WO2019168035A1 - リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019168035A1
WO2019168035A1 PCT/JP2019/007580 JP2019007580W WO2019168035A1 WO 2019168035 A1 WO2019168035 A1 WO 2019168035A1 JP 2019007580 W JP2019007580 W JP 2019007580W WO 2019168035 A1 WO2019168035 A1 WO 2019168035A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion secondary
secondary battery
lithium ion
electrode material
Prior art date
Application number
PCT/JP2019/007580
Other languages
English (en)
French (fr)
Inventor
和徳 小関
純之介 秋池
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020503571A priority Critical patent/JP6841971B2/ja
Publication of WO2019168035A1 publication Critical patent/WO2019168035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode active material layer made of the positive electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are used as large stationary power sources for power storage, power sources for electric vehicles, and the like, and in recent years, research on miniaturization and thinning of batteries has been progressing.
  • a lithium ion secondary battery includes both electrodes (a positive electrode and a negative electrode) in which an electrode active material layer is formed on the surface of a metal foil, and a separator disposed between both electrodes.
  • the separator plays a role of preventing a short circuit between both electrodes and holding an electrolytic solution.
  • a lithium metal oxide is used, for example, the lithium nickel cobalt aluminum type oxide which shows high charge / discharge capacity is known.
  • lithium hydroxide is used as a starting material for producing a lithium metal oxide. Therefore, a certain amount of lithium hydroxide remains in the positive electrode active material such as the above-described lithium nickel cobalt aluminum-based oxide, and this is known to cause deterioration in battery performance such as reduced discharge due to charge / discharge cycles.
  • lithium hydroxide is highly alkaline, and this causes gelation when the paste is prepared by mixing a positive electrode active material, a binder, a conductive additive, a solvent, etc. From the viewpoint of preventing acid, a technique of blending an acid has been disclosed (Patent Document 2).
  • the present invention provides a positive electrode material having good output characteristics and high density, a positive electrode active material layer comprising the positive electrode material, and the positive electrode active material when lithium nickel cobalt aluminum-based oxide is used as the positive electrode active material.
  • An object is to provide a lithium ion secondary battery including a material layer.
  • the present inventors have found that a positive electrode material containing a lithium nickel cobalt aluminum-based oxide that is a positive electrode active material and carbon nanotubes having a specific length and aspect ratio can solve the above-described problems.
  • the following present invention was completed.
  • the gist of the present invention is the following [1] to [11].
  • a positive electrode material for a lithium ion secondary battery having a carbon nanotube content of 0.1 to 10% by mass based on the total amount of the positive electrode material.
  • Positive electrode material for batteries [4] The positive electrode material for a lithium ion secondary battery according to the above [3], wherein the acid is an organic acid.
  • the organic acid is a divalent organic acid.
  • the fluorine-containing resin is polyvinylidene fluoride.
  • a positive electrode active material layer comprising the positive electrode material according to any one of [1] to [8].
  • a lithium ion secondary battery comprising a positive electrode having the positive electrode active material layer according to [9].
  • the lithium ion secondary battery according to [10] comprising the positive electrode, a negative electrode disposed so as to face the positive electrode, and a separator disposed between the positive electrode and the negative electrode.
  • the present invention it is possible to provide a positive electrode material having good output characteristics and high density, a positive electrode active material layer using the positive electrode material, and a lithium ion secondary battery including the positive electrode active material layer.
  • the positive electrode material for a lithium secondary battery of the present invention contains lithium nickel cobalt aluminum-based oxide and a specific carbon nanotube, and the positive electrode material is preferably a lithium ion. It constitutes the positive electrode active material layer in the positive electrode of the secondary battery.
  • the positive electrode material of the present invention contains a lithium nickel cobalt aluminum-based oxide.
  • the lithium nickel cobalt aluminum oxide is used as a positive electrode active material.
  • the lithium nickel cobalt aluminum-based oxide is obtained by replacing a part of nickel of lithium nickelate with aluminum and cobalt.
  • Lithium nickel cobalt aluminum-based oxide is expressed by Li t Ni 1-xy Co x Al y O 2 in the general formula (where 0.95 ⁇ t ⁇ 1.15, 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.2 and x + y ⁇ 0.5.).
  • the average particle size of the lithium nickel cobalt aluminum oxide is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m.
  • the average particle size of the lithium nickel cobalt aluminum-based oxide means a particle size (D50) at a volume integration of 50% in the particle size distribution of the lithium nickel cobalt aluminum-based oxide obtained by a laser diffraction / scattering method.
  • the content of the lithium nickel cobalt aluminum-based oxide in the positive electrode material is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, and even more preferably 70 to 96.5% by mass based on the total amount of the positive electrode material.
  • lithium nickel cobalt aluminum-based oxide is used as the positive electrode active material, but a positive electrode active material other than lithium nickel cobalt aluminum-based oxide may be used in combination as long as the effects of the present invention are not hindered.
  • positive electrode active materials other than lithium nickel cobalt aluminum oxide include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and olivine-type lithium iron phosphate (LiFePO 4).
  • NCM nickel cobalt manganese oxides.
  • the content of the lithium nickel cobalt aluminum oxide based on the total amount of the positive electrode active material is preferably 80% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass.
  • the positive electrode material of the present invention contains carbon nanotubes having a length of 1 to 20 ⁇ m and an aspect ratio (length / thickness ratio) of 80 to 5000.
  • the carbon nanotube functions as a conductive assistant, and by containing this, the output value is improved by decreasing the resistance value, and the positive electrode density is increased. This is because the carbon nanotubes having a specific shape can easily fill the gaps between the lithium nickel cobalt aluminum-based oxides, which are the positive electrode active materials, so that the positive electrode active materials can be easily conducted and the voids in the positive electrode materials are reduced. It is thought that it is easy to increase the density.
  • the length of the carbon nanotube used for the positive electrode material of the present invention is less than 1 ⁇ m, it becomes difficult to fill the gaps between the positive electrode active materials, and the positive electrode density tends to decrease. If the length of the carbon nanotube exceeds 20 ⁇ m, the carbon nanotube in the positive electrode material tends to be poorly dispersed, and the positive electrode density and output characteristics tend to be lowered.
  • the length of the carbon nanotube is preferably 3 to 10 ⁇ m, more preferably 4 to 8 ⁇ m.
  • the length of the carbon nanotubes is an average value of the individual lengths of the plurality of carbon nanotubes. Specifically, the length of each of the 20 carbon nanotubes is determined from an image observed with a scanning electron microscope. Obtained and obtained as the average value.
  • the aspect ratio (length / thickness ratio) of the carbon nanotube used for the positive electrode material of the present invention is 80 to 5000.
  • the aspect ratio of the carbon nanotube is preferably 1000 to 4000, more preferably 2000 to 3000.
  • the aspect ratio is the ratio of the length to the thickness (diameter) of the carbon nanotube.
  • the aspect ratio is an average value of the aspect ratios of a plurality of carbon nanotubes.
  • the aspect ratio of 20 carbon nanotubes is obtained from an image observed with a scanning electron microscope and obtained as the average value. It is done.
  • the content of carbon nanotubes in the positive electrode material is 0.1 to 10% by mass based on the total amount of the positive electrode material.
  • the content of the carbon nanotubes exceeds 10% by mass, the content of the positive electrode active material is relatively lowered and the output characteristics are deteriorated.
  • the content of the carbon nanotube is less than 0.1% by mass, the resistance of the positive electrode material tends to be high, and the output characteristics are deteriorated.
  • the content of carbon nanotubes in the positive electrode material is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass, based on the total amount of the positive electrode material.
  • carbon nanotubes are used as a conductive additive, but a conductive additive other than carbon nanotubes may be used in combination as long as the effects of the present invention are not hindered.
  • conductive aids other than carbon nanotubes include ketjen black, acetylene black, and rod-like carbon.
  • the content of carbon nanotubes based on the total amount of the conductive assistant is preferably 80% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass.
  • the positive electrode material of the present invention preferably contains a binder.
  • the positive electrode material is configured by binding the lithium nickel cobalt aluminum-based oxide and the carbon nanotube to the binder.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene (PTFE), polymethyl acrylate (PMA), poly Acrylic resins such as methyl methacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile butadiene rubber, styrene butadiene rubber, poly (meth) acrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, and polyvinyl alcohol
  • binders may be used individually by 1 type, and 2 or more types may be used together.
  • carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
  • a fluorine-containing resin is preferable, and among the fluorine-containing resins, it is preferable to use polyvinylidene fluoride (PVDF).
  • the binder content in the positive electrode material is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and still more preferably 2 to 4% by mass, based on the total amount of the positive electrode material. .
  • the positive electrode material is preferably formed of a composition for positive electrode material described later.
  • the composition for positive electrode material preferably contains an acid in order to neutralize an alkali such as lithium hydroxide contained in the lithium nickel cobalt aluminum-based oxide. Therefore, the positive electrode material formed from the positive electrode material composition containing an acid inevitably contains a neutralized salt that accompanies a reaction between an acid and an alkali contained in the composition.
  • the neutralized salt in the positive electrode material is usually 0.01 to 10% by mass, preferably 0.3 to 2% by mass, more preferably 0.5 to 1.5% by mass, based on the total amount of the positive electrode material. %.
  • the positive electrode material of the present invention can constitute a positive electrode active material layer of a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes a positive electrode active material layer made of the positive electrode material.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery 10 includes a positive electrode 12, a negative electrode 11 disposed so as to face the positive electrode 12, and a separator 13 disposed between the positive electrode 12 and the negative electrode 11.
  • the negative electrode 11 includes a negative electrode current collector 11a and a negative electrode active material layer 11b laminated on the negative electrode current collector 11a.
  • the positive electrode 12 has a positive electrode current collector 12a and a positive electrode current collector 12a. And a positive electrode active material layer 12b made of the positive electrode material of the present invention. Since the positive electrode active material layer 12b made of the positive electrode material of the present invention contains a specific amount of lithium nickel cobalt aluminum-based oxide and a specific carbon nanotube, the lithium ion secondary battery 10 including the positive electrode active material layer 12b has a positive electrode density. Is high and the output characteristics are good. Note that an insulating layer (not shown) may be provided between the negative electrode active material layer 11 b and the separator 13 or between the positive electrode active material layer 12 b and the separator 13. By providing the insulating layer, a short circuit between the positive electrode 12 and the negative electrode 11 can be effectively prevented.
  • the positive electrode in the lithium ion secondary battery of the present invention has a positive electrode active material layer made of the positive electrode material of the present invention, preferably a positive electrode current collector and a positive electrode active material layer laminated on the positive electrode current collector.
  • a material which comprises a positive electrode electrical power collector the metal which has electroconductivity, such as copper, aluminum, titanium, nickel, stainless steel, etc. are mentioned, for example, Preferably aluminum or copper, More preferably, aluminum is used.
  • the positive electrode current collector is generally made of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the positive electrode material is preferably formed from a composition for positive electrode material.
  • the composition for positive electrode material is a composition containing the above-described lithium nickel cobalt aluminum-based oxide, carbon nanotube, and binder.
  • the composition for positive electrode material preferably further contains a solvent.
  • the composition for positive electrode materials turns into a slurry. What is necessary is just to adjust content of each component in the composition for positive electrode materials so that content of each component except a solvent may turn into content described in the above-mentioned positive electrode material.
  • the lithium nickel cobalt aluminum-based oxide contained in the composition for the positive electrode material contains an alkaline substance such as lithium hydroxide, and due to this, gelation proceeds in the composition to increase the viscosity.
  • the positive electrode active material layer cannot be formed on the current collector.
  • a fluorine-containing resin particularly polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • a composition for positive electrode material formed by mixing an acid As the composition for positive electrode material, it is preferable to use a composition for positive electrode material formed by mixing an acid as the composition for positive electrode material.
  • an acid By using an acid, gelation in the composition can be suppressed even when a fluorine-containing resin is contained as a binder, particularly when polyvinylidene fluoride (PVDF) is contained.
  • the acid may be an inorganic acid or an organic acid, but is preferably an organic acid, and more preferably a divalent organic acid. Examples of the divalent organic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, etc.
  • the blending amount of the acid in the positive electrode material composition is preferably 0.1 to 10% by mass based on the total amount of the positive electrode material composition. When it is 0.1% by mass or more, gelation is easily suppressed, and when it is 10% by mass or less, it is easy to suppress an increase in resistance of the positive electrode material.
  • the content of the acid in the composition for the positive electrode material is more preferably 0.2 to 8% by mass, still more preferably 0.5 to 3% by mass, based on the total amount of the positive electrode material.
  • standard for positive electrode materials means the whole quantity reference
  • the negative electrode in the lithium ion secondary battery of the present invention has a negative electrode active material layer, preferably a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector.
  • the negative electrode active material layer typically includes a negative electrode active material and a negative electrode binder.
  • Examples of the negative electrode active material used in the negative electrode active material layer include carbon materials such as graphite and hard carbon, composites of tin compounds and silicon and carbon, lithium, and the like. Among these, carbon materials are preferable, and graphite is preferable. More preferred.
  • the negative electrode active material is not particularly limited, but the average particle diameter is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the average particle diameter of the negative electrode active material means a particle diameter (D50) at a volume integration of 50% in the particle size distribution of the negative electrode active material obtained by a laser diffraction / scattering method.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the negative electrode active material layer.
  • the negative electrode binder contained in the negative electrode active material layer the same type of binder as that used in the positive electrode material described above can be used.
  • the content of the negative electrode binder in the negative electrode active material layer is preferably 1.5 to 40% by mass, more preferably 2.0 to 25% by mass, based on the total amount of the negative electrode active material layer.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably 10 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the negative electrode current collector examples include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, and copper is more preferable.
  • the negative electrode current collector is generally made of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the lithium ion secondary battery of this invention is equipped with the separator arrange
  • the short circuit between the positive electrode and the negative electrode is effectively prevented by the separator.
  • the separator may hold an electrolyte described later.
  • the separator include a porous polymer film, a nonwoven fabric, and glass fiber. Among these, a porous polymer film is preferable.
  • the porous polymer film include olefin-based porous films such as ethylene-based porous films.
  • the lithium ion secondary battery of the present invention may include an insulating layer on the negative electrode active material layer or the positive electrode active material layer.
  • the insulating layer effectively prevents a short circuit between the positive electrode and the negative electrode.
  • the insulating layer is preferably a layer having a porous structure including insulating fine particles and an insulating layer binder, the insulating fine particles being bound by the insulating layer binder.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles.
  • Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (2-acrylamido-2-methylpropane sulfonate lithium), Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin.
  • Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, fluorine And particles composed of inorganic compounds such as lithium fluoride, clay, zeolite, and calcium carbonate.
  • the inorganic particles may be particles composed of a known composite oxide such as niobium-tantalum composite oxide or magnesium-tantalum composite oxide.
  • the insulating fine particles may be used alone or in combination of two or more.
  • the average particle diameter of the insulating fine particles is not particularly limited as long as it is smaller than the thickness of the insulating layer, and is, for example, 0.001 to 1 ⁇ m, preferably 0.05 to 0.8 ⁇ m, more preferably 0.1 to 0.6 ⁇ m. is there.
  • the content of the insulating fine particles contained in the insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and still more preferably 60 to 85% by mass based on the total amount of the insulating layer. When the content of the insulating fine particles is within the above range, the insulating layer can form a uniform porous structure and is provided with appropriate insulating properties.
  • the binder for the insulating layer the same kind as the binder used in the above positive electrode material can be used.
  • the content of the insulating layer binder in the insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and still more preferably 15 to 40% by mass based on the total amount of the insulating layer.
  • the thickness of the insulating layer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, still more preferably 3 to 7 ⁇ m.
  • the lithium ion secondary battery of the present invention includes an electrolyte.
  • the electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used.
  • an electrolytic solution is used as the electrolyte.
  • the electrolytic solution include an electrolytic solution containing an organic solvent and an electrolyte salt.
  • the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, and tetrohydra.
  • Examples thereof include polar solvents such as furan, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, or a mixture of two or more of these solvents.
  • Examples of the electrolyte salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ). 2 and lithium-containing salts such as LiN (COCF 2 CF 3 ) 2 , lithium bisoxalate borate (LiB (C 2 O 4 ) 2.
  • the electrolyte may be a gel electrolyte that further includes a polymer compound in the electrolyte solution.
  • the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacrylic polymer such as poly (meth) methyl acrylate.
  • the gel electrolyte may be used as a separator.
  • the electrolyte may be disposed between the negative electrode and the positive electrode.
  • the electrolyte solution is filled in a battery cell in which the negative electrode, the positive electrode, and the separator described above are housed.
  • the electrolyte may be applied on the negative electrode or the positive electrode and disposed between the negative electrode and the positive electrode.
  • the lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and positive electrodes are stacked.
  • the negative electrode and the positive electrode may be provided alternately along the stacking direction.
  • the separator may be disposed between each negative electrode and each positive electrode, and when an insulating layer is provided, it may be provided between the negative electrode and the separator or between the positive electrode and the separator.
  • the obtained lithium ion secondary battery was evaluated by the following evaluation method.
  • the viscosity increase value is evaluated according to the following criteria, and it is determined that gelation is progressing as the value increases.
  • the viscosity increase value is less than 500 cps B: The viscosity increase value is 500 cps or more and less than 1500 cps C: The viscosity increase value is 1500 cps or more and less than 2500 cps D: The viscosity increase value is 2500 cps or more
  • the density of the obtained positive electrode active material layer was evaluated according to the following criteria.
  • the lithium ion secondary batteries produced in the examples and comparative examples were evaluated by determining the discharge capacity as follows. A constant current charge of 20 A was performed, and then the current was decreased as soon as 4.2 V was reached, and a constant voltage charge was completed when the charge reached 0.2 A. Thereafter, a constant current discharge of 200 A was performed, and when the discharge was performed to 2.5 V, a discharge was completed, and the discharge capacity was calculated. The output characteristics were evaluated according to the following criteria.
  • A Compared to the discharge capacity of constant current of 2A, the discharge capacity of 200A is 30% or more
  • B Compared to discharge capacity of constant current of 2A, the discharge capacity of 200A is 20% or more and less than 30%
  • C Constant current of 2A Compared to discharge capacity, discharge capacity of 200A is 10% or more and less than 20%
  • D Discharge capacity of 200A is less than 10% compared to discharge capacity of constant current of 2A
  • Example 1 (Preparation of positive electrode) 94 parts by mass of lithium nickel cobalt aluminum-based oxide (NCA: Li 1.0 Ni 0.8 Co 0.16 Al 0.03 O 2 ) having an average particle diameter of 10 ⁇ m as a positive electrode active material and 2 parts by mass of carbon nanotubes Then, 3 parts by mass of polyvinylidene fluoride (PVDF) as a binder, 1 part by mass of oxalic acid as an acid, and N-methylpyrrolidone (NMP) as a solvent were mixed. The carbon nanotubes (CNTs) having a length of 5 ⁇ m and an aspect ratio of 2778 were used. This obtained the composition for positive electrode materials adjusted to solid content concentration 60 mass%.
  • NCA lithium nickel cobalt aluminum-based oxide
  • NMP N-methylpyrrolidone
  • This composition for positive electrode material was applied on both surfaces of a 15 ⁇ m thick aluminum foil as a positive electrode current collector, pre-dried and then vacuum dried at 120 ° C. Thereafter, the positive electrode current collector coated with the composition for the positive electrode material on both sides is roll-pressed at 400 kN / m, and further punched into 100 mm ⁇ 200 mm squares of electrode dimensions to have the positive electrode material (positive electrode active material layer) on both sides. A positive electrode was obtained.
  • LiPF 6 as an electrolyte salt is dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 (EC: DEC) so as to be 1 mol / liter. Prepared.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 2 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the carbon nanotube was changed to a length of 15 ⁇ m and an aspect ratio of 100. The evaluation results are shown in Table 1.
  • Example 3 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the acid type was changed to maleic acid. The evaluation results are shown in Table 1.
  • Example 1 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the carbon nanotube was changed to a length of 60 ⁇ m and an aspect ratio of 8000. The evaluation results are shown in Table 1.
  • Example 2 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the type of the positive electrode active material was changed to nickel manganese cobalt oxide (NMC). The evaluation results are shown in Table 1.
  • Example 3 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the carbon nanotube was changed to a length of 30 ⁇ m and an aspect ratio of 12000. The evaluation results are shown in Table 1.
  • Example 4 A lithium ion secondary battery was performed in the same manner as in Example 1 except that carbon-based conductive particles having a length of 0.05 ⁇ m and an aspect ratio of 1 (Denka Black HS-100 manufactured by Denka) were used instead of carbon nanotubes. It was created.
  • Example 5 The same as in Example 1 except that 3 parts by mass of vapor grown carbon fiber having a length of 6 ⁇ m and an aspect ratio of 40 (trade name “VGCF-H”, manufactured by Showa Denko KK) was used instead of carbon nanotubes. Thus, a lithium ion secondary battery was prepared.
  • the lithium ion secondary batteries of Examples 1 to 3 using the positive electrode material for lithium ion secondary batteries of the present invention had a high positive electrode density and good output characteristics.
  • the density of the positive electrode was lower than that of Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、リチウムニッケルコバルトアルミニウム系酸化物と、カーボンナノチューブとを含む正極材料であって、前記カーボンナノチューブの長さが1~20μmであり、アスペクト比(長さ/太さ比)が80~5000であり、かつ正極材料全量基準におけるカーボンナノチューブの含有量が0.1~10質量%である、リチウムイオン二次電池用正極材料である。本発明によれば、リチウムイオン二次電池としたときの出力特性が良好で、密度の高いリチウムイオン二次電池用正極材料を提供することができる。

Description

リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極材料、該リチウムイオン二次電池用正極材料からなる正極活物質層、及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。リチウムイオン二次電池は、金属箔の表面に電極活物質層を形成した両電極(正極及び負極)と、両電極の間に配置されるセパレータを備えるものが一般的である。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。
 リチウムイオン二次電池の正極に用いられる正極活物質としては、一般にリチウム金属酸化物が用いられ、例えば、高い充放電容量を示すリチウムニッケルコバルトアルミニウム系酸化物が知られている。
 一般に、リチウム金属酸化物を製造するための出発原料として水酸化リチウムが用いられている。そのため、上記したリチウムニッケルコバルトアルミニウム系酸化物等の正極活物質には、水酸化リチウムが一定量残存しており、これが原因で充放電サイクルによる放電低下などの電池性能が低下することが知られている(特許文献1)。また、水酸化リチウムはアルカリ性が高く、これに起因して、正極活物質、バインダー、導電助剤、溶媒等を混合してペーストを作成したときに、該ペーストがゲル化してしまうため、ゲル化を防ぐ観点から、酸を配合する技術が開示されている(特許文献2)。
特開2001-283849号公報 特開平10-79244号公報
 しかしながら、リチウムニッケルコバルトアルミニウム系酸化物に含有される水酸化リチウムを中和するために、酸を配合するとゲル化は抑制されるものの、正極の抵抗が高くなり、リチウムイオン二次電池としての出力特性が低下してしまう。
 そこで、本発明は、リチウムニッケルコバルトアルミニウム系酸化物を正極活物質として使用した場合において、出力特性が良好で、かつ密度の高い正極材料、該正極材料からなる正極活物質層、及び該正極活物質層を備えるリチウムイオン二次電池を提供することを課題とする。
 本発明者らは、鋭意検討の結果、正極活物質であるリチウムニッケルコバルトアルミニウム系酸化物と、長さ及びアスペクト比が特定範囲のカーボンナノチューブを含有する正極材料が、上記課題を解決できることを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]~[11]である。
[1]リチウムニッケルコバルトアルミニウム系酸化物と、カーボンナノチューブとを含む正極材料であって、前記カーボンナノチューブの長さが1~20μmであり、アスペクト比(長さ/太さ比)が80~5000であり、かつ正極材料全量基準におけるカーボンナノチューブの含有量が0.1~10質量%である、リチウムイオン二次電池用正極材料。
[2]さらにバインダーを含む、上記[1]に記載のリチウムイオン二次電池用正極材料。
[3]リチウムニッケルコバルトアルミニウム系酸化物と、カーボンナノチューブと、バインダーと、酸とを配合してなる正極材料用組成物により形成された上記[1]又は[2]に記載のリチウムイオン二次電池用正極材料。
[4]前記酸が有機酸である、上記[3]に記載のリチウムイオン二次電池用正極材料。
[5]前記有機酸が二価の有機酸である、上記[4]に記載のリチウムイオン二次電池用正極材料。
[6]前記酸の配合量が、前記正極材料用組成物全量基準で0.1~10質量%である、上記[3]~[5]のいずれかに記載のリチウムイオン二次電池用正極材料。
[7]前記バインダーが、フッ素含有樹脂である、上記[2]~[6]のいずれかに記載のリチウムイオン二次電池用正極材料。
[8]前記フッ素含有樹脂が、ポリフッ化ビニリデンである、上記[7]に記載のリチウムイオン二次電池用正極材料。
[9]上記[1]~[8]のいずれかに記載の正極材料からなる正極活物質層。
[10]上記[9]に記載の正極活物質層を有する正極を備える、リチウムイオン二次電池。
[11]前記正極と、正極と対向するように配置される負極と、正極と負極の間に配置されるセパレータとを備える、上記[10]に記載のリチウムイオン二次電池。
 本発明によれば、出力特性が良好で密度の高い正極材料、該正極材料を用いた正極活物質層、及び該正極活物質層を備えるリチウムイオン二次電池を提供することができる。
本発明のリチウムイオン二次電池の一実施形態を示す概略断面図である。
<リチウムイオン二次電池用正極材料>
 本発明のリチウム二次電池用正極材料(以下、正極材料ともいう)は、リチウムニッケルコバルトアルミニウム系酸化物と、特定のカーボンナノチューブを含有するものであり、該正極材料は、好ましくは、リチウムイオン二次電池の正極における正極活物質層を構成するものである。
(リチウムニッケルコバルトアルミニウム系酸化物)
 本発明の正極材料は、リチウムニッケルコバルトアルミニウム系酸化物を含有する。該リチウムニッケルコバルトアルミニウム系酸化物は、正極活物質として用いられる。リチウムニッケルコバルトアルミニウム系酸化物を用いることで、リチウムイオン二次電池の充放電容量を向上させることができる。
 リチウムニッケルコバルトアルミニウム系酸化物は、ニッケル酸リチウムのニッケルの一部をアルミニウム及びコバルトで置換したものである。リチウムニッケルコバルトアルミニウム系酸化物は、一般式ではLitNi1-x-yCoAl(但し、0.95≦t≦1.15、0<x≦0.3、0<y≦0.2、x+y≦0.5を満たす。)と表される。
 リチウムニッケルコバルトアルミニウム系酸化物の平均粒子径は0.5~50μmであることが好ましく、1~30μmであることがより好ましい。リチウムニッケルコバルトアルミニウム系酸化物の平均粒子径は、レーザー回折・散乱法によって求めたリチウムニッケルコバルトアルミニウム系酸化物の粒度分布において、体積積算が50%での粒径(D50)を意味する。
 正極材料におけるリチウムニッケルコバルトアルミニウム系酸化物の含有量は、正極材料全量基準で50~98.5質量%が好ましく、60~98質量%がより好ましく、70~96.5重量%がさらに好ましい。
 本発明では、リチウムニッケルコバルトアルミニウム系酸化物を正極活物質として用いるが、本発明の効果を妨げない範囲において、リチウムニッケルコバルトアルミニウム系酸化物以外の正極活物質を併用してもよい。リチウムニッケルコバルトアルミニウム系酸化物以外の正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)、NCM(ニッケルコバルトマンガン)系酸化物などが挙げられる。
 正極活物質全量基準におけるリチウムニッケルコバルトアルミニウム系酸化物の含有量は、80質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることが更に好ましい。
(カーボンナノチューブ)
 本発明の正極材料は、長さが1~20μmであり、アスペクト比(長さ/太さ比)が80~5000であるカーボンナノチューブを含有する。該カーボンナノチューブは導電助剤として機能するものであり、これを含有することで、抵抗値が下がることにより出力特性が向上し、かつ正極密度が高くなる。これは、特定の形状を有するカーボンナノチューブが正極活物質であるリチウムニッケルコバルトアルミニウム系酸化物間の空隙を埋めやすいため、正極活物質同士を導通させやすくし、かつ正極材料中の空隙を減少させて密度を高めやすいからと考えられる。
 本発明の正極材料に用いるカーボンナノチューブの長さが1μm未満であると正極活物質間の空隙を埋め難くなり、正極密度が低下しやすい傾向がある。カーボンナノチューブの長さが20μmを超えると正極材料中のカーボンナノチューブの分散不良を生じやすく、正極密度及び出力特性が低下する傾向がある。カーボンナノチューブの長さは好ましくは3~10μmであり、より好ましくは4~8μmである。なお、カーボンナノチューブの長さは複数のカーボンナノチューブの個々の長さの平均値であり、具体的には、走査型電子顕微鏡により観察された画像から、20個のカーボンナノチューブのそれぞれの長さを求め、その平均値として得られる。
 本発明の正極材料に用いるカーボンナノチューブのアスペクト比(長さ/太さ比)は80~5000である。カーボンナノチューブのアスペクト比が80未満であると、正極活物質間の空隙を埋め難くなり、正極密度が低下しやすい傾向がある。カーボンナノチューブのアスペクト比が5000を超えると正極材料中のカーボンナノチューブの分散不良を生じやすく、正極密度及び出力特性が低下する傾向がある。
 カーボンナノチューブのアスペクト比は好ましくは1000~4000であり、より好ましくは2000~3000である。なお、アスペクト比はカーボンナノチューブの太さ(直径)に対する長さの比である。なお、アスペクト比は複数のカーボンナノチューブのアスペクト比の平均値であり、具体的には、走査型電子顕微鏡により観察された画像から、20個のカーボンナノチューブのアスペクト比を求め、その平均値として得られる。
 正極材料中のカーボンナノチューブの含有量は、正極材料全量基準で、0.1~10質量%である。カーボンナノチューブの含有量が10質量%を超えると、正極活物質の含有量が相対的に低下し、出力特性が悪くなる。カーボンナノチューブの含有量が0.1質量%未満であると、正極材料の抵抗が高くなり易く、出力特性が悪くなる。正極材料中のカーボンナノチューブの含有量は、正極材料全量基準で好ましくは0.5~5質量%であり、より好ましくは1~4質量%である。
 本発明は、カーボンナノチューブを導電助剤として用いるが、本発明の効果を妨げない範囲において、カーボンナノチューブ以外の導電助剤を併用してもよい。カーボンナノチューブ以外の導電助剤としては、ケッチェンブラック、アセチレンブラック、棒状カーボンなどが挙げられる。
 導電助剤全量基準におけるカーボンナノチューブの含有量は、80質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることが更に好ましい。
 本発明の正極材料は、好ましくはバインダーを含有する。これにより正極材料は、リチウムニッケルコバルトアルミニウム系酸化物及びカーボンナノチューブがバインダーに結着されて構成される。
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロースなどは、ナトリウム塩などの塩の態様にて使用されていてもよい。これらの中でも、フッ素含有樹脂であることが好ましく、フッ素含有樹脂の中でもポリフッ化ビニリデン(PVDF)を使用することが好ましい。
 正極材料におけるバインダーの含有量は、正極材料全量基準で、0.1~10質量%であることが好ましく、0.5~5質量%がより好ましく、2~4質量%であることが更に好ましい。
 正極材料は、好ましくは後述する正極材料用組成物により形成される。該正極材料用組成物は、リチウムニッケルコバルトアルミニウム系酸化物に含まれる水酸化リチウムなどのアルカリを中和するため、好ましくは酸を含有する。そのため、酸を含有する正極材料用組成物により形成される正極材料には、組成物中に含まれる酸とアルカリとの反応に伴う中和塩が不可避的に含有される。正極材料中の中和塩は、正極材料全量基準で、通常は0.01~10質量%であり、好ましくは0.3~2質量%であり、より好ましくは0.5~1.5質量%である。
<リチウムイオン二次電池>
 本発明の正極材料は、リチウムイオン二次電池の正極活物質層を構成することができる。本発明のリチウムイオン二次電池は、該正極材料からなる正極活物質層を備えるものである。
 図1は、本発明のリチウムイオン二次電池の一実施形態を示す概略断面図である。リチウムイオン二次電池10は、正極12と、正極12と対向するように配置される負極11と、正極12と負極11との間に配置されるセパレータ13とを備えている。
 負極11は負極集電体11aと、負極集電体11aの上に積層された負極活物質層11bとを備えており、正極12も同様に、正極集電体12aと、正極集電体12aの上に積層された本発明の正極材料からなる正極活物質層12bとを備えている。本発明の正極材料からなる正極活物質層12bはリチウムニッケルコバルトアルミニウム系酸化物及び特定のカーボンナノチューブを特定量含有するため、該正極活物質層12bを備えるリチウムイオン二次電池10は、正極密度が高く、出力特性が良好となる。
 なお、負極活物質層11bとセパレータ13との間、又は正極活物質層12bとセパレータ13との間に図示しない絶縁層を設けてもよい。絶縁層を設けることにより、正極12と負極11との間の短絡が有効に防止できるようになる。
(正極)
 本発明のリチウムイオン二次電池における正極は、本発明の正極材料からなる正極活物質層を有し、好ましくは正極集電体と、正極集電体上に積層された正極活物質層とを有する。正極集電体を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、好ましくはアルミニウム又は銅、より好ましくはアルミニウムが使用される。正極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
 正極材料は、正極材料用組成物から形成されることが好ましい。正極材料用組成物は、上記したリチウムニッケルコバルトアルミニウム系酸化物、カーボンナノチューブ、バインダーを含む組成物である。正極材料用組成物は、さらに溶剤を含有することが好ましい。正極材料用組成物は一般的にスラリーになる。正極材料用組成物中の各成分の含有量は、溶剤を除いた各成分の含有量が、上記した正極材料において説明した含有量となるように調整すればよい。
 正極材料用組成物を、正極集電体上に塗布することにより、正極集電体上に正極材料からなる正極活物質層が形成される。正極材料用組成物に含まれるリチウムニッケルコバルトアルミニウム系酸化物は、水酸化リチウムなどのアルカリ性物質を含有するものであり、これが原因で、組成物中でゲル化が進行して高粘度化し、正極集電体上に正極活物質層を形成できない場合がある。特に、バインダーとしてフッ素含有樹脂、中でもポリフッ化ビニリデン(PVDF)を用いた時にゲル化が顕著に発生しやすい。
 このようなゲル化を防ぐ目的で、正極材料用組成物としては、酸を配合してなる正極材料用組成物を用いることが好ましい。酸を用いることで、バインダーとしてフッ素含有樹脂を含有させた場合、特にポリフッ化ビニリデン(PVDF)を含有させた場合でも、組成物中のゲル化を抑制することができる。
 酸としては、無機酸でも有機酸でもよいが、有機酸であることが好ましく、二価の有機酸であることがより好ましい。
 二価の有機酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸などが挙げられ、中でもシュウ酸、マレイン酸が好ましく、シュウ酸がより好ましい。
 正極材料用組成物中の酸の配合量は、正極材料用組成物全量基準で、0.1~10質量%であることが好ましい。0.1質量%以上であるとゲル化が抑制されやすく、10質量%以下であると、正極材料の抵抗を高くなるのを抑制しやすくなる。正極材料用組成物中の酸の含有量は、正極材料全量基準で、より好ましくは0.2~8質量%であり、更に好ましくは0.5~3質量%である。なお、上記正極材料用組成物全量基準とは、正極材料用組成物の固形分の全量基準を意味する。
(負極)
 本発明のリチウムイオン二次電池における負極は、負極活物質層を有し、好ましくは負極集電体と、負極集電体上に積層された負極活物質層とを有する。負極活物質層は、典型的には、負極活物質と、負極用バインダーとを含む。
 負極活物質層に使用される負極活物質としては、グラファイト、ハードカーボンなどの炭素材料、スズ化合物とシリコンと炭素の複合体、リチウムなどが挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。
 負極活物質は、特に限定されないが、その平均粒子径が0.5~50μmであることが好ましく、1~30μmであることがより好ましい。負極活物質の平均粒子径は、レーザー回折・散乱法によって求めた負極活物質の粒度分布において、体積積算が50%での粒径(D50)を意味する。
 負極活物質層における負極活物質の含有量は、負極活物質層全量基準で、50~98.5質量%が好ましく、60~98質量%がより好ましい。
 負極活物質層は、導電助剤を含有してもよい。導電助剤は、上記負極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボンなどの炭素材料などが挙げられる。
 負極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、負極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
 負極活物質層に含有される負極用バインダーとしては、上記した正極材料にて使用されるバインダーと同種のものが使用できる。
 負極活物質層における負極用バインダーの含有量は、負極活物質層全量基準で、1.5~40質量%であることが好ましく、2.0~25質量%がより好ましい。
 負極活物質層の厚みは、特に限定されないが、10~200μmであることが好ましく、50~150μmであることがより好ましい。
 負極集電体を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、銅がより好ましい。負極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
 (セパレータ)
 本発明のリチウムイオン二次電池は、負極と正極との間に配置されるセパレータを備える。セパレータにより、正極及び負極の間の短絡が効果的に防止される。また、セパレータは、後述する電解質を保持してもよい。
 セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、エチレン系多孔質フィルムなどのオレフィン系多孔質フィルムが例示される。
 (絶縁層)
 本発明のリチウムイオン二次電池は、負極活物質層上又は正極活物質層上に絶縁層を備えるものであってもよい。絶縁層により正極及び負極の間の短絡が効果的に防止される。絶縁層は、好ましくは、絶縁性微粒子と絶縁層用バインダーとを含み、絶縁性微粒子が絶縁層用バインダーによって結着されて構成された多孔質構造を有する層である。
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。絶縁性微粒子は1種を単独で用いてもよいし、複数種を併用してもよい。
 絶縁性微粒子の平均粒子径は、絶縁層の厚さよりも小さければ特に限定されず、例えば0.001~1μm、好ましくは0.05~0.8μm、より好ましくは0.1~0.6μmである。
 絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは15~95質量%、より好ましくは40~90質量%、更に好ましくは60~85質量%である。絶縁性微粒子の含有量が上記範囲内であると、絶縁層は、均一な多孔質構造が形成でき、かつ適切な絶縁性が付与される。
 絶縁層用バインダーとしては、上記した正極材料にて使用されるバインダーと同種のものが使用できる。絶縁層における絶縁層用バインダーの含有量は、絶縁層全量基準で、5~50質量%であることが好ましく、10~45質量%がより好ましく、15~40質量%が更に好ましい。
 絶縁層の厚さは、1~10μmが好ましく、2~8μmがより好ましく、3~7μmが更に好ましい。
 (電解質)
 本発明のリチウムイオン二次電池は、電解質を備える。電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテートなどの極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 また、電解質は、上記電解液に更に高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
 電解質は、負極及び正極間に配置されればよく、例えば、電解質液は、上記した負極、正極、及びセパレータが内部に収納されたバッテリーセル内に充填される。また、電解質は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
 リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータは各負極と各正極の間に配置されればよく、絶縁層を設ける場合は、負極-セパレータ間又は正極-セパレータ間に設ければよい。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 得られたリチウムイオン二次電池は、以下の評価方法により評価した。
(増粘評価)
 正極材料用組成物を作製した直後の粘度と、室温(25℃)で4日経過後の正極材料用組成物の粘度を測定した。4日経過後の正極材料用組成物の粘度の値から、正極材料用組成物を作製した直後の粘度を差し引いて、粘度上昇値を求めた。
 なお、粘度の測定は、B型粘度計を用いて、条件(25℃、100rpm)において測定した。
 粘度上昇値を以下の基準により評価して、その値が大きいものほど、ゲル化が進行していると判断される。
A:粘度上昇値が500cps未満
B:粘度上昇値が500cps以上1500cps未満
C:粘度上昇値が1500cps以上2500cps未満
D:粘度上昇値が2500cps以上
(正極活物質層の密度評価)
 正極活物質層の密度は、次のようにして測定することができる。まず、正極を所定の大きさ(例えば、直径16mm)で打ち抜いた測定試料を複数枚準備する。各測定試料の質量を精密天秤にて秤量し、質量を測定する。予め測定した正極集電体の質量を測定結果から差し引くことにより、測定試料中の正極活物質層の質量を算出することができる。また、断面出し加工した測定試料をSEMで観察するなどの公知の方法によって、正極活物質層の厚みを測定する。各測定値の平均値から下記式(1)に基づいて、正極活物質層の密度を算出することができる。
 正極活物質層の密度(g/cc)=正極活物質層の質量(g)/[正極活物質層の厚み(cm)×打ち抜いた正極の面積(cm)]・・・(1)
 得られた正極活物質層の密度を以下の基準で評価した。
A:3.50g/cc以上
B:3.45g/cc以上3.50g/cc未満
C:3.40g/cc以上3.45g/cc未満
D:3.40g/cc未満
(出力特性評価)
 各実施例、比較例で作製したリチウムイオン二次電池について、以下のように放電容量を求めることで評価した。
 20Aの定電流充電を行い、次いで4.2V到達次第電流を減少させ0.2Aとなった時点で充電完了する定電圧充電を行った。その後、200Aの定電流放電を行い、2.5Vまで放電させた時点で放電完了とする放電を行い、放電容量を計算した。以下の基準で出力特性を評価した。
A:2Aの定電流の放電容量に比べ、200Aの放電容量が30%以上
B:2Aの定電流の放電容量に比べ、200Aの放電容量が20%以上30%未満
C:2Aの定電流の放電容量に比べ、200Aの放電容量が10%以上20%未満
D:2Aの定電流の放電容量に比べ、200Aの放電容量が10%未満
[実施例1]
(正極の作製)
 正極活物質として平均粒子径10μmのリチウムニッケルコバルトアルミニウム系酸化物(NCA:Li1.0Ni0.8Co0.16Al0.03)を94質量部と、カーボンナノチューブを2質量部と、バインダーとしてポリフッ化ビニリデン(PVDF)3質量部と、酸としてシュウ酸1質量部と、溶媒としてのN-メチルピロリドン(NMP)とを混合した。上記したカーボンナノチューブ(CNT)は長さ5μm、アスペクト比2778のものを用いた。これにより、固形分濃度60質量%に調整した正極材料用組成物を得た。この正極材料用組成物を、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極材料用組成物を塗布した正極集電体を、400kN/mでロールプレスし、更に電極寸法の100mm×200mm角に打ち抜いて、両面に正極材料(正極活物質層)を有する正極とした。
(負極の作製)
 負極活物質としてグラファイト(平均粒子径10μm)100質量部と、バインダーとしてスチレンブタジエンゴム1.5質量部、カルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、溶媒として水とを混合し、固形分50質量%に調整した負極材料用組成物を得た。この負極材料用組成物を、負極集電体としての厚さ15μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に負極材料用組成物を塗布した負極集電体を、線圧500kN/mでロールプレスし負極とした。なお、負極の寸法は110mm×210mmであった。
(電解液の調製)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(リチウムイオン二次電池の製造)
 上記で得た負極10枚と、正極9枚と、セパレータ18枚を積層し仮積層体を得た。ここで、負極と正極は交互に配置して、各負極と正極の間にセパレータを配置した。また、セパレータとしては、ポリエチレン製多孔質フィルムを用いた。
 各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
 次いで、アルミラミネートフィルムで上記積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止した。封止せずに残した一辺から、上記で得た電解液を注入し、真空封止することによってラミネート型のセルを製造した。
 得られたリチウムイオン二次電池の評価結果を表1に示す。
[実施例2]
 カーボンナノチューブを長さ15μm、アスペクト比を100のものに変更した以外は、実施例1と同様にしてリチウムイオン二次電池を得た。評価結果を表1に示す。
[実施例3]
 酸の種類をマレイン酸に変更した以外は、実施例1と同様にしてリチウムイオン二次電池を得た。評価結果を表1に示す。
[比較例1]
 カーボンナノチューブを長さ60μm、アスペクト比を8000のものに変更した以外は、実施例1と同様にしてリチウムイオン二次電池を得た。評価結果を表1に示す。
[比較例2]
 正極活物質の種類をニッケルマンガンコバルト系酸化物(NMC)に変更した以外は、実施例1と同様にしてリチウムイオン二次電池を得た。評価結果を表1に示す。
[比較例3]
 カーボンナノチューブを長さ30μm、アスペクト比を12000のものに変更した以外は、実施例1と同様にしてリチウムイオン二次電池を得た。評価結果を表1に示す。
[比較例4]
 カーボンナノチューブの代わりに、長さが0.05μm、アスペクト比が1のカーボン系導電粒子(デンカ社製 デンカブラックHS-100)を使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作成した。
[比較例5]
 カーボンナノチューブの代わりに、長さが6μm、アスペクト比が40の気相成長カーボンファイバー(昭和電工株式会社製、商品名「VGCF-H」)を3質量部使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作成した。
[参考例1]
 酸を使用しなかった以外は、実施例1と同様にして実験を行った。正極材料用組成物の粘度が高すぎて、正極を作製することができなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明のリチウムイオン二次電池用正極材料を用いた実施例1~3のリチウムイオン二次電池は、正極の密度が高く、出力特性も良好になることが分かった。
 一方、本発明のリチウムイオン二次電池用電極を用いない比較例1~5のリチウムイオン電池は、いずれも実施例1~3よりも正極の密度が低かった。
 10  リチウムイオン二次電池
 11  負極
 11a 負極集電体
 11b 負極活物質層
 12  正極
 12a 正極集電体
 12b 正極活物質層
 13  セパレータ

Claims (11)

  1.  リチウムニッケルコバルトアルミニウム系酸化物と、カーボンナノチューブとを含む正極材料であって、前記カーボンナノチューブの長さが1~20μmであり、アスペクト比(長さ/太さ比)が80~5000であり、かつ正極材料全量基準におけるカーボンナノチューブの含有量が0.1~10質量%である、リチウムイオン二次電池用正極材料。
  2.  さらにバインダーを含む、請求項1に記載のリチウムイオン二次電池用正極材料。
  3.  リチウムニッケルコバルトアルミニウム系酸化物と、カーボンナノチューブと、バインダーと、酸とを配合してなる正極材料用組成物により形成された請求項1又は2に記載のリチウムイオン二次電池用正極材料。
  4.  前記酸が有機酸である、請求項3に記載のリチウムイオン二次電池用正極材料。
  5.  前記有機酸が二価の有機酸である、請求項4に記載のリチウムイオン二次電池用正極材料。
  6.  前記酸の配合量が、前記正極材料用組成物全量基準で0.1~10質量%である、請求項3~5のいずれかに記載のリチウムイオン二次電池用正極材料。
  7.  前記バインダーが、フッ素含有樹脂である、請求項2~6のいずれかに記載のリチウムイオン二次電池用正極材料。
  8.  前記フッ素含有樹脂が、ポリフッ化ビニリデンである、請求項7に記載のリチウムイオン二次電池用正極材料。
  9.  請求項1~8のいずれかに記載の正極材料からなる正極活物質層。
  10.  請求項9に記載の正極活物質層を有する正極を備える、リチウムイオン二次電池。
  11.  前記正極と、正極と対向するように配置される負極と、正極と負極の間に配置されるセパレータとを備える、請求項10に記載のリチウムイオン二次電池。
PCT/JP2019/007580 2018-02-27 2019-02-27 リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池 WO2019168035A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503571A JP6841971B2 (ja) 2018-02-27 2019-02-27 リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033836 2018-02-27
JP2018033836 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019168035A1 true WO2019168035A1 (ja) 2019-09-06

Family

ID=67805386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007580 WO2019168035A1 (ja) 2018-02-27 2019-02-27 リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JP6841971B2 (ja)
TW (1) TW201939798A (ja)
WO (1) WO2019168035A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090382A (zh) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 一种锂离子电池生产用新型调浆装置及其调浆方法
WO2021194097A1 (ko) * 2020-03-25 2021-09-30 삼성에스디아이 주식회사 리튬 이차 전지
KR20210120379A (ko) * 2020-03-26 2021-10-07 삼성에스디아이 주식회사 리튬 이차 전지
WO2022070891A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極および非水電解質二次電池
JP2022114665A (ja) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質層形成用材料および該正極活物質層形成用材料を用いた非水電解質二次電池
JP2022138392A (ja) * 2021-03-10 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20230109306A (ko) * 2022-01-13 2023-07-20 에스케이온 주식회사 리튬 이차 전지용 양극 슬러리, 리튬 이차 전지용 양극의 제조 방법, 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
US11929503B2 (en) 2020-08-20 2024-03-12 Prime Planet Energy & Solutions, Inc. Positive electrode for secondary battery and secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079244A (ja) * 1996-09-04 1998-03-24 Toray Ind Inc 電極およびそれを用いた非水電解液系二次電池
JP2013122859A (ja) * 2011-12-12 2013-06-20 Panasonic Corp 非水電解質二次電池
JP2014509046A (ja) * 2011-02-07 2014-04-10 ユミコア 低可溶性塩基含有量の高ニッケルカソード材料
WO2016068258A1 (ja) * 2014-10-29 2016-05-06 株式会社 東芝 正極及び非水電解質電池
JP2016134218A (ja) * 2015-01-16 2016-07-25 日本電気株式会社 リチウムイオン二次電池
WO2017110661A1 (ja) * 2015-12-25 2017-06-29 株式会社日立製作所 リチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709586B2 (ja) * 2014-08-26 2020-06-17 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2016058257A (ja) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017142997A (ja) * 2016-02-10 2017-08-17 戸田工業株式会社 ニッケル酸リチウム−炭素複合体正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079244A (ja) * 1996-09-04 1998-03-24 Toray Ind Inc 電極およびそれを用いた非水電解液系二次電池
JP2014509046A (ja) * 2011-02-07 2014-04-10 ユミコア 低可溶性塩基含有量の高ニッケルカソード材料
JP2013122859A (ja) * 2011-12-12 2013-06-20 Panasonic Corp 非水電解質二次電池
WO2016068258A1 (ja) * 2014-10-29 2016-05-06 株式会社 東芝 正極及び非水電解質電池
JP2016134218A (ja) * 2015-01-16 2016-07-25 日本電気株式会社 リチウムイオン二次電池
WO2017110661A1 (ja) * 2015-12-25 2017-06-29 株式会社日立製作所 リチウムイオン二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571752B1 (ko) * 2020-03-25 2023-08-25 삼성에스디아이 주식회사 리튬 이차 전지
WO2021194097A1 (ko) * 2020-03-25 2021-09-30 삼성에스디아이 주식회사 리튬 이차 전지
KR20210119778A (ko) * 2020-03-25 2021-10-06 삼성에스디아이 주식회사 리튬 이차 전지
KR20210120379A (ko) * 2020-03-26 2021-10-07 삼성에스디아이 주식회사 리튬 이차 전지
KR102643670B1 (ko) * 2020-03-26 2024-03-04 삼성에스디아이 주식회사 리튬 이차 전지
US11929503B2 (en) 2020-08-20 2024-03-12 Prime Planet Energy & Solutions, Inc. Positive electrode for secondary battery and secondary battery
CN112090382A (zh) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 一种锂离子电池生产用新型调浆装置及其调浆方法
WO2022070891A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極および非水電解質二次電池
JP2022114665A (ja) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質層形成用材料および該正極活物質層形成用材料を用いた非水電解質二次電池
JP7461309B2 (ja) 2021-01-27 2024-04-03 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質層形成用材料および該正極活物質層形成用材料を用いた非水電解質二次電池
JP2022138392A (ja) * 2021-03-10 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
JP7219783B2 (ja) 2021-03-10 2023-02-08 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20230109306A (ko) * 2022-01-13 2023-07-20 에스케이온 주식회사 리튬 이차 전지용 양극 슬러리, 리튬 이차 전지용 양극의 제조 방법, 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR102623098B1 (ko) * 2022-01-13 2024-01-08 에스케이온 주식회사 리튬 이차 전지용 양극 슬러리, 리튬 이차 전지용 양극의 제조 방법, 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
TW201939798A (zh) 2019-10-01
JP6841971B2 (ja) 2021-03-10
JPWO2019168035A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
US20220255122A1 (en) Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
JP6841971B2 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
KR102564970B1 (ko) 음극 및 이를 포함하는 이차전지
WO2019156031A1 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP2019179724A (ja) 二次電池
KR20210143980A (ko) 이차전지
CN111542954A (zh) 正极和包括所述正极的二次电池
JP2019153557A (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP2007080583A (ja) 二次電池用電極と二次電池
WO2015132845A1 (ja) 全固体電池
WO2020050285A1 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用電極
JP4120439B2 (ja) リチウムイオン2次電池
JP2020126733A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6709991B2 (ja) リチウムイオン二次電池
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
CN112385058B (zh) 锂离子二次电池用正极材料、正极活性物质层和锂离子二次电池
KR102567400B1 (ko) 이차전지
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2019220356A (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池
JP2015133296A (ja) 非水電解質二次電池
JP6876879B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法
JP2019169377A (ja) 正極及びリチウムイオン二次電池
WO2020158306A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761274

Country of ref document: EP

Kind code of ref document: A1