WO2019167610A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2019167610A1
WO2019167610A1 PCT/JP2019/004940 JP2019004940W WO2019167610A1 WO 2019167610 A1 WO2019167610 A1 WO 2019167610A1 JP 2019004940 W JP2019004940 W JP 2019004940W WO 2019167610 A1 WO2019167610 A1 WO 2019167610A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
mol
lfsi
Prior art date
Application number
PCT/JP2019/004940
Other languages
English (en)
French (fr)
Inventor
西谷 仁志
出口 正樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020502914A priority Critical patent/JPWO2019167610A1/ja
Priority to EP19761129.6A priority patent/EP3761429A4/en
Priority to CN201980014126.5A priority patent/CN111742436A/zh
Priority to US16/975,870 priority patent/US20200403222A1/en
Publication of WO2019167610A1 publication Critical patent/WO2019167610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Patent Document 1 As a method for suppressing the deterioration of the cycle characteristics, for example, a method of including polyacrylic acid in the negative electrode (Patent Document 1, etc.) can be mentioned.
  • the polyacrylic acid When an electrolyte is included in a negative electrode containing polyacrylic acid, the polyacrylic acid may swell. When the polyacrylic acid swells, the binding force of the polyacrylic acid between the negative electrode active material particles or between the negative electrode active material particles and the negative electrode current collector decreases. Since the Si-containing material has a large expansion / contraction during charging / discharging, the internal resistance is likely to increase due to the decrease in the binding force accompanying the expansion of the polyacrylic acid, and the cycle characteristics are also likely to deteriorate.
  • one aspect of the present invention includes a positive electrode, a negative electrode, and an electrolytic solution
  • the negative electrode includes a negative electrode active material capable of electrochemically inserting and extracting lithium
  • a binder includes an acrylic resin
  • the electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent
  • the lithium salt relates to a non-aqueous electrolyte secondary battery including lithium bis (fluorosulfonyl) imide: LFSI.
  • nonaqueous electrolyte secondary battery having a high capacity, a low internal resistance, and excellent cycle characteristics.
  • a nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution.
  • a negative electrode contains the negative electrode active material which can occlude and discharge
  • the negative electrode active material includes a Si-containing material.
  • the binder includes an acrylic resin.
  • the electrolytic solution includes a non-aqueous solvent and a lithium salt (solute) dissolved in the non-aqueous solvent.
  • the lithium salt is lithium bis (fluorosulfonyl) imide: LiN (SO 2 F) 2 (hereinafter also referred to as LFSI). .)including.
  • the negative electrode active material contains a Si-containing material
  • a high capacity can be obtained.
  • the Si-containing material has a large expansion / contraction during charging / discharging, the internal resistance tends to increase and the cycle characteristics also tend to deteriorate.
  • an increase in internal resistance and a decrease in cycle characteristics are significantly suppressed by using an acrylic resin as the binder and including LFSI in the electrolytic solution. This is because, when an electrolyte containing LFSI is contained in a negative electrode containing an acrylic resin, swelling of the acrylic resin is suppressed, and a high binding force of the acrylic resin is maintained, and the negative electrode active material particles are bonded to each other or between the negative electrode active materials. This is because an increase in contact resistance between the material particles and the negative electrode current collector is suppressed.
  • the swelling of the acrylic resin is suppressed, it is not necessary to increase the amount of the acrylic resin in consideration of the decrease in the binding force due to the swelling of the acrylic resin. Therefore, even with a small amount (for example, 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material), the binding force can be secured. Therefore, the amount of the negative electrode active material included in the negative electrode can be sufficiently secured, and the capacity can be increased. Moreover, the increase in the viscosity of the negative electrode slurry can be avoided when the amount of the acrylic resin is increased.
  • factors that affect the degree of swelling of the acrylic resin include the ion concentration of the electrolytic solution and the ion concentration of the acrylic resin when the negative electrode containing the acrylic resin contains the electrolytic solution.
  • the ion concentration of the electrolytic solution is smaller than the ion concentration of the acrylic resin, the tendency for the solvent to penetrate from the outside to the inside of the acrylic resin increases to reduce the ion concentration in the acrylic resin, and the acrylic resin easily swells.
  • LFSI has a high degree of dissociation, and the Li ion concentration of the electrolytic solution tends to be high, which is considered to be one of the factors for suppressing swelling of the acrylic resin.
  • the acrylic resin is a polymer containing at least one selected from the group consisting of (meth) acrylic acid units and (meth) acrylate units.
  • the polymer may be a homopolymer or a copolymer.
  • the total of (meth) acrylic acid units and (meth) acrylate units is, for example, preferably 50 mol% or more, and more preferably 80 mol% or more.
  • “(meth) acrylic acid unit” means at least one selected from the group consisting of “acrylic acid unit” and “methacrylic acid unit”.
  • the acrylic resin contains at least a (meth) acrylate unit because it is easy to prepare a negative electrode slurry and is advantageous in improving battery characteristics.
  • examples of (meth) acrylates include alkali metal salts such as lithium salts and sodium salts, ammonium salts, and the like. Among these, from the viewpoint of reducing internal resistance, a lithium salt of (meth) acrylic acid is preferable, and a lithium salt of acrylic acid is more preferable.
  • the ratio (neutralization degree) in which the hydrogen atom of the carboxyl group is replaced with an alkali metal atom or the like among the carboxyl groups contained in the acrylic resin is: It is preferable that it is 50% or more.
  • acrylic resin examples include copolymers containing repeating units of polyacrylic acid, polymethacrylic acid, acrylic acid and / or methacrylic acid (acrylic acid-methacrylic acid copolymer, ethylene-acrylic acid copolymer, etc.) Or a salt thereof. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the weight average molecular weight of the acrylic resin is preferably 3,000 or more and 10,000,000 or less.
  • the weight average molecular weight of the acrylic resin is within the above range, the effect of improving the cycle characteristics and the effect of reducing the internal resistance by the acrylic resin are sufficiently obtained, and the gelation (viscosity increase) of the negative electrode slurry is suppressed, and the negative electrode Easy to make.
  • the content of the acrylic resin in the negative electrode is preferably 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material.
  • the content of the acrylic resin in the negative electrode is 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material, the amount of the negative electrode active material is sufficiently secured, so that the capacity can be further increased. In this case, the flexibility of the negative electrode is sufficiently secured, and the cycle characteristics are further improved.
  • the viscosity of the negative electrode slurry can be lowered, and the negative electrode slurry can be easily prepared.
  • the content of the acrylic resin in the negative electrode is more preferably 0.4 parts by mass or more and 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material.
  • the content of the acrylic resin in the negative electrode is 0.4 parts by mass or more per 100 parts by mass of the negative electrode active material, the effect of improving cycle characteristics and the effect of reducing internal resistance by the acrylic resin are sufficiently obtained.
  • the content of the acrylic resin in the negative electrode is 0.5 parts by mass or more and 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material.
  • the electrolytic solution may further contain LiPF 6 in addition to LFSI as a lithium salt that dissolves in the non-aqueous solvent.
  • LiPF 6 easily forms a passive film on the surface of a member constituting a battery such as an outer can.
  • the passive film has a role of protecting the member.
  • the ratio of LFSI in the total of LFSI and LiPF 6 is preferably 7 mol% or more and 79 mol% or less, and more preferably 15 mol% or more and 50 mol% or less.
  • the lithium salt may further contain another lithium salt in addition to LFSI and LiPF 6 , but the ratio of the total amount of LFSI and LiPF 6 in the lithium salt is preferably 80 mol% or more, and more preferably 90 mol% or more. By controlling the ratio of the total amount of LFSI and LiPF 6 in the lithium salt within the above range, a battery having excellent cycle characteristics can be easily obtained.
  • the total concentration of LFSI and LiPF 6 in the electrolytic solution is preferably 1 mol / L or more and 2 mol / L or less. It is preferable that the concentration of LFSI in the electrolytic solution is 0.1 mol / L or more and 1.1 mol / L or less, and the concentration of LiPF 6 in the electrolytic solution is 0.3 mol / L or more and 1.3 mol / L or less.
  • the negative electrode active material includes a Si-containing material (such as a negative electrode material LSX described later) that electrochemically occludes and releases lithium ions from the viewpoint of increasing the capacity of the negative electrode.
  • a Si-containing material such as a negative electrode material LSX described later
  • the negative electrode active material preferably further includes a carbon material that electrochemically occludes and releases lithium ions.
  • the proportion of the carbon material in the total of the Si-containing material and the carbon material is preferably 98% by mass or less, more preferably 70% by mass or more and 98% by mass, More preferably, it is 75 mass% or more and 95 mass% or less.
  • Examples of the carbon material used for the negative electrode active material include graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), and the like. Of these, graphite is preferable because it has excellent charge / discharge stability and low irreversible capacity.
  • Graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like.
  • a carbon material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the nonaqueous electrolyte secondary battery includes, for example, the following negative electrode, positive electrode, and electrolytic solution.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector and including a negative electrode active material.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which the negative electrode mixture is dispersed in a dispersion medium to the surface of the negative electrode current collector and drying it. You may roll the coating film after drying as needed.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture includes a negative electrode active material and a binder as essential components, and can include a conductive agent, a thickener, and the like as optional components.
  • the negative electrode active material preferably contains at least the Si-containing material and further contains the carbon material.
  • Si-containing material examples include silicon oxide (SiO x : 0.5 ⁇ x ⁇ 1.5), lithium silicate phase, and a composite material containing silicon particles dispersed in the lithium silicate phase (hereinafter referred to as “negative electrode material”).
  • negative electrode material examples include silicon oxide (SiO x : 0.5 ⁇ x ⁇ 1.5), lithium silicate phase, and a composite material containing silicon particles dispersed in the lithium silicate phase (hereinafter referred to as “negative electrode material”).
  • negative electrode material LSX “or simply” LSX "). The higher the content of silicon particles in the negative electrode material LSX, the larger the negative electrode capacity.
  • the lithium silicate phase is preferably represented by a composition formula Li y SiO z and satisfies 0 ⁇ y ⁇ 8 and 0.2 ⁇ z ⁇ 6. More preferably, the composition formula is represented by Li 2u SiO 2 + u (0 ⁇ u ⁇ 2).
  • the lithium silicate phase has fewer sites capable of reacting with lithium than SiO x , which is a composite of SiO 2 and fine silicon, and is less likely to cause irreversible capacity associated with charge and discharge.
  • SiO x which is a composite of SiO 2 and fine silicon
  • excellent charge / discharge efficiency can be obtained at the initial stage of charge / discharge.
  • content of a silicon particle can be changed arbitrarily, a high capacity
  • capacitance negative electrode can be designed.
  • the crystallite size of silicon particles dispersed in the lithium silicate phase is, for example, 10 nm or more. Silicon particles have a particulate phase of silicon (Si) alone. When the crystallite size of the silicon particles is 10 nm or more, the surface area of the silicon particles can be kept small, so that the silicon particles are not easily deteriorated with the generation of irreversible capacity.
  • the crystallite size of the silicon particles is calculated by the Scherrer equation from the half-value width of the diffraction peak attributed to the Si (111) surface of the X-ray diffraction (XRD) pattern of the silicon particles.
  • the negative electrode material LSX is also excellent in structural stability. This is because the silicon particles are dispersed in the lithium silicate phase, so that the expansion and contraction of the negative electrode material LSX accompanying charge / discharge is suppressed. From the viewpoint of suppressing cracks in the silicon particles themselves, the average particle size of the silicon particles is preferably 500 nm or less, more preferably 200 nm or less, and even more preferably 50 nm or less before the first charge. After the first charge, the average particle size of the silicon particles is preferably 400 nm or less, and more preferably 100 nm or less. By miniaturizing the silicon particles, the volume change during charging and discharging is reduced, and the structural stability of the negative electrode material LSX is further improved.
  • the average particle diameter of the silicon particles is measured by observing a cross-sectional SEM (scanning electron microscope) photograph of the negative electrode material LSX. Specifically, the average particle diameter of the silicon particles is obtained by averaging the maximum diameters of arbitrary 100 silicon particles. Silicon particles are formed by a plurality of crystallites gathering together.
  • the content of silicon particles in the negative electrode material LSX may be, for example, 30% by mass or more, and preferably 35% by mass or more from the viewpoint of increasing the capacity. In this case, the diffusibility of lithium ions is good, and it becomes easy to obtain excellent load characteristics.
  • the content of silicon particles in the negative electrode material LSX is preferably 95% by mass or less, and more preferably 75% by mass or less. This is because the surface of the silicon particles exposed without being covered with the lithium silicate phase is reduced, and the reaction between the electrolytic solution and the silicon particles is easily suppressed.
  • the content of silicon particles can be measured by Si-NMR.
  • desirable measurement conditions for Si-NMR are shown.
  • Measuring apparatus Varian, solid nuclear magnetic resonance spectrum measuring apparatus (INOVA-400) Probe: Varian 7mm CPMAS-2 MAS: 4.2 kHz MAS speed: 4 kHz Pulse: DD (45 ° pulse + signal capture time 1H decoupled) Repeat time: 1200 sec Observation width: 100 kHz Observation center: around -100 ppm Signal capture time: 0.05 sec Integration count: 560 Sample amount: 207.6 mg The composition of the lithium silicate phase Li y SiO z can be analyzed, for example, by the following method.
  • the mass of the sample of the negative electrode material LSX is measured. Thereafter, the contents of carbon, lithium and oxygen contained in the sample are calculated as follows. Next, the carbon content is subtracted from the mass of the sample to calculate the lithium and oxygen content in the remaining amount, and the ratio of y and z is determined from the molar ratio of lithium (Li) and oxygen (O).
  • Carbon content is measured using a carbon / sulfur analyzer (for example, EMIA-520 manufactured by Horiba, Ltd.).
  • a sample is measured on a magnetic board, a combustion aid is added, it is inserted into a combustion furnace (carrier gas: oxygen) heated to 1350 ° C., and the amount of carbon dioxide gas generated during combustion is detected by infrared absorption.
  • the calibration curve is, for example, Bureau of Analyzed Sample. It is made using carbon steel made by Ltd (carbon content 0.49%), and the carbon content of the sample is calculated (high frequency induction furnace combustion-infrared absorption method).
  • the oxygen content is measured using an oxygen / nitrogen / hydrogen analyzer (eg, EGMA-830 model manufactured by Horiba, Ltd.).
  • a sample is put into a Ni capsule, and it is put into a carbon crucible heated at an electric power of 5.75 kW together with Sn pellets and Ni pellets as fluxes, and the released carbon monoxide gas is detected.
  • a calibration curve is prepared using the standard sample Y 2 O 3 and the oxygen content of the sample is calculated (inert gas melting-non-dispersive infrared absorption method).
  • the lithium content was determined by dissolving the sample completely with hot hydrofluoric acid (mixed acid of hot hydrofluoric acid and nitric acid), filtering and removing carbon of the dissolution residue, and then inductively coupled plasma emission spectroscopy ( ICP-AES) for analysis and measurement.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the amount obtained by subtracting the carbon content, oxygen content, and lithium content from the mass of the sample of the negative electrode material LSX is the silicon content.
  • This silicon content includes the contribution of both silicon present in the form of silicon particles and silicon present in the form of lithium silicate.
  • the content of silicon particles is determined by Si-NMR measurement, and the content of silicon present in the form of lithium silicate in the negative electrode material LSX is determined.
  • the negative electrode material LSX preferably forms a particulate material (hereinafter also referred to as LSX particles) having an average particle diameter of 1 to 25 ⁇ m, more preferably 4 to 15 ⁇ m.
  • LSX particles a particulate material having an average particle diameter of 1 to 25 ⁇ m, more preferably 4 to 15 ⁇ m.
  • stress due to volume change of the negative electrode material LSX accompanying charge / discharge is easily relaxed, and good cycle characteristics are easily obtained.
  • the surface area of the LSX particles also becomes appropriate, and the capacity reduction due to side reaction with the nonaqueous electrolyte is also suppressed.
  • the average particle size of LSX particles means a particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • the measuring apparatus for example, “LA-750” manufactured by HORIBA, Ltd. (HORIBA) can be used.
  • the LSX particles include a conductive material that covers at least a part of the surface thereof. Since the lithium silicate phase has poor electronic conductivity, the conductivity of the LSX particles tends to be low. By covering the surface with a conductive material, the conductivity can be dramatically increased.
  • the conductive layer is preferably thin enough that it does not substantially affect the average particle size of the LSX particles.
  • the negative electrode current collector a non-porous conductive substrate (metal foil or the like) or a porous conductive substrate (mesh body, net body, punching sheet or the like) is used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of the balance between the strength and weight reduction of the negative electrode.
  • the binder contains at least the acrylic resin.
  • fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride
  • polyolefin resin such as polyethylene and polypropylene
  • polyamide resin such as aramid resin
  • polyimide resin such as polyimide and polyamideimide
  • Vinyl resins such as polyacrylonitrile and polyvinyl acetate
  • polyvinyl pyrrolidone polyether sulfone
  • rubbery materials such as styrene-butadiene copolymer rubber (SBR) may be used.
  • SBR styrene-butadiene copolymer rubber
  • Examples of the conductive agent include carbons such as acetylene black and carbon nanotubes; conductive fibers such as carbon fibers and metal fibers; carbon fluorides; metal powders such as aluminum; and conductive materials such as zinc oxide and potassium titanate. Examples include whiskers; conductive metal oxides such as titanium oxide; and organic conductive materials such as phenylene derivatives. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the thickener examples include carboxymethylcellulose (CMC) and modified products thereof (including salts such as Na salt), cellulose derivatives such as methylcellulose (cellulose ether and the like), and polymers of a polymer having vinyl acetate units such as polyvinyl alcohol. And polyether (polyalkylene oxide such as polyethylene oxide). These may be used individually by 1 type and may be used in combination of 2 or more type.
  • CMC carboxymethylcellulose
  • modified products thereof including salts such as Na salt
  • cellulose derivatives such as methylcellulose (cellulose ether and the like
  • polymers of a polymer having vinyl acetate units such as polyvinyl alcohol.
  • polyether polyalkylene oxide such as polyethylene oxide
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof. .
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which the positive electrode mixture is dispersed in a dispersion medium to the surface of the positive electrode current collector and drying it. You may roll the coating film after drying as needed.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • a lithium composite metal oxide can be used as the positive electrode active material.
  • a 0 to 1.2
  • b 0 to 0.9
  • c 2.0 to 2.3.
  • a value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging.
  • binder and the conductive agent those similar to those exemplified for the negative electrode can be used.
  • conductive agent graphite such as natural graphite or artificial graphite may be used.
  • the shape and thickness of the positive electrode current collector can be selected from shapes and ranges according to the negative electrode current collector, respectively.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the electrolytic solution includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, and the lithium salt includes LFSI.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 mol / liter or more and 2 mol / liter or less, for example. By controlling the lithium salt concentration within the above range, it is possible to obtain an electrolyte solution having excellent ion conductivity and appropriate viscosity. However, the lithium salt concentration is not limited to the above.
  • lithium salt other than LFSI a known lithium salt can be used.
  • Preferred lithium salts include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, Examples include LiCl, LiBr, LiI, borates, imide salts, and the like.
  • borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid.
  • the imide salts include lithium bistrifluoromethanesulfonate imide (LiN (CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ), Lithium bispentafluoroethanesulfonate imide (LiN (C 2 F 5 SO 2 ) 2 ) and the like. Among these, LiPF 6 is more preferable.
  • a lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a cyclic carbonate (excluding an unsaturated cyclic carbonate described later), a chain carbonate, a cyclic carboxylate, a chain carboxylate, or the like is used.
  • the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the non-aqueous solvent preferably contains a chain carboxylic acid ester.
  • lithium salts such as LFSI
  • the proportion of the chain carboxylic acid ester in the non-aqueous solvent is preferably 4% by volume or more and 90% by volume or less.
  • the electrolytic solution may further contain a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule (hereinafter referred to as an unsaturated cyclic carbonate) as an additive.
  • an unsaturated cyclic carbonate a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule
  • unsaturated cyclic carbonate examples include, for example, vinylene carbonate, 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4-propyl vinylene carbonate, 4, Examples include 5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, and the like. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable.
  • An unsaturated cyclic carbonate may be used individually by 1 type, and may be used in combination of 2 or more type. In the unsaturated cyclic carbonate, a part of hydrogen atoms may be substituted with fluorine atoms.
  • the separator has a high ion permeability and appropriate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefin such as polypropylene and polyethylene is preferable.
  • the nonaqueous electrolyte secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a nonaqueous electrolyte are accommodated in an exterior body.
  • an electrode group in which a positive electrode and a negative electrode are wound via a separator and a nonaqueous electrolyte are accommodated in an exterior body.
  • another form of electrode group such as a stacked electrode group in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the nonaqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • FIG. 1 is a schematic perspective view in which a part of a rectangular nonaqueous electrolyte secondary battery according to an embodiment of the present invention is cut away.
  • the battery includes a bottomed rectangular battery case 6, an electrode group 9 accommodated in the battery case 6, and an electrolytic solution (not shown).
  • the electrode group 9 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between these and prevents direct contact.
  • the electrode group 9 is formed by winding a negative electrode, a positive electrode, and a separator around a flat core and extracting the core.
  • One end of the negative electrode lead 11 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 14 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative electrode lead 11 is electrically connected to a negative electrode terminal 13 provided on the sealing plate 5.
  • the other end of the positive electrode lead 14 is electrically connected to the battery case 6 that also serves as a positive electrode terminal.
  • a resin frame 4 that separates the electrode group 9 from the sealing plate 5 and separates the negative electrode lead 11 from the battery case 6 is disposed above the electrode group 9. The opening of the battery case 6 is sealed with a sealing plate 5.
  • Lithium silicate (Li 2 Si 2 O 5 ) having an average particle size of 10 ⁇ m and raw material silicon (3N, average particle size of 10 ⁇ m) were mixed at a mass ratio of 45:55.
  • the mixture was pulverized at 200 rpm for 50 hours.
  • the powdery mixture is taken out in an inert atmosphere, and baked at 800 ° C. for 4 hours in a state where pressure is applied by a hot press machine in the inert atmosphere, so that a sintered body of the mixture (negative electrode material LSX) is obtained. Obtained.
  • the negative electrode material LSX was pulverized and passed through a 40 ⁇ m mesh, and then the obtained LSX particles were mixed with coal pitch (manufactured by JFE Chemical Co., Ltd., MCP250), and the mixture was fired at 800 ° C. in an inert atmosphere.
  • the surface of the LSX particles was covered with conductive carbon to form a conductive layer.
  • the coating amount of the conductive layer was 5% by mass with respect to the total mass of the LSX particles and the conductive layer.
  • LSX particles having an average particle diameter of 5 ⁇ m having a conductive layer were obtained using a sieve.
  • the crystallite size of the silicon particles calculated by Scherrer's equation from the diffraction peak attributed to the Si (111) surface by XRD analysis of the LSX particles was 15 nm.
  • the composition of the lithium silicate phase was analyzed by the above methods (high-frequency induction furnace combustion-infrared absorption method, inert gas melting-non-dispersive infrared absorption method, inductively coupled plasma emission spectroscopy (ICP-AES)).
  • the Li ratio was 1.0, and the content of Li 2 Si 2 O 5 measured by Si-NMR was 45% by mass (the content of silicon particles was 55% by mass).
  • LSX particles having a conductive layer and graphite were mixed and used as a negative electrode active material.
  • the proportion of graphite in the total of LSX particles having a conductive layer and graphite was 94% by mass.
  • a negative electrode active material, a lithium salt of polyacrylic acid (PAA-Li), sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) are mixed, and after adding water, a mixer (primics
  • a negative electrode slurry was prepared by stirring using TK Hibismix (manufactured by KK).
  • PAA-Li having a neutralization degree of 95% and a weight average molecular weight of 100,000 was used.
  • the amount of PAA-Li added was 1 part by mass per 100 parts by mass of the negative electrode active material.
  • the amount of CMC-Na added was 1 part by mass per 100 parts by mass of the negative electrode active material.
  • the amount of SBR added was 1 part by mass per 100 parts by mass of the negative electrode active material.
  • the negative electrode slurry was applied to the surface of the copper foil so that the mass of the negative electrode mixture per 1 m 2 was 190 g, the coating film was dried, and then rolled, and a density of 1. A negative electrode on which a negative electrode mixture layer of 5 g / cm 3 was formed was produced.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.18 Al 0.02 O 2
  • acetylene black and polyvinylidene fluoride are mixed at a mass ratio of 95: 2.5: 2.5, and N
  • NMP -methyl-2-pyrrolidone
  • the mixture was stirred using a mixer (manufactured by Primics, TK Hibismix) to prepare a positive electrode slurry.
  • the positive electrode slurry is applied to the surface of the aluminum foil, and after the coating film is dried, the positive electrode having a positive electrode mixture layer with a density of 3.6 g / cm 3 formed on both sides of the aluminum foil is rolled. Produced.
  • An electrolyte solution was prepared by dissolving a lithium salt in a non-aqueous solvent.
  • a nonaqueous solvent a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl acetate (MA) in a volume ratio of 20:40:40 was used.
  • LFSI and LiPF 6 were used as lithium salts.
  • the concentration of LFSI in the electrolytic solution and the concentration of LiPF 6 in the electrolytic solution were values shown in Table 1, respectively.
  • a tab was attached to each electrode, and a positive electrode and a negative electrode were spirally wound through a separator so that the tab was positioned on the outermost peripheral portion, thereby preparing an electrode group.
  • the electrode group was inserted into a package body made of an aluminum laminate film and vacuum-dried at 105 ° C. for 2 hours, and then a nonaqueous electrolyte was injected to seal the opening of the package body to obtain a battery A1.
  • Examples 2 to 9 In the production of the negative electrode, the ratio of graphite to the total of LSX particles having a conductive layer and graphite is the value shown in Table 1, and the amount of PAA-Li added per 100 parts by mass of the negative electrode active material is the value shown in Table 1. did. In the preparation of the electrolytic solution, the concentration of LFSI in the electrolytic solution and the concentration of LiPF 6 in the electrolytic solution were values shown in Table 1, respectively. Except for the above, batteries A2 to A9 were produced in the same manner as in Example 1.
  • a battery B2 was produced in the same manner as in Example 1 except that in the preparation of the electrolytic solution, only LiPF 6 was used as the lithium salt and the concentration of LiPF 6 in the electrolytic solution was 1.2 mol / L.
  • a battery B3 was produced in the same manner as in Example 1 except that PAA-Li was not used in the production of the negative electrode.
  • Charging / discharging was repeated under the above charging / discharging conditions.
  • the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the cycle capacity retention rate.
  • the evaluation results are shown in Table 1.
  • the amount of PAA-Li in Table 1 is an amount (mass part) per 100 parts by mass of the negative electrode active material.
  • the amount of graphite is the ratio (mass%) of graphite in the total of LSX particles (Si-containing material) having a conductive layer and graphite.
  • C1 + C2 is the total concentration (mol / L) of LFSI and LiPF 6 in the electrolytic solution.
  • C1 (C1 + C2) ⁇ 100 is a ratio (mol%) of LFSI in the total of LFSI and LiPF 6 .
  • the batteries A1 to A9 of Examples 1 to 9 exhibited a high initial capacity, a low internal resistance, and a high cycle capacity maintenance rate.
  • batteries A1 to A5 of Examples 1 to 5 of Examples 1 to 5 a high initial capacity, a low internal resistance, and a high cycle capacity retention rate were obtained.
  • the amount of graphite is 98% by mass or less, and the amount of PAA-Li is 1.5 parts by mass or less.
  • the total concentration of LFSI and LiPF 6 in the electrolytic solution is 1 mol / L or more and 2 mol / L or less, and the ratio of LFSI in the total of LFSI and LiPF 6 is 7 mol% or more and 79 mol% or less.
  • the concentration of LFSI in the electrolytic solution is 0.1 mol / L or more and 1.1 mol / L or less, and the concentration of LiPF 6 in the electrolytic solution is 0.3 mol / L or more and 1.3 mol / L or less.
  • the nonaqueous electrolyte secondary battery according to the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、正極と、負極と、電解液と、を備える。負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質と、結着剤と、を含む。負極活物質は、Si含有材料を含み、結着剤は、アクリル樹脂を含む。電解液は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含み、リチウム塩は、リチウムビス(フルオロスルホニル)イミド:LFSIを含む。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 非水電解質二次電池の高容量化を図るため、負極活物質にSi含有材料を用いることが検討されている。しかし、Si含有材料は、充放電時の膨張収縮が非常に大きい。このため、充放電の繰り返しに伴い、負極活物質粒子同士の間および負極活物質粒子と負極集電体との間の接触抵抗が増大する。また、負極活物質の粒子表面の被膜(SEI:Solid Electrolyte Interface)が破壊されたり、負極活物質の粒子割れが生じたりする。その結果、サイクル特性が低下する。
 上記のサイクル特性の低下を抑制する方法としては、例えば、負極にポリアクリル酸を含ませる方法が挙げられる(特許文献1など)。
国際公開第2016/121322号
 ポリアクリル酸を含む負極に電解液を含ませると、ポリアクリル酸が膨潤することがある。ポリアクリル酸が膨潤すると、負極活物質粒子同士の間や負極活物質粒子と負極集電体との間でのポリアクリル酸の結着力が低下する。Si含有材料は、充放電時の膨張収縮が大きいため、ポリアクリル酸の膨張に伴う結着力の低下により、内部抵抗が増大し易く、サイクル特性も低下し易い。
 以上に鑑み、本発明の一側面は、正極と、負極と、電解液と、を備え、前記負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質と、結着剤と、を含み、前記負極活物質は、Si含有材料を含み、前記結着剤は、アクリル樹脂を含み、前記電解液は、非水溶媒と、前記非水溶媒に溶解したリチウム塩と、を含み、前記リチウム塩は、リチウムビス(フルオロスルホニル)イミド:LFSIを含む、非水電解質二次電池に関する。
 本発明によれば、高容量を有するとともに、内部抵抗が小さく、サイクル特性に優れた非水電解質二次電池を提供することができる。
本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 本発明の実施形態に係る非水電解質二次電池は、正極と、負極と、電解液と、を備える。負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質と、結着剤と、を含む。負極活物質は、Si含有材料を含む。結着剤は、アクリル樹脂を含む。電解液は、非水溶媒と、非水溶媒に溶解したリチウム塩(溶質)と、を含み、リチウム塩は、リチウムビス(フルオロスルホニル)イミド:LiN(SO2F)2(以下、LFSIとも称する。)を含む。
 負極活物質がSi含有材料を含むことにより高容量が得られるが、Si含有材料は充放電時の膨張収縮が大きいため、内部抵抗が増大し易く、サイクル特性も低下し易くなる。これに対し、結着剤にアクリル樹脂を用い、電解液にLFSIを含ませることにより、内部抵抗の増大およびサイクル特性の低下が大幅に抑制される。これは、アクリル樹脂を含む負極にLFSIを含む電解液を含ませる場合、アクリル樹脂の膨潤が抑制され、アクリル樹脂の高度な結着力が維持されるとともに、負極活物質粒子同士の間や負極活物質粒子と負極集電体との間での接触抵抗の増大が抑制されるためである。
 アクリル樹脂の膨潤が抑制される場合、アクリル樹脂の膨潤による結着力の低下を考慮してアクリル樹脂量を増やす必要がない。よって、少量(例えば負極活物質100質量部あたり1.5質量部以下)のアクリル樹脂でも、結着力を確保することができる。よって、負極に含ませる負極活物質量を十分に確保することができ、高容量化できる。また、アクリル樹脂量を増やした場合における負極スラリーの粘度の増大も回避できる。
 アクリル樹脂の膨潤度合いに影響を及ぼす因子としては、例えば、アクリル樹脂を含む負極に電解液を含ませる際の、電解液のイオン濃度およびアクリル樹脂のイオン濃度が、挙げられる。例えば、電解液のイオン濃度がアクリル樹脂のイオン濃度よりも小さい場合、アクリル樹脂中のイオン濃度を小さくしようとアクリル樹脂の外部から内部へ溶媒が浸透する傾向が大きくなり、アクリル樹脂が膨潤し易くなる。LFSIは解離度が大きく、電解液のLiイオン濃度が高くなり易いことが、アクリル樹脂の膨潤抑制の要因の一つであると考えられる。
 アクリル樹脂は、(メタ)アクリル酸単位および(メタ)アクリル酸塩の単位よりなる群から選択される少なくとも1種を含む重合体である。重合体は、単独重合体でもよく、共重合体でもよい。共重合体においては、(メタ)アクリル酸単位および(メタ)アクリル酸塩の単位の合計が、例えば、50mol%以上であることが好ましく、80mol%以上であることがより好ましい。なお、本明細書において、「(メタ)アクリル酸単位」とは、「アクリル酸単位」および「メタクリル酸単位」よりなる群から選択される少なくとも1種であることを意味する。
 負極スラリーを調製し易く、電池特性の改善に有利であることから、アクリル樹脂は、少なくとも(メタ)アクリル酸塩の単位を含むことが好ましい。この場合、(メタ)アクリル酸塩としては、リチウム塩、ナトリウム塩などのアルカリ金属塩、アンモニウム塩などが例示できる。中でも、内部抵抗の低減の観点から、(メタ)アクリル酸のリチウム塩が好ましく、アクリル酸のリチウム塩がより好ましい。
 負極スラリーを調製し易く、電池特性の改善に有利であることから、アクリル樹脂に含まれるカルボキシル基のうち、カルボキシル基の水素原子がアルカリ金属原子などで置換される割合(中和度)は、50%以上であることが好ましい。
 アクリル樹脂の具体例としては、ポリアクリル酸、ポリメタクリル酸、アクリル酸および/またはメタクリル酸の繰り返し単位を含む共重合体(アクリル酸-メタクリル酸共重合体、エチレン-アクリル酸共重合体など)、またはそれらの塩などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アクリル樹脂の重量平均分子量は、3,000以上10,000,000以下であることが好ましい。アクリル樹脂の重量平均分子量が上記範囲内である場合、アクリル樹脂によるサイクル特性の向上効果および内部抵抗の低減効果が十分に得られるとともに、負極スラリーのゲル化(粘度上昇)が抑制され、負極を作製し易い。
 負極中のアクリル樹脂の含有量は、負極活物質100質量部あたり1.5質量部以下であることが好ましい。負極中のアクリル樹脂の含有量が、負極活物質100質量部あたり1.5質量部以下である場合、負極活物質量が十分に確保されるため、更なる高容量化が可能である。この場合、負極の柔軟性が十分に確保され、サイクル特性が更に高められる。負極スラリーの粘度を低くすることができ、負極スラリーを調製し易い。
 負極中のアクリル樹脂の含有量は、負極活物質100質量部あたり0.4質量部以上1.5質量部以下であることがより好ましい。負極中のアクリル樹脂の含有量が、負極活物質100質量部あたり0.4質量部以上である場合、アクリル樹脂によるサイクル特性の向上効果および内部抵抗の低減効果が十分に得られる。更に好ましくは、負極中のアクリル樹脂の含有量は、負極活物質100質量部あたり0.5質量部以上1.5質量部以下である。
 電解液は、非水溶媒に溶解するリチウム塩として、LFSIに加え、更にLiPF6を含んでもよい。LiPF6は、外装缶等の電池を構成する部材の表面に不働態膜を形成し易い。不働態膜は上記部材を保護する役割を有する。このとき、LFSIとLiPF6との合計に占めるLFSIの割合は、好ましくは7mol%以上79mol%以下であり、より好ましくは15mol%以上50mol%以下である。
 リチウム塩は、LFSIおよびLiPF6に加え、更に別のリチウム塩を含み得るが、リチウム塩に占めるLFSIとLiPF6との合計量の割合は、80mol%以上が好ましく、90mol%以上がより好ましい。リチウム塩に占めるLFSIとLiPF6との合計量の割合を上記範囲に制御することで、サイクル特性に優れた電池を得やすくなる。
 電解液中のLFSIおよびLiPF6の合計濃度は1mol/L以上2mol/L以下であることが好ましい。電解液中のLFSIの濃度が0.1mol/L以上1.1mol/L以下であり、電解液中のLiPF6の濃度が0.3mol/L以上1.3mol/L以下であることが好ましい。
 負極活物質は、負極の高容量化の観点から、電気化学的にリチウムイオンを吸蔵および放出するSi含有材料(後述する負極材料LSXなど)を含む。ただし、Si含有材料は、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じやすい。よって、負極活物質は、さらに、電気化学的にリチウムイオンを吸蔵および放出する炭素材料を含むことが好ましい。Si含有材料と炭素材料とを併用することで、Si含有材料の高容量を負極に付与しながらサイクル特性を高めることができる。高容量化およびサイクル特性向上の観点から、Si含有材料と炭素材料との合計に占める炭素材料の割合は、好ましくは98質量%以下であり、より好ましくは70質量%以上98質量%であり、さらに好ましくは75質量%以上95質量%以下である。
 負極活物質に用いられる炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 次に、本発明の実施形態に係る非水電解質二次電池について詳述する。非水電解質二次電池は、例えば、以下のような負極と、正極と、電解液とを備える。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成され、かつ負極活物質を含む負極合剤層とを具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、負極活物質および結着剤を必須成分として含み、任意成分として、導電剤、増粘剤などを含むことができる。負極活物質は、少なくとも上記のSi含有材料を含み、さらに上記の炭素材料を含むことが好ましい。
 Si含有材料としては、シリコン酸化物(SiO:0.5≦x≦1.5)、リチウムシリケート相およびリチウムシリケート相内に分散しているシリコン粒子を含有する複合材料(以下、「負極材料LSX」、あるいは、単に「LSX」とも称する。)などが挙げられる。負極材料LSX中のシリコン粒子の含有量が高いほど負極容量が大きくなる。
 リチウムシリケート相は、好ましくは、組成式がLiSiOで表わされ、0≦y≦8かつ0.2≦z≦6を満たす。組成式がLi2uSiO2+u(0<u≦2)で表されるものがより好ましい。
 リチウムシリケート相は、SiO2と微小シリコンとの複合物であるSiOに比べ、リチウムと反応し得るサイトが少なく、充放電に伴う不可逆容量を生じにくい。リチウムシリケート相内にシリコン粒子を分散させる場合、充放電の初期に、優れた充放電効率が得られる。また、シリコン粒子の含有量を任意に変化させることができるため、高容量負極を設計することができる。
 リチウムシリケート相内に分散しているシリコン粒子の結晶子サイズは、例えば10nm以上である。シリコン粒子は、ケイ素(Si)単体の粒子状の相を有する。シリコン粒子の結晶子サイズを10nm以上とする場合、シリコン粒子の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン粒子の劣化を生じにくい。シリコン粒子の結晶子サイズは、シリコン粒子のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
 負極材料LSXは、構造安定性にも優れている。シリコン粒子は、リチウムシリケート相内に分散しているため、充放電に伴う負極材料LSXの膨張収縮が抑制されるためである。シリコン粒子自身の亀裂を抑制する観点から、シリコン粒子の平均粒径は、初回充電前において、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が更に好ましい。初回充電後においては、シリコン粒子の平均粒径は、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子を微細化することにより、充放電時の体積変化が小さくなり、負極材料LSXの構造安定性が更に向上する。
 シリコン粒子の平均粒径は、負極材料LSXの断面SEM(走査型電子顕微鏡)写真を観察することにより測定される。具体的には、シリコン粒子の平均粒径は、任意の100個のシリコン粒子の最大径を平均して求められる。シリコン粒子は、複数の結晶子が寄り集まることにより形成されている。
 負極材料LSX中のシリコン粒子の含有量は、高容量化の観点からは、例えば30質量%以上であればよく、35質量%以上が好ましい。この場合、リチウムイオンの拡散性が良好であり、優れた負荷特性を得やすくなる。一方、サイクル特性の向上の観点からは、負極材料LSX中のシリコン粒子の含有量が95質量%以下であることが好ましく、75質量%以下がより好ましい。リチウムシリケート相で覆われずに露出するシリコン粒子の表面が減少し、電解液とシリコン粒子との反応が抑制されやすいからである。
 シリコン粒子の含有量は、Si-NMRにより測定することができる。以下、Si-NMRの望ましい測定条件を示す。
 測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA‐400)
 プローブ:Varian 7mm CPMAS-2
 MAS:4.2kHz
 MAS速度:4kHz
 パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
 繰り返し時間:1200sec
 観測幅:100kHz
 観測中心:-100ppm付近
 シグナル取込時間:0.05sec
 積算回数:560
 試料量:207.6mg
 リチウムシリケート相LiSiOの組成は、例えば、以下の方法により分析することができる。
 まず、負極材料LSXの試料の質量を測定する。その後、以下のように、試料に含まれる炭素、リチウムおよび酸素の含有量を算出する。次に、試料の質量から炭素含有量を差し引き、残量に占めるリチウムおよび酸素含有量を算出し、リチウム(Li)と酸素(O)のモル比からyとzの比が求まる。
 炭素含有量は、炭素・硫黄分析装置(例えば、株式会社堀場製作所製のEMIA-520型)を用いて測定する。磁性ボードに試料を測り取り、助燃剤を加え、1350℃に加熱された燃焼炉(キャリアガス:酸素)に挿入し、燃焼時に発生した二酸化炭素ガス量を赤外線吸収により検出する。検量線は、例えば、Bureau of Analysed Sampe.Ltd製の炭素鋼(炭素含有量0.49%)を用いて作成し、試料の炭素含有量を算出する(高周波誘導加熱炉燃焼-赤外線吸収法)。
 酸素含有量は、酸素・窒素・水素分析装置(例えば、株式会社堀場製作所製のEGMA-830型)を用いて測定する。Niカプセルに試料を入れ、フラックスとなるSnペレットおよびNiペレットとともに、電力5.75kWで加熱された炭素坩堝に投入し、放出される一酸化炭素ガスを検出する。検量線は、標準試料Y23を用いて作成し、試料の酸素含有量を算出する(不活性ガス融解-非分散型赤外線吸収法)。
 リチウム含有量は、熱フッ硝酸(熱したフッ化水素酸と硝酸の混酸)で試料を全溶解し、溶解残渣の炭素をろ過して除去後、得られたろ液を誘導結合プラズマ発光分光法(ICP-AES)で分析して測定する。市販されているリチウムの標準溶液を用いて検量線を作成し、試料のリチウム含有量を算出する。
 負極材料LSXの試料の質量から、炭素含有量、酸素含有量、リチウム含有量を差し引いた量がシリコン含有量である。このシリコン含有量には、シリコン粒子の形で存在するシリコンと、リチウムシリケートの形で存在するシリコンとの双方の寄与が含まれている。Si-NMR測定によりシリコン粒子の含有量が求められ、負極材料LSX中にリチウムシリケートの形で存在するシリコンの含有量が求まる。
 負極材料LSXは、平均粒径1~25μm、更には4~15μmの粒子状材料(以下、LSX粒子とも称する。)を形成していることが好ましい。上記粒径範囲では、充放電に伴う負極材料LSXの体積変化による応力を緩和しやすく、良好なサイクル特性を得やすくなる。LSX粒子の表面積も適度になり、非水電解質との副反応による容量低下も抑制される。
 LSX粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 LSX粒子は、その表面の少なくとも一部を被覆する導電性材料を具備することが好ましい。リチウムシリケート相は、電子伝導性に乏しいため、LSX粒子の導電性も低くなりがちである。導電性材料で表面を被覆することで、導電性を飛躍的に高めることができる。導電層は、実質上、LSX粒子の平均粒径に影響しない程度に薄いことが好ましい。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
 結着剤は、少なくとも上記アクリル樹脂を含む。結着剤としては、上記アクリル樹脂以外に、さらに、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリロニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料などを用いてもよい。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、アセチレンブラックやカーボンナノチューブなどのカーボン類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。
 [正極]
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極活物質としては、リチウム複合金属酸化物を用いることができる。例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNi1-bbc、LiaMn24、LiaMn2-bb4、LiMPO4、Li2MPO4F(Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種である。)が挙げられる。ここで、a=0~1.2、b=0~0.9、c=2.0~2.3である。なお、リチウムのモル比を示すa値は、活物質作製直後の値であり、充放電により増減する。
 中でも、LiaNib1-b2(Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。さらに、結晶構造の安定性の観点からは、MとしてCoおよびAlを含むLiaNibCocAld2(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)がさらに好ましい。
 結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛などの黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 [電解液]
 電解液は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含み、リチウム塩は、LFSIを含む。
 電解液におけるリチウム塩の濃度は、例えば0.5mol/リットル以上2mol/リットル以下が好ましい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 LFSI以外のリチウム塩としては、公知のリチウム塩を用いることができる。好ましいリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類などが挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウムなどが挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(C25SO22)などが挙げられる。これらの中でも、LiPF6がより好ましい。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒としては、例えば、環状炭酸エステル(後述の不飽和環状炭酸エステルを除く。)、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルなどが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒は、鎖状カルボン酸エステルを含むことが好ましい。この場合、電解液中のリチウム塩(LFSIなど)が解離し易く、アクリル樹脂の膨潤抑制に有利である。非水溶媒に占める鎖状カルボン酸エステルの割合は、4体積%以上90体積%以下であることが好ましい。
 電解液に、さらに、添加剤として、分子内に炭素-炭素の不飽和結合を少なくとも1つ有する環状炭酸エステル(以下、不飽和環状炭酸エステルと称する。)を含ませてもよい。不飽和環状炭酸エステルが負極上で分解することにより負極表面にリチウムイオン伝導性の高い皮膜が形成され、充放電効率が高められる。
 不飽和環状炭酸エステルとしては、公知の化合物を用いることができる。好ましい不飽和環状炭酸エステルとしては、例えば、ビニレンカーボネート、4-メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4-エチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、4-プロピルビニレンカーボネート、4,5-ジプロピルビニレンカーボネート、4-フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどが挙げられる。これらの中でも、ビニレンカーボネート、ビニルエチレンカーボネート、およびジビニルエチレンカーボネートよりなる群から選択される少なくとも1種であることが好ましい。不飽和環状炭酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。不飽和環状炭酸エステルは、水素原子の一部がフッ素原子で置換されていてもよい。
 [セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース6と、電池ケース6内に収容された電極群9および電解液(図示せず)とを備えている。電極群9は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群9は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード11の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード14の一端が溶接などにより取り付けられている。負極リード11の他端は、封口板5に設けられた負極端子13に電気的に接続される。正極リード14の他端は、正極端子を兼ねる電池ケース6に電気的に接続される。電極群9の上部には、電極群9と封口板5とを隔離するとともに負極リード11と電池ケース6とを隔離する樹脂製の枠体4が配置されている。そして、電池ケース6の開口部は、封口板5で封口される。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1>
 [負極材料LSXの調製]
 二酸化ケイ素と炭酸リチウムとを原子比:Si/Liが1.05となるように混合し、混合物を950℃空気中で10時間焼成することにより、式:Li2Si25(u=0.5)で表わされるリチウムシリケートを得た。得られたリチウムシリケートは平均粒径10μmになるように粉砕した。
 平均粒径10μmのリチウムシリケート(Li2Si25)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
 次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、800℃で4時間焼成して、混合物の燒結体(負極材料LSX)を得た。
 その後、負極材料LSXを粉砕し、40μmのメッシュに通した後、得られたLSX粒子を石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、混合物を不活性雰囲気で、800℃で焼成し、LSX粒子の表面を導電性炭素で被覆して導電層を形成した。導電層の被覆量は、LSX粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、導電層を有する平均粒径5μmのLSX粒子を得た。
 LSX粒子のXRD分析によりSi(111)面に帰属される回折ピークからシェラーの式で算出したシリコン粒子の結晶子サイズは15nmであった。
 リチウムシリケート相の組成を上記方法(高周波誘導加熱炉燃焼-赤外線吸収法、不活性ガス融解-非分散型赤外線吸収法、誘導結合プラズマ発光分光法(ICP-AES))により分析したところ、Si/Li比は1.0であり、Si-NMRにより測定されるLi2Si25の含有量は45質量%(シリコン粒子の含有量は55質量%)であった。
 [負極の作製]
 導電層を有するLSX粒子と黒鉛とを混合し、負極活物質として用いた。導電層を有するLSX粒子と黒鉛との合計に占める黒鉛の割合を94質量%とした。負極活物質と、ポリアクリル酸のリチウム塩(PAA-Li)と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。
 PAA-Liには、中和度95%、重量平均分子量100,000であるものを用いた。PAA-Liの添加量は、負極活物質100質量部あたり1質量部とした。CMC-Naの添加量は、負極活物質100質量部あたり1質量部とした。SBRの添加量は、負極活物質100質量部あたり1質量部とした。
 次に、銅箔の表面に1m2当りの負極合剤の質量が190gとなるように負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cm3の負極合剤層が形成された負極を作製した。
 [正極の作製]
 リチウムニッケル複合酸化物(LiNi0.8Co0.18Al0.02)と、アセチレンブラックと、ポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極合剤層が形成された正極を作製した。
 [電解液の調製]
 非水溶媒にリチウム塩を溶解させて電解液を調製した。非水溶媒には、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、酢酸メチル(MA)とを、20:40:40の体積比で含む混合溶媒を用いた。リチウム塩には、LFSIおよびLiPF6を用いた。電解液中のLFSIの濃度と、電解液中のLiPF6の濃度とを、それぞれ、表1に示す値とした。
 [非水電解質二次電池の作製]
 各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、非水電解液を注入し、外装体の開口部を封止して、電池A1を得た。
 <実施例2~9>
 負極の作製において、導電層を有するLSX粒子と黒鉛との合計に占める黒鉛の割合を表1に示す値とし、負極活物質100質量部あたりのPAA-Liの添加量を表1に示す値とした。電解液の調製において、電解液中のLFSIの濃度と、電解液中のLiPF6の濃度とを、それぞれ、表1に示す値とした。上記以外、実施例1と同様にして電池A2~A9を作製した。
 <比較例1>
 負極の作製において、導電層を有するLSX粒子と黒鉛との合計に占める黒鉛の割合を91質量%とし、PAA-Liを用いなかった。電解液の調製において、リチウム塩にLiPF6のみを用い、電解液中のLiPF6の濃度を1.2mol/Lとした。上記以外、実施例1と同様にして電池B1を作製した。
 <比較例2>
 電解液の調製において、リチウム塩にLiPF6のみを用い、電解液中のLiPF6の濃度を1.2mol/Lとしたこと以外、実施例1と同様にして電池B2を作製した。
 <比較例3>
 負極の作製においてPAA-Liを用いないこと以外、実施例1と同様にして電池B3を作製した。
 <比較例4>
 負極の作製において、負極活物質に黒鉛のみを用い、PAA-Liの添加量を負極活物質100質量部あたり0.5質量部とした。電解液の調製において、リチウム塩にLiPF6のみを用い、電解液中のLiPF6の濃度を1.0mol/Lとした。上記以外、実施例1と同様にして電池B4を作製した。
 上記で作製した各電池について、以下の方法で評価を行った。
 [評価1:初期容量]
 0.3It(990mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.015It(50mA)になるまで定電圧充電した。その後、0.3It(990mA)の電流で電圧が2.75Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。このときの放電容量D1を、初期容量として求めた。
 [評価2:内部抵抗(DC-IR)]
 上記の評価1と同じ条件で充電および放電を行い、さらに、上記の評価1と同じ条件で充電を行った。充電完了後60分間休止し、0.3It(990mA)の電流で10秒間定電流放電を行った。放電開始前の電圧と放電開始から10秒経過後の電圧との差を0.3Itの電流値で除した値を、初期の内部抵抗(DC-IR)とした。
 [評価3:サイクル容量維持率]
 0.3It(990mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.015It(50mA)になるまで定電圧充電した。その後、0.3It(990mA)の電流で電圧が2.75Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。
 上記充放電条件で充放電を繰り返した。1サイクル目の放電容量に対する500サイクル目の放電容量の割合を、サイクル容量維持率として求めた。
 評価結果を表1に示す。なお、表1中のPAA-Li量は、負極活物質100質量部あたりの量(質量部)である。黒鉛量は、導電層を有するLSX粒子(Si含有材料)と黒鉛との合計に占める黒鉛の割合(質量%)である。C1+C2は、電解液中のLFSIおよびLiPF6の合計濃度(mol/L)である。C1(C1+C2)×100は、LFSIとLiPFとの合計に占めるLFSIの割合(mol%)である。
Figure JPOXMLDOC01-appb-T000001
 実施例1~9の電池A1~A9は、高い初期容量、低い内部抵抗、および高いサイクル容量維持率を示した。
 特に、実施例1~5の電池A1~A5では、さらに、高い初期容量、低い内部抵抗、および高いサイクル容量維持率が得られた。実施例1~5では、黒鉛量が98質量%以下であり、PAA-Li量が1.5質量部以下である。電解液中のLFSIおよびLiPF6の合計濃度が1mol/L以上2mol/L以下であり、LFSIとLiPF6との合計に占めるLFSIの割合は、7mol%以上79mol%以下である。電解液中のLFSIの濃度が、0.1mol/L以上1.1mol/L以下であり、電解液中のLiPF6の濃度が、0.3mol/L以上1.3mol/L以下である。
 比較例1の電池B1では、PAA-LiおよびLFSIを用いないため、内部抵抗が上昇し、初期容量が低下し、サイクル容量維持率が低下した。比較例2の電池B2では、LFSIを用いないため、内部抵抗が上昇し、初期容量が低下し、サイクル容量維持率が低下した。比較例3の電池B3では、PAA-Liを用いないため、内部抵抗が上昇し、初期容量が低下し、サイクル容量維持率が低下した。比較例4の電池B4では、LFSIを用いないため、内部抵抗が上昇し、サイクル容量維持率が低下し、LFSIおよびSi含有材料を用いないため、初期容量が低下した。
 本発明に係る非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
 4 枠体
 5 封口板
 6 電池ケース
 9 電極群
 11 負極リード
 13 負極端子
 14 正極リード

Claims (12)

  1.  正極と、負極と、電解液と、を備え、
     前記負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質と、結着剤と、を含み、
     前記負極活物質は、Si含有材料を含み、
     前記結着剤は、アクリル樹脂を含み、
     前記電解液は、非水溶媒と、前記非水溶媒に溶解したリチウム塩と、を含み、
     前記リチウム塩は、リチウムビス(フルオロスルホニル)イミド:LFSIを含む、非水電解質二次電池。
  2.  前記負極活物質は、さらに、炭素材料を含む、請求項1に記載の非水電解質二次電池。
  3.  前記Si含有材料と前記炭素材料との合計に占める前記炭素材料の割合は、98質量%以下である、請求項2に記載の非水電解質二次電池。
  4.  前記アクリル樹脂は、少なくとも前記(メタ)アクリル酸塩の単位を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記(メタ)アクリル酸塩は、前記(メタ)アクリル酸のリチウム塩である、請求項4に記載の非水電解質二次電池。
  6.  前記負極中の前記アクリル樹脂の含有量は、前記負極活物質100質量部あたり1.5質量部以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記非水溶媒に溶解したリチウム塩は、さらに、LiPF6を含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記電解液中の前記LFSIおよび前記LiPF6の合計濃度が1mol/L以上2mol/L以下である、請求項7に記載の非水電解質二次電池。
  9.  前記LFSIと前記LiPF6との合計に占める前記LFSIの割合は、7mol%以上79mol%以下である、請求項7または8に記載の非水電解質二次電池。
  10.  前記LFSIと前記LiPF6との合計に占める前記LFSIの割合は、15mol%以上50mol%以下である、請求項7または8に記載の非水電解質二次電池。
  11.  前記電解液中の前記LFSIの濃度が、0.1mol/L以上1.1mol/L以下であり、
     前記電解液中の前記LiPF6の濃度が、0.3mol/L以上1.3mol/L以下である、請求項7~10のいずれか1項に記載の非水電解質二次電池。
  12.  前記非水溶媒が、鎖状カルボン酸エステルを含む、請求項1~11のいずれか1項に記載の非水電解質二次電池。
PCT/JP2019/004940 2018-02-27 2019-02-13 非水電解質二次電池 WO2019167610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020502914A JPWO2019167610A1 (ja) 2018-02-27 2019-02-13 非水電解質二次電池
EP19761129.6A EP3761429A4 (en) 2018-02-27 2019-02-13 SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
CN201980014126.5A CN111742436A (zh) 2018-02-27 2019-02-13 非水电解质二次电池
US16/975,870 US20200403222A1 (en) 2018-02-27 2019-02-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033753 2018-02-27
JP2018033753 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167610A1 true WO2019167610A1 (ja) 2019-09-06

Family

ID=67808898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004940 WO2019167610A1 (ja) 2018-02-27 2019-02-13 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20200403222A1 (ja)
EP (1) EP3761429A4 (ja)
JP (1) JPWO2019167610A1 (ja)
CN (1) CN111742436A (ja)
WO (1) WO2019167610A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032968B2 (ja) * 2018-03-27 2022-03-09 Fdk株式会社 ニッケル水素二次電池用の負極及びニッケル水素二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192143A (ja) * 2013-03-28 2014-10-06 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
JP2015537352A (ja) * 2013-10-29 2015-12-24 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
WO2016121322A1 (ja) 2015-01-27 2016-08-04 三洋電機株式会社 非水電解質二次電池用負極板及びその負極板を用いた非水電解質二次電池
WO2016143543A1 (ja) * 2015-03-12 2016-09-15 セイコーインスツル株式会社 非水電解質二次電池
WO2017154788A1 (ja) * 2016-03-07 2017-09-14 日本電気株式会社 二次電池用電解液及び二次電池
WO2018025621A1 (ja) * 2016-08-03 2018-02-08 日本電気株式会社 非水電解液及びリチウムイオン二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210208A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006339093A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 巻回型非水電解液二次電池およびその負極
KR101233325B1 (ko) * 2011-04-11 2013-02-14 로베르트 보쉬 게엠베하 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP2013008586A (ja) * 2011-06-24 2013-01-10 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015063428A (ja) * 2013-09-25 2015-04-09 株式会社Nicher エアゾール容器入り有機質肥料
KR20150048499A (ko) * 2013-10-28 2015-05-07 주식회사 엘지화학 비수 전해액 및 그를 갖는 리튬 이차전지
CN103779574B (zh) * 2014-01-21 2017-01-25 南京安普瑞斯有限公司 一种锂离子电池负极用粘结剂
CN106133863B (zh) * 2014-04-01 2019-11-29 住友精化株式会社 双电层电容器电极用黏结剂、含有该黏结剂的双电层电容器电极、使用了该电极的双电层电容器及电气设备
CN106463776B (zh) * 2014-06-23 2020-06-09 日本电气株式会社 非水电解液和二次电池
WO2016086182A2 (en) * 2014-11-26 2016-06-02 Johnson Controls Technology Company Lithium ion electrolytes with lifsi for improved wide operating temperature range
WO2016121324A1 (ja) * 2015-01-28 2016-08-04 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2016136180A1 (ja) * 2015-02-23 2016-09-01 三洋電機株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
JP6838556B2 (ja) * 2015-11-09 2021-03-03 株式会社豊田自動織機 負極活物質

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192143A (ja) * 2013-03-28 2014-10-06 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
JP2015537352A (ja) * 2013-10-29 2015-12-24 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
WO2016121322A1 (ja) 2015-01-27 2016-08-04 三洋電機株式会社 非水電解質二次電池用負極板及びその負極板を用いた非水電解質二次電池
WO2016143543A1 (ja) * 2015-03-12 2016-09-15 セイコーインスツル株式会社 非水電解質二次電池
WO2017154788A1 (ja) * 2016-03-07 2017-09-14 日本電気株式会社 二次電池用電解液及び二次電池
WO2018025621A1 (ja) * 2016-08-03 2018-02-08 日本電気株式会社 非水電解液及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761429A4

Also Published As

Publication number Publication date
EP3761429A1 (en) 2021-01-06
US20200403222A1 (en) 2020-12-24
CN111742436A (zh) 2020-10-02
EP3761429A4 (en) 2021-04-28
JPWO2019167610A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110024188B (zh) 负极材料及非水电解质二次电池
JP7390597B2 (ja) 二次電池および電解液
JP7372244B2 (ja) 非水電解質二次電池
JP7165913B2 (ja) 非水電解質二次電池
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
WO2020195335A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
JP7458036B2 (ja) 非水電解質二次電池
JP7122612B2 (ja) 非水電解質二次電池
JP7352900B2 (ja) 非水電解質二次電池
WO2019167610A1 (ja) 非水電解質二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池
JP7499443B2 (ja) 非水電解質二次電池
WO2020189452A1 (ja) 非水電解液二次電池用負極および非水電解液二次電池
JP7432882B2 (ja) 非水電解質二次電池
JP7270230B2 (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
US12062779B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019761129

Country of ref document: EP

Effective date: 20200928