WO2019168062A1 - 新規酵素及びそれを用いたペントシジンの測定方法 - Google Patents

新規酵素及びそれを用いたペントシジンの測定方法 Download PDF

Info

Publication number
WO2019168062A1
WO2019168062A1 PCT/JP2019/007662 JP2019007662W WO2019168062A1 WO 2019168062 A1 WO2019168062 A1 WO 2019168062A1 JP 2019007662 W JP2019007662 W JP 2019007662W WO 2019168062 A1 WO2019168062 A1 WO 2019168062A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentosidine
gene
protein
seq
amino acid
Prior art date
Application number
PCT/JP2019/007662
Other languages
English (en)
French (fr)
Inventor
和也 丸島
齋藤 由佳
有紀 塚田
佐藤 拓也
康子 荒木
敦 一柳
Original Assignee
キッコーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社 filed Critical キッコーマン株式会社
Priority to JP2020503592A priority Critical patent/JP7270600B2/ja
Priority to US16/975,681 priority patent/US11932880B2/en
Priority to EP19760851.6A priority patent/EP3760724A4/en
Publication of WO2019168062A1 publication Critical patent/WO2019168062A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03002L-Amino-acid oxidase (1.4.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to pentosidine oxidase as a novel enzyme, a method for measuring pentosidine using pentosidine oxidase, and the like.
  • Pentosidine ((2S) -2-amino-6- [2-[[(4S) -4-amino-4-carboxylicbutyl] amino] imidazo [4,5-b] pyridin-4-yl] hexanoic acid) It is known that pentose, equimolar lysine and arginine are cross-linked and accumulate in human skin in correlation with aging and the onset of diabetes, especially in the onset of diabetes and end-stage nephropathy. ing.
  • Pentosidine can be quantified by HPLC using its fluorescence (Ex: 335 nm, Em: 385 nm) as an index after acid hydrolysis, and an immunochemical method (for example, ELISA method) using a monoclonal antibody against pentosidine. It is known that it can be quantified.
  • Pentosidine is known to be associated with schizophrenia in addition to aging and diabetes, and for example, a method for examining schizophrenia having a step of measuring the amount of pentosidine for a biological sample is disclosed (for example, see Patent Document 1).
  • An object of the present invention is to provide a novel enzyme and a simple and inexpensive method for quantifying pentosidine as compared with an immunochemical method or an instrumental analysis method using the novel enzyme.
  • the present inventors have identified a novel enzyme from a filamentous fungus and examined its activity. As a result, the novel enzyme was found to be useful for quantifying pentosidine, and the present invention was completed.
  • the outline of the present invention is as follows. [1] A protein having an activity of oxidatively degrading pentosidine. [2] The following physicochemical properties: (1) action: activity to oxidatively degrade pentosidine; and (2) molecular weight by SDS-PAGE: 75,000-85,000.
  • [4] The protein according to any one of [1] to [3], wherein the activity is a detomination product of pentosidine, an activity of generating hydrogen peroxide and ammonia, or an activity of consuming oxygen.
  • [5] The protein according to any one of [1] to [4], which is derived from a filamentous fungus.
  • [6] The protein according to any one of [1] to [5], wherein the optimum pH is about 6.5 to 8.0.
  • [8] The protein according to any one of [1] to [7], wherein the activity is maintained at 90% or more after storage at 30 ° C. for 10 minutes.
  • a kit comprising the protein according to any one of [1] to [10] or the gene according to [11] or [12].
  • a recombinant vector comprising the gene according to [11] or [12].
  • a transformant comprising the vector according to [14].
  • a method for measuring pentosidine comprising a step of bringing the protein according to any one of [1] to [10] into contact with a specimen; and a step of detecting a change caused by the contact.
  • the method according to [17] wherein a change in the amount of oxygen, hydrogen peroxide or ammonia is detected.
  • a method for producing a reaction product of pentosidine comprising a step of bringing the protein according to any one of [1] to [10] into contact with pentosidine.
  • the reaction product is hydrogen peroxide or ammonia.
  • the novel enzyme pentosidine oxidase identified by the inventors oxidatively degrades pentosidine, thereby producing hydrogen peroxide and ammonia. Is considered to generate. Since detection and quantification of hydrogen peroxide can be easily performed by a colorimetric method, a fluorescence method, a chemiluminescence method, an electrode method, or the like through a peroxidase reaction or the like, according to the present invention, pentosidine can be easily and rapidly performed by an enzymatic method. Detection and quantification are possible.
  • FIG. 1 shows the results of a substrate concentration dependency test of a crude enzyme purified solution (Elution 1) fractionated from Sarocladium sp. Using anion exchange chromatography. ⁇ OD (vertical axis) is plotted against pentosidine final concentration (horizontal axis). Data 20 minutes after the start of the reaction was used.
  • FIG. 2 shows the result of the heat inactivation test of the crude enzyme purified solution (Elution 1). The result is an analysis of the deactivation of enzyme activity due to heat treatment, and corresponds to data 20 minutes after the start of the reaction.
  • FIG. 3 shows the results of measuring the concentration of hydrogen peroxide produced by reacting pentosidine and pentosidine oxidase.
  • FIG. 4 shows the relationship between the final concentration of pentosidine and the A 658 increase ( ⁇ A) resulting from the oxidation of pentosidine.
  • FIG. 5 shows an estimated mechanism of a reaction in which pentosidine oxidase decomposes pentosidine. The figure shows a state in which each amino group of lysine and arginine constituting pentosidine is oxidatively deaminated to generate hydrogen peroxide and ammonia.
  • FIG. 6A shows the sequences of SEQ ID NOs: 1 and 2.
  • FIG. 6B shows the sequences of SEQ ID NOs: 3 and 4.
  • FIG. 6C shows the sequences of SEQ ID NOs: 5 and 6.
  • FIG. 6D shows the sequences of SEQ ID NOs: 7-11.
  • FIG. 6E shows the sequences of SEQ ID NOs: 12-14.
  • FIG. 7 shows the range of optimum pH for PenOX2.
  • FIG. 8 shows the optimum temperature range of PenOX2.
  • FIG. 9 shows the range of thermal stability of PenOX2.
  • FIG. 10 shows the range of stable pH of PenOX2.
  • FIG. 11 shows the Km value of PenOX2 for pentosidine.
  • FIG. 12 shows the molecular weight of PenOX2.
  • the details of the protein which is one embodiment of the present invention, the gene encoding the same, the transformant, the production method, and the like will be described.
  • the present invention can take various forms as long as the object is achieved.
  • the present invention provides a protein having pentosidine oxidase activity, a gene encoding the same, and the like.
  • Pentosidine oxidase is a novel enzyme and its enzyme activity has not been fully elucidated.
  • pentosidine oxidase activity refers to the activity of oxidatively degrading pentosidine, more specifically Means the activity of oxidizing pentosidine to produce its deamination product, hydrogen peroxide, ammonia, or consuming oxygen.
  • pentosidine oxidase activity refers to the activity of oxidatively degrading pentosidine, more specifically Means the activity of oxidizing pentosidine to produce its deamination product, hydrogen peroxide, ammonia, or consuming oxygen.
  • it has such an enzymatic activity, it is not limited to a specific sequence, and any protein and a gene encoding the same are intended to be included in the scope of the present invention.
  • the gene of the present invention includes a base sequence encoding the amino acid sequence of pentosidine oxidase.
  • Pentosidine oxidase is not particularly limited as long as it has the enzyme activity described above.
  • one embodiment of the enzyme having the above-described pentosidine oxidase activity is the amino acid sequence shown in SEQ ID NO: 2 and SEQ ID NO: 4.
  • the proteins having the amino acid sequences represented by SEQ ID NO: 2 and SEQ ID NO: 4 may be referred to as pentosidine oxidase 1 (or PenOX1) and pentosidine oxidase 2 (or PenOX2), respectively.
  • pentosidine oxidase 1 (g4462) is predicted to be composed of 6 exons and 5 introns, while the gene encoding pentosidine oxidase 2 (g10122) is composed of 2 exons and 1 intron. It is expected that. Both enzymes are common in that they have high substrate specificity for pentosidine and arginine, but their reactivity with other L-amino acids is different.
  • the pentosidine oxidase having the amino acid sequence shown in SEQ ID NOs: 2 and 4 is derived from a genus Salocladium .
  • the base sequences of the genes encoding these enzymes are the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 3, respectively.
  • FIG. 6 shows the amino acid sequence and base sequence of the enzyme.
  • the amino acid sequence of pentosidine oxidase has the enzyme activity of pentosidine oxidase as described above
  • the amino acid sequence of the wild-type enzyme such as SEQ ID NO: 2 or 4, for example, the number of amino acids in the amino acid sequence If 100 units are taken as one unit, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, per unit. It may consist of an amino acid sequence having 19, 20, 21, 22, 23, 24 or 25, preferably several amino acid deletions, substitutions, additions and the like.
  • the range of “1 to several” in the “deletion, substitution and addition of one to several amino acids” of the amino acid sequence is not particularly limited, but is preferably 1, 2, 3, 4 per unit.
  • amino acid deletion means deletion or disappearance of an amino acid residue in the sequence
  • amino acid substitution means that an amino acid residue in the sequence is replaced with another amino acid residue.
  • Additional of amino acid means that a new amino acid residue is added to the sequence.
  • amino acid deletion, substitution, addition there is a mode in which an amino acid is replaced with another chemically similar amino acid as long as pentosidine oxidase is maintained.
  • a case where a certain hydrophobic amino acid is substituted with another hydrophobic amino acid, a case where a certain polar amino acid is substituted with another polar amino acid having the same charge, and the like can be mentioned.
  • Such chemically similar amino acids are known in the art for each amino acid.
  • non-polar amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • the basic amino acid having a positive charge include arginine, histidine, and lysine.
  • acidic amino acids having a negative charge include aspartic acid and glutamic acid.
  • amino acid sequence of pentosidine oxidase examples include amino acid sequences having a certain degree of sequence identity with the amino acid sequences of wild-type enzymes such as SEQ ID NOs: 2 and 4, for example, the amino acid sequence of pentosidine oxidase enzyme and 75 % Or more, preferably 80% or more, more preferably 85% or more, more preferably 90% or more, and most preferably 95% or more amino acid sequences.
  • pentosidine oxidase gene The gene encoding pentosidine oxidase (hereinafter sometimes referred to as “pentosidine oxidase gene”) is not particularly limited as long as it includes a base sequence encoding the amino acid sequence of the enzyme having the above-mentioned pentosidine oxidase activity.
  • the pentosidine oxidase gene is produced by expressing the pentosidine oxidase gene in the transformant.
  • gene expression means that an enzyme encoded by a gene is produced in a form having an original catalytic activity through transcription or translation.
  • gene expression includes high expression of a gene, that is, insertion of a gene causes production of an enzyme encoded by the gene in excess of the amount originally expressed by the host organism. To do.
  • pentosidine oxidase gene When a pentosidine oxidase gene is introduced into a host organism, even if it is a gene that can generate pentosidine oxidase via splicing after transcription of the gene, pentosidine oxidase gene can be converted without passing through splicing after transcription of the gene. Either gene that can be generated may be used.
  • the pentosidine oxidase gene may not be completely the same as the gene originally possessed by an organism derived from a genus Salocladium (ie, a wild-type gene), as long as it is a gene encoding the enzyme having the above-mentioned pentosidine oxidase activity.
  • it may be DNA having a base sequence that hybridizes with a base sequence complementary to the base sequence of the wild-type gene under stringent conditions.
  • the “base sequence hybridizing under stringent conditions” means colony hybridization using a DNA corresponding to a part of the base sequence of a wild-type gene such as SEQ ID NO: 1 or 3 as a probe. It means the base sequence of DNA obtained by using the method, plaque hybridization method, Southern blot hybridization method and the like.
  • stringent conditions in the present specification is a condition in which a specific hybrid signal is clearly distinguished from a non-specific hybrid signal.
  • the hybridization system used, the type of probe, and the sequence It depends on the length. Such conditions can be determined by changing the hybridization temperature, washing temperature and salt concentration.
  • the specificity when a non-specific hybrid signal is strongly detected, the specificity can be increased by raising the hybridization and washing temperature and, if necessary, lowering the washing salt concentration. If no specific hybrid signal is detected, the hybrid can be stabilized by lowering the hybridization and washing temperatures and, if necessary, raising the washing salt concentration.
  • specific examples of stringent conditions include: For example, using a DNA probe as a probe, hybridization is 5 ⁇ SSC, 1.0% (w / v) blocking reagent for nucleic acid hybridization (manufactured by Boehringer Mannheim), 0.1% (w / v) N -Lauroyl sarcosine, 0.02% (w / v) SDS is used overnight (about 8 to 16 hours). Washing is performed using 0.1 to 0.5 ⁇ SSC, 0.1% (w / v) SDS, preferably 0.1 ⁇ SSC, 0.1% (w / v) SDS, twice for 15 minutes. Do. The temperature for performing hybridization and washing is 65 ° C or higher, preferably 68 ° C or higher.
  • Examples of the DNA having a base sequence that hybridizes under stringent conditions include, for example, a DNA having a base sequence of a wild-type gene derived from a colony or plaque or a filter on which a fragment of the DNA is immobilized, as described above. After hybridization at 40 to 75 ° C. in the presence of DNA obtained by hybridization under a gentle condition or 0.5 to 2.0 M NaCl, preferably 0.7 to 1.0 M After hybridization at 65 ° C. in the presence of NaCl, the filter was used at 65 ° C. using 0.1 to 1 ⁇ SSC solution (1 ⁇ SSC solution is 150 mM sodium chloride, 15 mM sodium citrate). Examples thereof include DNA that can be identified by washing.
  • Probe preparation and hybridization methods are described in Molecular Cloning: A laboratory Manual, 2nd-Ed. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. , 1989, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons, 1987-1997 (hereinafter, these documents are also referred to as “reference technical documents”). it can.
  • Conditions for obtaining a DNA having a base sequence that hybridizes under stringent conditions with a complementary base sequence can be appropriately set.
  • DNA containing a base sequence that hybridizes under stringent conditions include DNA having a certain sequence identity with a base sequence of a DNA having a base sequence of a wild-type gene used as a probe.
  • the base sequence of the wild-type gene As a base sequence that hybridizes under stringent conditions with a base sequence complementary to the base sequence of the wild-type gene, for example, if the number of bases in the base sequence is 500 units, the base sequence of the wild-type gene 1 to several per unit, for example 1 to 125, 1 to 100, 1 to 75, 1 to 50, 1 to 30, 1 to 20, preferably 1 to several, For example, it includes a base sequence having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base deletions, substitutions, additions, and the like.
  • base deletion means that there is a deletion or disappearance in the base in the sequence
  • base replacement means that the base in the sequence is replaced with another base
  • Additional of a base means that a new base is added to be inserted.
  • the enzyme encoded by the base sequence that hybridizes under stringent conditions with the base sequence complementary to the base sequence of the wild-type gene is one to a plurality of amino acid sequences that the enzyme encoded by the base sequence of the wild-type gene has. It is likely that the enzyme has an amino acid sequence having deletions, substitutions, additions, etc., preferably several amino acids, but has the same enzyme activity as the enzyme encoded by the base sequence of the wild-type gene .
  • the gene encoding the enzyme is a base sequence encoding an amino acid sequence that is the same as or similar to the amino acid sequence of the enzyme encoded by the wild-type gene, utilizing the fact that there are several types of codons corresponding to one amino acid.
  • it may contain a nucleotide sequence different from the wild type gene.
  • Examples of the base sequence in which the codon modification is applied to the base sequence of such a wild type gene include, for example, the base sequence described in SEQ ID NO: 5 (penox1) obtained by modifying the codon of g4462, and the sequence obtained by modifying the codon of g10122 No. 6 (penox2) and the like (FIG. 6C).
  • the base sequence subjected to codon modification is preferably, for example, a base sequence subjected to codon modification so as to be easily expressed in a host organism.
  • the method for determining the sequence identity of the base sequence or amino acid sequence is not particularly limited.
  • the target is the amino acid sequence of the wild type gene or the enzyme encoded by the wild type gene. It is obtained by aligning the base sequence and amino acid sequence and using a program for calculating the coincidence rate of both sequences.
  • a person skilled in the art can search, for example, a sequence showing high sequence identity from a database using a program described above. These can be used, for example, on the website of the US National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
  • Each of the above methods can be generally used for searching a sequence showing sequence identity from a database.
  • Genetyx network version version 12.0 As a means for determining the sequence identity of individual sequences, Genetyx network version version 12.0. A homology analysis of 1 (Genetics) can also be used. This method is based on the Lipman-Pearson method (Science 227: 1435-1441, 1985).
  • CDS or ORF regions encoding a protein
  • the gene encoding the enzyme is derived from a biological species capable of producing pentosidine oxidase.
  • examples of the organism derived from the gene encoding the enzyme include microorganisms such as filamentous fungi.
  • microorganisms having the ability to produce pentosidine oxidase include the genus Salocladium .
  • the origin of the gene encoding the enzyme is not particularly limited, but the enzyme expressed in the transformant is preferably inactivated without being inactivated by the growth conditions of the host organism. Therefore, the organism derived from the gene encoding the enzyme is preferably a microorganism whose growth conditions approximate the host organism to be transformed by inserting the gene encoding the enzyme.
  • Optimum pH pH of about 6.5 to 8.0
  • the optimum pH is the pH at which the enzyme works most favorably, and the pentosidine oxidase can act at a pH outside the above range.
  • ⁇ Optimum temperature about 37-50 °C
  • the optimum temperature is the temperature at which the enzyme works most favorably, and the pentosidine oxidase can act at a temperature outside the above temperature range.
  • -Temperature stability When stored at 30 ° C for 10 minutes, the pentosidine oxidase activity is maintained at 90% or more.
  • the pentosidine oxidase activity When stored at 40 ° C. for 10 minutes, the pentosidine oxidase activity is retained by 50% or more.
  • PH stability Pentosidine oxidase activity is maintained at 60% or more in the pH range of 4.0 to 9.0.
  • -Km value Km value with respect to pentosidine is 1 mM or less.
  • the Km value is a Michaelis constant, and its specific calculation method is not particularly limited, and can be calculated by freely selecting a known method. For example, the Km value can be calculated according to the Michaelis-Menten equation drawn by the method based on the Line Weber-Burk plot as in the method described in Example 9 described later.
  • the gene encoding the enzyme can be inserted into various appropriate known vectors. Furthermore, by introducing this vector into a suitable known host organism, a transformant into which a recombinant vector (recombinant DNA) containing a gene encoding the enzyme has been introduced can be produced.
  • a method for obtaining a gene encoding an enzyme, a base sequence of a gene encoding the enzyme, a method for obtaining amino acid sequence information of the enzyme, a method for producing various vectors, a method for producing a transformant, and the like are appropriately selected by those skilled in the art. Can do.
  • transformation and transformants include transduction and transductants, respectively.
  • An example of the cloning of the gene encoding the enzyme is described below without limitation.
  • chromosomal DNA and mRNA can be extracted from microorganisms and various cells having the ability to produce enzymes by conventional methods, for example, the methods described in the reference technical literature (listed above).
  • CDNA can be synthesized using the extracted mRNA as a template.
  • a chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
  • the gene encoding the enzyme can be obtained by cloning using a chromosomal DNA or cDNA of a derived organism having the gene as a template.
  • the organism from which the gene encoding the enzyme is derived is not particularly limited, and examples thereof include the above-mentioned Sarocladium sp .
  • Sarocladium sp for example, by culturing Sarocladium sp. , Removing moisture from the obtained cells, and physically pulverizing them using a mortar or the like while cooling in liquid nitrogen, fine powdered cells A chromosomal DNA fraction is extracted from the bacterial cell piece by a conventional method.
  • a commercially available chromosomal DNA extraction kit such as DNeasy Plant Mini Kit (manufactured by Qiagen) can be used for the chromosomal DNA extraction operation.
  • DNA is amplified by performing polymerase chain reaction (hereinafter referred to as “PCR”) using the chromosomal DNA as a template and a primer complementary to the 5 ′ end sequence and the 3 ′ end sequence.
  • the primer is not particularly limited as long as a DNA fragment containing the gene can be amplified.
  • DNA containing the target gene fragment can be amplified by appropriate PCR such as 5'RACE method or 3'RACE method, and these can be ligated to obtain DNA containing the full length target gene.
  • the method for obtaining the gene encoding the enzyme is not particularly limited, and it is possible to construct a gene encoding the enzyme using, for example, a chemical synthesis method without using a genetic engineering technique.
  • Confirmation of the base sequence in the amplification product amplified by PCR or the chemically synthesized gene can be performed, for example, as follows. First, a DNA whose sequence is to be confirmed is inserted into an appropriate vector according to a normal method to produce a recombinant DNA.
  • kits such as TA Cloning Kit (manufactured by Invitrogen); pUC19 (manufactured by Takara Bio Inc.), pUC18 (manufactured by Takara Bio Inc.), pBR322 (manufactured by Takara Bio Inc.), pBluescript SK + (Stratagene)
  • plasmid vector DNA such as pYES2 / CT (manufactured by Invitrogen); commercially available bacteriophage vector DNA such as ⁇ EMBL3 (manufactured by Stratagene).
  • the recombinant DNA is used to transform a host organism, such as Escherichia coli , preferably E. coli JM109 strain (Takara Bio) or E. coli DH5 ⁇ strain (Takara Bio). To do.
  • the recombinant DNA contained in the obtained transformant may be purified using QIAGEN Plasmid Mini Kit (manufactured by Qiagen).
  • the base sequence of each gene inserted into the recombinant DNA can be determined by the dideoxy method (Methods in Enzymology, 101, 20-78, 1983).
  • the sequence analysis apparatus used for determining the base sequence is not particularly limited. For example, Li-COR MODEL 4200L sequencer (manufactured by Aroka), 370 DNA sequence system (manufactured by PerkinElmer), CEQ2000XL DNA analysis system (manufactured by Beckman) ) And the like. Based on the determined base sequence, the translated protein, that is, the amino acid sequence of the enzyme can be known.
  • a recombinant vector (recombinant DNA) containing a gene encoding an enzyme combines a PCR amplification product containing any of the genes encoding the enzyme and various vectors in a form that allows expression of the gene encoding the enzyme.
  • a DNA fragment containing the gene having a sequence homologous to the plasmid added to both ends and a plasmid-derived DNA fragment amplified by inverse PCR are commercially available, such as In-Fusion HD Cloning Kit (Clontech). It can be obtained by ligation using a recombinant vector preparation kit.
  • a method for producing a transformant is not particularly limited, and examples thereof include a method of inserting into a host organism in such a manner that a gene encoding an enzyme is expressed according to a conventional method.
  • a method for producing a transformant by creating a DNA construct in which any of the genes encoding the enzyme is inserted between an expression-inducing promoter and a terminator, and then transforming the host organism with the DNA construct comprising the gene encoding the enzyme.
  • a transformant overexpressing the gene encoding the enzyme can be obtained.
  • a DNA fragment composed of an expression-inducing promoter-enzyme encoding a gene-terminator and a recombinant vector containing the DNA fragment, which are prepared for transforming a host organism, are collectively referred to as a DNA construct.
  • the method of inserting the enzyme-encoding gene into the host organism in such a manner that it is expressed is not particularly limited. Examples thereof include a method of introducing the product into a host organism by ligation onto a plasmid vector.
  • a DNA construct can be ligated between sequences homologous to the upstream region and downstream region of the recombination site on the chromosome and inserted into the genome of the host organism.
  • the homologous sequence can be inserted into the genome of the host organism even when it is not linked to a DNA construct.
  • the high expression promoter is not particularly limited.
  • the promoter region of the translation elongation factor TEF1 gene (tef1)
  • the promoter region of the ⁇ -amylase gene (amy)
  • the alkaline protease gene (alp) promoter region
  • gpd glyceraldehyde-3 -Phosphate dehydrogenase
  • a DNA construct in a method using a vector, can be incorporated into a plasmid vector used for transformation of a host organism by a conventional method, and the corresponding host organism can be transformed by a conventional method.
  • Such a suitable vector-host system is not particularly limited as long as it is a system capable of producing an enzyme in a host organism.
  • a suitable vector-host system is not particularly limited as long as it is a system capable of producing an enzyme in a host organism.
  • pUC19 and a filamentous fungal system pSTA14 (Mol. Gen. Genet. 218, 99-104, 1989) and filamentous fungi systems.
  • the DNA construct is preferably used after being introduced into the chromosome of the host organism.
  • the DNA construct is used in an autonomously replicating vector (Ozeki et al. Biosci. Biotechnol. Biochem. 59, 1133 (1995)). By incorporating it, it can be used in a form not introduced into the chromosome.
  • the DNA construct may contain a marker gene that makes it possible to select transformed cells.
  • the marker gene is not particularly limited, and examples thereof include genes that complement the auxotrophy of host organisms such as pyrG, niaD, and adeA; drug resistance genes for drugs such as pyrithiamine, hygromycin B, and oligomycin.
  • the DNA construct preferably contains a promoter, terminator and other control sequences (for example, an enhancer, a polyadenylation sequence, etc.) that allow overexpression of the gene encoding the enzyme in the host organism.
  • the promoter is not particularly limited, and examples thereof include an appropriate expression-inducing promoter and a constitutive promoter.
  • Examples thereof include a tef1 promoter, an alp promoter, an amy promoter, and a gpd promoter.
  • the terminator is also not particularly limited, and examples thereof include an alp terminator, an amy terminator, and a tef1 terminator.
  • the expression control sequence of the gene encoding the enzyme is not necessarily required when the DNA fragment containing the gene encoding the enzyme to be inserted includes a sequence having an expression control function. Further, when transformation is performed by the co-transformation method, the DNA construct may not have a marker gene.
  • the DNA construct can be tagged for purification.
  • purification using a nickel column can be made possible by appropriately connecting a linker sequence upstream or downstream of a gene encoding an enzyme and connecting 6 or more codons of a base sequence encoding histidine.
  • the DNA construct may contain a homologous sequence necessary for marker recycling.
  • the pyrG marker adds a sequence homologous to the sequence upstream of the insertion site (5 ′ homologous recombination region) downstream of the pyrG marker, or downstream of the insertion site (3 ′ homologous recombination region) upstream of the pyrG marker.
  • a sequence homologous to this sequence it is possible to remove the pyrG marker on a medium containing 5-fluoroorotic acid (5FOA).
  • the length of the homologous sequence suitable for marker recycling is preferably 0.5 kb or more.
  • DNA construct is, for example, a DNA construct in which a tef1 gene promoter, an enzyme-coding gene, an alp gene terminator, and a pyrG marker gene are linked to an In-Fusion Cloning Site at the multi-cloning site of pUC19.
  • a DNA construct in the case of inserting a gene by homologous recombination is a DNA in which a 5 ′ homologous recombination sequence, a tef1 gene promoter, an enzyme-encoding gene, an alp gene terminator and a pyrG marker gene, and a 3 ′ homologous recombination sequence are linked. It is a construct.
  • One embodiment of the DNA construct in the case of inserting a gene by homologous recombination and recycling the marker is 5 ′ homologous recombination sequence, tef1 gene promoter, gene encoding enzyme, alp gene terminator, homologous sequence for marker recycling, It is a DNA construct in which a pyrG marker gene and a 3 ′ homologous recombination sequence are linked.
  • the host organism is a filamentous fungus
  • a method known to those skilled in the art can be appropriately selected as a method for transformation into the filamentous fungus.
  • polyethylene glycol and calcium chloride are added.
  • the protoplast PEG method used see, for example, Mol. Gen. Genet. 218, 99-104, 1989 (supra), Japanese Patent Application Laid-Open No. 2007-2222055, etc.
  • As a medium for regenerating the transformant an appropriate medium is used according to the host organism to be used and the transformation marker gene. For example, when Aspergillus oryzae ( A. oryzae ) or Aspergillus sojae ( A.
  • sojae is used as the host organism and the pyrG gene is used as the transformation marker gene, regeneration of the transformant is, for example, 0.5 Czapek-Dox minimal medium (manufactured by Difco) containing 1% agar and 1.2 M sorbitol.
  • the promoter of a gene encoding an enzyme that the host organism originally has on the chromosome may be replaced with a high expression promoter such as tef1 using homologous recombination.
  • a transformation marker gene such as pyrG
  • a transformation cassette comprising a part can be used.
  • the upstream region of the gene encoding the enzyme and all or part of the gene encoding the enzyme are used for homologous recombination.
  • the whole or part of the gene encoding the enzyme can be used including a region in the middle from the start codon.
  • the length of the region suitable for homologous recombination is preferably 0.5 kb or more.
  • Confirmation that a transformant was produced can be performed by culturing the transformant under conditions where the enzyme activity of the enzyme is observed, and then detecting the target product in the culture obtained after the culture. .
  • confirmation that the transformant was produced was performed by extracting chromosomal DNA from the transformant, performing PCR using this as a template, and confirming that a PCR product that can be amplified is produced when transformation occurs. It may be done by doing. In this case, for example, PCR is performed with a combination of a forward primer for the base sequence of the promoter used and a reverse primer for the base sequence of the transformation marker gene to confirm that a product of the expected length is generated.
  • PCR is performed using a combination of a forward primer located upstream from the upstream homologous region used and a reverse primer located downstream from the used homologous region. It is preferable to confirm that a product of the expected length is produced when recombination occurs.
  • the host organism is not particularly limited as long as it is an organism that can produce an enzyme by transformation with a DNA construct containing a gene encoding the enzyme.
  • microorganisms or plants examples of the microorganisms, Aspergillus (Aspergillus) microorganisms belonging to the genus, Escherichia (Escherichia) microorganism belonging to the genus Saccharomyces (Saccharomyces) microorganisms belonging to the genus Pichia (Pichia) sp microorganism, Schizosaccharomyces (Schizosaccharomyces) a microorganism belonging to the genus , Gigot Saccharomyces Seth (Zygosaccharomyces) microorganism belonging to the genus Trichoderma (Trichoderuma) microorganism belonging to the genus, Penicillium (Penicillium) microorganism belonging to the genus,
  • Microorganism Fusariu Beam (Fusarium) a microorganism belonging to the genus, Neosartorya (Neosartorya) microorganism belonging to the genus, Bissokuramisu (Byssochlamys) microorganism belonging to the genus, Talaromyces (Talaromyces) microorganism belonging to the genus, Ajeromisesu (Ajellomyces) a microorganism belonging to the genus, para cock Sidi Oy death (Paracoccidioides) microorganism belonging to the genus, Anshinokarupusu (Uncinocarpus) a microorganism belonging to the genus, cock Sidi Oy death (Coccidioides) microorganism belonging to the genus, Arufuroderuma (Arthroderma) microorganism belonging to the genus, Trichophyton (Trichophyton) microorganism belonging to the genus
  • filamentous fungi Aspergillus oryzae, Aspergillus soya, Aspergillus niger ( A. niger), Aspergillus tamari ( A. tamarii ), Aspergillus awamori ( A. awamori), Aspergillus Usami (A.usami), Aspergillus kawachii (A.kawachii), such as Aspergillus microorganisms, such as Aspergillus saitoi (A.saitoi) is preferable.
  • the expression of the protein according to the present invention is not limited to the implementation using the host organism as described above.
  • an in vitro cell-free protein expression system can be suitably used particularly when mass production is not intended, such as production on a commercial scale.
  • the cell-free protein expression system does not require cell culture and has an advantage that protein purification can be easily performed.
  • a gene corresponding to a desired protein and a reaction solution containing molecular mechanisms of transcription and translation such as cell lysate are mainly used.
  • genes encoding enzymes include genes g4462 and g10122 having the base sequences described in SEQ ID NOs: 1 and 3, respectively.
  • the amino acid sequences of pentosidine oxidase 1 protein (PenOX1) and pentosidine oxidase 2 protein (PenOX2) are shown as SEQ ID NOs: 2 and 4, respectively.
  • a method for obtaining a gene encoding an enzyme from an organism other than the genus Salocladium and the genus Salocladium is not particularly limited.
  • the genomic DNA of the organism of interest is BLAST. It can be obtained by homology search and specifying a gene having a base sequence having high sequence identity with the base sequences of genes g4462 and g10122.
  • a protein having an amino acid sequence having a high sequence identity with the amino acid sequences of the pentosidine oxidase 1 and pentosidine oxidase 2 proteins (SEQ ID NOs: 2 and 4) is identified, and the gene encoding the protein Can be obtained by specifying.
  • a gene encoding an enzyme obtained from the genus Salocladium or a gene encoding an enzyme having sequence identity with the enzyme can be introduced into any host cell such as an Aspergillus microorganism as a host organism for transformation.
  • Transformant One aspect of the transformant is a transformant in which any one or a combination of genes is inserted using a microorganism or plant as a host organism, and the inserted gene is expressed. It is a conversion body.
  • transformant is a gene (including a promoter sequence other than the ORF) including all or part of the gene g4462 or g10122, using a microorganism, a plant, or the like as a host organism, and transcription of the gene.
  • a transformant in which a DNA construct designed to express high or low expression of a transcription factor that regulates is inserted and transformed to express the inserted gene.
  • the host organism is an organism that is capable of producing pentosidine oxidase, such as Salocladium
  • the inserted gene should be constitutively expressed higher than forced or endogenous expression, or after cell growth. It is desirable that the condition is expressed at the later stage of culture.
  • Such a transformant is not produced in the host organism by being cultured or grown under the conditions suitable for the host organism or transformant by the action of a transcription factor having an altered expression level, or even if produced, pentosidine oxidase Can be produced beyond detection.
  • a method for producing pentosidine oxidase by culturing a transformant under a culture condition suitable for the growth of the transformant using a medium suitable for the growth of the transformant.
  • the method of doing is mentioned.
  • the culture method is not particularly limited. For example, when the host organism is a filamentous fungus, a solid culture method or a liquid culture method performed under aerated or non-aerated conditions can be used.
  • the production method according to another aspect of the present invention is a method for producing pentosidine oxidase extracted from a transformant.
  • a host organism and a wild type organism are filamentous fungi
  • the manufacturing method of each aspect of this invention is not limited to the following description.
  • the medium is a normal medium for culturing host organisms and wild-type organisms (hereinafter collectively referred to as “host organisms”), that is, carbon sources, nitrogen sources, minerals, and other nutrients in appropriate proportions. Any of a synthetic medium and a natural medium can be used.
  • host organism is a microorganism belonging to the genus Aspergillus, a YMG medium, a PPY medium, or the like as described in Examples described later can be used, but is not particularly limited.
  • the culture condition of the transformant may be a culture condition of a host organism or the like commonly known by those skilled in the art.
  • the initial pH of the medium is adjusted to 5 to 10
  • the culture temperature can be appropriately set such that the culture temperature is 20 to 40 ° C.
  • the culture time is several hours to several days, preferably 1 to 7 days, more preferably 2 to 4 days.
  • the culture means is not particularly limited, and aeration and agitation deep culture, shaking culture, static culture, and the like can be adopted, but culture is preferably performed under conditions that provide sufficient dissolved oxygen.
  • a culture medium and culture conditions for culturing an Aspergillus microorganism shaking culture at 30 ° C. and 160 rpm for 3 to 5 days using a YMG medium or PPY medium described in Examples described later can be mentioned. It is done.
  • the method for extracting pentosidine oxidase from the culture after completion of the culture is not particularly limited.
  • the cells recovered from the culture by filtration, centrifugation, or the like may be used as they are, or the cells recovered after drying and further crushed cells may be used.
  • the method for drying the cells is not particularly limited, and examples thereof include freeze drying, sun drying, hot air drying, vacuum drying, aeration drying, and reduced pressure drying.
  • the method of destroying a microbial cell using destructive means such as an ultrasonic crusher, a French press, a dynomill, a mortar
  • the cells may be subjected to cell disruption treatment such as a method of dissolving cells using a surfactant such as SDS or Triton X-100. These methods can be used alone or in combination.
  • the obtained extract is centrifuged, filtered, ultrafiltered, gel filtered, separated by solubility difference, solvent extraction, chromatography (adsorption chromatography, hydrophobic chromatography, cation exchange chromatography, anion exchange chromatography).
  • the target product can be purified by subjecting it to purification treatment such as reverse phase chromatography, crystallization, activated carbon treatment, membrane treatment, etc.
  • the method for measuring pentosidine according to the present invention is: Contacting the specimen with pentosidine oxidase; and detecting a change caused by the contact.
  • specimen refers to a sample such as blood, body fluid or excreta derived from a subject, eg, a subject suffering from or suspected of having a disease related to pentosidine. means.
  • the specimen does not necessarily contain pentosidine, and even if it does not contain pentosidine, the measurement method according to the present invention can be used for analysis of the presence or absence of pentosidine (qualitative analysis).
  • change caused by contact refers to the presence or absence of a starting material such as pentosidine, a reaction product or reaction consumer with pentosidine oxidase, or the amount thereof. Means change over time.
  • the method for measuring pentosidine is: (A) a step of allowing pentosidine oxidase to act on a specimen in the presence of water and oxygen; and (B) a step of measuring at least one amount of a reaction product or a reaction product resulting from the action of the pentosidine oxidase.
  • the reaction product measured in the above step (B) there can be mentioned deamination products of hydrogen peroxide, ammonia and pentosidine.
  • the amount of hydrogen peroxide as a reaction product can be measured by, for example, a peroxidase reaction.
  • the amount of ammonia as a reaction product is determined by, for example, the indophenol method or a method using a Nessler reagent, or a method of measuring the amount of NADH using an enzyme that uses ammonia as a substrate, such as glutamate dehydrogenase or NAD synthase. It can be measured.
  • deaminated product means, for example, that one or both of the amino groups of lysine and arginine constituting pentosidine are removed and replaced with oxygen, and at least one terminal is converted to keto acid. Means the product.
  • An example of such a deaminated product is shown in FIG.
  • An example of the reaction consumable to be measured in the step (B) is oxygen.
  • the amount of oxygen that decreases due to the enzyme reaction can be measured, for example, with an oxygen electrode, or colorimetrically determined by oxidizing manganese ions with oxygen based on the Winkler technique.
  • the present invention provides a kit comprising pentosidine oxidase.
  • the kit according to the present invention can be used to detect a reaction product or a reaction product of pentosidine and pentosidine oxidase.
  • the kit according to the present invention further comprises a reaction buffer and a reagent for detecting a reaction product, such as a reagent for detecting hydrogen peroxide, a reagent for detecting a deamination product of ammonia detection reagent and pentosidine, or a reagent for detecting a reaction product. It may contain at least one reagent such as a reagent for detecting oxygen.
  • the kit of the present invention can also be used as an in-vitro diagnostic agent, and can be suitably used, for example, for the diagnosis of pentosidine or a disease associated with the reaction product of pentosidine and pentosidine oxidase, such as diabetes and nephropathy.
  • Reagents for detecting hydrogen peroxide include 10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) -phenocyanazine (DA-67) and N- (carboxymethylamino) which can detect hydrogen peroxide with high sensitivity.
  • a known color reagent such as a tender reagent may be used.
  • the ammonia detection reagent include a combination of phenol / nitroplusacid sodium and an oxidizing agent such as sodium hypochlorite (Indophenol method), Nessler's reagent, and the like.
  • the oxygen detection reagent include a combination of manganese ion, sodium hydroxide and sulfuric acid.
  • reaction products using a color reaction is extremely simple and inexpensive compared to immunochemical and instrumental analytical methods.
  • detection of reaction products or reaction consumables does not exclude other known quantitative / qualitative methods other than detection reagents, and may be employed as appropriate.
  • the detection instead of the hydrogen peroxide or ammonia detection reagent, the detection can be performed using an apparatus such as an enzyme sensor having a dedicated detection electrode.
  • the method for detecting a reaction product or reaction consumable can be used as a detection method for a disease that is directly or indirectly related to pentosidine or each reaction product or reaction consumable, and further to a diagnostic method. .
  • Example 1 Cultivation of Salocladium sp. And method for preparing enzyme solution and medium used MEA medium: Malt extract agar (manufactured by Oxoid) was dissolved in distilled water to a concentration of 50 g / L.
  • YMG medium Yeast extract 0.4%, Malt extract 1%, glucose 0.4%, pH 5.5
  • YMG medium in which the cells were cultured was filtered using Miracloth (Merck Millipore) to remove the cells and obtain a culture supernatant. Concentrate the culture supernatant using an ultrafiltration membrane (Vivaspin 20-3k, manufactured by GE Healthcare) and dilute with 50 mM potassium phosphate buffer (pH 7.5) multiple times to remove low molecules. At the same time, the YMG medium was replaced with a potassium phosphate buffer.
  • the buffer-substituted crude enzyme solution was fractionated using an ion exchange chromatography column (HiTrap Q Sepharose Fast Flow 1 mL, manufactured by GE Healthcare). The specific procedure is as follows.
  • the crude enzyme solution was loaded onto a column equilibrated with 50 mM potassium phosphate buffer (pH 7.5), the enzyme was adsorbed onto the column, and then the column was washed with 5 mL of potassium phosphate buffer to remove unadsorbed protein. Was eluted.
  • the protein adsorbed on the column was eluted by sequentially passing 5 mL each of a buffer in which 0.25 M, 0.5 M, 0.75 M, and 1.0 M sodium chloride was dissolved in the potassium phosphate buffer.
  • the solution eluted from the column when the crude enzyme solution was loaded is “Flow through”, the solution eluted at the time of washing with the buffer is “Start buffer”, and the solutions eluted with the buffer containing sodium chloride are “Election 1” and “Elution 2”, respectively. , “Elution 3” and “Elution 4”, which were collected in different containers.
  • Example 2 Method for Measuring Pentosidine Oxidase Activity / Activity Measurement of Crude Enzyme Purified Solution The activity was measured using a solution eluted from a column for ion exchange chromatography as a sample. 50 ⁇ L of a sample, 25 ⁇ L of 4 mM pentosidine (manufactured by Peptide Laboratories) dissolved in 100 mM potassium phosphate buffer (pH 8.0), oxidase coloring reagent (4 U / mL peroxidase (manufactured by TOYOBO), 1.8 mM 4-aminoantipyrine ( (Fluka), 2 mM TOOS (Dojindo)) 25 ⁇ L and mixed at room temperature.
  • pentosidine manufactured by Peptide Laboratories
  • oxidase coloring reagent 4 U / mL peroxidase (manufactured by TOYOBO)
  • TOYOBO oxidase coloring reagent
  • a 96-well microwell plate manufactured by Nunc
  • the blank was prepared by adding 100 mM potassium phosphate buffer (pH 8.0) instead of the substrate solution.
  • the absorbance at 555 nm of the reaction solution and the blank solution was measured, and the strength of the enzyme activity was evaluated based on the difference in absorbance ( ⁇ OD).
  • the transition of the activity with respect to the substrate concentration was evaluated by measuring the pentosidine oxidase activity of the crude enzyme purified solution using various concentrations of the substrate.
  • the concentration of the substrate solution used is 0.13 mM, 0.25 mM, 0.5 mM, 1.0 mM, 2.0 mM and 4.0 mM.
  • Example 4 Sequencing of Pentosidine Oxidase Derived from Sarocladium sp. Based on the above results and whole genome sequence information of Sarocladium sp. , It is estimated to be pentosidine oxidase 2 Kinds of genes (SEQ ID NOs: 1 and 3) and their amino acid sequences (SEQ ID NOs: 2 and 4) were identified.
  • Ptef upstream 748 bp of the tef1 gene, SEQ ID NO: 7 of the promoter of the translation elongation factor gene tef1 is used as a promoter.
  • Talp 800 bp downstream of the alp gene, SEQ ID NO: 8
  • a transformation marker gene pyrG3 (1,487 bp including upstream 56 bp, coding region 896 bp and downstream 535 bp, SEQ ID NO: 9) that complements uracil / uridine requirement and enables introduction of multiple copies of the gene is used. Used (see JP-A-2018-068292). These Ptef, Talp, and pyrG3 were obtained by a PCR reaction using the genomic DNA of Aspergillus sojae NRRC4239 as a template.
  • In-Fusion HD Cloning Kit (Clontech) was used to link each DNA.
  • a DNA fragment is amplified by a PCR reaction using a reverse primer of SEQ ID NO: 10 for Ptef and a forward primer of SEQ ID NO: 11 for Talp.
  • the reverse primer for Ptef amplification of SEQ ID NO: 10 is added with 15 bp of a sequence complementary to the 5 ′ end of the penox1 gene (SEQ ID NO: 5) at the 5 ′ end.
  • the pyrG gene disruption strain of Aspergillus sojae (48 bp upstream of the pyrG gene, coding region 896 bp, The downstream 240 bp-deficient strain) was transformed by protoplast PEG method, 9 Aspergillus soja transformants As-penox1 strains into which the expression cassettes of penox1 and penox2 were inserted in multiple copies, and 6 As-penox2 strains I got it.
  • a control experiment was performed by adding 20 ⁇ L of ion-exchanged water instead of 20 ⁇ L of 60 mM L-arginine solution.
  • the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute at 37 ° C. was defined as 1 unit (U), and was calculated according to the following formula.
  • the L-arginine oxidation activity of the crude enzyme solutions of As-penox1 and As-penox2 strains was 0.009 U / mL (As-penox1-15 strain) and 5.1 U / mL (As-penox2-16), respectively. Stock).
  • Example 6 Purification of mycelium-extracted recombinant penox2 After replacing the crude enzyme solution of As-penox2-16 strain with 10 mM potassium phosphate buffer (pH 7.5), anion exchange chromatography column (HiScreen CaptoQ) And GE Healthcare). First, a crude enzyme solution was loaded onto a column equilibrated with 10 mM potassium phosphate buffer (pH 7.5), and the column was washed with 10 mM potassium phosphate buffer (pH 7.5) after adsorbing the enzyme to the column. Unadsorbed protein was eluted.
  • the sodium chloride concentration contained in 10 mM potassium phosphate buffer (pH 7.5) was linearly increased from 0 mM to 40 mM, and the protein adsorbed on the column was eluted.
  • the fraction showing L-arginine oxidation activity was analyzed by SDS-PAGE, and the fraction containing no contaminating protein was recovered as purified PenOX2.
  • the collected purified PenOX2 solution was concentrated using Amicon Ultra-15 Ultracel-30k (manufactured by Millipore) until the L-arginine oxidation activity reached 24 U / mL, and used for the pentosidine quantitative test.
  • Example 7 Pentosidine Quantitative Test The following reagents were prepared and pentosidine was measured using Bio Majesty JCA-BM1650 (manufactured by JEOL Ltd.). (Sample: Pentosidine solution) 0.2 ⁇ M, 0.4 ⁇ M, 0.6 ⁇ M, 1.0 ⁇ M, 2.0 ⁇ M or 4.0 ⁇ M pentosidine solution
  • FIG. 3 shows the relationship between the elapsed time after mixing the sample (4.0 ⁇ M pentosidine solution) and the first reagent and the absorbance (A 658 ). An increase in A 658 was confirmed immediately after the addition of the second reagent containing PenOX2.
  • ⁇ A (absorbance 5 minutes after the addition of the second reagent)
  • (absorbance immediately before the addition of the second reagent ⁇ 0.75)
  • concentration of the composition in the reaction solution becomes 0.75 times (75/100 times).
  • a value obtained by multiplying the absorbance immediately before the addition of the second reagent by 0.75 was regarded as the absorbance immediately after the addition of the second reagent.
  • PenOX2 showed pentosidine oxidation activity, indicating that it can be used for quantification of pentosidine. Although the results are not shown, PenOX1 similarly showed pentosidine oxidation activity.
  • Example 8 Purification of mycelial secretory recombinant penox2
  • the mycelial culture solution of As-penox2 strain was filtered using Miracloth (manufactured by Merck Millipore), and the mycelial culture supernatant was collected.
  • 75 mL of the obtained mycelial culture supernatant was filtered with a syringe filter having a pore size of 0.2 ⁇ m, and then concentrated with an ultrafiltration membrane (Amicon Ultra 15-30 kD, manufactured by Merck & Co., Inc.).
  • the collected supernatant was concentrated with an ultrafiltration membrane (Amicon Ultra 0.5-30 kD, manufactured by Merck).
  • the crude enzyme solution was loaded onto a column equilibrated with 50 mM potassium phosphate buffer (pH 7.5) containing 2M ammonium sulfate, and the enzyme was adsorbed to the column, and then 50 mM potassium phosphate buffer (pH 7.7 containing 2M ammonium sulfate). 5) The column was washed with 10 mL to elute unadsorbed protein.
  • the solution eluted from the column was “Flow through 1”, the solution eluted at the time of washing with a buffer containing 2 M ammonium sulfate was “Election 1”, ammonium sulfate 1.5 M, 1.3 M, 1.15 M, 1 M.
  • the solutions eluted with the buffer containing “Elution 2”, “Elution 3”, “Elution 4”, “Elution 5”, and the solutions eluted with the buffer not containing ammonium sulfate were designated as “Elution 6” and collected in different containers.
  • the solution eluted from the column when the crude enzyme solution was loaded is “Flow through 2”, the solution eluted at the time of washing with the buffer is “Elution 7”, and the solutions eluted with the buffer containing sodium chloride are “Elution 8-1” and “Elution 8”, respectively.
  • Example 9 Physicochemical properties of PenOX2 produced by Aspergillus soja transformed strain As-penox2 strain
  • the following method for measuring enzyme activity was used. Incubate 600 ⁇ L of any buffer, 3.99 U / mL peroxidase dissolved in deionized water, 1.8 ⁇ M 4-aminoantipyrine, 400 ⁇ L of 2 mM TOOS solution, 150 ⁇ L of deionized water for 10 minutes at any temperature, and store on ice.
  • the physicochemical properties of penox2 were as follows.
  • (A) Optimal pH range Final concentration 50 mM citrate-100 mM potassium phosphate buffer (pH 4.0-7.5), final concentration 100 mM potassium phosphate buffer (pH 6.5-8.0), final concentration 100 mM glycine
  • Each buffer was prepared so as to be a buffer (pH 8.0 to 11.0), and an enzyme reaction was performed at 37 ° C. at each pH using each buffer.
  • the results are shown in FIG.
  • PenOX2 showed the highest activity at pH 7.5.
  • pH 6.5-8.0 showed 70% or more of the activity value in the vicinity of potassium phosphate buffer pH 7.5
  • the optimum pH of PenOX2 was pH 6.5-8.0, which is the most preferable value.
  • the Km value for pentosidine was found to be 0.14 mM.
  • G Molecular weight The molecular weight was determined by SDS-PAGE performed according to the Laemmli method. Mini-PROTEAN TGX Stain-Free Precast Gels 4-20% (manufactured by Bio-rad) was used as the electrophoresis gel, and Precision Plus Protein All Blue Prestained Protein Standards were used as the molecular weight marker. The results are shown in FIG. The molecular weight of PenOX2 was about 80,000.
  • PenOX1 and PenOX2 had pentosidine oxidase activity.
  • the amino acid sequence homology between the two was 38.2%.
  • pentosidine oxidase activity was examined at 37 ° C. in a final concentration of 100 mM potassium phosphate buffer (pH 7.5) in the above-described activity measurement method.
  • the amino acid sequence homology with PenOX1 and PenOX2 and pentosidine oxidase activity were as follows.
  • Amino acid oxidase Type VI (manufactured by Merck) derived from Crotalus adamanteus (SEQ ID NO: 12) Molecular weight: 130,000 The amino acid sequence homologies of the enzyme with PenOX1 and PenOX2 were 26.8% and 23.5%, respectively.
  • the enzyme concentration was diluted with deionized water to 1 mg / mL (Bullet method) and used for activity measurement.
  • the enzyme had a pentosidine oxidase activity of 0.555 (U / mL) and a specific activity of 0.555 (U / mg).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、ペントシジンオキシダーゼ活性を有するタンパク質、及び、当該タンパク質と検体とを接触させる工程;及び 当該接触により生じた変化を検出する工程、を含む、ペントシジンの測定方法、等を提供する。

Description

新規酵素及びそれを用いたペントシジンの測定方法
 本発明は、新規酵素としてのペントシジンオキシダーゼ及びペントシジンオキシダーゼを用いたペントシジンの測定方法等に関する。
 ペントシジン((2S)-2-amino-6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]imidazo[4,5-b]pyridin-4-yl]hexanoic acid)は、ペントースと等モルのリジンとアルギニンが架橋した構造を有し、加齢や糖尿病の発症に相関してヒトの皮膚に蓄積すること、特に糖尿病の発症や末期の腎症において増加することが知られている。
 ペントシジンは、酸加水分解後にその蛍光性(Ex:335nm、Em:385nm)を指標としてHPLCで定量ができること、また、ペントシジンに対するモノクローナル抗体を用いた免疫化学的な方法(例えば、ELISA法)を用いて定量できることが知られている。
 ペントシジンは加齢や糖尿病以外にも統合失調症との関連が知られており、例えば、生体試料を対象として、ペントシジンの量を測定する工程を有する統合失調症の検査方法が開示されている(例えば、特許文献1を参照)。
特許第5738346号
 免疫化学的な方法や機器分析的手法によるペントシジンの定量は煩雑で費用がかかる場合がある。本発明は、新規酵素と、新規酵素を用いた、免疫化学的な方法や機器分析的手法と比べ安価で簡易的なペントシジンの定量法を提供することを目的とする。
 本発明者らは、糸状菌から新規酵素を同定し、その活性を検討した。その結果、新規酵素がペントシジンの定量に有用であることを見出し、本発明が完成するに至った。
 本発明の概要は、以下の通りである。
[1]ペントシジンを酸化的に分解する活性を有するタンパク質。
[2]以下の理化学的性質:
(1)作用:ペントシジンを酸化的に分解する活性;及び
(2)SDS-PAGEによる分子量:75,000~85,000
を有するタンパク質。
[3]前記タンパク質が以下の(a)~(f)から成る群から選ばれるいずれかのタンパク質である、[1]又は[2]に記載のタンパク質:
(a)配列番号2又は4に記載のアミノ酸配列から成るタンパク質;
(b)配列番号1、3、5又は6に記載の塩基配列から成る遺伝子によってコードされるタンパク質;
(c)配列番号2又は4に記載のアミノ酸配列と75%以上の同一性を有するアミノ酸配列から成るタンパク質;
(d)配列番号1、3、5又は6に記載の塩基配列と75%以上の同一性を有する塩基配列から成る遺伝子によってコードされるタンパク質;
(e)配列番号2又は4に記載のアミノ酸配列の1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列から成るタンパク質;あるいは
(f)配列番号1、3、5又は6に記載の塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるタンパク質。
[4]前記活性が、ペントシジンの脱アミノ化生成物、過酸化水素及びアンモニアを生成する活性、又は酸素を消費する活性である、[1]~[3]のいずれかに記載のタンパク質。
[5]糸状菌に由来する、[1]~[4]のいずれか1項に記載のタンパク質。
[6]至適pHがpH約6.5~8.0である、[1]~[5]のいずれかに記載のタンパク質。
[7]至適温度が約37~50℃である、[1]~[6]のいずれかに記載のタンパク質。
[8]30℃で10分間保存した後に前記活性が90%以上保持される、[1]~[7]のいずれかに記載のタンパク質。
[9]pH4.0~9.0の範囲で前記活性が60%以上保持される、[1]~[8]のいずれかに記載のタンパク質。
[10]ペントシジンに対するKm値が1mM以下である、[1]~[9]のいずれかに記載のタンパク質。
[11][1]~[10]のいずれかに記載のタンパク質をコードする、遺伝子。
[12]前記遺伝子が以下の(a)~(f)から成る群から選ばれるいずれかの遺伝子である、[11]に記載の遺伝子:
(a)配列番号1、3、5又は6に記載の塩基配列から成る遺伝子;
(b)配列番号2又は4に記載のアミノ酸配列をコードする遺伝子;
(c)配列番号1、3、5又は6に記載の塩基配列と75%以上の同一性を有する塩基配列から成る遺伝子;
(d)配列番号2又は4に記載のアミノ酸配列と75%以上の同一性を有するアミノ酸配列から成るタンパク質をコードする遺伝子;
(e)配列番号2又は4に記載のアミノ酸配列の1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列から成るタンパク質をコードする遺伝子;あるいは
(f)配列番号1、3、5又は6に記載の塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列から成る遺伝子。
[13][1]~[10]のいずれかに記載のタンパク質、あるいは、[11]又は[12]に記載の遺伝子を含む、キット。
[14][11]又は[12]に記載の遺伝子を含む、組換えベクター。
[15][14]に記載のベクターを含む、形質転換体。
[16][15]に記載の形質転換体を用いて、[1]~[10]のいずれかに記載のタンパク質を製造する方法。
[17][1]~[10]のいずれかに記載のタンパク質と検体とを接触させる工程;及び
 当該接触により生じた変化を検出する工程、を含む、ペントシジンの測定方法。
[18]酸素、過酸化水素又はアンモニアの量の変化が検出される、[17]に記載の方法。
[19][1]~[10]のいずれかに記載のタンパク質とペントシジンとを接触させる工程を含む、ペントシジンの反応生成物の製造方法。
[20]反応生成物が過酸化水素又はアンモニアである、[19]に記載の方法。
 理論に拘束されることを意図するものではないが、本発明者らが同定した新規酵素ペントシジンオキシダーゼは、図5に示すように、ペントシジンを酸化的に分解し、それにより、過酸化水素やアンモニアを生成すると考えられる。過酸化水素の検出や定量はペルオキシダーゼ反応等を通じて比色法、蛍光法、化学発光法、電極法などにより簡便に行うことができることから、本発明によれば、ペントシジンを酵素法による簡便・迅速な検出及び定量が可能となる。
図1は、サロクラディウム・エスピー(Sarocladium sp.)から、陰イオン交換クロマトグラフィーを用いて分画した酵素粗精製液(Elution 1)の基質濃度依存性試験の結果を示す。ペントシジン終濃度(横軸)に対するΔOD(縦軸)がプロットされている。反応開始から20分後のデータを使用した。 図2は、酵素粗精製液(Elution 1)の熱失活試験の結果を示す。当該結果は加熱処理による酵素活性の失活を解析したものであり、反応開始から20分後のデータに相当する。 図3は、ペントシジンとペントシジンオキシダーゼとを反応して生成した過酸化水素の濃度を測定した結果を示す。過酸化水素の濃度は658nmの吸光度で測定した。 図4は、ペントシジンの終濃度とペントシジンの酸化に起因するA658上昇量(ΔA)との関係を示す。 図5は、ペントシジンオキシダーゼがペントシジンを分解する反応の推定機構を示す。図では、ペントシジンを構成するリジンとアルギニンの各アミノ基が酸化的脱アミノ化され、過酸化水素とアンモニアが生成される様子が記載されている。 図6Aは、配列番号1及び2の配列を示す。 図6Bは、配列番号3及び4の配列を示す。 図6Cは、配列番号5及び6の配列を示す。 図6Dは、配列番号7~11の配列を示す。 図6Eは、配列番号12~14の配列を示す。 図7は、PenOX2の至適pHの範囲を示す。 図8は、PenOX2の至適温度の範囲を示す。 図9は、PenOX2の熱安定性の範囲を示す。 図10は、PenOX2の安定pHの範囲を示す。 図11は、PenOX2のペントシジンに対するKm値を示す。 図12は、PenOX2の分子量を示す。
 以下、本発明の一態様であるタンパク質及びそれをコードする遺伝子、形質転換体及び製造方法等の詳細について説明するが、本発明の技術的範囲は本項目の事項によってのみに限定されるものではなく、本発明はその目的を達成する限りにおいて種々の態様をとり得る。
 本発明は、ペントシジンオキシダーゼ活性を有するタンパク質及びそれをコードする遺伝子等を提供する。ペントシジンオキシダーゼは新規酵素であり、その酵素活性は完全には解明されていないが、本明細書で使用する場合、「ペントシジンオキシダーゼ活性」とは、ペントシジンを酸化的に分解する活性、より具体的には、ペントシジンを酸化して、その脱アミノ化生成物や、過酸化水素、アンモニアを生成する活性、又は酸素を消費する活性を意味する。このような酵素活性を有する限り、特定の配列に限定されず、あらゆるタンパク質及びそれをコードする遺伝子が本発明の範囲に含まれるものとして意図される。しかしながら、ペントシジンオキシダーゼの塩基配列とアミノ酸配列について、サロクラディウム属(Sarocladium属)糸状菌に由来する酵素を例に以下に説明する。
(ペントシジンオキシダーゼのアミノ酸配列)
 本発明の遺伝子は、ペントシジンオキシダーゼのアミノ酸配列をコードする塩基配列を含む。ペントシジンオキシダーゼは、上記した酵素活性を有するものであれば、アミノ酸配列については特に限定されない。例えば、上記したペントシジンオキシダーゼ活性を有する酵素の一態様として配列番号2、配列番号4に示すアミノ酸配列がある。以降、配列番号2及び配列番号4で表されるアミノ酸配列を有するタンパク質をそれぞれペントシジンオキシダーゼ1(又はPenOX1)及びペントシジンオキシダーゼ2(又はPenOX2)という場合がある。ペントシジンオキシダーゼ1をコードする遺伝子(g4462)は6つのエキソン及び5つのイントロンで構成されると予想され、一方、ペントシジンオキシダーゼ2をコードする遺伝子(g10122)は2つのエキソン及び1つのイントロンで構成されることが予想される。両酵素ともペントシジン及びアルギニンに対して高い基質特異性を有する点で共通しているが、その他のL-アミノ酸に対する反応性は異なる。
 配列番号2、4に示すアミノ酸配列を有するペントシジンオキシダーゼは、サロクラディウム属(Sarocladium属)糸状菌に由来する。また、これらの酵素をコードする遺伝子の塩基配列は、それぞれ配列番号1、配列番号3に示す塩基配列である。図6に当該酵素のアミノ酸配列及び塩基配列を示す。
 ペントシジンオキシダーゼのアミノ酸配列は、それぞれ上記したペントシジンオキシダーゼの酵素活性を有するものであれば、配列番号2や4のような野生型酵素が有するアミノ酸配列において1から複数個、例えば、アミノ酸配列におけるアミノ酸数100個を一単位とすれば、該一単位あたり、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24又は25個、好ましくは数個のアミノ酸の欠失、置換、付加などを有するアミノ酸配列からなるものであってもよい。ここで、アミノ酸配列の「1から数個のアミノ酸の欠失、置換、付加」における「1から数個」の範囲は特に限定されないが、上記一単位あたり、好ましくは1、2、3、4、5、6、7、8、9又は10個程度、より好ましくは1、2、3、4又は5個程度を意味する。また、「アミノ酸の欠失」とは配列中のアミノ酸残基の欠落又は消失を意味し、「アミノ酸の置換」は配列中のアミノ酸残基が別のアミノ酸残基に置き換えられていることを意味し、「アミノ酸の付加」とは配列中に新たなアミノ酸残基が挿入するように付け加えられていることを意味する。
 「アミノ酸の欠失、置換、付加」の具体的な態様としては、ペントシジンオキシダーゼを維持する限度でアミノ酸が別の化学的に類似したアミノ酸で置き換えられた態様がある。例えば、ある疎水性アミノ酸を別の疎水性アミノ酸に置換する場合、ある極性アミノ酸を同じ電荷を有する別の極性アミノ酸に置換する場合などを挙げることができる。このような化学的に類似したアミノ酸は、アミノ酸毎に当該技術分野において知られている。
 具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニンなどが挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システインなどが挙げられる。陽電荷をもつ塩基性アミノ酸としては、アルギニン、ヒスチジン、リジンなどが挙げられる。また、負電荷をもつ酸性アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。
 また、ペントシジンオキシダーゼのアミノ酸配列において、配列番号2や4のような野生型酵素が有するアミノ酸配列と一定以上の配列同一性を有するアミノ酸配列が挙げられ、例えば、ペントシジンオキシダーゼ酵素が有するアミノ酸配列と75%以上、好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、最も好ましくは95%以上の同一性を有するアミノ酸配列が挙げられる。
(ペントシジンオキシダーゼをコードする遺伝子)
 ペントシジンオキシダーゼをコードする遺伝子(以下、「ペントシジンオキシダーゼ遺伝子」とよぶ場合がある。)は、上記したペントシジンオキシダーゼ活性を有する酵素が有するアミノ酸配列をコードする塩基配列を含むものでれば特に限定されない。一部の態様において、ペントシジンオキシダーゼ遺伝子が形質転換体内で発現することによりペントシジンオキシダーゼが生産される。
 本明細書における「遺伝子の発現」とは、転写や翻訳などを介して、遺伝子によってコードされる酵素が本来の触媒活性を有する態様で生産されることを意味する。また、「遺伝子の発現」には、遺伝子の高発現、すなわち、遺伝子が挿入されたことにより、宿主生物が本来発現する量を超えて、該遺伝子によってコードされる酵素が生産されることを包含する。
 ペントシジンオキシダーゼ遺伝子は、宿主生物に導入された際に、該遺伝子の転写後にスプライシングを経由してペントシジンオキシダーゼを生成し得る遺伝子であっても、該遺伝子の転写後にスプライシングを経由せずにペントシジンオキシダーゼを生成し得る遺伝子であっても、どちらでもよい。
 ペントシジンオキシダーゼ遺伝子は、サロクラディウム属糸状菌のような由来生物が本来保有する遺伝子(すなわち、野生型遺伝子)と完全に同一でなくともよく、上記したペントシジンオキシダーゼ活性を有する酵素をコードする遺伝子である限り、野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAであってもよい。
 本明細書における「ストリンジェントな条件下でハイブリダイズする塩基配列」とは、配列番号1又は3のような野生型遺伝子の塩基配列の一部に相当するDNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、サザンブロットハイブリダイゼーション法などを用いることにより得られるDNAの塩基配列を意味する。
 本明細書における「ストリンジェントな条件」とは、特異的なハイブリッドのシグナルが非特異的なハイブリッドのシグナルと明確に識別される条件であり、使用するハイブリダイゼーションの系と、プローブの種類、配列及び長さによって異なる。そのような条件は、ハイブリダイゼーションの温度を変えること、洗浄の温度及び塩濃度を変えることにより決定可能である。
 例えば、非特異的なハイブリッドのシグナルまで強く検出されてしまう場合には、ハイブリダイゼーション及び洗浄の温度を上げるとともに、必要により洗浄の塩濃度を下げることにより特異性を上げることができる。また、特異的なハイブリッドのシグナルも検出されない場合には、ハイブリダイゼーション及び洗浄の温度を下げるとともに、必要により洗浄の塩濃度を上げることにより、ハイブリッドを安定化させることができる。
 一部の態様において、ストリンジェントな条件の具体例としては以下のものを含む。例えば、プローブとしてDNAプローブを用い、ハイブリダイゼーションは、5×SSC、1.0%(w/v)核酸ハイブリダイゼーション用ブロッキング試薬(ベーリンガ・マンハイム社製)、0.1%(w/v)N-ラウロイルサルコシン、0.02%(w/v)SDSを用い、一晩(8~16時間程度)で行う。洗浄は、0.1~0.5×SSC、0.1%(w/v)SDS、好ましくは0.1×SSC、0.1%(w/v)SDSを用い、15分間、2回行う。ハイブリダイゼーション及び洗浄を行う温度は65℃以上、好ましくは68℃以上である。
 ストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAとしては、例えば、コロニー若しくはプラーク由来の野生型遺伝子の塩基配列を有するDNA又は該DNAの断片を固定化したフィルターを用いて、上記したストリンジェントな条件下でハイブリダイゼーションすることによって得られるDNAや0.5~2.0MのNaCl存在下にて、40~75℃でハイブリダイゼーションを実施した後、好ましくは0.7~1.0MのNaCl存在下にて、65℃でハイブリダイゼーションを実施した後、0.1~1×SSC溶液(1×SSC溶液は、150mM 塩化ナトリウム、15mM クエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAなどを挙げることができる。プローブの調製やハイブリダイゼーションの方法は、Moleular Cloning:A laboratory Manual,2nd-Ed.,Cold Spring Harbor Laboratory,Cold Spring Harbor,NY.,1989、Current Protocols in Molecular Biology,Supplement 1-38,John Wiley&Sons,1987-1997(以下、これらの文献を「参考技術文献」ともよぶ。)などに記載されている方法に準じて実施することができる。
 なお、当業者であれば、このようなバッファーの塩濃度や温度などの条件に加えて、その他のプローブ濃度、プローブ長さ、反応時間などの諸条件を加味して、野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAを得るための条件を適宜設定することができる。
 ストリンジェントな条件下でハイブリダイズする塩基配列を含むDNAとしては、プローブとして使用する野生型遺伝子の塩基配列を有するDNAの塩基配列と一定以上の配列同一性を有するDNAが挙げられ、例えば、野生型遺伝子の塩基配列と75%以上、好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するDNAが挙げられる。
 野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列としては、例えば、塩基配列における塩基数500個を一単位とすれば、野生型遺伝子の塩基配列において、該一単位あたり、1から複数個、例えば、1から125個、1から100個、1から75個、1から50個、1から30個、1から20個、好ましくは1から数個、例えば1、2、3、4、5、6、7、8、9又は10個の塩基の欠失、置換、付加などを有する塩基配列を含む。
 ここで、「塩基の欠失」とは配列中の塩基に欠落又は消失があることを意味し、「塩基の置換」は配列中の塩基が別の塩基に置き換えられていることを意味し、「塩基の付加」とは新たな塩基が挿入するように付け加えられていることを意味する。
 野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列によってコードされる酵素は、野生型遺伝子の塩基配列によってコードされる酵素が有するアミノ酸配列において1から複数個、好ましくは数個のアミノ酸の欠失、置換、付加などを有するアミノ酸配列を有する酵素である蓋然性があるが、野生型遺伝子の塩基配列によってコードされる酵素と同じ酵素活性を有するものである。
 また、酵素をコードする遺伝子は、1つのアミノ酸に対応するコドンが数種類あることを利用して、野生型遺伝子がコードする酵素が有するアミノ酸配列と同一又は近似するアミノ酸配列をコードする塩基配列であって、野生型遺伝子と異なる塩基配列を含むものであってもよい。このような野生型遺伝子の塩基配列に対してコドン改変が施された塩基配列としては、例えば、g4462のコドンを改変した配列番号5(penox1)に記載の塩基配列、g10122のコドンを改変した配列番号6(penox2)などが挙げられる(図6C)。コドン改変が施された塩基配列としては、例えば、宿主生物において発現し易いようにコドン改変が施された塩基配列であることが好ましい。
(配列同一性を算出するための手段)
 塩基配列やアミノ酸配列の配列同一性を求める方法は特に限定されないが、例えば、通常知られている方法を利用して、野生型遺伝子や野生型遺伝子によってコードされる酵素のアミノ酸配列と対象となる塩基配列やアミノ酸配列とをアラインメントし、両者の配列の一致率を算出するためのプログラムを用いることにより求められる。
 2つのアミノ酸配列や塩基配列における一致率を算出するためのプログラムとしては、例えば、Karlin及びAltschulのアルゴリズム(Proc.Natl.Acad.Sci.USA 87:2264-2268、1990;Proc.Natl.Acad.Sci. USA90:5873-5877、1993)が知られており、このアルゴリズムを用いたBLASTプログラムがAltschulなどによって開発されている(J.Mol.Biol.215:403-410、1990)。さらに、BLASTより感度よく配列同一性を決定するプログラムであるGapped BLASTも知られている(Nucleic Acids Res. 25:3389-3402、1997)。したがって、当業者は例えば上記のプログラムを利用して、与えられた配列に対し、高い配列同一性を示す配列をデータベース中から検索することができる。これらは、例えば、米国National Center for Biotechnology Informationのインターネット上のウェブサイト(http://blast.ncbi.nlm.nih.gov/Blast.cgi)において利用可能である。
 上記の各方法は、データベース中から配列同一性を示す配列を検索するために通常的に用いられ得るが、個別の配列の配列同一性を決定する手段としては、Genetyxネットワーク版 version 12.0.1(ゼネティックス社製)のホモロジー解析を用いることもできる。この方法は、Lipman-Pearson法(Science 227:1435-1441、1985)に基づくものである。塩基配列の配列同一性を解析する際は、可能であればタンパク質をコードしている領域(CDS又はORF)を用いる。
(酵素をコードする遺伝子の由来)
 酵素をコードする遺伝子は、ペントシジンオキシダーゼ生産能がある生物種に由来する。酵素をコードする遺伝子の由来生物としては、例えば、糸状菌などの微生物などが挙げられる。ペントシジンオキシダーゼ生産能を有する微生物の具体例としては、サロクラディウム属(Sarocladium属)などが挙げられる。
 上記のとおり、酵素をコードする遺伝子の由来生物は特に限定されないが、形質転換体において発現される酵素は、宿主生物の生育条件によって不活化せず、活性を示すことが好ましい。そこで、酵素をコードする遺伝子の由来生物は、酵素をコードする遺伝子を挿入することによって形質転換すべき宿主生物と生育条件が近似する微生物であることが好ましい。
 ペントシジンオキシダーゼ活性を有する酵素の理化学的特性質のうち、特徴的なものを以下に例示する。
・SDS-PAGEによる分子量:75,000~85,000
・至適pH:pH約6.5~8.0
 なお、至適pHは酵素が最も好適に作用するpHであって、ペントシジンオキシダーゼは上記範囲以外のpHでも作用し得る。
・至適温度:約37~50℃
 なお、至適温度は至適温度は酵素が最も好適に作用する温度であって、ペントシジンオキシダーゼは上記温度範囲以外の温度でも作用し得る。
・温度安定性:30℃で10分間保存した場合、ペントシジンオキシダーゼ活性が90%以上保持される。40℃で10分間保存した場合、ペントシジンオキシダーゼ活性が50%以上保持される。
・pH安定性:pH4.0~9.0の範囲でペントシジンオキシダーゼ活性が60%以上保持される。
・Km値:ペントシジンに対するKm値が1mM以下である。
 Km値とはミカエリス定数であって、その具体的な算出方法は特に限定されず、公知の方法を自由に選択して算出することができる。例えば、後述する実施例9に記載の方法のように、ラインウェーバー・バークプロットによる方法で描かれるミカエリス?メンテンの式に従ってKm値を算出することができる。
(遺伝子工学的手法による酵素をコードする遺伝子のクローニング)
 酵素をコードする遺伝子は、適当な公知の各種ベクター中に挿入することができる。さらに、このベクターを適当な公知の宿主生物に導入して、酵素をコードする遺伝子を含む組換えベクター(組換え体DNA)が導入された形質転換体を作製できる。酵素をコードする遺伝子の取得方法や、酵素をコードする遺伝子の塩基配列、酵素のアミノ酸配列情報の取得方法、各種ベクターの製造方法や形質転換体の作製方法などは、当業者にとって適宜選択することができる。また、本明細書で使用する場合、形質転換や形質転換体にはそれぞれ形質導入や形質導入体が包含される。酵素をコードする遺伝子のクローニングの一例を非限定的に後述する。
 酵素をコードする遺伝子をクローニングするには、通常一般的に用いられている遺伝子のクローニング方法を適宜用いることができる。例えば、酵素の生産能を有する微生物や種々の細胞から、常法、例えば、参考技術文献(上掲)に記載の方法により、染色体DNAやmRNAを抽出することができる。抽出したmRNAを鋳型としてcDNAを合成することができる。このようにして得られた染色体DNAやcDNAを用いて、染色体DNAやcDNAのライブラリーを作製することができる。
 一部の態様において、酵素をコードする遺伝子は、該遺伝子を有する由来生物の染色体DNAやcDNAを鋳型としたクローニングにより得ることができる。酵素をコードする遺伝子の由来生物は特に限定されないが、上記したサロクラディウム・エスピー(Sarocladium sp.)などを挙げることができる。例えば、サロクラディウム・エスピー(Sarocladium sp.)を培養し、得られた菌体から水分を取り除き、液体窒素中で冷却しながら乳鉢などを用いて物理的に磨砕することにより細かい粉末状の菌体片とし、該菌体片から通常の方法により染色体DNA画分を抽出する。染色体DNA抽出操作には、DNeasy Plant Mini Kit(キアゲン社製)などの市販の染色体DNA抽出キットが利用できる。
 次いで、前記染色体DNAを鋳型として、5’末端配列及び3’末端配列に相補的なプライマーを用いてポリメラーゼ連鎖反応(以下、「PCR」と表記する。)を行うことにより、DNAを増幅する。プライマーとしては、該遺伝子を含むDNA断片の増幅が可能であれば特に限定されない。別の方法として、5’RACE法や3’RACE法などの適当なPCRにより、目的の遺伝子断片を含むDNAを増幅させ、これらを連結させて全長の目的遺伝子を含むDNAを得ることができる。
 また、酵素をコードする遺伝子を取得する方法は特に限定されず、遺伝子工学的手法によらなくとも、例えば、化学合成法を用いて酵素をコードする遺伝子を構築することが可能である。
 PCRにより増幅された増幅産物や化学合成した遺伝子における塩基配列の確認は、例えば、次のように行うことができる。まず、配列を確認したいDNAを通常の方法に準じて適当なベクターに挿入して組換え体DNAを作製する。ベクターへのクローニングには、TA Cloning Kit(インビトロジェン社製)などの市販のキット;pUC19(タカラバイオ社製)、pUC18(タカラバイオ社製)、pBR322(タカラバイオ社製)、pBluescript SK+(ストラタジーン社製)、pYES2/CT(インビトロジェン社製)などの市販のプラスミドベクターDNA;λEMBL3(ストラタジーン社製)などの市販のバクテリオファージベクターDNAが使用できる。一部の態様において、該組換え体DNAを用いて、宿主生物、例えば、大腸菌(Escherichia coli)、好ましくは大腸菌 JM109株(タカラバイオ社製)や大腸菌 DH5α株(タカラバイオ社製)を形質転換する。得られた形質転換体に含まれる組換え体DNAを、QIAGEN Plasmid Mini Kit(キアゲン社製)などを用いて精製してもよい。
 組換え体DNAに挿入された各遺伝子の塩基配列の決定は、ジデオキシ法(Methods in Enzymology、101、20-78、1983)などにより行うことができる。塩基配列の決定の際に使用する配列解析装置は特に限定されないが、例えば、Li-COR MODEL 4200Lシークエンサー(アロカ社製)、370DNAシークエンスシステム(パーキンエルマー社製)、CEQ2000XL DNAアナリシスシステム(ベックマン社製)などが挙げられる。そして、決定された塩基配列を元に、翻訳されるタンパク質、すなわち、酵素のアミノ酸配列を知り得る。
(酵素をコードする遺伝子を含む組換えベクターの構築)
 酵素をコードする遺伝子を含む組換えベクター(組換え体DNA)は、酵素をコードする遺伝子のいずれかを含むPCR増幅産物と各種ベクターとを、酵素をコードする遺伝子の発現が可能な形で結合することにより構築することができる。例えば、適当な制限酵素で酵素をコードする遺伝子のいずれかを含むDNA断片を切り出し、該DNA断片を適当な制限酵素で切断したプラスミドと連結することにより構築することができる。または、プラスミドと相同的な配列を両末端に付加した該遺伝子を含むDNA断片と、インバースPCRにより増幅したプラスミド由来のDNA断片とを、In-Fusion HD Cloning Kit(クロンテック社製)などの市販の組換えベクター作製キットを用いて連結させることにより得ることができる。
(形質転換体の作製方法)
 形質転換体の作製方法は特に限定されず、例えば、常法に従って、酵素をコードする遺伝子が発現する態様で宿主生物に挿入する方法などが挙げられる。一部の態様において、酵素をコードする遺伝子のいずれかを発現誘導プロモーター及びターミネーターの間に挿入したDNAコンストラクトを作製し、次いで酵素をコードする遺伝子を含むDNAコンストラクトで宿主生物を形質転換することにより、酵素をコードする遺伝子を過剰発現する形質転換体が得られる。本明細書では、宿主生物を形質転換するために作製された、発現誘導プロモーター-酵素をコードする遺伝子-ターミネーターからなるDNA断片及び該DNA断片を含む組換えベクターをDNAコンストラクトと総称してよぶ。
 酵素をコードする遺伝子が発現する態様で宿主生物に挿入する方法は、特に限定されないが、例えば、相同組換えや非相同組み換えを利用することにより宿主生物の染色体上に直接的に挿入する手法;プラスミドベクター上に連結することにより宿主生物内に導入する手法などが挙げられる。
 相同組換えを利用する方法では、染色体上の組換え部位の上流領域及び下流領域と相同な配列の間に、DNAコンストラクトを連結し、宿主生物のゲノム中に挿入することができる。非相同組み換えを利用する方法では、該相同配列をDNAコンストラクトと連結していない場合でも、宿主生物のゲノム中に挿入することができる。高発現プロモーターは特に限定されないが、例えば、翻訳伸長因子であるTEF1遺伝子(tef1)のプロモーター領域、α-アミラーゼ遺伝子(amy)のプロモーター領域、アルカリプロテアーゼ遺伝子(alp)プロモーター領域、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(gpd)プロモーター領域などが挙げられる。
 ベクターを利用する方法では、DNAコンストラクトを、常法により、宿主生物の形質転換に用いられるプラスミドベクターに組み込み、対応する宿主生物を常法により形質転換することができる。
 そのような、好適なベクター-宿主系としては、宿主生物中で酵素を生産させ得る系であれば特に限定されず、例えば、pUC19及び糸状菌の系、pSTA14(Mol.Gen.Genet.218、99-104、1989)及び糸状菌の系などが挙げられる。
 DNAコンストラクトは宿主生物の染色体に導入して用いることが好ましいが、この他の方法として、自律複製型のベクター(Ozeki et al.Biosci.Biotechnol.Biochem.59,1133 (1995))にDNAコンストラクトを組み込むことにより、染色体に導入しない形で用いることもできる。
 DNAコンストラクトには、形質転換された細胞を選択することを可能にするためのマーカー遺伝子が含まれていてもよい。マーカー遺伝子は特に限定されず、例えば、pyrG、niaD、adeAのような、宿主生物の栄養要求性を相補する遺伝子;ピリチアミン、ハイグロマイシンB、オリゴマイシンなどの薬剤に対する薬剤耐性遺伝子などが挙げられる。また、DNAコンストラクトは、宿主生物中で酵素をコードする遺伝子を過剰発現することを可能にするプロモーター、ターミネーターその他の制御配列(例えば、エンハンサー、ポリアデニル化配列など)を含むことが好ましい。プロモーターは特に限定されないが、適当な発現誘導プロモーターや構成的プロモーターが挙げられ、例えば、tef1プロモーター、alpプロモーター、amyプロモーター、gpdプロモーターなどが挙げられる。ターミネーターもまた特に限定されないが、例えば、alpターミネーター、amyターミネーター、tef1ターミネーターなどが挙げられる。
 DNAコンストラクトにおいて、酵素をコードする遺伝子の発現制御配列は、挿入する酵素をコードする遺伝子を含むDNA断片が、発現制御機能を有している配列を含む場合は必ずしも必要ではない。また、共形質転換法により形質転換を行う場合には、DNAコンストラクトはマーカー遺伝子を有しなくてもよい場合がある。
 DNAコンストラクトには精製のためのタグをつけることができる。例えば、酵素をコードする遺伝子の上流又は下流に適宜リンカー配列を接続し、ヒスチジンをコードする塩基配列を6コドン以上接続することにより、ニッケルカラムを用いた精製を可能にすることができる。
 DNAコンストラクトにはマーカーリサイクリングに必要な相同配列が含まれていてもよい。例えば、pyrGマーカーは、pyrGマーカーの下流に挿入部位(5’相同組み換え領域)の上流の配列と相同な配列を付加すること、又はpyrGマーカーの上流に挿入部位(3’相同組み換え領域)の下流の配列と相同な配列を付加することで、5-フルオロオロチン酸(5FOA)を含んだ培地上でpyrGマーカーを脱落させることが可能となる。マーカーリサイクリングに適した該相同配列の長さは0.5kb以上が好ましい。
 DNAコンストラクトの一態様は、例えば、pUC19のマルチクローニングサイトにあるIn-Fusion Cloning Siteに、tef1遺伝子プロモーター、酵素をコードする遺伝子、alp遺伝子ターミネーター及びpyrGマーカー遺伝子を連結させたDNAコンストラクトである。
 相同組み換えにより遺伝子を挿入する場合のDNAコンストラクトの一態様は、5’相同組み換え配列、tef1遺伝子プロモーター、酵素をコードする遺伝子、alp遺伝子ターミネーター及びpyrGマーカー遺伝子、3’相同組み換え配列を連結させたDNAコンストラクトである。
 相同組み換えにより遺伝子を挿入し、かつ、マーカーをリサイクルする場合のDNAコンストラクトの一態様は、5’相同組み換え配列、tef1遺伝子プロモーター、酵素をコードする遺伝子、alp遺伝子ターミネーター、マーカーリサイクリング用相同配列、pyrGマーカー遺伝子、3’相同組み換え配列を連結させたDNAコンストラクトである。
 宿主生物が糸状菌である場合、糸状菌への形質転換方法としては、当業者に知られる方法を適宜選択することができ、例えば、宿主生物のプロトプラストを調製した後に、ポリエチレングリコール及び塩化カルシウムを用いるプロトプラストPEG法(例えば、Mol.Gen.Genet.218、99-104、1989(上掲)、特開2007-222055号公報などを参照)を用いることができる。形質転換体を再生させるための培地は、用いる宿主生物と形質転換マーカー遺伝子とに応じて適切なものを用いる。例えば、宿主生物としてアスペルギルス・オリゼ(A.oryzae)、アスペルギルス・ソーヤ(A.sojae)を用い、形質転換マーカー遺伝子としてpyrG遺伝子を用いた場合は、形質転換体の再生は、例えば、0.5%寒天及び1.2Mソルビトールを含むCzapek-Dox最少培地(ディフコ社製)で行うことができる。
 また、例えば、形質転換体を得るために、相同組換えを利用して、宿主生物が本来染色体上に有する酵素をコードする遺伝子のプロモーターをtef1などの高発現プロモーターへ置換してもよい。この際も、高発現プロモーターに加えて、pyrGなどの形質転換マーカー遺伝子を挿入することが好ましい。例えば、この目的のために、特開2011-239681号公報に記載の実施例を参照して、酵素をコードする遺伝子の上流領域-形質転換マーカー遺伝子-高発現プロモーター-酵素をコードする遺伝子の全部又は部分からなる形質転換用カセットなどが利用できる。この場合、酵素をコードする遺伝子の上流領域及び酵素をコードする遺伝子の全部又は部分が相同組換えのために利用される。
 酵素をコードする遺伝子の全部又は部分は、開始コドンから途中の領域を含むものが使用できる。相同組換えに適した領域の長さは0.5kb以上あることが好ましい。
 形質転換体が作製されたことの確認は、酵素の酵素活性が認められる条件下で形質転換体を培養し、次いで培養後に得られた培養物における目的産物が検出されることにより行うことができる。
 また、形質転換体が作製されたことの確認は、形質転換体から染色体DNAを抽出し、これを鋳型としてPCRを行い、形質転換が起きた場合に増幅が可能なPCR産物が生じることを確認することにより行ってもよい。この場合、例えば、用いたプロモーターの塩基配列に対するフォワードプライマーと、形質転換マーカー遺伝子の塩基配列に対するリバースプライマーとの組み合わせでPCRを行い、想定の長さの産物が生じることを確認する。
 相同組み換えにより形質転換を行う場合には、用いた上流側の相同領域より上流に位置するフォワードプライマーと、用いた下流側の相同領域より下流に位置するリバースプライマーとの組み合わせでPCRを行い、相同組み換えが起きた場合に想定される長さの産物が生じることを確認することが好ましい。
(宿主生物)
 宿主生物としては、酵素をコードする遺伝子を含むDNAコンストラクトによる形質転換により、酵素を生産することができる生物であれば特に限定されない。例えば、微生物や植物などが挙げられ、微生物としては、アスペルギルス(Aspergillus)属微生物、エシェリキア(Escherichia)属微生物、サッカロマイセス(Saccharomyces)属微生物、ピキア(Pichia)属微生物、シゾサッカロマイセス(Schizosaccharomyces)属微生物、ジゴサッカロマイセス(Zygosaccharomyces)属微生物、トリコデルマ(Trichoderuma)属微生物、ペニシリウム(Penicillium)属微生物、クモノスカビ(Rhizopus)属微生物、アカパンカビ(Neurospora)属微生物、ムコール(Mucor)属微生物、アクレモニウム(Acremonium)属微生物、フザリウム(Fusarium)属微生物、ネオサルトリア(Neosartorya)属微生物、ビッソクラミス(Byssochlamys)属微生物、タラロミセス(Talaromyces)属微生物、アジェロミセス(Ajellomyces)属微生物、パラコッシディオイデス(Paracoccidioides)属微生物、アンシノカルプス(Uncinocarpus)属微
生物、コッシディオイデス(Coccidioides)属微生物、アルフロデルマ(Arthroderma)属微生物、トリコフィトン(Trichophyton)属微生物、エクソフィラ(Exophiala)属微生物、カプロニア(Capronia)属微生物、クラドフィアロフォラ(Cladophialophora)属微生物、マクロホミナ(Macrophomina)属微生物、レプトスファエリア(Leptosphaeria)属微生物、ビポラリス(Bipolaris)属微生物、ドチストローマ(Dothistroma)属微生物、ピレノフォラ(Pyrenophora)属微生物、ネオフシコッカム(Neofusicoccum)属微生物、セトスファエリア(Setosphaeria)属微生物、バウドイニア(Baudoinia)属微生物、ガエウマノミセス(Gaeumannomyces)属微生物、マルッソニナ(Marssonina)属微生物、スファエルリナ(Sphaerulina)属微生物、スクレロチニア(Sclerotinia)属微生物、マグナポルセ(Magnaporthe)属微生物、ヴェルチシリウム(Verticillium)属微生物、シュードセルコスポラ(Pseudocercospora)属微生物、コレトトリカム(Colletotrichum)属微生物、オフィオストーマ(Ophiostoma)属微生物、メタルヒジウム(Metarhizium)属微生物、スポロスリックス(Sporothrix)属微生物、ソルダリア(Sordaria)属微生物、アラビドプシス(Arabidopsis)属植物などが挙げられ、微生物及び植物が好ましい。ただし、どのような場合であっても、宿主生物からヒトは除かれる。
 糸状菌の中では、安全性や培養の容易性を加味すれば、アスペルギルス・オリゼ、アスペルギルス・ソーヤ、アスペルギルス・ニガー(A.niger)、アスペルギルス・タマリ(A.tamarii)、アスペルギルス・アワモリ(A.awamori)、アスペルギルス・ウサミ(A.usami)、アスペルギルス・カワチ(A.kawachii)、アスペルギルス・サイトイ(A.saitoi)などのアスペルギルス属微生物などが好ましい。
 本発明に係るタンパク質の発現は、上記のような宿主生物を用いた実施に限定されない。例えば、in vitroにおける無細胞タンパク質発現系は、特に商業規模での生成のように大量生産を目的としない場合などに好適に用いることができる。無細胞タンパク質発現系は、細胞培養を必要とせず、また、タンパク質の精製も簡便に行うことができるという利点もある。無細胞タンパク質発現系においては、主に、所望とするタンパク質に対応する遺伝子と、セルライセートのような転写と翻訳の分子機構を含む反応液とが使用される。
(酵素をコードする遺伝子の具体例)
 サロクラディウム属由来の酵素をコードする遺伝子としては、例えば、配列番号1及び3に記載の塩基配列をそれぞれ有する遺伝子g4462及びg10122が挙げられる。なお、ペントシジンオキシダーゼ1タンパク質(PenOX1)及びペントシジンオキシダーゼ2タンパク質(PenOX2)のアミノ酸配列をそれぞれ配列番号2、4として示す。
 サロクラディウム属及びサロクラディウム属以外の生物から酵素をコードする遺伝子を得る方法は特に限定されないが、例えば、遺伝子g4462及びg10122の塩基配列(配列番号1及び3)に基づいて、対象生物のゲノムDNAをBLAST相同性検索して、遺伝子g4462及びg10122の塩基配列と配列同一性の高い塩基配列を有する遺伝子を特定することにより得ることができる。また、対象生物の総タンパク質を基に、ペントシジンオキシダーゼ1及びペントシジンオキシダーゼ2タンパク質のアミノ酸配列(配列番号2及び4)と配列同一性の高いアミノ酸配列を有するタンパク質を特定し、該タンパク質をコードする遺伝子を特定することにより得ることができる。
 サロクラディウム属から得られた酵素をコードする遺伝子、又は酵素と配列同一性を有する酵素をコードする遺伝子を、宿主生物としてアスペルギルス属微生物等の任意の宿主細胞に導入して形質転換することができる。
(形質転換体)
 形質転換体の一態様は、微生物や植物などを宿主生物として、遺伝子のいずれか一つ、又はこれらの組み合わせが挿入されており、かつ、該挿入された遺伝子を発現するように形質転換した形質転換体である。
 形質転換体の別の一態様は、微生物や植物などを宿主生物として、遺伝子g4462またはg10122のすべて又は一部を含む、遺伝子(ORF以外のプロモーター配列等も含む。)、及び、該遺伝子の転写を制御する転写因子を高発現又は低発現するように設計されたDNAコンストラクトが挿入されており、かつ、該挿入された遺伝子を発現するように形質転換した形質転換体である。
 宿主生物が、サロクラディウム属などのペントシジンオキシダーゼの産生能が認められる生物である場合は、挿入された遺伝子は恒常的に強制発現若しくは内在性の発現よりも高発現にすること、又は細胞増殖後の培養後期で条件発現させることが望ましい。このような形質転換体は、発現量の変化した転写因子の作用によって、宿主生物又は形質転換体に適した条件で培養又は生育することにより、宿主生物では生産しない、又は生産したとしてもペントシジンオキシダーゼを検出可能以上に生産することができる。
(製造方法)
 本発明の別の一態様の製造方法は、形質転換体の生育に適した培地を用いて、形質転換体の生育に適した培養条件下で形質転換体を培養することによって、ペントシジンオキシダーゼを製造する方法などが挙げられる。培養方法は特に限定されず、例えば、宿主生物が糸状菌である場合は、通気又は非通気条件下で行う固体培養法や液体培養法などが挙げられる。
 本発明の別の一態様の製造方法は、形質転換体より抽出するペントシジンオキシダーゼの製造方法である。以下では、主として宿主生物や野生型生物が糸状菌である場合の製造方法について記載するが、本発明の各態様の製造方法は下記記載に限定されない。
 培地は、宿主生物や野生型生物(以下では、これらを総称して「宿主生物等」ともよぶ。)を培養する通常の培地、すなわち炭素源、窒素源、無機物、その他の栄養素を適切な割合で含有するものであれば、合成培地及び天然培地のいずれでも使用できる。宿主生物等がアスペルギルス属微生物である場合は、後述する実施例に記載があるようなYMG培地やPPY培地などを利用することができるが、特に限定されない。
 形質転換体の培養条件は、当業者により通常知られる宿主生物等の培養条件を採用すればよく、例えば、宿主生物等が糸状菌である場合、培地の初発pHは5~10に調整し、培養温度は20~40℃、培養時間は数時間~数日間、好ましくは1~7日間、より好ましくは2~4日間など、適宜設定することができる。培養手段は特に限定されず、通気撹拌深部培養、振盪培養、静地培養などを採用することができるが、溶存酸素が十分になるような条件で培養することが好ましい。例えば、アスペルギルス属微生物を培養する場合の培地及び培養条件の一例として、後述する実施例に記載があるYMG培地やPPY培地を用いた、30℃、160rpmでの3~5日間の振盪培養が挙げられる。
 培養終了後に培養物からペントシジンオキシダーゼを抽出する方法は特に限定されない。抽出には、培養物から濾過、遠心分離などの操作により回収した菌体をそのまま用いてもよく、回収した後に乾燥した菌体やさらに粉砕した菌体を用いてもよい。菌体の乾燥方法は特に限定されず、例えば、凍結乾燥、天日乾燥、熱風乾燥、真空乾燥、通気乾燥、減圧乾燥などが挙げられる。
 また、上記処理に代えて、例えば、超音波破砕機、フレンチプレス、ダイノミル、乳鉢などの破壊手段を用いて菌体を破壊する方法;ヤタラーゼなどの細胞壁溶解酵素を用いて菌体細胞壁を溶解する方法;SDS、トリトンX-100などの界面活性剤を用いて菌体を溶解する方法などの菌体破砕処理に供してもよい。これらの方法は単独又は組み合わせて使用することができる。
 得られた抽出液は、遠心分離、フィルターろ過、限外ろ過、ゲルろ過、溶解度差による分離、溶媒抽出、クロマトグラフィー(吸着クロマトグラフィー、疎水クロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィー、逆相クロマトグラフィーなど)、結晶化、活性炭処理、膜処理などの精製処理に供することにより目的産物を精製することができる。
 本発明の各態様の製造方法では、本発明の課題を解決し得る限り、上記した工程の前段若しくは後段又は工程中に、種々の任意の工程や操作を加入することができる。
(測定方法)
 本発明に係るペントシジンの測定方法は:
 ペントシジンオキシダーゼを検体と接触させる工程;及び
 当該接触により生じた変化を検出する工程、を含む。
 本明細書で使用する場合、「検体」とは、被験者、例えば、ペントシジンに関連する疾患に罹患しているか、罹患していると疑われる対象に由来する血液、体液又は排泄物等の試料を意味する。検体はペントシジンを必ずしも含んでいなくてもよく、ペントシジンを含まない場合であっても、本発明に係る測定方法はペントシジン含有の有無の分析(定性分析)に使用することができる。本明細書で使用する場合、「接触により生じた変化」とは、検体中に含まれるペントシジンなどの出発物質や、ペントシジンオキシダーゼとの反応生成物又は反応消費物などの有無、又はそれらの量の経時的な変化を意味する。
 より具体的な態様において、ペントシジンの測定方法は:
 (A)水と酸素の存在下、検体にペントシジンオキシダーゼを作用させる工程;及び
 (B)上記ペントシジンオキシダーゼの作用による反応生成物又は反応消費物の少なくとも一種の量を計測する工程
 を含み得る。
 上記工程(B)において測定する反応生成物としては、過酸化水素、アンモニア及びペントシジンの脱アミノ化生成物を挙げることができる。また、反応生成物である過酸化水素の量は、例えば、ペルオキシダーゼ反応により計測することができる。また、反応生成物であるアンモニアの量は、例えば、インドフェノール法やネスラー試薬を用いる方法、もしくは、グルタミン酸デヒドロゲナーゼやNADシンターゼ等のアンモニアを基質とする酵素を用いてNADH量を測定する方法等により計測することができる。本明細書で使用する場合、「脱アミノ化生成物」とは、例えば、ペントシジンを構成するリジンとアルギニンのアミノ基の一方又は両方が外れて酸素に置き換わり、少なくとも一方の末端がケト酸となっている生成物を意味する。このような脱アミノ化生成物の例を図5に示す。上記工程(B)において測定する反応消費物としては、酸素を挙げることができる。酵素反応により減少する酸素量は、例えば、酸素電極により測定することもできるし、または、Winkler手法に基づいて、酸素によりマンガンイオンの酸化させることで、比色定量することもできる。
 別の態様において、本発明は、ペントシジンオキシダーゼを含むキットを提供する。本発明に係るキットは、ペントシジンとペントシジンオキシダーゼの反応生成物又は反応消費物を検出するために使用され得る。本発明に係るキットはさらに、反応用緩衝液、並びに反応生成物検出用試薬、例えば過酸化水素検出用試薬、アンモニア検出試薬及びペントシジンの脱アミノ化生成物検出用試薬、または反応消費物検出用試薬、例えば酸素検出用試薬の少なくとも一つを含むものであってもよい。本発明のキットは体外診断薬としても使用可能であり、例えば、ペントシジン又は、ペントシジンとペントシジンオキシダーゼとの反応生成物に関連している疾患、例えば糖尿病や腎症の診断に好適に使用され得る。
 過酸化水素検出用試薬としては、過酸化水素を高感度で検出できる10-(カルボキシメチルアミノカルボニル)-3、7-ビス(ジメチルアミノ)-フェノシアジン(DA-67)やN-(カルボキシメチルアミノカルボニル)-4、4’ -ビス(ジメチルアミノ)-ジフェニルアミン(DA-64)に加え、公知のトリンダー試薬などの呈色試薬が挙げられる。アンモニア検出用試薬としては、フェノール・ニトロプルシッドナトリウムと、次亜塩素酸ナトリウム等の酸化剤との組み合わせ(インドフェノール法)、ネスラー試薬等が挙げられる。酸素検出用試薬としては、例えば、マンガンイオン、水酸化ナトリウムおよび硫酸の組み合わせが挙げられる
 呈色反応を利用した反応生成物の検出は免疫化学的な方法や機器分析的手法と比較して極めて簡便で安価に行うことができる。しかしながら、反応生成物又は反応消費物の検出は、検出試薬以外の他公知の定量・定性方法を排除するものではなく、適宜採用してもよい。例えば、過酸化水素やアンモニアの検出試薬に代えて、専用の検出電極を備えた酵素センサなどの装置を使用して検出を行うこともできる。
 上記反応生成物又は反応消費物の検出方法は、ペントシジン又は各反応生成物又は反応消費物と直接的又は間接的に関連している疾患の検出方法、延いては診断方法にも使用可能である。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。
(実施例1)サロクラディウム・エスピー(Sarocladium sp.)の培養及び酵素液調製方法
・使用培地
 MEA培地:Malt extract agar(Oxoid社製)を50g/Lとなるよう蒸留水に溶解した。
 YMG培地:Yeast extract 0.4%、Malt extract 1%、グルコース 0.4%、pH5.5
・菌株の培養
 -80℃で保存されたサロクラディウム・エスピー(Sarocladium sp.) F10012株をMEA培地に塗布し、24℃で7~10日間、十分量の菌糸が得られるまで静置培養した。得られた菌糸を1Lフラスコ中のYMG培地250mLに摂取し、30℃で3日間振とう培養した。
・粗酵素液の調製
 菌体を培養したYMG培地を、Miracloth(メルクミリポア社製)を用いてろ過することで菌体を取り除き、培養上清を取得した。培養上清を限外ろ過膜(Vivaspin 20-3k、GEヘルスケア社製)を用いて濃縮し、50mM リン酸カリウムバッファー(pH7.5)で希釈する工程を複数回繰り返すことで低分子を除去するとともに、YMG培地をリン酸カリウムバッファーに置換した。
・目的酵素の粗精製
 バッファー置換した粗酵素液を、イオン交換クロマトグラフィー用カラム(HiTrap Q Sepharose Fast Flow 1mL、GEヘルスケア社製)を用いて分画した。具体的な手順は、以下のとおりである。
 まず、50mM リン酸カリウムバッファー(pH7.5)で平衡化したカラムに粗酵素液をロードし、酵素をカラムに吸着させた後に、5mLのリン酸カリウムバッファーでカラムを洗浄し、未吸着のタンパク質を溶出させた。
 その後、リン酸カリウムバッファーに0.25M、0.5M、0.75M、1.0Mの塩化ナトリウムを溶解したバッファーを5mLずつ順次カラムに通すことで、カラムに吸着したタンパク質を溶出させた。
 粗酵素液をロードした際にカラムから溶出した液を「Flow through」、バッファーによる洗浄時に溶出した液を「Start buffer」、塩化ナトリウムを含むバッファーで溶出した液をそれぞれ「Elution1」、「Elution2」、「Elution3」、「Elution4」とし、それぞれ異なる容器に回収した。
(実施例2)ペントシジンオキシダーゼ活性の測定方法
・酵素粗精製液の活性測定
 イオン交換クロマトグラフィー用のカラムより溶出した液をサンプルとし、活性を測定した。サンプル50μLを、100mM リン酸カリウムバッファー(pH8.0)に溶解した4mM ペントシジン(ペプチド研究所社製)25μL及びオキシダーゼ発色試薬(4U/mL ペルオキシダーゼ(TOYOBO社製)、1.8mM 4-アミノアンチピリン(Fluka社製)、2mM TOOS(Dojindo社製))25μLと混合し、室温で反応させた。
 反応には、96穴のマイクロウェルプレート(Nunc社製)を用いた。ブランクは、基質溶液のかわりに100mM リン酸カリウムバッファー(pH8.0)を加えたものとした。反応液及びブランク溶液の555nmにおける吸光度を測定し、吸光度の差(ΔOD)をもとに酵素活性の強さを評価した。
・基質濃度依存性試験
 酵素粗精製液のペントシジンオキシダーゼ活性を、様々な濃度の基質を用いて測定することで、基質の濃度に対する活性の推移を評価した。用いた基質溶液の濃度は、0.13mM、0.25mM、0.5mM、1.0mM、2.0mM及び4.0mMである。
・熱失活試験
 酵素粗精製液を80℃で1時間熱処理をすることにより、タンパク質を変性させた。この加熱処理サンプルのペントシジンオキシダーゼ活性を上述の活性測定方法にのっとって測定し、未加熱のサンプルの活性と比較した。
(実施例3)サロクラディウム・エスピー(Sarocladium sp.)酵素液のペントシジンオキシダーゼ活性解析
 サロクラディウム・エスピー(Sarocladium sp.)の培養上清をイオン交換クロマトグラフィー用カラムで分画したサンプルについて、ペントシジンとの反応性を解析した。その結果、0.25M 塩化ナトリウムを含むリン酸カリウムバッファーで溶出したElution1に強い活性が認められ、ペントシジンオキシダーゼが含まれていることが示唆された。このElution1に対し、基質濃度依存性試験(図1)及び熱失活試験(図2)を行ったところ、酵素活性は基質濃度依存的に上昇し、さらに加熱処理により完全に失活することが明らかとなった。このことから、Elution1にみられるペントシジンオキシダーゼ活性は、酵素由来のものであることが示された。
(実施例4)サロクラディウム・エスピー(Sarocladium sp.)由来のペントシジンオキシダーゼの配列決定
 上記結果と、サロクラディウム・エスピー(Sarocladium sp.)の全ゲノム配列情報に基づき、ペントシジンオキシダーゼであると推測される、2種類の遺伝子(配列番号1及び3)とそのアミノ酸配列(配列番号2及び4)が特定された。
(実施例5)麹菌アスペルギルス・ソーヤ(Aspergillus sojae)における、サロクラディウム・エスピー(Sarocladium sp.)由来ペントシジンオキシダーゼの異種組換発現
 上記で特定された2種のペントシジンオキシダーゼについて、酵素活性を解析するために麹菌アスペルギルス・ソーヤを宿主として異種組換発現を行った。
・発現ベクターの作製
 配列番号2と配列番号4のアミノ酸配列を基に麹菌発現用にコドン改変した配列番号5と6の塩基配列を人工遺伝子合成によりそれぞれ取得した。
 配列番号5及び配列番号6のペントシジンオキシダーゼ遺伝子(penox1、penox2)を発現させるための発現カセットとしては、翻訳伸長因子遺伝子tef1のプロモーター配列であるPtef(tef1遺伝子の上流748bp、配列番号7)をプロモーターとして、アルカリプロテアーゼ遺伝子alpのターミネーター配列であるTalp(alp遺伝子の下流800bp、配列番号8)をターミネーターとして用いた。
 また、選択マーカーとしてはウラシル/ウリジン要求性を相補し、遺伝子の多コピー導入を可能とする形質転換マーカー遺伝子pyrG3(上流56bp、コード領域896bp及び下流535bpを含む1,487bp、配列番号9)を用いた(特開2018-068292号公報参照)。これらのPtef、Talp、pyrG3は、麹菌アスペルギルス・ソーヤ(Aspergillus sojae NRRC4239株)のゲノムDNAを鋳型としたPCR反応により取得した。
 次に、それぞれのDNAを連結するためにIn-Fusion HD Cloning Kit(クロンテック社製)を使用した。例えば、Ptefとpenox1遺伝子及びTalpとを連結させる場合には、Ptefは配列番号10のリバースプライマーを用いて、Talpは配列番号11のフォワードプライマーを用いてPCR反応によりDNA断片を増幅させている。このとき、配列番号10のPtef増幅用のリバースプライマーには、5’末端にpenox1遺伝子(配列番号5)の5’末端と相補的な配列が15bp付加されており、配列番号11のTalp増幅用のフォワードプライマーには、5’末端にpenox1遺伝子(配列番号5)の3’末端と相同な配列が15bp付加されているため、In fusion反応により、Ptef、penox1遺伝子及びTalpとの連結が可能となる。このようにして、Ptef、penox1遺伝子又はpenox2遺伝子、Talp及びpyrG3が順に連結されたPtef-penox1-Talp-pyrG3、Ptef-penox2-Talp-pyrG3がpUC19プラスミドのマルチクローニングサイトに挿入されている発現ベクターp19-pG3-penox1及びp19-pG3-penox2を作製した。
・麹菌発現株の作製及び培養
 上記で取得した形質転換用プラスミドp19-pG3-penox1及びp19-pG3-penox2を用いて、アスペルギルス・ソーヤのpyrG遺伝子破壊株(pyrG遺伝子の上流48bp、コード領域896bp、下流240bp欠損株)に対しプロトプラストPEG法により形質転換を行い、penox1及びpenox2の発現カセットが多コピーで挿入されたアスペルギルス・ソーヤ形質転換株As-penox1株を9株、As-penox2株を6株取得した。
 取得したアスペルギルス・ソーヤ形質転換株As-penox1株及びAs-penox2株を50mL三角フラスコに入れた15mLのPPY液体培地(2%(w/v)パインデックス、1%(w/v)ポリペプトン、0.5%(w/v)酵母エキス、0.5%(w/v)リン酸2水素1カリウム、0.05%(w/v)硫酸マグネシウム・7水和物)に植菌し、30℃で4~5日間振とう培養を行った。
・菌糸抽出液の調製
 各As-penox1株及びAs-penox2株の培養液をMiracloth(メルクミリポア社製)を用いてろ過し、培養上清を取り除いて菌体を取得した。15mLの10mMリン酸カリウムバッファー(pH7.5)に再懸濁した後、Micro Smash MS-100R(トミー精工社製)を用いて菌体を破砕した。菌体破砕液を15,000rpmで15分間遠心分離して、上清を粗酵素液として回収した。
・菌糸抽出液のL-アルギニン酸化活性の測定
 各粗酵素液200μLを、150mM リン酸カリウムバッファー(pH 7.0)に溶解した7.1U/mL ペルオキシダーゼ、 0.70mM 4-アミノアンチピリン、0.79mM TOOS溶液380μLと混合して37℃で5分間インキュベートした後、60mM L-アルギニン溶液20μLを添加して撹拌し、37℃で5分間反応させた。反応中のA555の経時変化を分光光度計(U-3900、日立ハイテクサイエンス社製)で測定した。対照実験は、20μLの60 mM L-アルギニン溶液の代わりに20μLのイオン交換水を添加して実施した。37℃で1分間あたりに1μmolの過酸化水素を生成する酵素量を1unit(U)と定義し、下記の式に従って算出した。
  活性 (U/mL)={(ΔAs-ΔA0)×0.6×df}÷(39.2×0.5×0.2)
   ΔAs:反応液の1分間あたりのA555変化量
   ΔA0:対照実験の1分間あたりのA555変化量
   39.2:反応により生成されるキノンイミン色素のミリモル吸光係数 (mM-1・cm-1
   0.5:1molの過酸化水素による生成されるキノンイミン色素のmol数
   0.6:反応液全体の容量(mL)
   df:希釈係数
   0.2:酵素液の容量(mL)
 As-penox1株、As-penox2株の粗酵素液のL-アルギニン酸化活性は、最大で、それぞれ0.009U/mL(As-penox1-15株)、5.1U/mL(As-penox2-16株)であった。
(実施例6)菌糸抽出型組換えpenox2の精製
 As-penox2-16株の粗酵素液を、10mM リン酸カリウムバッファー(pH7.5)にバッファー置換した後、陰イオン交換クロマトグラフィーカラム(HiScreen CaptoQ、GEヘルスケア社製)を用いて分画した。まず、10mMリン酸カリウムバッファー(pH7.5)で平衡化したカラムに粗酵素液をロードし、酵素をカラムに吸着させた後に、10mMリン酸カリウムバッファー(pH7.5)でカラムを洗浄し、未吸着のタンパク質を溶出させた。その後、10mMリン酸カリウムバッファー(pH 7.5)に含まれる塩化ナトリウム濃度を0mMから40mMまで直線的に上昇させ、カラムに吸着したタンパク質を溶出させた。L-アルギニン酸化活性を示す画分をSDS-PAGEで分析し、夾雑タンパク質を含まない画分を精製PenOX2として回収した。回収した精製PenOX2溶液は、Amicon Ultra-15 Ultracel-30k (Millipore社製)を用いて、L-アルギニン酸化活性が24U/mLになるまで濃縮し、ペントシジン定量試験に用いた。
(実施例7)ペントシジン定量試験
 以下の試薬を調製し、Bio Majesty JCA-BM1650(日本電子社製)を利用してペントシジンを測定した。
(試料:ペントシジン溶液)
 0.2μM、0.4μM、0.6μM、1.0μM、2.0μM又は4.0μMペントシジン溶液
(第1試薬:Leuco色素、ペルオキシダーゼ溶液)
 120mM リン酸カリウムバッファー(pH7.0)
 0.2mM DA-67(10-(Carboxymethylaminocarbonyl)-3,7-bis(dimethylamino)phenothiazine, sodium salt)(和光純薬工業社製)
 3.0U/mL ペルオキシダーゼ
(第2試薬:PenOX2溶液)
 120mM リン酸カリウムバッファー(pH7.0)
 24U/mL PenOX2
 試料25μLを50μLの第1試薬に添加して37℃で5分間インキュベートした後、25μLの第2試薬を添加して、PenOX2によるペントシジン酸化反応と、前記反応によって生成される過酸化水素の検出反応を37℃で5分間進行させた。
 過酸化水素の検出反応では、ペルオキシダーゼが消費されると同時にDA-67が酸化されてメチレンブルーとなって呈色し、吸光度(A658)が上昇する。一例として、試料(4.0μM ペントシジン溶液)と第1試薬を混合してからの経過時間と吸光度(A658)の関係を図3に示した。PenOX2を含む第2試薬の添加直後からA658の上昇が確認できた。
 続いて、ペントシジンの酸化に起因するA658上昇量(ΔA)を下記の式に従って算出した。
 ΔA=(第2試薬添加5分後の吸光度)-(第2試薬添加直前の吸光度×0.75)
 (第2試薬の添加により反応液中の組成物の濃度は0.75倍(75/100倍)となるため、
  第2試薬添加直前の吸光度を0.75倍した値を第2試薬添加直後の吸光度とみなした。)
 ペントシジン終濃度とΔAとの間には相関関係が成立した(図4)。したがって、PenOX2はペントシジン酸化活性を示し、ペントシジンの定量に利用できることが示された。結果は示さないが、PenOX1も同様にペントシジン酸化活性を示した。
(実施例8)菌糸分泌型組換えpenox2の精製
 As-penox2株の菌糸培養液をMiracloth(メルクミリポア社製)を用いてろ過し、菌糸培養上清を回収した。得られた菌糸培養上清75mLを、ポアサイズ0.2μmのシリンジフィルターでフィルターろ過したのち限外ろ過膜(Amicon Ultra 15-30kD、メルク社製)で濃縮した。濃縮液に、硫酸アンモニウムを70%飽和となるように徐々に添加し、2時間、4℃で放置後、遠心(15,000rpm、4℃、5分)し、余分なタンパク質を沈殿させ、上清を回収した。回収した上清を、限外ろ過膜(Amicon Ultra 0.5-30kD、メルク社製)で濃縮した。
 これに、リン酸カリウムバッファー(pH7.5)および硫酸アンモニウムをそれぞれの終濃度が50mMおよび2Mになるように添加した後、疎水性相互作用クロマトグラフィー用カラム(HiTrap Butyl Fast Flow 1mL、GEヘルスケア社製)を用いて分画した。具体的な手順は、以下のとおりである。
 まず、2M 硫酸アンモニウムを含む50mM リン酸カリウムバッファー(pH7.5)で平衡化したカラムに粗酵素液をロードし、酵素をカラムに吸着させた後に、2M 硫酸アンモニウムを含む50mM リン酸カリウムバッファー(pH7.5) 10mLでカラムを洗浄し、未吸着のタンパク質を溶出させた。
 その後、1.5M、1.3M、1.15M 硫酸アンモニウムをそれぞれ含む50mM リン酸カリウムバッファー(pH7.5)を5mLずつ、さらに1M 硫酸アンモニウムを含む50mM リン酸カリウムバッファー(pH7.5)を10mL、硫酸アンモニウムを含まない50mM リン酸カリウムバッファー(pH7.5)を5mL、順次カラムに通すことで、カラムに吸着したタンパク質を溶出させた。
 粗酵素液をロードした際にカラムから溶出した液を「Flow through1」、硫酸アンモニウム2Mを含むバッファーによる洗浄時に溶出した液を「Elution1」、硫酸アンモニウム1.5M、1.3M、1.15M、1Mを含むバッファーで溶出した液をそれぞれ「Elution2」、「Elution3」、「Elution4」、「Elution5」、硫酸アンモニウムを含まないバッファーで溶出した液を「Elution6」とし、それぞれ異なる容器に回収した。
 分画したサンプルについて、ペントシジンとの反応性を解析した。その結果、1M 硫酸アンモニウムを含むリン酸カリウムバッファーで溶出したElution5に強い活性が認められ、ペントシジンオキシダーゼ(PenOX2)が含まれていることが示唆された。このElution5を、限外ろ過膜(Amicon Ultra 15-30kD、メルク社製)で濃縮し、硫酸アンモニウムを含まない50mM リン酸カリウムバッファー(pH7.5)にバッファー置換したのち再度限外ろ過膜(Amicon Ultra 15-30kD、メルク社製)で濃縮した。これを、イオン交換クロマトグラフィー用カラム(HiTrap Q Sepharose Fast Flow 1mL、GEヘルスケア社製)を用いて分画した。具体的な手順は、以下のとおりである。
 まず、50mM リン酸カリウムバッファー(pH7.5)で平衡化したカラムに粗酵素液をロードし、酵素をカラムに吸着させた後に、5mLの50mM リン酸カリウムバッファー(pH7.5)でカラムを洗浄し、未吸着のタンパク質を溶出させた。
 その後、50mM リン酸カリウムバッファー(pH7.5)に0.1Mの塩化ナトリウムを溶解した液を1mL 5回、同バッファーに0.175Mの塩化ナトリウムを溶解した液を1mL 5回、同バッファーに1Mの塩化ナトリウムを溶解した液を5mL 1回、順次カラムに通すことで、カラムに吸着したタンパク質を溶出させた。
 粗酵素液をロードした際にカラムから溶出した液を「Flow through2」、バッファーによる洗浄時に溶出した液を「Elution7」、塩化ナトリウムを含むバッファーで溶出した液をそれぞれ「Elution8-1」、「Elution8-2」、「Elution8-3」、「Elution8-4」、「Elution8-5」、「Elution9-1」、「Elution9-2」、「Elution9-3」、「Elution9-4」、「Elution9-5」、「Elution10」とし、それぞれ異なる容器に回収した。
 分画したサンプルについて、ペントシジンとの反応性を解析した。その結果、0.175M 塩化ナトリウムを含むリン酸カリウムバッファーで溶出したElution9-1およびElution9-2に強い活性が認められ、ペントシジンオキシダーゼが含まれていることが示唆された。活性画分Elution9-1およびElution9-2を等量ずつ混合したものをSDS-PAGEで分析したところ、ほぼ単一のバンドが得られた(分子量約80,000)。得られたこの活性画分を、以下の理化学的性質を決定するのに用いた。
(実施例9)アスペルギルス・ソーヤ形質転換株As-penox2株により生産されたPenOX2の理化学的性質
 PenOX2の理化学的性質を決定するために、以下の酵素活性の測定方法を用いた。
 任意のバッファー600μL、脱イオン水に溶解した3.99U/mL ペルオキシダーゼ、1.8mM 4-アミノアンチピリン、2mM TOOS溶液400μL、脱イオン水150μLを任意の温度で10分間インキュベートした後、氷上で保存していた酵素液50μL、任意の温度で10分間インキュベートした100mM リン酸カリウムバッファー(pH8.0)に溶解させた4mM ペントシジン溶液400μLを添加して撹拌し、任意の温度で3分間反応させた。反応中のA555の経時変化を分光光度計(U-3900、日立ハイテクサイエンス社製)で測定した。20秒から60秒までの測定開始後経過時間-A555変化量を活性値とみなした。
 さらに、37℃で1分間あたりに1μmolの過酸化水素を生成する酵素量を1unit(U)と定義し、下記の式に従って算出した。
  活性 (U/mL)={(ΔAs-ΔA0)×1.6×df}÷(39.2×0.5×0.05)
   ΔAs:反応液の1分間あたりのA555変化量
   ΔA0:対照実験の1分間あたりのA555変化量
   1.6:反応液全体の容量(mL)
   df:希釈係数
   39.2:反応により生成されるキノンイミン色素のミリモル吸光係数 (mM-1・cm-1
   0.5:1molの過酸化水素による生成されるキノンイミン色素のmol数
   0.05:酵素液の容量(mL)
 penox2の理化学的性質は、以下の通りであった。
(a)至適pHの範囲
 終濃度50mM クエン酸-100mM リン酸カリウムバッファー(pH4.0-7.5)、終濃度100mM リン酸カリウムバッファー(pH6.5-8.0)、終濃度100mM グリシンバッファー(pH8.0-11.0)となるように夫々のバッファーを調製し、これらを用いて、夫々のpHにおいて、温度37℃にて酵素反応を行なった。結果を図7に示す。PenOX2は、pH7.5において最も高い活性を示した。また、pH6.5-8.0でもリン酸カリウムバッファーpH7.5付近における活性値の70%以上を示したことから、PenOX2の至適pHはpH6.5-8.0であり、最も好ましい至適pHはpH7.5であると判断した。
(b)至適温度の範囲
 終濃度50mM リン酸カリウムバッファー(pH7.5)を用いて、種々の温度にてPenOX2の活性測定を行なった。結果を図8に示す。最も高い活性を示した温度である、50℃付近での活性に対して、80%以上の活性を示す温度範囲は37℃~50℃であった。以上から、PenOX2の至適温度の範囲は37℃~50℃であると判断した。
(c)熱安定性
 酵素液を各温度で10分間処理した時の残存活性を、終濃度100mM リン酸カリウムバッファー(活性測定時最終pH7.5)を用い温度37℃にて前記活性測定を行なうことで評価した。熱安定性の結果は、図9に示す通りであり、PenOX2は、30℃付近まで安定であった。
(d)安定pHの範囲
 緩衝液として、100mM クエン酸-200mM リン酸カリウムバッファー(pH3.0-6.5)、200mM リン酸カリウムバッファー(pH6.5-8.0)、200mM グリシンバッファー(pH8.0-10.0)を用いて、夫々のpHにおいて25℃で20時間処理した後、PenOX2の残存活性を測定した。結果を図10に示す。4℃で保存しておいたPenOX2の活性に対して90%以上の活性を示すpH範囲はpH4.5-7.5、60%以上の活性を示すpH範囲はpH4.0-9.0であった。
(e)ペントシジンに対する活性値
 前記活性測定方法において、終濃度50mM リン酸カリウムバッファー(活性測定時最終pH7.5)、37℃で活性測定を行ない、上記の計算式を用いて活性値(U/mL)を求めた。活性値は7.8U/mL、比活性は29.1U/mg(ブラッドフォード法)であることが判った。
(f)ペントシジンに対するKm値
 前記活性測定方法において、終濃度50mM リン酸カリウムバッファー(pH7.5)、37℃で、基質ペントシジンの濃度を変化させて活性測定を行ない、ラインウェーバー・バークプロットから、ミカエリス定数(Km)を求めた。結果を図11に示す。ペントシジンに対するKm値は0.14mMであることが判った。
(g)分子量
 Laemmliの方法に従って行なったSDS-PAGE法により分子量を求めた。電気泳動ゲルとしてはMini-PROTEAN TGX Stain-Free Precast Gels 4-20%(Bio-rad社製)を用い、分子量マーカーとしてはPrecision Plus Protein All Blue Prestained Protein Standardsを用いた。結果を図12に示す。PenOX2の分子量は、約80,000であった。
(実施例10)PenOX1及びPenOX2と配列相同性を持つ酵素のペントシジンオキシダーゼ活性測定
 前述の通りPenOX1及びPenOX2はいずれもペントシジンオキシダーゼ活性を有していた。BLASTプログラムを用いてアミノ酸配列の一致率を調べると、両者のアミノ酸配列相同性は38.2%であった。続いて以下の3酵素を購入し、前記活性測定方法において、終濃度100mM リン酸カリウムバッファー(pH7.5)、37℃で、ペントシジンオキシダーゼ活性を調べた。夫々のPenOX1及びPenOX2とのアミノ酸配列相同性、並びにペントシジンオキシダーゼ活性は以下の通りであった。
(a)Crotalus adamanteus由来アミノ酸オキシダーゼType VI(メルク社製)(配列番号12)
分子量:130,000
 本酵素のPenOX1及びPenOX2とのアミノ酸配列相同性は、夫々26.8%および23.5%であった。酵素濃度が1mg/mL(ビュレット法)になるよう脱イオン水で希釈して活性測定に用いた。本酵素のペントシジンオキシダーゼ活性は0.555(U/mL)、比活性は0.555(U/mg)であった。
(b)Crotalus atrox由来アミノ酸オキシダーゼType I(メルク社製)(配列番号13)
分子量:59,000(アミノ酸配列に基づく計算値)
 本酵素のPenOX1及びPenOX2とのアミノ酸配列相同性は、夫々26.3%および23.4%であった。酵素粉末1mgを1mLの脱イオン水で溶解して活性測定に用いた。本酵素のペントシジンオキシダーゼ活性は0.022(U/mL)、比活性は参考値として0.022(U/mg)であった。
(c)Trichoderma viride由来リジンオキシダーゼ(メルク社製)(配列番号14)
分子量:116,000

 本酵素のPenOX1及びPenOX2とのアミノ酸配列相同性は、夫々24.0%および23.3%であった。酵素粉末1mgを1mLの脱イオン水で溶解して活性測定に用いた。本酵素のペントシジンオキシダーゼ活性は0.063(U/mL)、比活性は参考値として0.063(U/mg)であった。本実施例で使用した酵素間の配列相同性を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (20)

  1.  ペントシジンを酸化的に分解する活性を有するタンパク質。
  2.  以下の理化学的性質:
    (1)作用:ペントシジンを酸化的に分解する活性;及び
    (2)SDS-PAGEによる分子量:75,000~85,000
    を有するタンパク質。
  3.  前記タンパク質が以下の(a)~(f)から成る群から選ばれるいずれかのタンパク質である、請求項1又は2に記載のタンパク質:
    (a)配列番号2又は4に記載のアミノ酸配列から成るタンパク質;
    (b)配列番号1、3、5又は6に記載の塩基配列から成る遺伝子によってコードされるタンパク質;
    (c)配列番号2又は4に記載のアミノ酸配列と75%以上の同一性を有するアミノ酸配列から成るタンパク質;
    (d)配列番号1、3、5又は6に記載の塩基酸配列と75%以上の同一性を有する塩基配列から成る遺伝子によってコードされるタンパク質;
    (e)配列番号2又は4に記載のアミノ酸配列の1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列から成るタンパク質;あるいは
    (f)配列番号1、3、5又は6に記載の塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるタンパク質。
  4.  前記活性が、ペントシジンの脱アミノ化生成物、過酸化水素及びアンモニアを生成する活性、又は酸素を消費する活性である、請求項1~3のいずれか1項に記載のタンパク質。
  5.  糸状菌に由来する、請求項1~4のいずれか1項に記載のタンパク質。
  6.  至適pHが約6.5~8.0である、請求項1~5のいずれか1項に記載のタンパク質。
  7.  至適温度が37~50℃である、請求項1~6のいずれか1項に記載のタンパク質。
  8.  30℃で10分間保存した後に前記活性が90%以上保持される、請求項1~7のいずれか1項に記載のタンパク質。
  9.  pH4.0~9.0の範囲で前記活性が60%以上保持される、請求項1~8のいずれか1項に記載のタンパク質。
  10.  ペントシジンに対するKm値が1mM以下である、請求項1~9のいずれか1項に記載のタンパク質。
  11.  請求項1~10のいずれか1項に記載のタンパク質をコードする、遺伝子。
  12.  前記遺伝子が以下の(a)~(f)から成る群から選ばれるいずれかの遺伝子である、請求項11に記載の遺伝子:
    (a)配列番号1、3、5又は6に記載の塩基配列から成る遺伝子;
    (b)配列番号2又は4に記載のアミノ酸配列をコードする遺伝子;
    (c)配列番号1、3、5又は6に記載の塩基配列と75%以上の同一性を有する塩基配列から成る遺伝子;
    (d)配列番号2又は4に記載のアミノ酸配列と75%以上の同一性を有するアミノ酸配列から成るタンパク質をコードする遺伝子;
    (e)配列番号2又は4に記載のアミノ酸配列の1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列から成るタンパク質をコードする遺伝子;あるいは
    (f)配列番号1、3、5又は6に記載の塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列から成る遺伝子。
  13.  請求項1~10のいずれか1項に記載のタンパク質、あるいは、請求項11又は12に記載の遺伝子を含む、キット。
  14.  請求項11又は12に記載の遺伝子を含む、組換えベクター。
  15.  請求項14に記載のベクターを含む、形質転換体。
  16.  請求項15に記載の形質転換体を用いて、請求項1~10のいずれか1項に記載のタンパク質を製造する方法。
  17.  請求項1~10のいずれか1項に記載のタンパク質と検体とを接触させる工程;及び
     当該接触により生じた変化を検出する工程、を含む、ペントシジンの測定方法。
  18.  酸素、過酸化水素又はアンモニアの量の変化が検出される、請求項17に記載の方法。
  19.  請求項1~10のいずれか1項に記載のタンパク質とペントシジンとを接触させる工程を含む、ペントシジンの反応生成物の製造方法。
  20.  反応生成物が過酸化水素又はアンモニアである、請求項19に記載の方法。
PCT/JP2019/007662 2018-02-27 2019-02-27 新規酵素及びそれを用いたペントシジンの測定方法 WO2019168062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020503592A JP7270600B2 (ja) 2018-02-27 2019-02-27 新規酵素及びそれを用いたペントシジンの測定方法
US16/975,681 US11932880B2 (en) 2018-02-27 2019-02-27 Enzyme and method for assaying pentosidine using same
EP19760851.6A EP3760724A4 (en) 2018-02-27 2019-02-27 NEW ENZYME AND METHOD FOR THE DETERMINATION OF PENTOSIDINE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033751 2018-02-27
JP2018033751 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019168062A1 true WO2019168062A1 (ja) 2019-09-06

Family

ID=67806239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007662 WO2019168062A1 (ja) 2018-02-27 2019-02-27 新規酵素及びそれを用いたペントシジンの測定方法

Country Status (4)

Country Link
US (1) US11932880B2 (ja)
EP (1) EP3760724A4 (ja)
JP (1) JP7270600B2 (ja)
WO (1) WO2019168062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039611A1 (ja) * 2019-08-27 2021-03-04 キッコーマン株式会社 ペントシジンの測定方法及び測定用キット
US11932880B2 (en) 2018-02-27 2024-03-19 Kikkoman Corporation Enzyme and method for assaying pentosidine using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738346B2 (ja) 1973-11-14 1982-08-14
JP2007222055A (ja) 2006-02-22 2007-09-06 Noda Inst For Scient Res 染色体領域欠失株の作製方法
JP2011239681A (ja) 2008-09-19 2011-12-01 Kikkoman Corp 麹菌アルカリプロテアーゼプロモーター
JP2018068292A (ja) 2016-10-26 2018-05-10 キッコーマン株式会社 糸状菌の形質転換方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116315D0 (en) 1991-07-29 1991-09-11 Genzyme Ltd Assay
JP3490184B2 (ja) * 1995-04-20 2004-01-26 キッコーマン株式会社 新規N−アルキルグリシンオキシダーゼ、その製造方法、この酵素を用いたNε−カルボキシメチルリジンの定量用試薬及びその定量方法
JP3615428B2 (ja) 1999-07-07 2005-02-02 株式会社伏見製薬所 蛋白結合型糖化蛋白を酵素免疫法で測定するための前処理方法
JP5288365B2 (ja) 2007-07-17 2013-09-11 学校法人東海大学 統合失調症の検査および治療
JP5738346B2 (ja) 2007-07-17 2015-06-24 公益財団法人東京都医学総合研究所 統合失調症の検査
JP2014118406A (ja) * 2012-12-19 2014-06-30 Concord Co Ltd Oph活性増強剤
US11932880B2 (en) 2018-02-27 2024-03-19 Kikkoman Corporation Enzyme and method for assaying pentosidine using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738346B2 (ja) 1973-11-14 1982-08-14
JP2007222055A (ja) 2006-02-22 2007-09-06 Noda Inst For Scient Res 染色体領域欠失株の作製方法
JP2011239681A (ja) 2008-09-19 2011-12-01 Kikkoman Corp 麹菌アルカリプロテアーゼプロモーター
JP2018068292A (ja) 2016-10-26 2018-05-10 キッコーマン株式会社 糸状菌の形質転換方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
AMANO, MARIE ET AL.: "Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine a-oxidase from Trichoderma viride", THE JOURNAL OF BIOCHEMISTRY, vol. 157, no. 6, 2015, pages 549 - 559, XP055634124, ISSN: 0021-924X *
METHODS IN ENZYMOLOGY, vol. 101, 1983, pages 20 - 78
MOL. GEN. GENET., vol. 218, 1989, pages 99 - 104
NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
OZEKI ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 59, 1995, pages 1133
PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 2268
PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
RAIBEKAS, ANDREI A. ET AL.: "Primary Structure of the Snake Venom L-Amino Acid Oxidase Shows High Homology with the Mouse B Cell Interleukin 4-Induced Fig1 Protein", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 248, no. 3, 1998, pages 476 - 478, XP055634095, ISSN: 0006-291X *
SCIENCE, vol. 227, 1985, pages 1435 - 1441
See also references of EP3760724A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932880B2 (en) 2018-02-27 2024-03-19 Kikkoman Corporation Enzyme and method for assaying pentosidine using same
WO2021039611A1 (ja) * 2019-08-27 2021-03-04 キッコーマン株式会社 ペントシジンの測定方法及び測定用キット
EP4023754A4 (en) * 2019-08-27 2023-09-27 Kikkoman Corporation METHOD FOR MEASURING PENTOSIDINE AND MEASURING KIT

Also Published As

Publication number Publication date
JPWO2019168062A1 (ja) 2021-02-18
JP7270600B2 (ja) 2023-05-10
EP3760724A1 (en) 2021-01-06
US11932880B2 (en) 2024-03-19
US20200407699A1 (en) 2020-12-31
EP3760724A4 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6460152B2 (ja) 新規なグルコース脱水素酵素
US9260699B2 (en) Glucose dehydrogenase
US9506042B2 (en) Glucose dehydrogenase
US7741100B2 (en) Method for highly expressing recombinant glucose dehydrogenase derived from filamentous fungi
JP2007289148A (ja) アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼの製造方法
JP2009225800A (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
US20140154777A1 (en) Novel glucose dehydrogenase
WO2013031664A1 (ja) フラビン結合型グルコースデヒドロゲナーゼ
JP6465156B2 (ja) 新規なグルコース脱水素酵素
JP2010193912A (ja) 糸状菌由来グルコースデヒドロゲナーゼを組換え体で高発現するための方法
JP5408125B2 (ja) 糸状菌由来フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(fadgdh)
WO2019168062A1 (ja) 新規酵素及びそれを用いたペントシジンの測定方法
JP4179384B2 (ja) アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼの製造方法
JP2008206433A (ja) グルコースデヒドロゲナーゼをコードするdna
JP4292486B2 (ja) アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼ
US7091017B2 (en) Fructosyl amino acid oxidase
WO2023140286A1 (ja) 組換え発現グルタミン酸オキシダーゼ
WO2021039611A1 (ja) ペントシジンの測定方法及び測定用キット
JP6342174B2 (ja) 新規なグルコースデヒドロゲナーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760851

Country of ref document: EP

Effective date: 20200928