WO2019169670A1 - 一类改性的聚硅氧烷及其应用 - Google Patents

一类改性的聚硅氧烷及其应用 Download PDF

Info

Publication number
WO2019169670A1
WO2019169670A1 PCT/CN2018/079998 CN2018079998W WO2019169670A1 WO 2019169670 A1 WO2019169670 A1 WO 2019169670A1 CN 2018079998 W CN2018079998 W CN 2018079998W WO 2019169670 A1 WO2019169670 A1 WO 2019169670A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
amino
methoxy
substituted
Prior art date
Application number
PCT/CN2018/079998
Other languages
English (en)
French (fr)
Inventor
李承辉
赖建诚
左景林
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US16/978,064 priority Critical patent/US11591441B2/en
Publication of WO2019169670A1 publication Critical patent/WO2019169670A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/385Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/395Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/398Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing boron or metal atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers

Definitions

  • the invention belongs to the field of polymer materials, and particularly relates to a class of modified polysiloxanes and applications thereof.
  • Temperature-sensitive materials refer to a class of materials that have reversible response characteristics to the ambient temperature (energy). They are important types of smart materials. Because their properties are significantly affected by temperature, they have broad application prospects. At present, temperature-sensitive polymer materials are mainly based on the principle that the degree of motion of a polymer chain changes with temperature. At low temperatures, the entanglement between the polymer segments is severe and the movement is hindered, thereby exhibiting stronger and tougher properties; at high temperatures, the entanglement between the polymer segments is gradually unraveled, the movement is more free, and thus the appearance is more Softer and softer.
  • Patent CN106243349A discloses a biocompatible temperature-sensitive polymer material based on lactic acid and alanine. The invention first prepares lactic acid into dehydrated lactic acid, and then polymerizes with alanine to obtain a temperature-sensitive polymer material. In the material, due to the addition of natural products, it has a certain biocompatibility, and has adverse effects on temperature sensitivity performance. Meanwhile, the stannous chloride catalyst used in the invention is highly toxic, Both the human body and the environment have serious effects.
  • Patent CN201710384625.6 discloses a polymethyl methacrylate/zinc oxide type temperature sensitive material and a preparation method thereof, and the invention directly prepares temperature sensitivity by simultaneously synthesizing polymethyl methacrylate and zinc oxide by one-step method
  • the organic-inorganic hybrid temperature-sensitive material has simple synthesis process, but the uniformity of the obtained material is greatly affected by the process, and the temperature sensitivity depends on the interaction between the segments of the polymer material, and the temperature-sensitive property needs to be improved.
  • Patent CN105348550A discloses a method for preparing a temperature sensitive PDMS film, which is obtained by adding a cadmium telluride quantum dot to a prepolymer of PDMS to obtain an optically transparent and temperature sensitive PDMS film.
  • the temperature sensitive main material is a cadmium telluride quantum dot
  • the fluorescence performance of the quantum dot is controlled by the change of temperature
  • PDMS is mainly used as a matrix material.
  • the preparation method of the technical scheme is cumbersome, and it is necessary to prepare a temperature-sensitive cadmium telluride quantum dot, and a PDMS prepolymer and a curing agent are added by purification, and the mixture is suspended on a glass slide and placed in an oven to be cured to obtain a temperature-sensitive PDMS. film.
  • the dispersion uniformity of cadmium telluride quantum dots in PDMS prepolymer directly affects the photosensitivity of the film.
  • the development of new photosensitive materials has been a hot topic of research.
  • the present invention is directed to the prior art, and introduces a reversible chemical bond by a chemical modification method in a polysiloxane polymer material, and is modified to obtain a temperature sensitive property.
  • Polymer Materials Due to the reversible chemical bond in the polymer chain, its mechanical properties can change significantly in a certain temperature range, which has unique application prospects in medical external fixation materials, orthopedic materials and packaging materials.
  • the present invention discloses a class of modified polysiloxanes having the following structural formula:
  • m and n represent the number of repetitions of the corresponding repeating unit, wherein
  • n is an integer from 0 to 0000, preferably a value in the range of 0 to 200;
  • n is an integer from 0 to 10000, preferably a value in the range of 0 to 200;
  • R 1 -R 7 are the same or different, at least one of which has the structure of formula II, the remainder being selected from amino, hydroxy, decyl, carboxy, methoxy, nitro, halogen, unsubstituted or by one or more amino groups,
  • a C1-C50 (preferably C1-C30, more preferably C1-C18) alkyl or cycloalkyl group substituted with a hydroxy, decyl, carboxy, methoxy, nitro or halogen atom, unsubstituted or by one or more C1-C50 (preferably C1-C30, more preferably C1-C18) alkyl, C1-C50 (preferably C1-C30, more preferably C1-C18) alkoxy, hydroxy, amino, thiol or halogen substituted benzene Base or naphthyl;
  • R 1 - R 7 are the same or different, at least one has the structure of formula II, and the remainder is selected from the group consisting of amino, hydroxy, decyl, carboxy, methoxy, nitro, phenyl, benzyl, phenol, alkoxy. Phenyl (such as And an alkyl group of C1-C30, a C1-C30 cycloalkyl group, or a C1-C30 halogenated alkyl group.
  • a, b, and c are the same or different and represent one of -CH 2 -, -NH-, -O-, -S-, -COO-, -CO-, -CH(R 8 )- or a plurality of units bonded in any order;
  • R 8 represents a hydrogen atom or an amino group, a hydroxyl group, a thiol group, a carboxyl group, a methoxy group, a nitro group, a halogen atom, an unsubstituted or one or more amino groups, a hydroxyl group, a thiol group, or a carboxyl group.
  • a C1-C50 (preferably C1-C30, more preferably C1-C18) alkyl or cycloalkyl group substituted with a methoxy, nitro or halogen atom, unsubstituted or substituted by one or more C1-C50 (preferred C1-C30, more preferably C1-C18) alkyl, C1-C50 (preferably C1-C30, more preferably C1-C18) alkoxy, hydroxy, amino, fluorenyl or halogen substituted phenyl or naphthyl; p 1 , p 2 , and p 3 are the same or different and are integers from 0 to 500; q is an integer from 0 to 500;
  • a, b, and c are the same or different, and represent one or more of -CH 2 -, -NH-, -O-, -CO-, -CH(R 8 )-
  • R 8 represents a methyl group, an ethyl group, a phenyl group, a hydroxyl group, a decyl group, a carboxyl group, and an amino group
  • p 1 , p 2 , and p 3 are integers of 0-20
  • q is an integer of 0-20.
  • -[(a)p 1 -(b)p 2 -(c)p 3 ]q- is selected from the group consisting of:
  • P2, p3 is 0, -[(a)p 1 -(b)p 2 -(c)p 3 ]q- represents -(CH 2 )p 1 -, -(NH)p 1 -, -(S) p 1 -, -(CO)p 1 -, -(CH(R 8 ))p 1 -, p 1 is an integer from 0 to 20, and q is 1;
  • p3 is 0, -[(a)p 1 -(b)p 2 -(c)p 3 ]q- represents -[(CH 2 )p 1 -(NH)p 2 ]q-,-[( CH 2 )p 1 -(O)p 2 ]q-, -[(CH 2 )p 1 -(S)p 2 ]q-, -[(CH 2 )p 1 -(COO)p 2 ]q- , -[(CH 2 )p 1 -(CO)p 2 ]q-, -[(CH(R 8 ))p 1 -(CH 2 )p 2 ]q-, -[(NH)p 1 -( CH 2 )p 2 ]q-, -[(S)p 1 -(CO)p 2 ]q-, -[(CH(R 8 ))p 1 -(COO)p 2 ]q-,p 1 , p 2 is an integer from 1 to 20
  • R 8 above represents a methyl group, an ethyl group, a phenyl group, a hydroxyl group, a carboxyl group or an amino group.
  • the L 0 group is classified according to the type of reversible chemical bond: a reversible chemical bond system based on a hydrogen bond, a reversible chemical bond system based on a coordinate bond, and a reversible chemical bond system based on a covalent bond.
  • L 0 can be:
  • L 0 represents
  • L 0 is formed by coordination of a ligand and a metal M, wherein the ligand is:
  • M is one or more of an alkali metal, an alkaline earth metal, and a transition metal ion; preferably Zn 2+ , Cu 2+ , Fe 3+ , Fe 2+ , Co 2+ , Pb 2+ , Sn 2+ , Al 3+ , Ag + , Ni 2+ , Ca 2+ , Eu 3+ , Tb 3+ , Na + , K + ;
  • X 1 represents -CH 2 -, -NH-, -O-, -S-, -COO- or -CO-;
  • Y 1 stands for:
  • L 0 represents
  • the dotted line represents a coordinate bond between the coordinating group and the coordinating metal.
  • L 0 For groups having a reversible chemical bond of a covalent bond system, L 0 can be:
  • X 2 represents -CH 2 -, -NH-, -O-, -S-, -COO- or -CO-;
  • Y 2 stands for:
  • L 0 represents
  • the structure of the formula II of the present invention is:
  • Another object of the present invention is to provide a precursor of the above-mentioned polysiloxane having the following structural formula:
  • n is an integer of 0-10000, and m, n are not 0 at the same time;
  • R 1 -R 7 are the same or different, at least one of which has the structure of formula II, the remainder being selected from amino, hydroxy, decyl, carboxy, methoxy, nitro, unsubstituted or by one or more hydroxyl, amino, sulfhydryl groups Or a halogen-substituted C1-C50 alkyl or cycloalkyl group, unsubstituted or substituted by one or more C1-C50 alkyl groups, a C1-C50 alkoxy group, a hydroxyl group, an amino group, a fluorenyl group or a halogen atom Phenyl or naphthyl;
  • a, b, and c are the same or different and represent one of -CH 2 -, -NH-, -O-, -S-, -COO-, -CO-, -CH(R 8 )- or a plurality of units bonded in any order;
  • R 8 represents a hydrogen atom or an amino group, a hydroxyl group, a thiol group, a carboxyl group, a methoxy group, a C1-C50 which is unsubstituted or substituted by one or more hydroxyl, amino, thiol or halogen atoms.
  • p 1 , p 2 , p 3 are the same or different, an integer from 0 to 500;
  • q is an integer from 0 to 500;
  • L 0 is selected from
  • X 1 represents -CH 2 -, -NH-, -O-, -S-, -COO- or -CO-;
  • Y 1 stands for:
  • R 9 represents a hydrogen atom or an amino group, a hydroxyl group, a decyl group, a carboxyl group, an alkoxy group, a nitro group, a C1-C50 alkyl group or a cycloalkyl group which is unsubstituted or substituted by one or more hydroxyl groups, amino groups, mercapto groups or halogen atoms.
  • a phenyl or naphthyl group which is unsubstituted or substituted by one or more C1-C50 alkyl groups, C1-C50 alkoxy groups, hydroxyl groups, amino groups, mercapto groups or halogen atoms.
  • R 9 represents a hydrogen atom, an amino group, a hydroxyl group, a methoxy group, a methyl group, an ethyl group, a propyl group, a butyl group or a phenyl group;
  • L 0 is selected from The ring-opening of the cyclic ether can be used to further prepare a modified polysiloxane having a hydroxyl group, an amino group, a mercapto group, a pyridyl group, an imidazolyl group, a carbazolyl group, a dipyridyl group, a phenanthroline group or other functional groups.
  • L 0 is selected from At the time, hydrolysis, amine hydrolysis, hydrazinolysis and reduction can be carried out to prepare a polysiloxane having a carboxyl group, an amide group, a hydrazide group and an aldehyde group functionalized.
  • L 0 is selected from The modified polysiloxane having a reversible chemical bond system having a coordinate bond can be prepared by coordinating with a metal ion.
  • the modified polysiloxane is selected from the group consisting of:
  • Another object of the present invention is to provide the use of the modified polysiloxane of the present invention in the preparation of a temperature sensitive material.
  • it is used for preparing a temperature sensitive rapid setting material for preparing medical external fixing materials, orthopedic materials, packaging materials and the like.
  • Another object of the present invention is to provide a temperature sensitive material comprising the modified polysiloxane of the present invention.
  • the temperature sensitive material when L 0 represents a group of a reversible chemical bond system based on a hydrogen bond or a coordinate bond, the material contains one or more of the modified polysiloxane;
  • L 0 represents a group of a reversible chemical bond system based on a covalent bond
  • the material contains: L 0 is with Modified polysiloxane; or L 0 is with Modified polysiloxane; or, L 0 is with Modified polysiloxane.
  • L 0 or L 0 is Modified polysiloxane.
  • the preparation method of the temperature sensitive material according to the present invention is The raw material, wherein u is an integer of 0-10000, v is an integer of 0-10000, u, v is not 0 at the same time; R 10 - R 16 are the same or different, at least one of which is H or alkenyl (such as ethylene) a C1-C50 alkyl or cycloalkyl group selected from the group consisting of amino, hydroxy, decyl, carboxy, methoxy, nitro, unsubstituted or substituted by one or more hydroxy, amino, thiol or halogen atoms.
  • alkenyl such as ethylene
  • a phenyl or naphthyl group which is unsubstituted or substituted by one or more C1-C50 alkyl groups, a C1-C50 alkoxy group, a hydroxyl group, an amino group, a fluorenyl group or a halogen atom; the substituent in the structure is H or an alkene
  • a group such as a vinyl group introduces a group having a reversible chemical bond system selected from a reversible chemical bond system based on a hydrogen bond, a coordinate bond or a covalent bond.
  • the method may include (1) modifying an industrial hydrogen-containing silicone oil or a vinyl silicone oil by addition, elimination, hydrolysis, substitution, and cycloaddition to obtain a PDMS material containing a corresponding functional group.
  • the synthesis methods of different functional groups may be the same or different.
  • the introduced functional group causes a side reaction, the functional group needs to be correspondingly protected, and after the modification is completed, the deprotection reaction is performed;
  • the mechanism of action of the temperature sensitive material of the present invention is as follows:
  • R 1 - R 7 may have a reversible chemical bond group, and will not be described again).
  • the coordination bond has a high sensitivity to temperature, and when the temperature changes, the coordination between the ligand and the metal ion in the polymer chain The intensity of the material changes accordingly, so that the mechanical strength of the material changes accordingly, and the mechanical properties of the material are changed by controlling the increase and decrease of the temperature.
  • R 1 - R 7 may have a reversible chemical bond group, and will not be described again).
  • the above temperature sensitive material may further comprise one or more of a polymer additive, a plasticizer, a toughening agent, a stabilizer, a lubricant, a nano additive, a filler, a color additive, and a pharmaceutical ingredient additive.
  • the polymer additive is a conventional polymer material, and may be one or more of the following polymer materials:
  • Polyester including but not limited to polyethylene terephthalate fiber (PET), polybutylene terephthalate fiber (PBT), polytrimethylene terephthalate fiber (PTT);
  • Polyamide including but not limited to polyhexamethylene adipate, polycaprolactam;
  • Aramid including but not limited to poly(m-phenylene isophthalamide) (PMIA), poly(p-phenylene terephthalamide) (PPTA, Kevlar);
  • Polyurethanes including but not limited to polyester chains, polyether chains;
  • Plastics including but not limited to polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, phenolic resin, ABS resin;
  • Rubber including natural rubber and synthetic rubber, including but not limited to styrene butadiene rubber, butadiene rubber, isoprene rubber, neoprene rubber, ethylene propylene rubber, nitrile rubber, silicone rubber, fluororubber and urethane rubber;
  • the type of the plasticizer is not particularly limited and may be a plasticizer well known to those skilled in the art, preferably Phthalate Esters (PAEs), more preferably di-n-octyl phthalate. Ester (DNOP or DnOP), butyl benzyl phthalate (BBP), di-octyl phthalate (DCP), dicyclohexyl phthalate (DCHP), dibutyl phthalate ( DBP), diisobutyl phthalate (DIBP), dimethyl phthalate (DMP), diethyl phthalate (DEP), diisononyl phthalate (DINP) and adjacent One or more of diisononyl phthalate (DIDP); or one or more of chlorinated paraffin, epoxidized soybean oil, dioctyl adipate or other fatty acid esters;
  • PAEs Phthalate Esters
  • the toughening agent including but not limited to one or more of polybutadiene rubber, ethylene-propylene-diene rubber, ethylene-octene copolymer, dynamic vulcanized rubber;
  • the stabilizers include, but are not limited to, dibasic lead phosphite, tribasic lead sulfate, dibasic lead stearate, calcium stearate, barium stearate, zinc stearate, dilaurin One or more of di-n-butyltin acid, dibutyltin maleate;
  • the lubricant including but not limited to any one or more of stearic acid, calcium stearate, barium stearate, lead stearate, liquid paraffin or silicone oil;
  • the nano additive includes, but is not limited to, one or more of various nano materials, nano clay, nano fiber, nano titanium dioxide, nano barium titanate, aluminum oxide, silicon oxide, boron nitride, and silicon nitride;
  • the filler is a commonly used filler in medicine, including but not limited to textile, non-woven fabric, calcium carbonate, clay, mica powder, talcum powder, wood flour and plant fiber, glass fiber, carbon fiber, graphite, graphene, carbon nanometer.
  • the color additive is not particularly limited in its kind, and a color additive well known to those skilled in the art may be used.
  • the color additive is preferably one or more of a natural inorganic color additive, an artificial inorganic color additive, a natural organic color additive, and an artificial organic color additive.
  • the natural inorganic color additive is one or more of soot, chalk, cinnabar, laterite, realgar, natural iron oxide, wollastonite, barite powder, talc powder, mica powder and kaolin;
  • the artificial inorganic color additive is one or more of titanium white, zinc antimony white, lead chrome yellow and iron blue;
  • the natural organic color additive is one or more of garcinia, alizarin red and indigo
  • the artificial organic color additive is one or more of macro red powder, even pale yellow, phthalocyanine blue, and quinacridone.
  • the medicinal ingredient additive is not particularly limited in its kind, and a pharmaceutically acceptable ingredient additive well known to those skilled in the art may be used.
  • the temperature sensitive rapid setting material contains parts by weight:
  • Modified polysiloxane of the invention 30-100 parts
  • Polymer additive 0-50 parts, plasticizer: 0-20 parts, toughening agent: 0-20 parts, stabilizer: 0-20 parts, lubricant: 0-10 parts, nano additive: 0-70 parts , filler: 0-50 parts, color additive: 0-10 parts, medicinal ingredient additive: 0-20 parts.
  • the temperature sensitive rapid setting material has the following components:
  • Modified polysiloxane of the invention 80 parts
  • Polymer additive 5 parts, plasticizer: 3 parts, toughening agent: 3 parts, stabilizer: 2 parts, lubricant: 1 part, nano-additive: 3 parts, filler: 1 part, color additive: 1 part, Medicinal ingredient additive: 1 part.
  • the above temperature sensitive rapid setting material can be prepared into a rapid setting bracket, and the preparation method is as follows:
  • the various ingredients are put into the blending equipment in parts by weight for blending to make a uniform blend.
  • the extrudate is printed, cut, injection molded or calendered into the desired shape by 3D as needed.
  • Polysiloxane is a kind of polymer whose main chain is a silicon-oxygen bond (-Si-O-) repeating unit. This kind of polymer has a very low glass transition temperature, and the normal segment has very good mobility and Stability is one of the best basic materials for temperature sensitive polymer materials.
  • the ordinary polysiloxane has poor temperature-sensitivity, and the present invention creatively introduces a reversible chemical bond having temperature sensitivity by chemically introducing a polysiloxane as a main chain to obtain a polymer material which is highly sensitive to temperature.
  • the temperature sensitive property of the material can be utilized to obtain a functional material having a specific application, such as a medical external fixing material, an orthopedic material, a packaging material, etc., through a certain processing and preparation method.
  • Figure 1 is a graph showing the temperature sensitivity of the material obtained in Example 1.
  • Example 2 is a graph showing the mechanical properties (stress-strain) of the material obtained in Example 1.
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 150 g of anhydrous toluene was added, and stirring was started, and 72 g of allyl glycidyl ether (0.63 mol) was added to toluene.
  • 37.5 g of hydrogen content is 1.6 wt% (Mn to 3000, wherein R 1 - R 6 are methyl groups, m is 0, and n is a value in the range of 40 to 55, 0.6 mol per mol of Si-H)
  • the polyalkylhydrosiloxane is added to a mixed reaction system of toluene and allyl glycidyl ether. Further, 20 mg of Karstedt platinum catalyst (20 wt% Pt) was added dropwise to the mixed reaction system. After the completion of the dropwise addition, the temperature was controlled to 50 ° C and the reaction was continued for 12 hours.
  • Step 2 Dissolving 105.5 g of allyl glycidyl ether functionalized polysiloxane obtained in Step 1 in a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet.
  • 150 mL of tetrahydrofuran 100 mL of a 25 wt% aqueous ammonia solution was added to the system. Magnetic stirring was turned on, and the reaction temperature was controlled at 50 ° C for 12 hours. After the reaction is completed, the tetrahydrofuran phase is extracted. The product was further purified by adding 100 mL of water to the extracted tetrahydrofuran, and dried over anhydrous sodium sulfate. By distillation under reduced pressure, 106.9 g of the final product amino-hydroxy-functionalized polysiloxane was obtained in a yield of 96.5%.
  • the reaction formula is as follows:
  • the dotted line represents the hydrogen bond interaction that may exist in the polymer material
  • T has the following structural formula:
  • the temperature sensitivity curve is shown in Figure 1.
  • the specific parameters are shown in Table 1.
  • the stress-strain curve was measured by the variable temperature static tensile test, and the Young's modulus, maximum stress and maximum strain value of the material at room temperature (25 ° C) were calculated.
  • the mechanical properties of the product obtained in Example 1 are shown in Figure 2, and the specific parameters are shown in Table 1.
  • the temperature-sensitive polymer material obtained in the present embodiment has a temperature sensitivity coefficient G'(120)/G'(20) of 16,000, a Young's modulus of 520 MPa, a maximum stress of 5.9 MPa, and a maximum strain of 5.4%.
  • the above parameters indicate that the material has excellent temperature sensitivity coefficient and good mechanical properties.
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 150 g of anhydrous toluene was added, and stirring was started, and 72 g of methyl methacrylate (0.72 mol) was added to toluene. Further, 75 g of hydrogen is 0.8 wt% (Mn to 4000, wherein R 1 - R6 are methyl groups, m/n is 1/1, m is a value in the range of 30 to 40, and n is a value in the range of 30 to 40.
  • the polyalkylhydrosiloxane was added to a mixed reaction system of toluene and methyl methacrylate in an amount of 0.6 mol per mol of Si-H. Further, 20 mg of Karstedt platinum catalyst (20 wt% Pt) was added dropwise to the mixed reaction system. After the completion of the dropwise addition, the temperature was controlled to 50 ° C and the reaction was continued for 12 hours. After completion of the reaction, 131.5 g of methyl methacrylate functionalized polysiloxane was obtained by distillation under reduced pressure in a yield of 97.2%. Characterized by 1 H NMR, the hydrosilylation ratio was 97.5%.
  • the reaction formula is as follows:
  • Step 2 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 131.5 g of the methyl methacrylate-functionalized polysiloxane obtained in the step 1 was dissolved in 150 mL, respectively.
  • tetrahydrofuran 100 mL of an 80% by weight hydrazine hydrate solution was added to the system. Magnetic stirring was turned on, and the reaction temperature was controlled at 50 ° C for 12 hours. After the reaction is completed, the tetrahydrofuran phase is extracted. The product was further purified by adding 100 mL of water to the extracted tetrahydrofuran. By distillation under reduced pressure, 118.5 g of the final product hydrazide-functionalized polysiloxane was obtained in a yield of 95.6%.
  • the reaction formula is as follows:
  • the dotted line represents the hydrogen bond interaction that may exist in the polymer material
  • T has the following structural formula:
  • the characterization of the temperature-sensitivity and mechanical properties of the product hydrazide-functionalized polysiloxane obtained in this example is similar to that of the product obtained in Example 1.
  • the detailed data are shown in Table 1, and the temperature sensitivity obtained in this example is obtained.
  • the polymer material has a temperature sensitivity coefficient of G'(120)/G'(20) of 12,000, a Young's modulus of 610 MPa, a maximum stress of 6.2 MPa, and a maximum strain of 12.5%.
  • the above parameters indicate that the material has excellent temperature sensitivity. At the same time, the coefficient also has good mechanical properties.
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 131.5 g of methyl methacrylate functionalized polysiloxane obtained in the first step of Example 2, respectively.
  • the alkane was dissolved in 150 mL of tetrahydrofuran, and 36 g of lithium aluminum hydride was added to the system. Magnetic stirring was turned on, and the reaction temperature was controlled at 25 ° C for 12 hours. After completion of the reaction, the organic phase was collected by filtration, and then the solvent was evaporated under reduced pressure to afford 112.3 g of the hydroxy-functionalized polysiloxane of the final product, yield 93.8%.
  • the reaction formula is as follows:
  • the dotted line represents the hydrogen bond interaction that may exist in the polymer material
  • T has the following structural formula:
  • the characterization of the temperature-sensitivity and mechanical properties of the product hydrazide-functionalized polysiloxane obtained in this example is similar to that of the product obtained in Example 1.
  • the detailed data are shown in Table 1, and the temperature sensitivity obtained in this example is obtained.
  • the polymer material has a temperature sensitivity coefficient G'(120)/G'(20) of 9000, a Young's modulus of 380 MPa, a maximum stress of 4.6 MPa, and a maximum strain of 25.3%.
  • the above parameters indicate that the material has excellent temperature sensitivity. At the same time, the coefficient also has good mechanical properties.
  • Step 1 The product hydrazide-functionalized polysiloxane (Mn ⁇ 6000, wherein R) obtained in Example 2 was placed in a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet.
  • 1- R6 is methyl, m/n is 1/1, m is a value in the range of 30 to 40, n is a value in the range of 30 to 40, and 85 g (about 0.5 mol) is dissolved in tetrahydrofuran, and 2-pyridinecarboxaldehyde 54 g is taken.
  • Step 2 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 130.5 g (about 0.5 mol) of the product pyridine-functionalized polysiloxane obtained in the step 1 was dissolved in tetrahydrofuran. Take 2mL / L of CuCl 2 methanol solution 125mL, slowly added to the tetrahydrofuran solution, and continue to stir, control the reaction temperature at 25 ° C, continue to react for 12h.
  • the mechanism of coordination function is as follows:
  • T has the following structural formula:
  • the characterization of the temperature-sensitivity and mechanical properties of the product hydrazide-functionalized polysiloxane obtained in this example is similar to that of the product obtained in Example 1.
  • the detailed data are shown in Table 1, and the temperature sensitivity obtained in this example is obtained.
  • the polymer material has a temperature sensitivity coefficient G'(120)/G'(20) of 20,000, a Young's modulus of 710 MPa, a maximum stress of 7.3 MPa, and a maximum strain of 7.4%.
  • the above parameters indicate that the material has excellent temperature sensitivity. At the same time, the coefficient also has good mechanical properties.
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 105.5 g of allyl glycidyl ether functionalized polysiloxane synthesized in the first step of Example 1 was separately prepared.
  • the alkane was dissolved in 150 mL of tetrahydrofuran, 40 g of imidazole (about 0.6 mol) was dissolved in 100 mL of tetrahydrofuran, and a solution of imidazole in tetrahydrofuran was added to the polysiloxane solution. Magnetic stirring was turned on, and the reaction temperature was controlled at 80 ° C for 12 hours.
  • Step 2 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 128.6 g (about 0.6 mol) of the imidazolyl-functionalized polysiloxane obtained in the step 1 was dissolved. Tetrahydrofuran, 150 mL of 2 mol/L ZnCl 2 methanol solution, slowly added to the tetrahydrofuran solution, and continuously stirred, the reaction temperature was controlled at 50 ° C, and the reaction was continued for 8 h.
  • reaction formula is as follows:
  • the mechanism of coordination function is as follows:
  • T has the following structural formula:
  • the characterization of the temperature-sensitivity and mechanical properties of the product hydrazide-functionalized polysiloxane obtained in this example is similar to that of the product obtained in Example 1.
  • the detailed data are shown in Table 1, and the temperature sensitivity obtained in this example is obtained.
  • the polymer material has a temperature sensitivity coefficient G'(120)/G'(20) of 19,000, a Young's modulus of 570 MPa, a maximum stress of 7.3 MPa, and a maximum strain of 6.5%.
  • the above parameters indicate that the material has excellent temperature sensitivity. At the same time, the coefficient also has good mechanical properties.
  • Step 1 131.5 g of methyl methacrylate-functionalized polysiloxane synthesized in the first step of Example 2 in a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet.
  • the solution was dissolved in 150 mL of tetrahydrofuran, and 300 mL of a 1 wt% hydrochloric acid solution was added thereto, magnetic stirring was started, and the reaction temperature was controlled at 60 ° C for 12 hours. After completion of the reaction, the mixture was allowed to stand for separation, and the tetrahydrofuran phase was extracted. The solvent was removed by distillation under reduced pressure to give 118.6 g of the carboxy-functionalized polysiloxane of the final product, yield 96.1%.
  • the reaction formula is as follows:
  • Step 2 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 118.6 g (about 0.6 mol) of the carboxyl functionalized polysiloxane obtained in the step 1 was dissolved in tetrahydrofuran. 150 mL of a 2 mol/L ZnCl 2 methanol solution and 60.6 g of triethylamine were slowly added to the tetrahydrofuran solution, and stirring was continued to control the reaction temperature at 50 ° C for 12 hours.
  • the mechanism of coordination function is as follows:
  • the formation and dissociation process of the coordination bond can be regulated by heating and cooling, and the group T has the following structural formula:
  • the characterization of the temperature-sensitivity and mechanical properties of the product hydrazide-functionalized polysiloxane obtained in this example is similar to that of the product obtained in Example 1.
  • the detailed data are shown in Table 1, and the temperature sensitivity obtained in this example is obtained.
  • the polymer material has a temperature sensitivity coefficient of G'(120)/G'(20) of 17,000, a Young's modulus of 680 MPa, a maximum stress of 8.6 MPa, and a maximum strain of 5.8%.
  • the above parameters indicate that the material has excellent temperature sensitivity. At the same time, the coefficient also has good mechanical properties.
  • Example 4 The synthesis method of other temperature-sensitive polymer materials based on coordination bonds is similar to that of Example 4, Example 5, and Example 6, and it is only necessary to replace the reaction materials.
  • Example 7 Temperature-sensitive polymer material based on covalent bond
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 105.5 g of allyl glycidyl ether functionalized polysiloxane synthesized in the first step of Example 1 was separately prepared.
  • the alkane was dissolved in 150 mL of tetrahydrofuran, and 75.6 g (about 0.6 mol) of 2-furanacetic acid was dissolved in 100 mL of tetrahydrofuran, and a solution of 2-furanacetic acid in tetrahydrofuran was added to the polysiloxane solution. Magnetic stirring was turned on, and the reaction temperature was controlled at 100 ° C for 12 hours.
  • Step 2 105.5 g of allyl glycidyl ether functionalized polysiloxane synthesized in the first step of Example 1 in a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel and an Ar inlet.
  • the alkane was dissolved in 150 mL of tetrahydrofuran, and 75.6 g (about 0.6 mol) of 2-furanacetic acid was dissolved in 100 mL of tetrahydrofuran, and a solution of 58.2 g (0.6 mol) of maleimide in tetrahydrofuran was added to the polysiloxane solution.
  • Step 3 158.6 g of furanyl-functionalized polysiloxane synthesized in Step 1 and 128.6 g of maleic acid in a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet.
  • the amino-functionalized polysiloxane was dissolved in 150 mL of tetrahydrofuran, and the above solution was mixed and stirred, and the solvent was removed by distillation under reduced pressure to uniformly mix the reactants. Thereafter, the mixture was placed in a Teflon mold and placed in an oven at 130 ° C for 12 hours to obtain a 280.2 g temperature-sensitive material based on a covalent bond, and the yield was 98.7%.
  • the reaction formula is as follows:
  • the cross-linking and de-crosslinking of covalent bonds can be regulated by heating and cooling, and the group T has the following structural formula:
  • the temperature sensitivity and mechanical properties of the product hydrazide functionalized polysiloxane obtained in this example are similar to those of Example 1.
  • the detailed data are shown in Table 1, the temperature sensitive polymer material obtained in this example,
  • the temperature sensitivity coefficient G'(120)/G'(20) is 26000, the Young's modulus is 890MPa, the maximum stress is 12.7MPa, and the maximum strain is 18.9%.
  • the above parameters indicate that the material has excellent temperature sensitivity coefficient and Has good mechanical properties.
  • Example 8 Temperature-sensitive polymer material based on covalent bond
  • Step 1 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 105.5 g of allyl glycidyl ether functionalized polysiloxane synthesized in the first step of Example 1 was separately prepared.
  • the alkane was dissolved in 150 mL of tetrahydrofuran, and salicylaldehyde 73.2 g (about 0.6 mol) was dissolved in 200 mL of tetrahydrofuran, and a solution of salicylaldehyde in tetrahydrofuran was added to the polysiloxane solution.
  • Step 2 In a dry four-necked flask equipped with a thermometer, a condenser, a dropping funnel, and an Ar inlet, 118.5 g of the hydrazide-functionalized polysiloxane synthesized in the second step of Example 2 was dissolved in 150 mL, respectively.
  • tetrahydrofuran 161.6 g of the aldehyde-functionalized polysiloxane in the first step of this example was dissolved in 200 mL of tetrahydrofuran, and the above two portions of tetrahydrofuran solution were mixed, magnetic stirring was started, and the reaction temperature was controlled at 80 ° C. Reaction for 12 h.
  • the temperature sensitivity and mechanical properties of the product hydrazide functionalized polysiloxane obtained in this example are similar to those of Example 1.
  • the detailed data are shown in Table 1, the temperature sensitive polymer material obtained in this example,
  • the temperature sensitivity coefficient G'(120)/G'(20) is 13000, the Young's modulus is 550MPa, the maximum stress is 9.6MPa, and the maximum strain is 53.9%.
  • the above parameters indicate that the material has excellent temperature sensitivity coefficient and Has good mechanical properties.
  • the synthesis method of other thermosensitive polymer materials based on covalent bonds is similar to that of Example 7 and Example 8, and it is only necessary to replace the reaction raw materials accordingly.
  • the formulation is as follows (parts by weight): 80 parts of the temperature-sensitive polymer based on the coordination bond in Example 1; 5 parts of polyethylene-vinyl acetate (additive); 5 parts of ethylene-octene copolymer (toughener); 5 parts of carbon fiber (filler); 5 parts of titanium white powder (pigment).
  • the ingredients are blended into the blending equipment in weight percent for blending to make a homogeneous blend.
  • the extrudate is printed, cut, injection molded or calendered into the desired shape by 3D as needed.
  • the preparation method of the temperature-sensitive polymer rapid setting external fixation stent based on the examples 2-8 is similar to that of the embodiment 9, and only the temperature-sensitive polymer and the auxiliary agent need to be adjusted accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开了一类改性的聚硅氧烷,具有如下结构式 (I). 其中,m为0-10000的整数,n为0-10000的整数,m,n不同时为0;R 1-R 7相同或不同,其中至少有一个具有基于氢键、配位键或共价键的可逆化学键体系的基团。本发明创造性地以聚硅氧烷为主链,通过化学方法引入具有温敏性的可逆化学键,得到对温度高度敏感的高分子材料。可以利用材料的温敏特性,通过一定的加工和制备方法,得到具有特定应用的功能性材料,如医用外固定材料、矫形材料、包装材料等。

Description

一类改性的聚硅氧烷及其应用 技术领域
本发明属于高分子材料领域,具体涉及一类改性的聚硅氧烷及其应用。
背景技术
温敏性材料,是指对外界环境温度(能量)具有可逆响应特性的一类材料,是很重要的一类智能材料,由于其性能受温度的影响变化明显,使其具有广阔的应用前景。目前,温敏性高分子材料,主要基于高分子链的运动程度随温度的变化而变化的原理。在低温时,高分子链段间的缠绕严重,运动受阻,从而表现出更强更韧的性质;在高温时,高分子链段间的缠绕逐渐解开,运动更为自由,进而呈现出更柔更软的性质。但是,由于这类高分子链段间的缠绕作用对温度的依赖性较小,所以需要较宽的温度范围,才能使得材料呈现出较为明显的强度变化,或在使用温度范围,材料强度的变化无法满足实际需求,这给实际应用带来了很多不便。
目前被公开或报道的温敏型高分子材料,在温敏性能和制备方法上还有待提升。专利CN106243349A公开了一种基于乳酸和丙氨酸的生物相容温敏性高分子材料,该发明中先将乳酸制备成脱水乳酸,再与丙氨酸进行聚合反应得到温敏性的高分子材料,该材料中由于天然产物的加入,使得其在拥有一定生物相容性的同时,对温敏性能造成了不良影响,同时,该发明中所使用的氯化亚锡催化剂属于剧毒物,对人体和环境都有严重影响。专利CN201710384625.6公开了一种聚甲基丙烯酸甲酯/氧化锌型温敏性材料及其制备方法,该发明通过一步法同时合成聚甲基丙烯酸甲酯和氧化锌,直接制得温敏性的有机无机杂化温敏性材料,该材料的合成工艺简单,但是所得材料的均一性能受工艺影响大,温敏性依赖于高分子材料的链段间的相互作用,温敏性能有待改善。专利CN105348550A公布了一种具有温敏性的PDMS薄膜的制备方法,该发明通过在PDMS的预聚体中加入碲化镉量子点的方式,得到了光学透明和具备温敏性的PDMS薄膜,该发明中温敏性的主体材料为碲化镉量子点,通过温度的变化来控制量子点的荧光性能,PDMS主要作为基体材料。然而,该技术方案制备方法繁琐,需要先制备温敏碲化镉量子点,经纯化分散加入PDMS预聚体和固化剂,混合物悬凃在载玻片上,置于烘箱中进行固化得到温敏PDMS薄膜。并且,碲化镉量子点在PDMS预聚体中的分散均一性直接影响薄膜的光敏性能。目前新的光敏性材料的开发一直是人们研究的热点。
发明内容
为了改善现有温敏性高分子材料的温敏性能,本发明针对现有技术不足,在聚硅氧烷高分子材料中通过化学修饰的方法引入可逆化学键,改性得到具有良好温敏特性的高分子材料。由于高分子链中存在着可逆的化学键,其机械性能在某一特定温度区间内可以发生明显变化,从而在医用外固定材料、矫形材料、包装材料等方面有着独特的应用前景。
本发明具体技术方案如下:
本发明公开了一类改性的聚硅氧烷,具有如下结构式:
Figure PCTCN2018079998-appb-000001
式Ⅰ中,m、n代表对应重复单元的重复数,其中,
m为0-10000的整数,优选0-200范围的值;
n为0至10000的整数,优选0至200范围的值;
m,n不同时为0;
R 1-R 7相同或不同,其中至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或或卤原子取代的C1-C50(优选C1-C30,更优选C1-C18)的烷基或环烷基、非取代的或被一个或多个C1-C50(优选C1-C30,更优选C1-C18)的烷基、C1-C50(优选C1-C30,更优选C1-C18)的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;
优选的,R 1-R 7相同或不同,至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、苯基、苄基、苯酚基、烷氧基苯基(如
Figure PCTCN2018079998-appb-000002
)、C1-C30的烷基、C1-C30的环烷基、C1-C30的卤代烷基。
Figure PCTCN2018079998-appb-000003
式Ⅱ中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-S-、-COO-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元;R 8代表氢原子或氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或或卤原子取代的C1-C50(优选C1-C30,更优选C1-C18)的烷基或环烷基、非取代的或被一个或多个C1-C50(优选C1-C30,更优选C1-C18)的烷基、C1-C50(优选C1-C30,更优选C1-C18)的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;p 1、p 2、p 3相同或不同,为0-500的整数;q为0-500的整数;
优选的,式Ⅱ结构中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元,R 8代表甲基、乙基、苯基、羟基、巯基、羧基和氨基;p 1、p 2、p 3为0-20的整数;q为0-20的整数。
优选的,-[(a)p 1-(b)p 2-(c)p 3]q-选自如下组合:
p2、p3为0,-[(a)p 1-(b)p 2-(c)p 3]q-代表-(CH 2)p 1-、-(NH)p 1-、-(S)p 1-、-(CO)p 1-、-(CH(R 8))p 1-,p 1为0-20的整数,q为1;
或者,p3为0,-[(a)p 1-(b)p 2-(c)p 3]q-代表-[(CH 2)p 1-(NH)p 2]q-、-[(CH 2)p 1-(O)p 2]q-、-[(CH 2)p 1-(S)p 2]q-、-[(CH 2)p 1-(COO)p 2]q-、-[(CH 2)p 1-(CO)p 2]q-、-[(CH(R 8))p 1-(CH 2)p 2]q-、-[(NH)p 1-(CH 2)p 2]q-、-[(S)p 1-(CO)p 2]q-、-[(CH(R 8))p 1-(COO)p 2]q-,p 1、p 2为1-20的整数;q为1-20的整数;
或者,-[(CH 2)p 1-(O)p 2-(CH 2)p 3]q-、-[(CH 2)p 1-(CH 2)p 2-(O)p 3]q-、-[(CO)p 1-(CH 2)p 2-(CO)p 3]q、-[(CO)p 1-(O)p 2-(CO)p 3-]q、-[(CH(R 8))p 1-(CH 2)p 2-(CH(R 8))p 3]q-、-[(CH(R 8))p 1-(CH 2)p 2-(CH 2)p 3]q-,p 1、p 2、p 3为1-20的整数;q为1-20的整数;
上述R 8代表甲基、乙基、苯基、羟基、羧基或氨基。
L 0基团根据可逆化学键的类型分为:基于氢键的可逆化学键体系、基于配位键的可逆化学键体系和基于共价键的可逆化学键体系。
对于具有氢键体系可逆化学键的基团,L 0可以为:
Figure PCTCN2018079998-appb-000004
Figure PCTCN2018079998-appb-000005
优选的,L 0代表
Figure PCTCN2018079998-appb-000006
对于具有配位键体系可逆化学键的基团,L 0由配体和金属M配位形成,其中配体为:
Figure PCTCN2018079998-appb-000007
其中M为碱金属、碱土金属和过渡金属离子中的一种或几种;优选Zn 2+、Cu 2+、Fe 3+、Fe 2+、Co 2+、Pb 2+、Sn 2+、Al 3+、Ag +、Ni 2+、Ca 2+、Eu 3+、Tb 3+、Na +、K +
X 1代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
Y 1代表:
Figure PCTCN2018079998-appb-000008
优选的,L 0代表
Figure PCTCN2018079998-appb-000009
Figure PCTCN2018079998-appb-000010
Figure PCTCN2018079998-appb-000011
结构式中,虚线代表配位基团和配位金属之间的配位键。
对于具有共价键体系可逆化学键的基团,L 0可以为:
Figure PCTCN2018079998-appb-000012
或者
Figure PCTCN2018079998-appb-000013
X 2代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
Y 2代表:
Figure PCTCN2018079998-appb-000014
优选的,L 0代表
Figure PCTCN2018079998-appb-000015
Figure PCTCN2018079998-appb-000016
本发明优选式Ⅱ结构为:
Figure PCTCN2018079998-appb-000017
Figure PCTCN2018079998-appb-000018
Figure PCTCN2018079998-appb-000019
Figure PCTCN2018079998-appb-000020
Figure PCTCN2018079998-appb-000021
Figure PCTCN2018079998-appb-000022
Figure PCTCN2018079998-appb-000023
Figure PCTCN2018079998-appb-000024
Figure PCTCN2018079998-appb-000025
Figure PCTCN2018079998-appb-000026
Figure PCTCN2018079998-appb-000027
Figure PCTCN2018079998-appb-000028
本发明的另一目的在于提供一类上述聚硅氧烷的前体,具有如下结构式:
Figure PCTCN2018079998-appb-000029
其中,m为0-10000的整数,n为0-10000的整数,m,n不同时为0;
R 1-R 7相同或不同,其中至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、非取代的或被一个或多个羟基、氨基、巯基或卤原子取代的C1-C50的烷基 或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;
Figure PCTCN2018079998-appb-000030
式Ⅱ中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-S-、-COO-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元;R 8代表氢原子或氨基、羟基、巯基、羧基、甲氧基、非取代的或被一个或多个羟基、氨基、巯基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;p 1、p 2、p 3相同或不同,为0-500的整数;q为0-500的整数;
L 0选自
Figure PCTCN2018079998-appb-000031
X 1代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
Y 1代表:
Figure PCTCN2018079998-appb-000032
Figure PCTCN2018079998-appb-000033
R 9代表氢原子或氨基、羟基、巯基、羧基、烷氧基、硝基、非取代的或被一个或多个羟基、氨基、巯基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基。
优选R 9代表氢原子、氨基、羟基、甲氧基、甲基、乙基、丙基、丁基或苯基;
L 0选自
Figure PCTCN2018079998-appb-000034
时,可利用环醚开环,进一步制备带有羟基、氨基、巯基、吡啶基、咪唑基、咔唑基、二联吡啶基、邻菲罗啉基或其他官能团化的改性的聚硅氧烷。
L 0选自
Figure PCTCN2018079998-appb-000035
时,可进行水解、胺解、肼解和还原反应,制备具有羧基、酰胺基、酰肼基和醛基官能团化的聚硅氧烷。
L 0选自
Figure PCTCN2018079998-appb-000036
时,可以与金属离子配位,制备具有配位键的可逆化学键体系的改性聚硅氧烷。
本发明优选的技术方案,所述改性的聚硅氧烷选自:
Figure PCTCN2018079998-appb-000037
Figure PCTCN2018079998-appb-000038
本发明另一目的在于提供本发明所述改性的聚硅氧烷在制备温敏性材料中的应用。特别是用于制备温敏性快速定型材料,用于制备医用外固定材料、矫形材料、包装材料等。
本发明另一目的在于提供一种温敏性材料,含有本发明所述的改性的聚硅氧烷。所述温敏性材料,当L 0代表基于氢键或配位键的可逆化学键体系的基团时,所述材料含有改性的聚硅氧烷中的一种或几种;
所述L 0代表基于共价键的可逆化学键体系的基团时,所述材料含有:L 0分别为
Figure PCTCN2018079998-appb-000039
Figure PCTCN2018079998-appb-000040
的改性的聚硅氧烷;或者L 0分别为
Figure PCTCN2018079998-appb-000041
Figure PCTCN2018079998-appb-000042
的改性的聚硅氧烷;或者, L 0
Figure PCTCN2018079998-appb-000043
Figure PCTCN2018079998-appb-000044
的改性的聚硅氧烷。L 0或者,L 0
Figure PCTCN2018079998-appb-000045
的改性的聚硅氧烷。当L 0
Figure PCTCN2018079998-appb-000046
时,可自身形成可逆共价键。
本发明所述的温敏性材料的制备方法,以
Figure PCTCN2018079998-appb-000047
为原料,其中,u为0-10000的整数,v为0-10000的整数,u,v不同时为0;R 10-R 16相同或不同,其中至少有一个为H或烯基(如乙烯基),其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、非取代的或被一个或多个羟基、氨基、巯基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;在结构中取代基为H或烯基(如乙烯基)的位置引入具有可逆化学键体系的基团,所述可逆化学键体系选自基于氢键、配位键或共价键的可逆化学键体系。例如,所述方法可以包括(1)通过加成、消除、水解、取代和环加成等反应,对工业品含氢硅油或乙烯基硅油进行修饰,以得到含有相应的官能团的PDMS材料。不同官能团的合成方法可以相同或不同,当所引入官能团会引起副反应时,需要对官能团进行相应的保护,修饰完成后,再进行去保护反应;
(2)将制得的带特定官能团的高分子材料中的一种或几种,加入催化剂、助剂和溶剂等,通过溶解(熔化)、混合、搅拌、加热、除溶剂、冷却等工艺,制得相应的温敏性材料。
本发明所述的温敏性材料的作用机理如下:
(1)对于具有氢键体系可逆化学键的聚硅氧烷,由于氢键对温度具有着高度的敏感性,当温度变化时,分子内和分子间的氢键作用将会增强或者减弱,所以使得材料的力学强度随温度的变化会产生明显的变化,进而可以通过控制温度的升高和降低,来实现材料力学性能的改变。
例如,
Figure PCTCN2018079998-appb-000048
其中,基团T具有如下结构式:
Figure PCTCN2018079998-appb-000049
(以R 7位具有可逆化学键基团为例进行阐述,实际中R 1-R 7中的一个或多个均可为具有可逆化学键基团,不再赘述)。
(2)对于具有配位键体系可逆化学键的聚硅氧烷,由于配位键对温度具有着高度的敏感性,当温度变化时,高分子链中的配体和金属离子间的配位作用的强度产生相应的变化,从而使得材料的力学强度产生相应的变化,通过控制温度的升高和降低,来实现材料力学性能的改变。
例如,
Figure PCTCN2018079998-appb-000050
其中,基团T具有如下结构式:
Figure PCTCN2018079998-appb-000051
(以R 7位具有可逆化学键基团为例进行阐述,实际中R 1-R 7中的一个或多个均可为具有可逆化学键基团,不再赘述)。
(3)对于具有共价键体系可逆化学键的聚硅氧烷,由于所选定的共价键对温度具有着高度的敏感性,当温度变化时,高分子链中引入的可逆共价键基团将发生断裂或形成的反应,从而使得材料的力学强度产生相应的变化,通过控制温度的升高和降低,来实现材料力学性能的改变。
例如,
Figure PCTCN2018079998-appb-000052
当L 0
Figure PCTCN2018079998-appb-000053
时,可自身形成可逆共价键,例如:
Figure PCTCN2018079998-appb-000054
上述温敏材料,还可以含有高分子添加剂、增塑剂、增韧剂、稳定剂、润滑剂、纳米添加剂、填料、颜色添加剂、药用成分添加剂中的一种或几种。
所述高分子添加剂为常规高分子材料,可以是以下高分子材料中的一种或几种:
聚酯,包括但不限于聚对苯二甲酸乙二醇酯纤维(PET)、聚对苯二甲酸丁二醇酯纤维(PBT)、聚对苯二甲酸丙二醇酯纤维(PTT);
聚酰胺,包括但不限于聚己二酸己二胺、聚己内酰胺;
聚丙烯腈及其衍生物;
芳纶,包括但不限于聚间苯二甲酰间苯二胺(PMIA)、聚对苯二甲酰对苯二胺(PPTA,Kevlar);
聚氨酯,包括但不限于聚酯链类、聚醚链类;
塑料,包括但不限于聚乙烯、聚丙烯、聚氯乙烯、聚甲基丙烯酸甲酯、聚苯乙烯、聚四氟乙烯、聚偏氟乙烯、酚醛树脂、ABS树脂;
橡胶,包括天然橡胶和合成橡胶,包括但不限于丁苯橡胶、顺丁橡胶、异戊橡胶、氯丁橡胶、乙丙橡胶、丁晴橡胶、硅橡胶、氟橡胶和聚氨酯橡胶;
所述增塑剂,种类没有特殊的限定,采用本领域技术人员熟知的增塑剂即可,优选为邻苯二甲酸酯类(Phthalate Esters,PAEs),更优选为邻苯二甲酸二正辛酯(DNOP或DnOP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二仲辛酯(DCP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异壬酯(DINP)和邻苯二甲酸二异癸酯(DIDP)中的一种或多种;也可以是氯化石蜡、环氧大豆油、己二酸二辛酯或者其他脂肪酸酯中的一种或几种;
所述增韧剂,包括但不限于聚丁二烯橡胶、乙烯-丙烯-二烯橡胶、乙烯-辛烯共聚物、动态硫化橡胶中的一种或几种;
所述稳定剂,包括但不限于二盐基性亚磷酸铅、三盐基性硫酸铅、二盐基性硬脂酸铅、硬脂酸钙、硬脂酸钡、硬脂酸锌、二月桂酸二正丁基锡、马来酸单丁酯二丁基锡中的一种或几种;
所述润滑剂,包括但不限于硬脂酸、硬脂酸钙、硬脂酸钡、硬脂酸铅、液体石蜡或硅油 中的任意一种或几种;
所述纳米添加剂,包括但不限于各种纳米材料,纳米粘土、纳米纤维、纳米二氧化钛、纳米钛酸钡、氧化铝、氧化硅、氮化硼和氮化硅中的一种或几种;
所述填料,为医药学上常用的填料,包括但不限于纺织物、不织布、碳酸钙、陶土、云母粉、滑石粉、木粉和植物纤维、玻璃纤维、碳纤维、石墨、石墨烯、碳纳米管中的一种或几种;
所述颜色添加剂,对其种类没有特殊的限定,采用本领域技术人员熟知的颜色添加剂即可。在本发明中,所述颜色添加剂优选为天然无机颜色添加剂、人造无机颜色添加剂、天然有机颜色添加剂、人造有机颜色添加剂中的一种或多种。在本发明中,所述天然无机颜色添加剂为烟黑、白垩、朱砂、红土、雄黄、天然氧化铁、硅灰石、重晶石粉、滑石粉、云母粉和高岭土中的一种或多种;所述人造无机颜色添加剂为钛白、锌钡白、铅铬黄和铁蓝中的一种或多种;所述天然有机颜色添加剂为藤黄、茜素红和靛青中的一种或多种;所述人造有机颜色添加剂为大红粉、偶淡黄、酞菁蓝和喹吖啶酮中的一种或多种。
药用成分添加剂,对其种类没有特殊的限定,采用本领域技术人员熟知的药用成分添加剂即可。
本发明的一个具体的技术方案,温敏性快速定型材料含有重量份的:
本发明所述改性的聚硅氧烷:30-100份
高分子添加剂:0-50份,增塑剂:0-20份,增韧剂:0-20份,稳定剂:0-20份,润滑剂:0-10份,纳米添加剂:0-70份,填料:0-50份,颜色添加剂:0-10份,药用成分添加剂:0-20份。
优选的,温敏性快速定型材料有如下组分:
本发明所述改性的聚硅氧烷:80份
高分子添加剂:5份,增塑剂:3份,增韧剂:3份,稳定剂:2份,润滑剂:1份,纳米添加剂:3份,填料:1份,颜色添加剂:1份,药用成分添加剂:1份。
本发明的一个具体的应用实例,上述温敏性快速定型材料可制备成快速定型支架,制备方法如下:
a,将各种成分按照重量份数投入共混设备中进行共混,使之成为均匀的共混物。
b,将共混物挤出。
c,根据需要,将挤出物通过3D打印、切割、注塑或压延成所需形状。
本发明优点:
聚硅氧烷是一类主链为硅氧键(-Si-O-)重复单元的高分子,这类高分子具有很低的玻璃化转变温度,常态下链段具有非常好的移动性和稳定性,是温敏性高分子材料的最佳基础材料之一。但是普通的聚硅氧烷的温敏性能较差,本发明创造性地以聚硅氧烷为主链,通过化学方法引入具有温敏性的可逆化学键,得到对温度高度敏感的高分子材料。进一步的,可以利用材料的温敏特性,通过一定的加工和制备方法,得到具有特定应用的功能性材料,如医用外固定材料、矫形材料、包装材料等。
附图说明
图1为实施例1所得材料的温敏性表征曲线。
图2为实施例1所得材料的力学性能(应力-应变)曲线。
具体实施方式
现结合实施例,对本发明中所涉及到的温敏性高分子材料的结构、制备方法和机理,以及在快速定型外固定支架中的应用做进一步说明。
实施例1基于氢键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,加入150g无水甲苯,开启搅拌,将72g烯丙基缩水甘油醚(0.63mol)加入到甲苯中,再将37.5g含氢量为1.6wt%(Mn~3000,其中,R 1-R6为甲基,m为0,n为40至55范围的值,以每摩尔Si-H计0.6mol)聚烷基氢化硅氧烷加入到甲苯和烯丙基缩水甘油醚的混合反应体系中。再将20mg Karstedt铂催化剂(20wt%Pt)滴加入到混合反应体系中。滴加完毕后,温度控制为50℃,持续反应12h。反应结束后,采用减压蒸馏得到105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷,产率97.2%。经 1H NMR表征,硅氢加成率为98.5%。反应式如下:
Figure PCTCN2018079998-appb-000055
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将步骤1中所得到的105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷溶于150mL四氢呋喃中,向体系中加入100mL 25wt%的氨水溶液。开启磁力搅拌,并控制反应温度在50℃,持续反应12h。反应结束后,萃取出四氢呋喃相。向萃得的四氢呋喃中加入100mL水对产物进一步提纯,加入无水硫酸钠进行干燥。通过减压蒸馏,得到最终产品氨基-羟基官能团化的聚硅氧烷106.9g,产率96.5%。反应式如下:
Figure PCTCN2018079998-appb-000056
在温度变化下,上述氨基-羟基官能团化的聚硅氧烷结构中的氢键作用机理如下:
Figure PCTCN2018079998-appb-000057
其中,虚线代表高分子材料中可能存在的氢键相互作用,T具有如下结构式:
Figure PCTCN2018079998-appb-000058
温敏性能表征:
为了说明材料的温敏性能,定义材料的温敏指数η为从20℃升温到120℃(或与之对应的降温过程)时对应的力学强度(储能模量)的变化值(η=G’(120)/G’(20))。其温敏性曲线如图1所示,具体参数见表1。
力学性能表征:
为了说明温敏型材料的力学性能,对其进行了变温静态拉伸实验测得应力-应变曲线,计算得到材料在室温(25℃)下的杨氏模量、最大应力和最大应变值,对于实施例1中所得到产品,其力学性能曲线如图2所示,具体参数见表1。
本实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为16000,杨氏模量为520MPa,最大应力为5.9MPa,最大应变为5.4%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
实施例2基于氢键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,加入150g无水甲苯,开启搅拌,将72g甲基丙烯酸甲酯(0.72mol)加入到甲苯中,再将75g含氢量为0.8wt%(Mn~4000,其中,R 1-R6为甲基,m/n为1/1,m为30至40范围的值,n为30至40范围的值,以每摩尔Si-H计0.6mol)聚烷基氢化硅氧烷加入到甲苯和甲基丙烯酸甲酯的混合反应体系中。再将20mg Karstedt铂催化剂(20wt%Pt)滴加入到混合反应体系中。滴加完毕后,温度控制为50℃,持续反应12h。反应结束后,采用减压蒸馏得到131.5g甲基丙烯酸甲酯官能团化的聚硅氧烷,产率97.2%。经 1H NMR表征,硅氢加成率为97.5%。反应式如下:
Figure PCTCN2018079998-appb-000059
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将步骤1中所得到的131.5g甲基丙烯酸甲酯官能团化的聚硅氧烷溶于150mL四氢呋喃中,向体系中加入100mL 80wt%的水合肼溶液。开启磁力搅拌,并控制反应温度在50℃,持续反应12h。反应结束后,萃取出四氢呋喃相。向萃得的四氢呋喃中加入100mL水对产物进一步提纯。通过减压蒸馏,得到最终产品酰肼官能团化的聚硅氧烷118.5g,产率95.6%。反应式如下:
Figure PCTCN2018079998-appb-000060
在温度变化下,上述酰肼官能团化的聚硅氧烷结构中的氢键作用机理如下:
Figure PCTCN2018079998-appb-000061
其中,虚线代表高分子材料中可能存在的氢键相互作用,T具有如下结构式:
Figure PCTCN2018079998-appb-000062
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1制得的产物性能相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为12000,杨氏模量为610MPa,最大应力为6.2MPa,最大应变为12.5%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
实施例3基于氢键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例2中步骤1中所得到的131.5g甲基丙烯酸甲酯官能团化的聚硅氧烷溶于150mL四氢呋喃中,向体系中加入36g四氢铝锂。开启磁力搅拌,并控制反应温度在25℃,持续反应12h。反应结束后,通过过滤收集有机相,然后通过减压蒸馏除去溶剂,得到最终产品羟基官能团化的聚硅氧烷112.3g,产率93.8%。反应式如下:
Figure PCTCN2018079998-appb-000063
在温度变化下,上述羟基官能团化的聚硅氧烷结构中的氢键作用机理如下:
Figure PCTCN2018079998-appb-000064
其中,虚线代表高分子材料中可能存在的氢键相互作用,T具有如下结构式:
Figure PCTCN2018079998-appb-000065
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1制得的产物性能相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为9000,杨氏模量为380MPa,最大应力为4.6MPa,最大应变为25.3%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
其他基于氢键的温敏性高分子材料的合成方法与实施例1、实施例2和实施例3相似,只需将反应原料进行相应的替换。
实施例4基于配位键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,将实施例2中得到的产物酰肼官能团化的聚硅氧烷(Mn~6000,其中,R 1-R6为甲基,m/n为1/1,m为30至40范围的值,n为30至40范围的值,)85g(约0.5mol)溶于四氢呋喃,取2-吡啶甲醛54g(约0.5mol)溶于四氢呋喃中,将两种反应物的溶液缓慢混合并搅拌,控制反应温度在50℃,持续反应12h。反应结束后,通过减压蒸馏除去四氢呋喃,得到中间产物吡啶官能团化的聚硅氧烷130.5g,产率94.8%,反应式如下:
Figure PCTCN2018079998-appb-000066
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,将步骤1中得到的产物吡啶官能团化的聚硅氧烷130.5g(约0.5mol)溶于四氢呋喃,取2mol/L的CuCl 2甲醇溶液125mL,缓慢加入四氢呋喃溶液中,并不断搅拌,控制反应温度在25℃,持续反应12h。反应结束后,通过减压蒸馏除去四氢呋喃和甲醇,得到基于Cu(Ⅱ)-吡啶亚胺配位基团的聚硅氧烷158.3g,产率96.8%,反应式如下:
Figure PCTCN2018079998-appb-000067
配位键作用机理如下:
Figure PCTCN2018079998-appb-000068
其中,配位键的形成和解离过程可以通过升温和降温的进行调控,T具有如下结构式:
Figure PCTCN2018079998-appb-000069
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1制得的产物性能相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为20000,杨氏模量为710MPa,最大应力为7.3MPa,最大应变为7.4%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
实施例5基于配位键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例1步骤1中所合成的105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷溶于150mL四氢呋喃中,将咪唑40g(约0.6mol)溶于100mL四氢呋喃中,将咪唑的四氢呋喃溶液加入到聚硅氧烷溶液中。开启磁力搅拌,并控制反应温度在80℃,持续反应12h。反应结束后,将溶液浓缩至原体积的四分之一,再向反应体系中加入300mL的甲醇,静置分层,收集沉淀,通过减压蒸馏,除去溶剂,得到最终产品咪唑基官能团化的聚硅氧烷128.6g,产率95.7%。反应式如下:
Figure PCTCN2018079998-appb-000070
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,将步骤1中得到的产物咪唑基官能团化的聚硅氧烷128.6g(约0.6mol)溶于四氢呋喃,取2mol/L的ZnCl 2甲醇溶液150mL,缓慢加入四氢呋喃溶液中,并不断搅拌,控制反应温度在50℃,持续反应8h。反应结束后,通过减压蒸馏除去四氢呋喃和甲醇,得到基于Zn(Ⅱ)-咪唑配位基团的聚硅氧烷154.3g,产率95.8%,反应式如下:
Figure PCTCN2018079998-appb-000071
配位键作用机理如下:
Figure PCTCN2018079998-appb-000072
其中,配位键的形成和解离过程可以通过升温和降温的进行调控,T具有如下结构式:
Figure PCTCN2018079998-appb-000073
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1制得的产物性能相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为19000,杨氏模量为570MPa,最大应力为7.3MPa,最大应变为6.5%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
实施例6基于配位键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例2步骤1中所合成的131.5g甲基丙烯酸甲酯官能团化的聚硅氧烷溶于150mL四氢呋喃中,向其中加入1wt%的盐酸溶液300mL,开启磁力搅拌,并控制反应温度在60℃,持续反应12h。反应结束后静置分层,提取四氢呋喃相,通过减压蒸馏,除去溶剂,得到最终产品羧基官能团化的聚硅氧烷118.6g,产率96.1%。反应式如下:
Figure PCTCN2018079998-appb-000074
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,将步骤1中得到的产物羧基官能团化的聚硅氧烷118.6g(约0.6mol)溶于四氢呋喃,取2mol/L的ZnCl 2甲醇溶液150mL,三乙胺60.6g缓慢加入四氢呋喃溶液中,并不断搅拌,控制反应温度在50℃,持续反应12h。反应结束后,通过减压蒸馏除去四氢呋喃、甲醇和过量的三乙胺,得到基于Zn(Ⅱ)-羧基配位基团的聚硅氧烷154.3g,产率94.9%,反应式如下:
Figure PCTCN2018079998-appb-000075
配位键作用机理如下:
Figure PCTCN2018079998-appb-000076
其中,配位键的形成和解离过程可以通过升温和降温的进行调控,基团T具有如下结构式:
Figure PCTCN2018079998-appb-000077
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1制得的产物性能相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为17000,杨氏模量为680MPa,最大应力为8.6MPa,最大应变为5.8%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
其他基于配位键的温敏性高分子材料的合成方法与实施例4、实施例5、实施例6相似,只需将反应原料进行相应的替换。
实施例7基于共价键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例1步骤1中所合成的105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷溶于150mL四氢呋喃中,将2-呋喃乙酸75.6g(约0.6mol)溶于100mL四氢呋喃中,将2-呋喃乙酸的四氢呋喃溶液加入到聚硅氧烷溶液中。开启磁力搅拌,并控制反应温度在100℃,持续反应12h。反应结束后,将溶液浓缩至原体积的四分之一,再向反应体系中加入300mL的甲醇,静置分层,收集沉淀,通过减压蒸馏,除去溶剂,得到最终产品呋喃基官能团化的聚硅氧烷158.6g,产率96.7%。反应式如下:
Figure PCTCN2018079998-appb-000078
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例1步骤1中所合成的105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷溶于150mL四氢呋喃中,将2-呋喃乙酸75.6g(约0.6mol)溶于100mL四氢呋喃中,将58.2g(0.6mol)马来酰亚胺的四氢呋喃溶液加入到聚硅氧烷溶液中。开启磁力搅拌,并控制反应温度在100℃,持续反应12h。反应结束后,将溶液浓缩至原体积的四分之一,再向反应体系中加入300mL的甲醇, 静置分层,收集沉淀,通过减压蒸馏,除去溶剂,得到最终产品马来酰亚胺基官能团化的聚硅氧烷128.6g,产率96.7%。反应式如下:
Figure PCTCN2018079998-appb-000079
步骤3:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,将步骤1中所合成的158.6g呋喃基官能团化的聚硅氧烷和128.6g马来酰亚胺基官能团化的聚硅氧烷分别溶于150mL四氢呋喃中,将以上溶液混合并搅拌,通过减压蒸馏,除去溶剂,使反应物混合均匀。之后将混合物置于聚四氟乙烯模具中,置于130℃烘箱中反应12h,得到基于共价键的温敏性材料280.2g,产率98.7%。反应式如下:
Figure PCTCN2018079998-appb-000080
可逆共价键相互作用机理如下:
Figure PCTCN2018079998-appb-000081
其中,共价键的交联与解交联作用可以通过升温和降温的进行调控,基团T具有如下结构式:
Figure PCTCN2018079998-appb-000082
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为26000,杨氏模量为890MPa,最大应力为12.7MPa,最大应变为18.9%,以上参数表明该材料具有优异温敏系数的同时,还具有良好的力学性能。
实施例8基于共价键的温敏性高分子材料
步骤1:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例1步骤1中所合成的105.5g烯丙基缩水甘油醚官能团化的聚硅氧烷溶于150mL四氢呋喃中,将水杨醛73.2g(约0.6mol)溶于200mL四氢呋喃中,将水杨醛的四氢呋喃溶液加入到聚硅氧烷溶液中。开启磁力搅拌,并控制反应温度在100℃,持续反应12h。反应结束后,将溶液浓缩至原体积的四分之一,再向反应体系中加入300mL的甲醇,静置分层,收集沉淀,通过减压蒸馏,除去溶剂,得到最终产品醛基官能团化的聚硅氧烷161.6g,产率95.2%。反应式如下:
Figure PCTCN2018079998-appb-000083
步骤2:在装有温度计、冷凝器、滴液漏斗、Ar通入口的干燥四口烧瓶中,分别将实施例2步骤2中所合成的118.5g酰肼官能团化的聚硅氧烷溶于150mL四氢呋喃中,将本实施例步骤1中的醛基官能团化的聚硅氧烷161.6g溶于200mL四氢呋喃中,将以上两份四氢呋喃溶液进行混合,开启磁力搅拌,并控制反应温度在80℃,持续反应12h。反应结束后,将溶液浓缩至原体积的四分之一,再向反应体系中加入300mL的甲醇,静置分层,收集沉淀,通过减压蒸馏,除去溶剂,得到最终产品醛基官能团化的聚硅氧烷161.6g,产率95.2%。反应式如下:
Figure PCTCN2018079998-appb-000084
可逆共价键相互作用机理如下:
Figure PCTCN2018079998-appb-000085
本实施例中所得产物酰肼官能团化的聚硅氧烷的温敏性能和力学性能的表征与实施例1相似,详细数据见表1,该实施例中所得的温敏性高分子材料,其温敏系数G’(120)/G’(20)为13000,杨氏模量为550MPa,最大应力为9.6MPa,最大应变为53.9%,以上参数表明该材 料具有优异温敏系数的同时,还具有良好的力学性能。其他基于共价键的温敏性高分子材料的合成方法与实施例7和实施例8相似,只需将反应原料进行相应的替换。
表1.实施例1-8中所得温敏性高分子的温敏性能及力学性能数据
Figure PCTCN2018079998-appb-000086
实施例9快速定型支架的制备
配方如下(重量份):实施例1中的基于配位键的温敏性高分子80份;聚乙烯-醋酸乙烯(添加剂)5份;乙烯-辛烯共聚物(增韧剂)5份;碳纤维(填料)5份;钛白粉(颜料)5份。
制备方法:
a.将各种成分按照重量百分数投入共混设备中进行共混,使之成为均匀的共混物。
b.将共混物挤出。
c.根据需要,将挤出物通过3D打印、切割、注塑或压延成所需形状。
性能指标:强度温敏性δ=Gmax/Gmin(ΔT=100℃)≥1000,最高应力≥5MPa,杨氏模量≥500MPa,软化点50-70℃,变形-固定时间≤10分钟,断裂伸长率≥5%,残余变形率≤10%。
基于实施例2-8中的温敏性高分子快速定型外固定支架的制备方法与实施例9相似,只需将温敏性高分子和助剂进行相应的调整。

Claims (10)

  1. 一类改性的聚硅氧烷,其特征在于具有如下结构式:
    Figure PCTCN2018079998-appb-100001
    其中,m为0-10000的整数,n为0-10000的整数,m,n不同时为0;
    R 1-R 7相同或不同,其中至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的苯基或萘基;
    Figure PCTCN2018079998-appb-100002
    式Ⅱ中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-S-、-COO-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元;R 8代表氢原子或氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的苯基或萘基;p 1、p 2、p 3相同或不同,为0-500的整数;q为0-500的整数;
    L 0代表基于氢键的可逆化学键体系的基团,选自:
    Figure PCTCN2018079998-appb-100003
    或者,L 0代表基于配位键的可逆化学键体系的基团,L 0由配体和金属离子M配位形成,所述配体选自:
    Figure PCTCN2018079998-appb-100004
    其中,X 1代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
    Y 1代表:
    Figure PCTCN2018079998-appb-100005
    Figure PCTCN2018079998-appb-100006
    M为碱金属、碱土金属、过渡金属、稀土金属离子中的一种或几种;
    或者,L 0代表基于共价键的可逆化学键体系的基团,选自:
    Figure PCTCN2018079998-appb-100007
    Figure PCTCN2018079998-appb-100008
    X 2代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
    Y 2代表:
    Figure PCTCN2018079998-appb-100009
  2. 如权利要求1所述的改性的聚硅氧烷,其特征在于m为0-200的整数,n为0-200的整数,m,n不同时为0;R 1-R 7相同或不同,至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、苯基、苄基、苯酚基、烷氧基苯基、C1-C30的烷基、C1-C30的环烷 基、C1-C30的卤代烷基。
  3. 如权利要求1所述的改性的聚硅氧烷,其特征在于式Ⅱ结构中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元,R 8代表甲基、乙基、苯基、羟基、巯基、羧基和氨基;p 1、p 2、p 3为0-20的整数;q为0-20的整数。
  4. 如权利要求3所述的改性的聚硅氧烷,其特征在于式Ⅱ结构中-[(a)p 1-(b)p 2-(c)p 3]q-选自如下组合:
    p2、p3为0,-[(a)p 1-(b)p 2-(c)p 3]q-代表-(CH 2)p 1-、-(NH)p 1-、-(S)p 1-、-(CO)p 1-、-(CH(R 8))p 1-,p 1为0-20的整数,q为1;
    或者,p3为0,-[(a)p 1-(b)p 2-(c)p 3]q-代表-[(CH 2)p 1-(NH)p 2]q-、-[(CH 2)p 1-(O)p 2]q-、-[(CH 2)p 1-(S)p 2]q-、-[(CH 2)p 1-(COO)p 2]q-、-[(CH 2)p 1-(CO)p 2]q-、-[(CH(R 8))p 1-(CH 2)p 2]q-、-[(NH)p 1-(CH 2)p 2]q-、-[(S)p 1-(CO)p 2]q-、-[(CH(R 8))p 1-(COO)p 2]q-,p 1、p 2为1-20的整数;q为1-20的整数;
    或者,-[(CH 2)p 1-(O)p 2-(CH 2)p 3]q-、-[(CH 2)p 1-(CH 2)p 2-(O)p 3]q-、-[(CO)p 1-(CH 2)p 2-(CO)p 3]q、-[(CO)p 1-(O)p 2-(CO)p 3-]q、-[(CH(R 8))p 1-(CH 2)p 2-(CH(R 8))p 3]q-、-[(CH(R 8))p 1-(CH 2)p 2-(CH 2)p 3]q-,p 1、p 2、p 3为1-20的整数;q为1-20的整数;
    上述R 8代表甲基、乙基、苯基、羟基、羧基或氨基。
  5. 如权利要求1所述的改性的聚硅氧烷,其特征在于L 0代表
    Figure PCTCN2018079998-appb-100010
    Figure PCTCN2018079998-appb-100011
    Figure PCTCN2018079998-appb-100012
  6. 一类改性的聚硅氧烷,其特征在于具有如下结构式:
    Figure PCTCN2018079998-appb-100013
    Figure PCTCN2018079998-appb-100014
    其中,m为0-10000的整数,n为0-10000的整数,m,n不同时为0;
    R 1-R 7相同或不同,其中至少有一个具有式Ⅱ结构,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的苯基或萘基;
    Figure PCTCN2018079998-appb-100015
    式Ⅱ中,a、b、c相同或不同,代表-CH 2-、-NH-、-O-、-S-、-COO-、-CO-、-CH(R 8)-中的一个或多个以任意顺序连接组成的单元;R 8代表氢原子或氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多个氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的苯基或萘基;p 1、p 2、p 3相同或不同,为0-500的整数;q为0-500的整数;
    L 0选自
    Figure PCTCN2018079998-appb-100016
    X 1代表-CH 2-、-NH-、-O-、-S-、-COO-或-CO-;
    Y 1代表:
    Figure PCTCN2018079998-appb-100017
    Figure PCTCN2018079998-appb-100018
    R 9代表氢原子或氨基、羟基、巯基、羧基、甲氧基、硝基、卤原子、非取代的或被一个或多 个氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、氨基、羟基、巯基、羧基、甲氧基、硝基或卤原子取代的苯基或萘基。
  7. 如权利要求1-6任一项所述改性的聚硅氧烷在制备温敏性材料中的应用。
  8. 如权利要求7所述的应用,其特征在于所述改性的聚硅氧烷用于制备快速定型材料。
  9. 一种温敏性材料,其特征在于含有如权利要求1-5任一项所述改性的聚硅氧烷,所述L 0代表基于氢键或配位键的可逆化学键体系的基团时,所述材料含有改性的聚硅氧烷中的一种或几种;
    所述L 0代表基于共价键的可逆化学键体系的基团时,所述材料含有:L 0分别为
    Figure PCTCN2018079998-appb-100019
    Figure PCTCN2018079998-appb-100020
    的改性的聚硅氧烷;或者L 0分别为
    Figure PCTCN2018079998-appb-100021
    的改性的聚硅氧烷;或者,L 0分别为
    Figure PCTCN2018079998-appb-100022
    的改性的聚硅氧烷;或者,L 0
    Figure PCTCN2018079998-appb-100023
    的改性的聚硅氧烷。
  10. 一种温敏性材料的制备方法,其特征在于以
    Figure PCTCN2018079998-appb-100024
    为原料,其中,u为0-10000的整数,v为0-10000的整数,u,v不同时为0;R 10-R 16相同或不同,其中至少有一个为H或具有烯基的基团,其余选自氨基、羟基、巯基、羧基、甲氧基、硝基、非取代的或被一个或多个羟基、氨基、巯基或卤原子取代的C1-C50的烷基或环烷基、非取代的或被一个或多个C1-C50的烷基、C1-C50的烷氧基、羟基、氨基、巯基或卤原子取代的苯基或萘基;在结构中取代基为H或烯基的位置引入具有可逆化学键体系的基团,所述可逆化学键体系选自基于氢键、配位键或共价键的可逆化学键体系。
PCT/CN2018/079998 2018-03-04 2018-03-22 一类改性的聚硅氧烷及其应用 WO2019169670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/978,064 US11591441B2 (en) 2018-03-04 2018-03-22 Modified polysiloxane and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810176863.2 2018-03-04
CN201810176863.2A CN110218329B (zh) 2018-03-04 2018-03-04 一类改性的聚硅氧烷及其应用

Publications (1)

Publication Number Publication Date
WO2019169670A1 true WO2019169670A1 (zh) 2019-09-12

Family

ID=67822201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079998 WO2019169670A1 (zh) 2018-03-04 2018-03-22 一类改性的聚硅氧烷及其应用

Country Status (3)

Country Link
US (1) US11591441B2 (zh)
CN (1) CN110218329B (zh)
WO (1) WO2019169670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377558B2 (en) * 2019-08-30 2022-07-05 University Of Windsor Stretchable, degradable and self-healing polymers through a combination of imine bonds and metal coordination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181336A1 (ja) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 フィルム材及び積層材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292104A (ja) * 2004-03-31 2005-10-20 Cellseed Inc 温度応答性表面及びその利用法
CN101679753A (zh) * 2007-05-01 2010-03-24 陶氏康宁公司 聚合物组合物
CN101265329B (zh) * 2007-03-16 2011-06-22 马雄明 一种表面带引发剂的聚二甲基硅氧烷及其制法和用途
CN102633953A (zh) * 2012-04-18 2012-08-15 同济大学 一种POSS为核的温度/pH双重响应性星形杂化材料的制备方法
CN105694044A (zh) * 2016-04-11 2016-06-22 南京大学 一种羧基官能团化的聚硅氧烷及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290901A (en) * 1993-06-14 1994-03-01 Dow Corning Corporation Method for preparation of carbinol-functional siloxanes
JP3592825B2 (ja) * 1996-02-07 2004-11-24 東レ・ダウコーニング・シリコーン株式会社 硬化性エポキシ樹脂組成物および電子部品
JP3498563B2 (ja) * 1998-01-30 2004-02-16 日本油脂Basfコーティングス株式会社 水中防汚被覆剤
CN101218282B (zh) * 2005-07-18 2012-03-28 陶氏康宁公司 醛官能的硅氧烷
US7834083B2 (en) * 2006-10-11 2010-11-16 Samsung Electro-Mechanics Co., Ltd. Nanocomposite composition comprising transparent nanoparticles
EP2231751B1 (en) * 2007-12-21 2014-01-22 Dow Corning Corporation Ionomeric silicone thermoplastic elastomers
DE102010001531A1 (de) * 2010-02-03 2011-08-04 Evonik Goldschmidt GmbH, 45127 Neuartige organomodifizierte Siloxane mit primären Aminofunktionen, neuartige organomodifizierte Siloxane mit quaternären Ammoniumfunktionen und das Verfahren zu deren Herstellung
CN105111470B (zh) * 2015-08-13 2017-12-01 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
CN105348550B (zh) 2015-11-20 2018-07-06 西安交通大学 一种具有温敏特性的pdms薄膜的制备方法
JP6669490B2 (ja) * 2015-12-25 2020-03-18 花王株式会社 油性化粧料
JP6669886B2 (ja) * 2016-06-29 2020-03-18 南京大学 自己修復材料の3d印刷における応用
CN106009702B (zh) * 2016-06-29 2019-01-11 南京大学 自修复材料在3d打印中的应用
CN106243349B (zh) 2016-07-28 2018-07-24 河北大学 一种温敏材料的制备方法
CN107141388B (zh) 2017-05-26 2019-02-22 贵州大学 聚甲基丙烯酸甲酯/氧化锌温敏材料及其制备方法
US10919241B2 (en) * 2018-04-11 2021-02-16 Brock University Self-healing siloxane elastomers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292104A (ja) * 2004-03-31 2005-10-20 Cellseed Inc 温度応答性表面及びその利用法
JP4422540B2 (ja) * 2004-03-31 2010-02-24 株式会社セルシード 温度応答性表面及びその利用法
CN101265329B (zh) * 2007-03-16 2011-06-22 马雄明 一种表面带引发剂的聚二甲基硅氧烷及其制法和用途
CN101679753A (zh) * 2007-05-01 2010-03-24 陶氏康宁公司 聚合物组合物
CN102633953A (zh) * 2012-04-18 2012-08-15 同济大学 一种POSS为核的温度/pH双重响应性星形杂化材料的制备方法
CN105694044A (zh) * 2016-04-11 2016-06-22 南京大学 一种羧基官能团化的聚硅氧烷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG YANG: "Synthesis, structures and properties of Organosilicon Supramolecular Polymers Constructed by Hydrogen Bonds", MASTER'S THESES OF SHANDONG UNIVERSITY, 10 May 2011 (2011-05-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377558B2 (en) * 2019-08-30 2022-07-05 University Of Windsor Stretchable, degradable and self-healing polymers through a combination of imine bonds and metal coordination

Also Published As

Publication number Publication date
CN110218329B (zh) 2021-03-19
US20210040268A1 (en) 2021-02-11
US11591441B2 (en) 2023-02-28
CN110218329A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN107805308B (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN104520352B (zh) 聚亚芳基硫醚树脂及其制备方法
CN108341951B (zh) 一种具有杂化交联结构的动态聚合物及其应用
CN107805309A (zh) 一种非共价交联结构的动态聚合物及其应用
WO2019169670A1 (zh) 一类改性的聚硅氧烷及其应用
WO2018137508A1 (zh) 具有杂化交联结构的动态聚合物及其应用
CN105073784A (zh) 微细纤维素纤维复合体
CN111378165A (zh) 一种组合杂化交联动态聚合物及其应用
CN105622913B (zh) 一种溶液法合成嵌段聚合物接枝纳米二氧化硅的方法
CN106749373B (zh) 一种橡胶添加剂及其制备和应用
CN106084196B (zh) 一种两嵌段低分子聚合物接枝纳米二氧化硅粒子、制备方法和聚酯
CN109422836A (zh) 一种含有组合超分子作用的动态交联聚合物
KR102509426B1 (ko) 비혼합형 양친매성 열가소성 폴리우레탄, 이의 제조방법 및 이를 포함하는 삽입형 의료장치
WO2017152597A1 (zh) 一种pbat树脂组合物
KR20180047217A (ko) 화합물
CN108484905A (zh) 一种侧链含羧基具有ucst行为的聚类肽及其制备方法
Hilger et al. New multiphase thermoplastic elastomers by combination of covalent and association‐chain structures
JP2006528720A (ja) 熱可塑性樹脂のための透明なマスターバッチ
CN106188534B (zh) 一种聚酰胺树脂及其制备方法,由其制备的聚酰胺材料
CN109206824A (zh) 一种物理分相超分子动态聚合物及其应用
US9193834B2 (en) Phosphazene-formaldehyde polymers and their polymer metal-complexes
CN111393748A (zh) 一种二氧化硅改性聚丙烯抗菌材料及其制备方法
CN111378154A (zh) 一种基于杂化作用动态聚合物的吸能方法
KR101646341B1 (ko) 테트라하이드라진이 도입된 칼릭스[4]아렌과 비스페닐알데하이드가 도입된 사이클로헥산의 하이드라존 공중합체, 이의 제조방법 및 이를 포함하는 자외선 차단용 조성물
JP2023535295A (ja) 官能化された熱可塑性ポリウレタン、その製造方法およびこれを用いた医療用高機能性複合材料の製造方法およびこれを含む医療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909140

Country of ref document: EP

Kind code of ref document: A1