について説明する。
 前述したように、非特許文献1では、発光素子の特性向上のために、キャリア輸送層から量子ドットのコアまでの距離を短くしている。一方で、非特許文献2では、非特許文献1とは逆に、発光素子の特性向上のために、キャリア輸送層から量子ドットのコアまでの距離を長くしている。
 この理由について、本願発明者らは、鋭意検討した結果、以下の結論に至った。前述したように、非特許文献1は、正孔注入層及び正孔輸送層に、一般的な有機材料を使用している。このような発光素子においてキャリア輸送層から量子ドットのコアまでの距離を短くするのは、青色量子ドットは、赤色量子ドット及び緑色量子ドットと比較して、キャリア輸送層から量子ドットのコアにキャリアが注入され難いためであると推定される。
 一方、非特許文献2は、前述したように、正孔輸送層にNiOを使用している。NiOは、金属カルコゲナイドの一種である。このような発光素子においてキャリア輸送層から量子ドットのコアまでの距離を長くするのは、金属カルコゲナイド表面に水酸基が存在することで、量子ドットが帯電し、発光素子の特性が低下するためであると推定される。
 しかしながら、本願発明者らの検討によれば、前述したように、正孔輸送性を有する層に金属カルコゲナイドを使用し、発光波長が異なる各発光素子の量子ドットのシェルの厚さを厚くすると、発光ピーク波長が最も短い波長帯域の光を発光する発光素子の輝度が低くなる。
 そこで、本願発明者らは、さらに鋭意検討を重ねた。この結果、本願発明者らは、発光ピーク波長が最も短い波長帯域の光を発光する発光素子の金属カルコゲナイドからなる層とEMLとの間の中間層の層厚を、他の発光素子の対応する中間層の層厚よりも大きくすることで、上記問題点を解決することができることを見出した。このため、本実施形態では、前述したように、IL4Bの層厚>IL4Rの層厚、かつ、IL4Bの層厚>IL4Gの層厚となるように、ILR・4G・4Bの各層厚を設定している。以下に、この理由について、図2~図5を参照して、より詳細に説明する。
 図3~図5は、上述した方法により製造された、本実施形態に係る発光素子10R・10G・10Bにおける各層のエネルギーバンド及び層厚を示す図である。図3は、発光素子10Rにおける各層のエネルギーバンド及び層厚を示している。図4は、発光素子10Gにおける各層のエネルギーバンド及び層厚を示している。図5は、発光素子10Bにおける各層のエネルギーバンド及び層厚を示している。
 図3~図5に示すように、陽極2R・2G・2BとしてのITO層のフェルミ準位(以下、「EF1」と記す)は4.7eVであり、陰極7としてのAl層のフェルミ準位(以下、「EF2」と記す)は4.3eVである。また、HTL3R・3G・3BとしてのNiO層の電子親和力(以下、「EAHTL」と記す)は1.9eVであり、イオン化ポテンシャル(以下、「IPHTL」と記す)は5.4eVである。また、ETL6としてのZnO層の電子親和力(以下、「EAETL」と記す)は4.0eVであり、イオン化ポテンシャル(以下、「IPETL」と記す)は7.5eVである。また、EML5Rとしての量子ドットQD層の電子親和力(以下、「EAEMLR」と記す)は5.9eVであり、イオン化ポテンシャルIPEML(以下、「IPEMLR」と記す)は3.9eVである。EML5Gとしての量子ドットQD層の電子親和力(以下、「EAEMLG」と記す)は5.9eVであり、イオン化ポテンシャル(以下、「IPEMLG」と記す)は3.2eVである。EML5R・5G・5Bとしての量子ドットQD層の電子親和力(以下、「EAEMLB」と記す)は5.9eVであり、イオン化ポテンシャル(以下、「IPEMLB」と記す)は3.2eVである。また、IL4R・4G・4BとしてのPMMAの電子親和力EAILは、表1に示したように2.6eVであり、イオン化ポテンシャルIPILは5.8eVである。
 電子親和力EAHTLは、図示しない真空準位と、HTL3R・3G・3BのCBM(伝導帯の下端)とのエネルギー差に相当する。イオン化ポテンシャルIPHTLは、上記真空準位と、HTL3R・3G・3BのVBM(価電子帯の上端)とのエネルギー差に相当する。電子親和力EAILは、上記真空準位と、IL4R・4G・4BのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPILは、上記真空準位と、IL4R・4G・4BのVBMとのエネルギー差に相当する。電子親和力EAEMLRは、上記真空準位と、EML5RのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPEMLRは、上記真空準位と、EML5RのVBMとのエネルギー差に相当する。電子親和力EAEMLGは、上記真空準位と、EML5GのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPEMLGは、上記真空準位と、EML5GのVBMとのエネルギー差に相当する。電子親和力EAEMLBは、上記真空準位と、EML5BのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPEMLBは、上記真空準位と、EML5BのVBMとのエネルギー差に相当する。電子親和力EAETLは、上記真空準位と、ETL6RのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPETLは、上記真空準位と、ETL6R・6G・6BのVBMとのエネルギー差に相当する。
 図3~図5に示すように、発光デバイス100において、陰極7と陽極2R・2G・2Bとの間に電位差をかけると、陰極7からは電子が、陽極2R・2G・2Bからは正孔が、EML5R・5G・5Bに向かってそれぞれ注入される。図3~図5にe-で示すように、陰極7からの電子は、ETL6を介して、EML5R・5G・5Bに到達する。一方、図3~図5にh+で示すように、陽極2R・2G・2Bからの正孔は、HTL3R・3G・3B及びIL4R・4G・4Bを介して、EML5R・5G・5Bに到達する。EML5R・5G・5Bに到達した正孔と電子とは、それぞれの画素PR・PG・PBにおける量子ドットQR・QG・QBにおいて再結合し、発光する。量子ドットQR・QG・QBからの発光は、例えば、金属電極である陰極7によって反射され、透明電極である陽極2R・2G・2Bを透過して、発光デバイス100の外部に放射される。
 発光素子10R・10G・10Bにおいて、IL4R・4G・4Bの層厚が十分に薄い場合、正孔は、IL4R・4G・4Bをトンネリングにより伝導する。
 HTL3RからEML5Rへの正孔注入障壁は、EML5Rのイオン化ポテンシャルIPEMLRとHTL3Rのイオン化ポテンシャルIPHTLとのエネルギー差(IPEMLR-IPHTL)によって示される。同様に、HTL3GからEML5Gへの正孔注入障壁は、EML5Gのイオン化ポテンシャルIPEMLGとHTL3Gのイオン化ポテンシャルIPHTLとのエネルギー差(IPEMLG-IPHTL)によって示される。HTL3BからEML5Bへの正孔注入障壁は、EML5Bのイオン化ポテンシャルIPEMLBとHTL3Bのイオン化ポテンシャルIPHTLとのエネルギー差(IPEMLB-IPHTL)によって示される。
 図3~図5に示すように、一般的に、量子ドットQD層のVBMは、同じ材料系の場合、量子ドットQR・QG・QBとして用いられる量子ドットQDの発光波長によって変化しない。このため、同じ材料系の場合、イオン化ポテンシャルIPEMLR・IPEMLG・IPEMLBは、実質的に同じである。この理由は以下の通りである。量子ドットQR・QG・QBは、これら量子ドットQR・QG・QBのコアCR・CG・CBを構成する元素の原子番号が小さい方が、閉殻軌道が少なく、閉殻軌道によって原子核が遮蔽され難い。このため、量子ドットQR・QG・QBの価電子は、原子核の作る電場の影響を受け易く、一定のエネルギー準位にとどまる傾向にある。
 したがって、量子ドットQD層のVBMは、同じ材料系の場合、イオン化ポテンシャルが実質的に同じであり、量子ドットQD層への正孔注入効率は、発光波長に依存しない。特に、図3~図5に示す例では、HTL3R・3G・3BからEML5R・5G・5Bへの正孔注入障壁が何れも0.5eV以下と小さく、HTL3R・3G・3BからEML5R・5G・5Bへの正孔注入効率が高い。
 しかしながら、図3~図5に示すように、一般的に、量子ドットQD層のCBMは、発光波長によって異なる。特に、同じ材料系の場合、量子ドットQR・QG・QBとして用いられる量子ドットQDの伝導帯準位は、量子ドットQDの発光波長が長いほどエネルギー準位が深くなり、量子ドットQDの発光波長が短いほどエネルギー準位が浅くなる。これは、バンドギャップが小さい量子ドットQDの方が、より伝導帯準位が深くなるためである。
 したがって、発光素子10R・10G・10B中、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10Bは、他の発光素子10R・10Gよりも電子注入障壁が大きくなる。
 ETL6から、EML5Rへの電子注入障壁は、ETL6の電子親和力EAETLとEML5Rの電子親和力EAEMLRとのエネルギー差(EAETL-EAEMLR)によって示される。ETL6から、EML5Gへの電子注入障壁は、ETL6の電子親和力EAETLとEML5Gの電子親和力EAEMLGとのエネルギー差(EAETL-EAEMLG)によって示される。ETL6から、EML5Bへの電子注入障壁は、ETL6の電子親和力EAETLとEML5Bの電子親和力EAEMLBとのエネルギー差(EAETL-EAEMLB)によって示される。
 図3~図5に示す例では、ETL6から、EML5R、EML5G、EML5Bへの電子注入障壁は、順に、0.1eV、0.5eV、0.8eVであり、電子の注入は、R→G→Bの順に困難となる。特に、図3~図5に示す例では、ETL6から、EML5R及びEML5Gへの電子注入障壁は、何れも0.5eV以下と小さく、ETL6からEML5R・5Gへの電子注入輸送が高い。一方、ETL6から、EML5Bへの電子注入障壁は、0.5eVよりも大きく、発光素子10Bは、他の発光素子10R・10Gと比較して、電子注入効率が低い。
 このように、EML5BのCBMがEML5R・5GのCBMよりも浅いと、発光素子10Bの電子の注入は、他の発光素子10R・10Gの電子の注入よりも困難になる。
 そこで、本実施形態では、IL4Bの層厚を、IL4R・4Gの層厚よりも大きくすることで、EML5Bへの正孔の注入を抑制する。これにより、発光素子10Bにおいて、正孔と電子とのキャリアバランスをとることができ、正孔と電子との再結合確率を向上させることができる。この結果、発光素子10Bにおいて、他の発光素子10R・10Gと同等の輝度を得ることができる。
 このように、本実施形態によれば、上述したように金属カルコゲナイドをHTL3に用いた場合であっても、発光素子10Bと他の発光素子10R・10Gとで、同等の帯電の抑制が可能となる。また、発光素子10Bと他の発光素子10R・10Gとで、輝度のバランスをとることができる。
 また、本実施形態によれば、IL4Bの層厚をIL4R・4Gの層厚よりも大きくすることで、発光素子10Bにおいて、他の発光素子10R・10Gと同様のキャリアバランスをとることができる。このため、本実施形態によれば、発光素子10によってETL6の材料を変更してETL6のCBMを変更する必要がなく、ETL6を共通化することができる。
 また、本実施形態によれば、上述したようにHTL3とEML5との間に、中間層としてIL4を設けることで、IL4の正孔輸送性を考慮する必要がなく、製造時の発光素子10R・10G・10Bの正孔輸送性の管理を容易に行うことができる。
 前述したように、IL4Rの層厚及びIL4Gの層厚は、好ましくは、12nm以下である。IL4Bの層厚は、好ましくは、0.5~12.5nmである。
 IL4Bの層厚を0.5nm以上とすることで、IL4Bを均一に成膜することができ、IL4Bにおける、正孔注入の面内ばらつきを抑制することができる。また、IL4の層厚が厚くなりすぎると、HTL3からEML5に、トンネリングにより正孔を輸送することができなくなる。IL4R及びIL4Gよりも層厚が厚いIL4Bの層厚を12.5nm以下とすることで、IL4Bにおいても、トンネリングによるEML5Bへの正孔注入を効果的に行うことができる。
 また、本実施形態において、発光デバイス100中、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10BにおけるIL4Bの層厚と、他の発光素子10R・10GにおけるIL4R・4Gとの層厚の差は、0.5~12.5nmであることが望ましい。
 つまり、IL4Rの層厚、IL4Gの層厚、IL4Bの層厚を、順に、TILR、TILG、TILBとすると、(TILR+0.5nm)≦TILB≦(TILR+12.5nm)、かつ、(TILG+0.5nm)≦TILB≦(TILG+12.5nm)であることが望ましい。
 このように、IL4BとIL4R・4Gとの層厚の差を0.5nm以上とすることで、発光素子10Bと、該発光素子10B以外の発光素子10R・10Gとに、有意差をもってIL4を成膜することができる。つまり、上記式中、(TILR+0.5nm)及び(TILG+0.5nm)は、均一な膜であり、かつ、有意差をもって成膜可能な最低限度の値を示す。また、上述したようにIL4BとIL4R・4Gとの層厚の差を12.5nm以下とすることで、HTL3BからEML5Bへのトンネリングによる正孔注入を効果的に行うことができる。つまり、上記式中、(TILR+12.5nm)及び(TILG+12.5nm)は、効果的に正孔がトンネリング可能な望ましい上限の値を示す。
 なお、上述したように、IL4Bの層厚TILBは、IL4Rの層厚TILR及びIL4Gの層厚TILGよりも大きい。したがって、IL4BとIL4R・4Gとの層厚の差とは、TILB-TILR(但し、TILB>TILR)、もしくは、TILB-TILG(但し、TILB>TILR)を示す。
 また、前述したように、IL4は、EAIL≦EAEML-0.5eVであることが好ましい。また、IL4は、IPIL≧IPEML-0.5eVであることが好ましい。言い替えれば、IL4Bの電子親和力をEAILBとし、IL4Bのイオン化ポテンシャルをIPILBとすると、IL4Bは、EAILB≦EAEMLB-0.5eVであり、IPILB≧IPEMLB-0.5eVであることが好ましい。また、IL4Rの電子親和力をEAILRとし、IL4Rのイオン化ポテンシャルをIPILRとすると、IL4Rは、EAILR≦EAEMLR-0.5eVであり、IPILR≧IPEMLR-0.5eVであることが好ましい。また、IL4Gの電子親和力をEAILGとし、IL4Gのイオン化ポテンシャルをIPILGとすると、IL4Gは、EAILG≦EAEMLG-0.5eVであり、IPILG≧IPEMLG-0.5eVであることが好ましい。
 上述したIL4R・4G・4Bは、上記条件を何れも満足している。
 また、図2に示すように、シェルSRのシェル厚をd2とし、シェルSGのシェル厚をd12とし、シェルSBのシェル厚をd22とすると、これらシェル厚d2・d12・d22は、d22<d2及び/またはd22<d12であることが望ましい。つまり、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10Bにおける量子ドットQBのシェル厚d22は、他の発光素子10R・10Gにおける量子ドットQR・QGのシェル厚d2・d12よりも薄いことが望ましい。図2に示すように、d2=d3-(d1×2)である。同様に、d12=d13-(d11×2)であり、d22=d23-(d21×2)である。このように、シェル厚d2・d12・d22は、最外粒径d3・d13・d23からコア径d1・d11・d21を引くことで、容易に算出が可能である。
 また、リガンドLRのリガンド長をd4とし、リガンドLGのリガンド長をd14とし、リガンドLBのリガンド長をd24とすると、これら、リガンド長d4・d14・d24は、d24<d4及び/またはd24<d14であることが望ましい。つまり、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10Bにおける量子ドットQBのリガンド長d24は、他の発光素子10R・10Gにおけるリガンド長d4・d14よりも短いことが望ましい。リガンド長d4・d14・d24は、EML5R・5G・5Bの断面のTEM像から、同じ画素Pにおいて互いに隣り合う量子ドットQD間の距離を求めることで、測定することができる。
 表3に、各量子ドットQR・QG・QBのシェル厚d2・d12・d22及びリガンド長d4・d14・d24をまとめて示す。表3中、括弧内の値は、シェル厚d2・d12・d22及びリガンド長d4・d14・d24の好適な範囲を示す。また、括弧外の値は、本実施形態で用いたシェル厚d2・d12・d22及びリガンド長d4・d14・d24の具体的な値であり、シェル厚d2・d12・d22及びリガンド長d4・d14・d24の組み合わせの一例を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、量子ドットQR・QGのシェル厚d2・d12は、好ましくは1.5~5.0nmであり、量子ドットQBのシェル厚d22は、好ましくは0.5~3.0nmである。また、量子ドットQR・QGのリガンド長d4・d14は、好ましくは1.5~2.5nmであり、量子ドットQBのリガンド長d24は、好ましくは0.5~1.5nmである。
 HTL3における金属カルコゲナイドの表面に水酸基が存在することで量子ドットQDが帯電して特性が低下することを抑制するためには、HTL3から量子ドットQDのコアまでの距離を長くすることが望ましい。
 しかしながら、上述したように、発光素子10Bは、発光素子10R・10Gと比較して、電子注入効率が低い。このため、本実施形態では、IL4Bの層厚TILBを、IL4Rの層厚TILR及びIL4Gの層厚TILGよりも大きくすることで、EML5Bへの正孔注入を抑制して、EML5Bにおけるキャリアバランスをとっている。このため、発光素子10Bの量子ドットQBは、他の発光素子10R・10Gの量子ドットQR・QGと比較して、IL4及びETL6からキャリアが注入され難い。
 そこで、上述したように、量子ドットQBのシェル厚d22を、量子ドットQR・QGのシェル厚d2・d12よりも薄くすると、IL4B及びETL6から量子ドットQBのコアCBまでの距離を短くすることができる。これにより、量子ドットQBに対し、量子ドットQR・QBと同等の効果的なキャリア注入が可能となり、発光特性の向上を図ることができる。
 また、上述したように、量子ドットQBのリガンド長d24を、量子ドットQR・QGのリガンド長d4・d14よりも短くした場合にも、IL4B及びETL6から量子ドットQBのコアCBまでの距離を短くすることができる。したがって、この場合にも、量子ドットQBに対し、量子ドットQR・QBと同等の効果的なキャリア注入が可能となり、発光特性の向上を図ることができる。
 <変形例>
 なお、本実施形態では、発光素子10R・10G・10BにそれぞれIL4R・4G・4Bが設けられている場合を例に挙げて説明した。しかしながら、IL4Bが設けられてさえいれば、IL4R及びIL4Gは、必ずしも設けられている必要はなく、IL4Rの層厚TILR及びIL4Gの層厚TILGのうち少なくとも一方は、表2に示したように、0nmであってもよい。
 つまり、本実施形態において、IL4Rの層厚TILRは、発光素子10Rにおける、金属カルコゲナイドを含む層であるHTL3Rと、EML5Rと、の間の距離と言い替えることができる。したがって、IL4Rの層厚TILRが0nmとは、HTL3RとEML5Rとの間の距離が0nmであり、HTL3RとEML5Rとが接していることを示す。
 また、IL4Gの層厚TILGは、発光素子10Gにおける、金属カルコゲナイドを含む層であるHTL3Gと、EML5Gと、の間の距離と言い替えることができる。したがって、IL4Gの層厚TILGが0nmとは、HTL3GとEML5Gとの間の距離が0nmであり、HTL3GとEML5Gとが接していることを示す。
 同様に、前述した説明において、IL4Bの層厚TILBは、発光素子10Bにおける、金属カルコゲナイドを含む層であるHTL3Bと、EML5Bと、の間の距離と言い替えることができる。
 したがって、IL4BとIL4Rとの層厚の差とは、発光素子10Bにおける上記HTL3BとEML5Bとの間の距離と、発光素子10Rにおける上記HTL3RとEML5Rとの間の距離との差と言い替えることができる。同様に、IL4BとIL4Gとの層厚の差とは、発光素子10Bにおける上記HTL3BとEML5Bとの間の距離と、発光素子10Gにおける上記HTL3GとEML5Gとの間の距離との差と言い替えることができる。
 なお、上述したように、HTL3に金属カルコゲナイドを用いた場合の量子ドットQDの帯電による特性の低下を抑制するためには、HTL3から量子ドットQDのコアまでの距離を長くすればよい。したがって、量子ドットQR・QGに対しては、例えば、量子ドットQR・QGのシェル厚d2・d12、及び、量子ドットQR・QGのリガンド長d4・d14の少なくとも一方を、表3に示す数値範囲内の値に設定すればよい。これにより、量子ドットQBとは異なり、量子ドットQR・QGに対しては、帯電による特性の劣化を抑制することが可能である。また、上述したように、量子ドットQR・QGは、量子ドットQBとは異なり、正孔注入効率及び電子注入効率ともに高い。したがって、IL4R及びIL4Gは、必ずしも設けられている必要はない。
 また、上述したように、本実施形態では、IL4Bの層厚TILB>IL4Gの層厚TILG=IL4Rの層厚TILRである場合を例に挙げて説明した。しかしながら、上述したように、電子の注入は、R→G→Bの順に困難となる。したがって、IL4R・4G・4Bの層厚は、IL4Bの層厚TILB>IL4Gの層厚TILG>IL4Rの層厚TILRとなるように設定されていてもよい。
 〔実施形態2〕
 本実施形態では、実施形態1との相異点について説明する。なお、説明の便宜上、実施形態1で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その詳細な説明を省略する。
 図6は、本実施形態に係る発光デバイス100の積層構造の一例を模式的に示す図である。
 本実施形態に係る発光素子10及び発光デバイス100は、以下の点を除けば、実施形態1に係る発光素子10及び発光デバイス100と同じ構成を有している。
 本実施形態に係る発光デバイス100は、陽極2とEML5との間に、正孔輸送性を有する、金属カルコゲナイドを含む層として、正孔注入層(以下、「HIL」と記す)11が設けられている。HIL11とEML5との間には、これらHIL11とEML5との間の中間層として、有機材料を含むHTL12が設けられている。なお、HIL11は、金属カルコゲナイドを主として含むが、他のものも含んでいてもよい。また、HTL12は、有機材料を主として含むが、他のものも含んでいてもよい。
 図6に示す発光素子10は、陽極2、HIL11、HTL12、IL4、EML5、ETL6、陰極7を、アレイ基板1側(つまり、下層側)から、この順に備えている。
 陽極2、HIL11、HTL12、及びEML5のそれぞれは、図示しないバンクによって、画素P毎に島状に分離されている。
 発光素子10Rは、それぞれ島状の、陽極2R、HIL11R、HTL12R、EML5R、並びに、共通層であるETL6及び陰極7によって形成されている。発光素子10Gは、それぞれ島状の、陽極2G、HIL11G、HTL12G、EML5G、並びに、共通層であるETL6及び陰極7によって形成されている。発光素子10Bは、それぞれ島状の、陽極2B、HIL11B、HTL12B、EML5B、並びに、共通層であるETL6及び陰極7によって形成されている。
 但し、本実施形態でも、上記構成は一例であって、発光デバイス100の構成は、必ずしも上記構成に限定されるものではない。本実施形態でも、発光デバイス100は、発光素子10として、実施形態1で説明した波長帯域以外の波長帯域に発光ピーク波長を有する光を発光する発光素子を備えていてもよい。ETL6は、前記バンクによって、画素P毎に島状に分離されていてもよい。陽極2から陰極7までの積層順は、逆であってもよい。したがって、発光素子10は、陽極2、HIL11、HTL12、EML5、ETL6、陰極7を、上層側からこの順に備えていてもよい。以下では、発光デバイス100が図6に示す構成を有する場合を例に挙げて説明する。
 なお、以下の説明において、HIL11R・11G・11Bをそれぞれ区別する必要がない場合、これらHIL11R・11G・11Bを総称して単に「HIL11」と称する。また、HTL12R・12G・12Bをそれぞれ区別する必要がない場合、これらHTL12R・12G・12Bを総称して単に「HTL12」と称する。
 本実施形態では、陽極2は、HIL11に正孔を注入する。HIL11は、HTL12に正孔を注入する。
 HIL11は、前述したように、正孔輸送性を有する、金属カルコゲナイドを主として含んでいる。金属カルコゲナイドとしては、実施形態1に係るHTL3と同様の材料を用いることができる。また、HIL11は、実施形態1に係るHTL3と同様の方法で形成することができる。
 具体的には、上記金属カルコゲナイドとしては、例えば、酸化ニッケル(例えばNiO)、酸化銅(例えばCuO)、硫化銅(例えばCuS)等が挙げられる。これら金属カルコゲナイドは、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよい。したがって、上記金属カルコゲナイドは、酸化ニッケル、酸化銅、硫化銅からなる群より選ばれる少なくとも一種であってもよい。
 HIL11は、例えば、ゾルゲル法、スパッタ法、CVD(化学蒸着)法、スピンコート法(塗布法)等によって形成することができる。
 HTL12は、EML5に正孔を輸送する。HTL12は、HIL11とEML5との間に、HIL11とEML5とに接して設けられている。
 HTL12は、例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-4-sec-ブチルフェニル))ジフェニルアミン)](略称:TFB)等の、正孔輸送性を有する有機材料を主として含んでいる。これら有機材料は、一種類のみを用いてもよく、適宜、二種類以上を混合して用いてもよいしたがって、HTL12は、PVK、TFBからなる群より選ばれる少なくとも一種の有機正孔輸送性材料からなっていてもよい。
 HTL12は、例えば、塗布法(上記有機正孔輸送性材料を溶剤に溶解してスピンコートし、溶剤を乾燥させる方法)、ディップコート法等によって形成することができる。
 なお、本実施形態でも、製造装置の汎用性の観点からは、発光素子10における各層の製造装置は、互いに分離していることが望ましい。したがって、HIL11の製造装置と、次工程で用いられる成膜装置(つまり、HIL11上に成膜される層の製造装置)とは、互いに分離していることが望ましい。しかしながら、HIL11を形成後に、HIL11の製造装置とは分離された製造装置に、HIL11が形成された基板を搬送すると、両製造装置の間で、HIL11が形成された基板が大気に曝される。
 このように、製造装置の汎用性の観点からは、発光デバイス100の製造工程が、HIL11の金属カルコゲナイド表面が水分を含むガスに暴露される工程を含むことになるものの、発光素子10における各層の製造装置は、互いに分離していることが望ましい。そして、HIL11の金属カルコゲナイド表面が水分を含むガスに暴露される工程では、金属カルコゲナイドの表面に水酸基が吸着されることが想定される。したがって、発光デバイス100の製造工程が、HIL11の金属カルコゲナイド表面が水分を含むガスに暴露される工程を含むことは、発光デバイス100の製造工程が、金属カルコゲナイドの表面に水酸基が吸着する工程を含むことを意味すると推定される。
 HTL12は、金属カルコゲナイド表面の水酸基による量子ドットQDの帯電を抑制し、量子ドットQDの帯電による発光特性の低下を抑制する。
 本実施形態に係る発光素子10R・10G・10Bにおいて、HTL12R・12G・12B以外の層の層厚は、従来の発光素子と同様に設定することができる。
 表4に、本実施形態に係る発光素子10R・10G・10Bにおける各層の層厚を示す。表4中、括弧内の層厚は、各層の層厚の好適な範囲を示す。また、括弧外の層厚は、本実施形態で用いた発光素子10R・10G・10Bにおける各層の具体的な層厚であり、発光素子10R・10G・10Bにおける各層の層厚の組み合わせの一例を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、HIL11R・11G・11Bの層厚は、好ましくは、5nm~50nmである。また、HTL12R・12Gの層厚は、好ましくは、30~59.5nmである。HTL12Bの層厚は、好ましくは、30.5~60nmである。但し、HTL12R・12G・12Bは、HTL12Bの層厚>HTL12Rの層厚、かつ、HTL12Bの層厚>HTL12Gの層厚となるように設定される。
 以下に、本実施形態に係る発光素子10R・10G・10B及び発光デバイス100の製造方法の一例について、図6及び表4を参照して説明する。
 本実施形態において、格子状のバンクを形成するまでの工程は、実施形態1と同じである。本実施形態でも、実施形態1と同様にして、アレイ基板1上に、陽極2R・2G・2Bとして、層厚100nmのITO層を形成した後、格子状のバンクを形成した。
 本実施形態では、次いで、陽極2R・2G・2B上に、NiOをそれぞれスピンコートした後、大気中で加熱することにより、HIL11R・11G・11Bとして、層厚15nmのNiO層をそれぞれ形成した(HIL形成工程)。
 次いで、PVKを溶剤に溶解してスピンコートし、溶剤を乾燥させることにより、HIL11R・11G・11B上に、HTL12R・12G・12Bとして、PVK層をそれぞれ形成した(HTL形成工程)。なお、成膜対象以外の部分はマスクを用いて成膜を行い、HTL12R・12G・12Bの層厚は、上記溶剤に対するPVKの濃度、スピンコート時の回転数、等を変更することで調整を行った。これにより、HTL12Bとして、層厚40nmのPVK層を形成し、HTL12R及びHTL12Gとして、それぞれ、層厚30nmのPVK層を形成した。
 次いで、HTL12R・12G・12B上に、EML5R・5G・5Bとして、層厚40nmの量子ドットQD層を、実施形態1と同様にして形成した。
 その後、実施形態1と同様にして、ZnO-NPからなる層厚50nmのZnO層、層厚100nmのAl層を、この順に形成することで、各画素Pに共通なETL6及び陰極7を、この順に積層した。これにより、本実施形態に係る発光素子10R・10G・10Bを製造した。なお、本実施形態でも、発光デバイス100は、上記陰極7形成後に、図示しない封止層による発光素子10R・10G・10Bの封止を行うことで製造される。
 図7~図9は、このようにして製造された、本実施形態に係る発光素子10R・10G・10Bにおける各層のエネルギーバンド及び層厚を示す図である。図7は、発光素子10Rにおける各層のエネルギーバンド及び層厚を示している。図8は、発光素子10Gにおける各層のエネルギーバンド及び層厚を示している。図9は、発光素子10Bにおける各層のエネルギーバンド及び層厚を示している。
 図7~図9に示すように、本実施形態に係る発光素子10R・10G・10Bと実施形態1に係る発光素子10R・10G・10Bとの相違点は、陽極2R・2G・2BとEML5R・5G・との間の層のみである。本実施形態では、図7~図9に示すように、陽極2R・2G・2BとEML5R・5G・との間に、HIL11R・11G・11B、HTL12R・12G・12Bが、この順に設けられている。HIL11R・11G・11BとしてのNiO層の電子親和力(以下、「EAHIL」と記す)は1.9eVであり、イオン化ポテンシャル(以下、「IPHIL」と記す)は5.4eVである。また、HTL12R・12G・12BとしてのPVK層の電子親和力EAHTLは2.2eVであり、イオン化ポテンシャルIPHTLは5.8eVである。
 電子親和力EAHILは、図示しない真空準位と、HIL11R・11G・11BのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPHILは、上記真空準位と、HIL11R・11G・11BのVBMとのエネルギー差に相当する。また、本実施形態において、電子親和力EAHTLは、図示しない真空準位と、HTL12R・12G・12BのCBMとのエネルギー差に相当する。イオン化ポテンシャルIPHTLは、上記真空準位と、HTL12R・12G・12BのVBMとのエネルギー差に相当する。
 本実施形態では、図7~図9にh+で示すように、陽極2R・2G・2Bからの正孔は、HIL11R・11G・11B及びHTL12R・12G・12Bを介して、EML5R・5G・5Bに到達する。
 実施形態1で説明したように、同じ材料系の場合、量子ドットQR・QG・QBとして用いられる量子ドットQDの伝導帯準位は、量子ドットQDの発光波長が長いほどエネルギー準位が深くなり、量子ドットQDの発光波長が短いほどエネルギー準位が浅くなる。
 そして、EML5BのCBMがEML5R・5GのCBMよりも浅いと、発光素子10Bの電子の注入は、他の発光素子10R・10Gの電子の注入よりも困難になる。
 このため、図7~図9に示すように、本実施形態でも、発光素子10R・10G・10B中、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10Bは、他の発光素子10R・10Gよりも電子注入障壁が大きくなる。
 そこで、本実施形態では、上述したように、HTL12Bの層厚を、HTL12R・12Gの層厚よりも大きくしている。有機材料の正孔移動度は、無機材料(金属カルコゲナイド)の正孔移動度よりも小さい。このため、HTL12Bの層厚をHTL12R・12Gの層厚よりも大きくすることで、EML5Bへの正孔の注入を抑制することができる。したがって、本実施形態でも、発光素子10Bにおいて、正孔と電子とのキャリアバランスをとることができ、正孔と電子との再結合確率を向上させることができる。この結果、発光素子10Bにおいて、他の発光素子10R・10Gと同等の輝度を得ることができる。
 このように、本実施形態によれば、上述したように金属カルコゲナイドをHIL11に用いた場合であっても、発光素子10Bと他の発光素子10R・10Gとで、同等の帯電の抑制が可能となる。また、発光素子10Bと他の発光素子10R・10Gとで、輝度のバランスをとることができる。
 また、本実施形態によれば、HTL12Bの層厚をHTL12R・12Gの層厚よりも大きくすることで、発光素子10Bにおいて、他の発光素子10R・10Gと同様のキャリアバランスをとることができる。このため、本実施形態でも、発光素子10によってETL6の材料を変更してETL6のCBMを変更する必要がなく、ETL6を共通化することができる。
 また、本実施形態によれば、上述したようにHIL11とEML5との間に、中間層としてHTL12を設けることで、HTL12の製造時の層厚制御を容易に行うことができる。
 前述したように、HTL12R・12Gの層厚は、好ましくは、30~59.5nmである。HTL12Bの層厚は、好ましくは、30.5~60nmである。
 HTL12の好適な層厚は数十nm以上であり、HTL12の層厚の下限値となる、HTL12R・12Gの層厚の下限値を30nmとすることで、良好な正孔輸送性を得ることができる。また、発光デバイス100の電力消費の増加を抑えるため、駆動電圧は15V以下が望ましい。例えば、HTL12の層厚が12nm増加すると、同じ輝度を得るための電圧が3V高くなる。このため、HTL12の層厚の上限値となる、HTL12Bの層厚の上限値は60nmであることが望ましい。
 また、本実施形態において、発光デバイス100中、発光ピーク波長が最も短い波長帯域の光を発光する発光素子10BにおけるHTL12Bの層厚と、他の発光素子10R・10GにおけるHTL12R・12Gとの層厚の差は、0.5~30nmであることが望ましい。
 つまり、HTL12Rの層厚、HTL12Gの層厚、HTL12Bの層厚を、順に、THTLR、THTLG、THTLBとすると、(THTLR+0.5nm)≦THTLB≦(THTLR+30nm)、かつ、(THTLG+0.5nm)≦THTLB≦(THTLG+30nm)であることが望ましい。
 このように、HTL12BとHTL12R・12Gとの層厚の差を0.5nm以上とすることで、発光素子10Bと、該発光素子10B以外の発光素子10R・10Gとに、有意差をもってHTL12を成膜することができる。つまり、上記式中、(THTLR+0.5nm)及び(THTLG+0.5nm)は、均一な膜であり、かつ、有意差をもって成膜可能な最低限度の値を示す。一方、上述したようにHTL12BとHTL12R・12Gとの層厚の差を30nm以下とすることで、HIL11BからEML5Bへの正孔輸送を効果的に行うことができる。つまり、上記式中、(THTLR+30nm)及び(THTLG+30nm)は、良好な正孔輸送性を得ることができる望ましい上限の値を示す。
 なお、上述したように、HTL12Bの層厚THTLBは、HTL12Rの層厚THTLR及びHTL12Gの層厚THTLGよりも大きい。したがって、HTL12BとHTL12R・12Gとの層厚の差とは、THTLB-THTLR(但し、THTLB>THTLR)、もしくは、THTLB-THTLG(但し、THTLB>THTLR)を示す。
 <変形例>
 上述したように、本実施形態では、HTL12Bの層厚THTLB>HTL12Gの層厚THTLG=HTL12Rの層厚THTLRである場合を例に挙げて説明した。しかしながら、上述したように、電子の注入は、R→G→Bの順に困難となる。したがって、HTL12R・12G・12Bの層厚は、HTL12Bの層厚THTLB>HTL12Gの層厚THTLG>HTL12Rの層厚THTLRとなるように設定されていてもよい。
 なお、本実施形態において、HTL12Bの層厚THTLBは、発光素子10Bにおける、金属カルコゲナイドを含む層であるHIL11Bと、EML5Bと、の間の距離と言い替えることができる。また、HTL12Rの層厚THTLRは、発光素子10Rにおける、金属カルコゲナイドを含む層であるHIL11Rと、EML5Rと、の間の距離と言い替えることができる。同様に、HTL12Gの層厚THTLGは、発光素子10Gにおける、金属カルコゲナイドを含む層であるHIL11Gと、EML5Gと、の間の距離と言い替えることができる。
 また、HTL12BとHTL12Rとの層厚の差とは、発光素子10Bにおける上記HIL11BとEML5Bとの間の距離と、発光素子10Rにおける上記HIL11RとEML5Rとの間の距離との差と言い替えることができる。同様に、HTL12BとHTL12Gとの層厚の差とは、発光素子10Bにおける上記HIL11BとEML5Bとの間の距離と、発光素子10Gにおける上記HIL11GとEML5Gとの間の距離との差と言い替えることができる。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
   1  アレイ基板
   2、2R、2G、2B  陽極
   3、3R、3G、3B  HTL(金属カルコゲナイドを含む層、正孔輸送層)
   4、4R、4G、4B、4R  IL(中間層、絶縁層)
   12、12R、12G、12B  HTL(中間層、正孔輸送層)
   5、5R、5G、5B  EML(発光層)
   7  陰極
  10、10R、10G、10B  発光素子
  11、11R、11G、11B  HIL(金属カルコゲナイドを含む層、正孔注入層)
 100  発光デバイス

Claims (16)

  1.  互いに異なる波長帯域に発光ピーク波長を有する複数種類の発光素子を備え、
     上記複数種類の発光素子は、それぞれ、陽極と、量子ドットを含む発光層と、陰極とを、この順に備え、上記陽極と上記発光層との間に、正孔輸送性を有する、金属カルコゲナイドを含む層を有し、上記複数種類の発光素子のうち、少なくとも、発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間に、有機材料を含む中間層を有し、
     上記複数種類の発光素子のうち、上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離が、他の発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離よりも大きいことを特徴とする発光デバイス。
  2.  上記複数種類の発光素子全てにおいて、上記金属カルコゲナイドを含む層と上記発光層との間に上記中間層が設けられていることを特徴とする請求項1に記載の発光デバイス。
  3.  上記金属カルコゲナイドが、酸化ニッケル、酸化銅、硫化銅からなる群より選ばれる少なくとも一種であることを特徴とする請求項1または2に記載の発光デバイス。
  4.  上記中間層が絶縁層であることを特徴とする請求項1~3の何れか1項に記載の発光デバイス。
  5.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離が0.5~12.5nmの範囲内であることを特徴とする請求項4に記載の発光デバイス。
  6.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離と、上記他の発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離との差が0.5~12.5nmであることを特徴とする請求項4または5に記載の発光デバイス。
  7.  上記絶縁層が、ポリメチルメタクリレート、ポリビニルピロリドン、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]からなる群より選ばれる少なくとも一種の絶縁材料からなることを特徴とする請求項4~6の何れか1項に記載の発光デバイス。
  8.  上記金属カルコゲナイドを含む層が正孔注入層であり、上記中間層が正孔輸送層であることを特徴とする請求項1~3の何れか1項に記載の発光デバイス。
  9.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離が30.5~60nmの範囲内であることを特徴とする請求項8に記載の発光デバイス。
  10.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離と、上記他の発光素子における、上記金属カルコゲナイドを含む層と上記発光層との間の距離との差が0.5~30nmであることを特徴とする請求項8または9に記載の発光デバイス。
  11.  上記正孔輸送層が、ポリ(N-ビニルカルバゾール)、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-4-sec-ブチルフェニル))ジフェニルアミン)]からなる群より選ばれる少なくとも一種の有機正孔輸送性材料からなることを特徴とする請求項8~10の何れか1項に記載の発光デバイス。
  12.  上記複数種類の発光素子における上記量子ドットは、それぞれ、コアと、該コアを覆うシェルとを備え、
     上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における上記量子ドットの上記シェルの厚みが、上記他の発光素子における上記量子ドットの上記シェルの厚みよりも薄いことを特徴とする請求項1~11の何れか1項に記載の発光デバイス。
  13.  上記複数種類の発光素子の上記発光層は、それぞれ、上記量子ドットの表面に吸着したリガンドを有し、
     上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における上記リガンドの長さが、上記他の発光素子における上記リガンドの長さよりも短いことを特徴とする請求項1~12の何れか1項に記載の発光デバイス。
  14.  上記複数種類の発光素子は、それぞれ、上記陰極と上記発光層との間に、電子輸送層を備え、
     上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における上記電子輸送層の材料は、上記他の発光素子のうち少なくとも一部の発光素子における上記電子輸送層の材料と同じであることを特徴とする請求項1~13の何れか1項に記載の発光デバイス。
  15.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子における上記発光層の伝導帯下端の準位が上記他の発光素子における上記発光層の伝導帯下端の準位よりも浅いことを特徴とする請求項1~14の何れか1項に記載の発光デバイス。
  16.  上記発光ピーク波長が最も短い波長帯域の光を発光する発光素子が、青色の光を発光する発光素子であり、上記他の発光素子が、赤色の光を発光する発光素子及び緑色の光を発光する発光素子であることを特徴とする請求項1~15の何れか1項に記載の発光デバイス。
PCT/JP2019/047493 2019-12-04 2019-12-04 発光デバイス WO2021111556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/781,336 US20230006166A1 (en) 2019-12-04 2019-12-04 Light-emitting device
PCT/JP2019/047493 WO2021111556A1 (ja) 2019-12-04 2019-12-04 発光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047493 WO2021111556A1 (ja) 2019-12-04 2019-12-04 発光デバイス

Publications (1)

Publication Number Publication Date
WO2021111556A1 true WO2021111556A1 (ja) 2021-06-10

Family

ID=76221139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047493 WO2021111556A1 (ja) 2019-12-04 2019-12-04 発光デバイス

Country Status (2)

Country Link
US (1) US20230006166A1 (ja)
WO (1) WO2021111556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152972A1 (ja) * 2022-02-14 2023-08-17 シャープディスプレイテクノロジー株式会社 発光デバイスおよびその製造方法
WO2024018509A1 (ja) * 2022-07-19 2024-01-25 シャープディスプレイテクノロジー株式会社 発光素子、表示装置、および発光素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261707A (zh) * 2015-09-08 2016-01-20 河南大学 一种新型量子点发光器件
WO2019171503A1 (ja) * 2018-03-07 2019-09-12 シャープ株式会社 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置
WO2019186847A1 (ja) * 2018-03-28 2019-10-03 シャープ株式会社 発光素子および発光素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261707A (zh) * 2015-09-08 2016-01-20 河南大学 一种新型量子点发光器件
WO2019171503A1 (ja) * 2018-03-07 2019-09-12 シャープ株式会社 発光デバイス、発光デバイスの製造方法、発光デバイスの製造装置
WO2019186847A1 (ja) * 2018-03-28 2019-10-03 シャープ株式会社 発光素子および発光素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, TING ET AL.: "Influence of Shell Thickness on the Performance of NiO-based All-Inorganic Quantum Dot Light-Emitting Diodes", ACS APPLIED MATERIALS & INTERFACES, vol. 10, 11 April 2018 (2018-04-11), pages 14894 - 14900, XP055834730 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152972A1 (ja) * 2022-02-14 2023-08-17 シャープディスプレイテクノロジー株式会社 発光デバイスおよびその製造方法
WO2024018509A1 (ja) * 2022-07-19 2024-01-25 シャープディスプレイテクノロジー株式会社 発光素子、表示装置、および発光素子の製造方法

Also Published As

Publication number Publication date
US20230006166A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10403690B2 (en) Light emitting device including tandem structure with quantum dots and nanoparticles
US11870004B2 (en) Metal oxide nanoparticles surface-treated with metal ion, quantum dot-light-emitting device comprising the same and method for fabricating the same
JP6934104B2 (ja) 素子、電子機器、および素子の製造方法
JP7265893B2 (ja) 電界発光素子及び表示装置
US7919342B2 (en) Patterned inorganic LED device
US20140264269A1 (en) Tunable light emitting diode using graphene conjugated metal oxide semiconductor-graphene core-shell quantum dots and its fabrication process thereof
US20080237611A1 (en) Electroluminescent device having improved contrast
US20210013371A1 (en) Quantum dot led with spacer particles
US11637258B2 (en) Display devices with different light sources
US11296150B2 (en) Display devices with different light sources in pixel structures
TW201926740A (zh) 顯示裝置
WO2021111556A1 (ja) 発光デバイス
WO2019093346A1 (ja) 表示装置
KR20210041373A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
CN113130794B (zh) 一种量子点发光二极管及其制备方法
US20220199926A1 (en) Electroluminescence element, display device, and method for producing electroluminescence element
WO2024085101A1 (ja) 発光素子および表示装置
WO2024003983A1 (ja) 発光素子、及び表示装置
WO2022162840A1 (ja) 量子ドット及び電界発光素子
WO2024079908A1 (ja) 発光素子および表示装置並びに発光素子の製造方法
US20240150649A1 (en) Electroluminescent element, light emitting device, and production method for electroluminescent element
WO2020174604A1 (ja) 発光素子およびそれを用いた表示装置
JP2023551765A (ja) 有機輸送層を持つ電界発光デバイス
KR20210052350A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP