WO2019165783A1 - 一种连续制备2-甲基烯丙醇盐醇溶液的方法 - Google Patents

一种连续制备2-甲基烯丙醇盐醇溶液的方法 Download PDF

Info

Publication number
WO2019165783A1
WO2019165783A1 PCT/CN2018/109599 CN2018109599W WO2019165783A1 WO 2019165783 A1 WO2019165783 A1 WO 2019165783A1 CN 2018109599 W CN2018109599 W CN 2018109599W WO 2019165783 A1 WO2019165783 A1 WO 2019165783A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylallyl
column
alcohol
tower
solution
Prior art date
Application number
PCT/CN2018/109599
Other languages
English (en)
French (fr)
Inventor
陈志荣
尹红
王伟松
金一丰
王胜利
万庆梅
高洪军
马定连
梁志淼
Original Assignee
浙江大学
浙江皇马科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江皇马科技股份有限公司 filed Critical 浙江大学
Priority to KR1020207010735A priority Critical patent/KR102364285B1/ko
Priority to DE112018004253.7T priority patent/DE112018004253T5/de
Priority to JP2020543032A priority patent/JP6977211B2/ja
Publication of WO2019165783A1 publication Critical patent/WO2019165783A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/68Preparation of metal alcoholates
    • C07C29/70Preparation of metal alcoholates by converting hydroxy groups to O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the dehydration reaction of an alcohol and an alkali solution, and belongs to the field of organic synthesis reaction.
  • 2-methylallyl polyether is an important monomer for superplasticizers, usually from 2-methylallyl alcohol (also known as 2-methyl-2-propen-1-ol) in the presence of a base catalyst It is obtained by ring-opening polymerization of ethylene oxide and propylene oxide. During the ring opening polymerization of epoxide, a small amount of water and free base in the system will lead to the production of bishydroxyl polymer. The bishydroxy polymer is an ineffective component and should be avoided as much as possible.
  • the base catalyst is usually an alkali metal hydroxide and an alkali metal alkoxide. Since an alkali metal hydroxide easily produces a bishydroxyl polymer, an alkali metal alkoxide is generally used in the industry.
  • the first is the direct reaction of an alcohol with an alkali metal to give an alkali metal alkoxide (Organic Synthesis, 1973, 5: 361).
  • This method produces hydrogen gas, which poses a safety hazard when adding an active alkali metal, and the price of alkali metal is high.
  • the second is the reaction of an alcohol with sodium amide to give an alkali metal alkoxide (Modern Pesticide, 2004, 1(3): 9, 19). This method produces by-product ammonia and the sodium amide price is also higher.
  • the third is the reaction of potassium amalgam with an alcohol to give an alkali metal alkoxide (US6150569, US6191319, US2002062050, US2005101806, EP1195369).
  • This method also produces hydrogen, which is expensive, and the toxicity of mercury is high and there is a safety risk.
  • the fourth is the exchange of a lower alkoxide with a higher alcohol to give an alkali metal alkoxide (Membr Sci. 1996, 114: 227).
  • the method requires sodium methoxide or potassium methoxide, and the cost is high, and there is a residue of methoxide, which affects the reactivity of the polyether.
  • the fifth is to prepare an alkali metal alkoxide by azeotropic distillation in the presence of an alcohol and an alkali metal hydroxide in the presence of an entrainer (US Pat. No. 3,418,383, JP 09077730, DE 10158354).
  • an entrainer US Pat. No. 3,418,383, JP 09077730, DE 10158354.
  • the 2-methyl allyl alcohol and the aqueous alkali solution are used as raw materials, and the reaction is rectified and the two phases which are incompletely miscible are rapidly passed through sufficient gas-liquid contact.
  • the reaction takes place, the reaction can be carried out continuously, the safety is good, the inorganic base residue is low, and it can be directly applied to prepare high-quality 2-methylallyl polyether.
  • a method for continuously preparing a 2-methylallyl alcohol solution which uses 2-methylallyl alcohol and an alkali metal hydroxide aqueous solution as raw materials to remove water by reactive distillation in a combined rectification column.
  • the bottom of the distillation column is obtained as an alcohol solution of 2-methylallyl alkoxide; the concentration of the aqueous alkali metal hydroxide solution is 40 to 60%, and the mass ratio of the aqueous alkali metal hydroxide solution to the 2-methylallyl alcohol The ratio is 1:10 to 50;
  • the upper part of the combined rectification column is a plate column, and the lower part is a packed column, and the 2-methylallyl alcohol enters the rectification column from the first tray, and the alkali metal hydroxide
  • the aqueous solution enters the rectification column from the second plate, and a gas-jet circulating mixture assembly is arranged on the sieve hole of the tray of the plate tower, and the circulation mixing assembly is formed by splicing two inner and outer hollow pipes,
  • the circulation mixing assembly has a distribution of 50 to 200 per square meter.
  • the inner and outer hollow tubes are tapered tubes, and the small mouth of the tapered tube faces upward.
  • the number of trays in the upper plate column of the combined rectification column is 10 to 30; and the lower packed column portion has 30 to 50 theoretical plates.
  • the filler in the packed column is a structured packing or a random packing.
  • the aqueous alkali metal hydroxide solution is an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the top of the rectification column is connected with a water treatment device, which comprises a condenser, a stratifier and a 2-methyl allylic alcohol recovery column, and the azeotrope vapor at the top of the rectification column is condensed by a condenser.
  • a water treatment device which comprises a condenser, a stratifier and a 2-methyl allylic alcohol recovery column, and the azeotrope vapor at the top of the rectification column is condensed by a condenser.
  • the upper alcohol phase and 2-methylallyl alcohol After entering the delaminator, the upper alcohol phase and 2-methylallyl alcohol enter the first tray, and the lower aqueous phase serves as the feed for the 2-methyl allylic alcohol recovery column, from the top of the recovery tower.
  • the boiling steam enters the condenser, and the bottom of the tower is drained for the preparation of the aqueous alkali solution.
  • the 2-methylallyl alcohol recovery column is a packed column having 20 to 30 theoretical plates, and the packing in the recovery column is a structured packing or a random packing.
  • the inventors of the present invention have found that if 2-methyl allyl alkoxide is prepared by batch reactive distillation with a solid base and 2-methylallyl alcohol, since the solid surface is small and the dissolution rate is slow, the reaction time is required. More than 10 hours can achieve the conversion of alkali to about 95%; if the packed column is used to react the alkali solution with 2-methylallyl alcohol, the mass transfer becomes a controlling factor of the reaction because of the low mutual solubility. Therefore, even The 10 m CY packing (about 70 theoretical plates) can only achieve a conversion rate of around 70%.
  • the present invention contemplates a gas jet circulating mixing assembly that utilizes the kinetic energy of steam to eject, promoting mixing and dispersion of the liquid-liquid two phases on the tray, thereby increasing the mass transfer rate of the liquid-liquid two phases.
  • the larger liquid holding capacity of the tray column ensures the residence time required for the two-phase reaction.
  • the reaction rectification process can be promoted by the large specific surface area provided by the packed column, thereby reducing the free alkali content in the system.
  • the invention solves the problems existing in the heterogeneous reaction rectification system of 2-methylallyl alcohol and alkali solution through the combination of the plate tower and the packed tower, and is suitable for industrialized scale production.
  • the invention adopts reactive distillation in the combined rectification column to obtain a 2-methylallyl alcohol solution by dehydration reaction between 2-methylallyl alcohol and an aqueous alkali solution, and the reaction can be continuously carried out, and the safety is good, and the inorganic alkali remains. Low, can be directly applied to the preparation of high quality 2-methylallyl polyether.
  • FIG. 1 is a schematic view showing the combined reaction rectification apparatus and its reaction process of the present invention.
  • FIG. 2 is a schematic view showing the structure of a gas jet type circulating flow mixing assembly.
  • the upper second plate is continuously added with a 40% aqueous solution of sodium hydroxide
  • the first plate is continuously added with 2-methylallyl alcohol and the upper layer of the layerer 3
  • the mass ratio of aqueous sodium hydroxide solution to 2-methylallyl alcohol is 1:50
  • the lower aqueous phase of the separator 3 enters the 2-methyl allylic alcohol recovery tower 4 (the tower is equipped with 20 theoretical plates)
  • the azeotrope vapor from the top of the 2-methyl allylic alcohol recovery column 4 is combined with the azeotrope vapor from the top of the combined rectification column 1 to be condensed in the condenser 2, and the condensate Entering the layerer 3; from the 2-methyl allylic alcohol recovery tower 4 column kettle to obtain 2-methyl allylic alcohol feed amount of 1.55% water, the water 2-methyl allyl alcohol content is 122 ppm;
  • the distillation column 1 was charged with a 2-methyl allyl alcohol feed amount of 100.4% of a 2-methyl allyl alcohol feed
  • the mass ratio of aqueous sodium hydroxide solution to 2-methylallyl alcohol is 1:40, and the lower aqueous phase of the separator 3 enters the 2-methyl allylic alcohol recovery column 4 (the tower is equipped with 30 theoretical plates At the top of the pile), the azeotrope vapor from the top of the 2-methyl allylic alcohol recovery column 4 is combined with the azeotrope vapor from the top of the combined rectification column 1 to be condensed in the condenser 2, and the condensate enters Layerer 3; from the 2-methyl allylic alcohol recovery tower 4 column kettle to obtain 2-methyl allylic alcohol feed amount of 1.88% water, water 2-methyl allylic alcohol content of 82 ppm, from combined rectification
  • the tower 1 column was charged with a 2-methyl allyl alcohol feed amount of 100.6% of a 2-methyl allyl alcohol sodium alcohol solution containing 2.61% of sodium 2-methylallyl alcohol and a free base content of 51 ppm. Oxidation The conversion of sodium was 99.5%.
  • the mass ratio of potassium hydroxide aqueous solution to 2-methylallyl alcohol is 1:20, and the lower aqueous layer of the layerer 3 enters the 2-methyl allylic alcohol recovery tower 4 (the tower is equipped with 25 theoretical plates)
  • the azeotrope vapor from the top of the 2-methyl allylic alcohol recovery column 4 is combined with the azeotrope vapor from the top of the combined rectification column 1 to be condensed in the condenser 2, and the condensate
  • the layerer 3 from the 2-methyl allylic alcohol recovery tower 4 tower to obtain 2-methyl allylic alcohol feed 3.30% water, the content of 2-methyl allylic alcohol in water is 97ppm, from the combination
  • the distillation column 1 was stirred to obtain a 2-methylallyl alcohol feed solution of 101.7% of a 2-methylallyl potassium alcohol solution containing 4.81% of potassium 2-methylallyl carbonate and a free base content of 122 ppm. Hydroxide The conversion of potassium was 99.5%.
  • the mass ratio of the aqueous potassium hydroxide solution to the 2-methylallyl alcohol is 1:10, and the lower aqueous phase of the separator 3 enters the 2-methyl allylic alcohol recovery tower 4 (the tower is equipped with 30 theoretical plates At the top of the pile), the azeotrope vapor from the top of the 2-methyl allylic alcohol recovery column 4 is combined with the azeotrope vapor from the top of the combined rectification column 1 to be condensed in the condenser 2, and the condensate enters Stratifier 3; from the 2-methyl allylic alcohol recovery tower 4 column kettle to obtain 2-methyl allylic alcohol feed amount of 5.93% of water, water 2-methyl allylic alcohol content of 85 ppm, from combined rectification Tower 1 column was charged with a 2-methyl allyl alcohol feed amount of 104.1% solution of 2-methylallyl potassium alcohol, which contained 11.29% of potassium 2-methylallyl carbonate and a free base content of 173 ppm. oxygen Conversion was 99.7% of potassium.
  • FIG. 2 is a schematic view showing the structure of a gas jet type circulating flow mixing assembly.
  • the gas jet type circulating flow mixing assembly is installed on the tray 7 of the combined rectification tray tower, the circulating mixing assembly is formed by the inner and outer hollow tubes, and the outer hollow tube 5 is fixed to the inner hollow tube 6. In the upper portion, the inner hollow tube 6 communicates with the mesh hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种连续制备2-甲基烯丙醇盐醇溶液的方法,以2-甲基烯丙醇和碱金属氢氧化物水溶液为原料,在组合精馏塔中通过反应精馏脱除水分得到2-甲基烯丙醇盐的醇溶液;所述组合精馏塔上部为板式塔,下部为填料塔,所述2-甲基烯丙醇从第1块塔板进入到精馏塔,所述碱金属氢氧化物水溶液从第2块板进入精馏塔,所述板式塔的塔板的筛孔上设置气体喷射式环流混合组件,所述环流混合组件由内外两个空心管套接而成,外空心管固定于内空心管上部,所述内空心管与筛孔相通。本发明的优点是以碱水溶液为原料,可连续制备2-甲基烯丙醇盐的醇溶液,过程安全性好,产品游离碱含量低,可直接应用于高质量2-甲基烯丙醇聚醚的制备过程。

Description

一种连续制备2-甲基烯丙醇盐醇溶液的方法 技术领域
本发明涉及醇与碱溶液的脱水反应,属于有机合成反应领域。
背景技术
2-甲基烯丙醇聚醚是高效减水剂的重要单体,通常由2-甲基烯丙醇(又名:2-甲基-2-丙烯-1-醇)在碱催化剂存在下与环氧乙烷、环氧丙烷经开环聚合反应得到。在环氧化物开环聚合反应过程中,体系中微量的水、游离碱均会导致双羟基聚合物的产生,双羟基聚合物是无效成分,应尽量避免其产生。
碱催化剂通常是碱金属氢氧化物和碱金属醇盐。由于碱金属氢氧化物容易产生双羟基聚合物,因此,工业上一般采用碱金属醇盐。
合成碱金属醇盐的方法通常有以下几种:
第一种是由醇与碱金属直接反应得到碱金属醇盐(Organic Synthesis,1973,5:361)。该方法会产生氢气,投加活泼的碱金属时存在安全隐患,且碱金属价格高。
第二种是由醇与氨基钠反应得到碱金属醇盐(现代农药,2004,1(3):9,19)。该方法会产生副产物氨,且氨基钠价格也较高。
第三种是由钾汞齐与醇反应得到碱金属醇钾(US6150569,US6191319,US2002062050,US2005101806,EP1195369)。该方法同样会产生氢气,原料价格高,且汞的毒性大,有安全风险。
上述三种方法需要投固体反应物,因此,只能间歇进行。
第四种是由低碳醇盐与高碳醇交换反应得到碱金属醇盐(Membr Sci.1996,114:227)。该方法需用到甲醇钠或甲醇钾,成本高,且会有甲醇盐残留,影响聚醚反应活性。
第五种是醇与碱金属氢氧化物在共沸剂存在下进行共沸反应精馏制备碱金属醇盐(US3418383,JP09077730,DE10158354)。当醇与碱溶液不完全互溶时,该反应速度慢,碱的转化率较低,所得碱金属醇盐中含有较多的无机碱。
发明内容
针对文献报道中2-甲基烯丙醇盐制备过程所存在的问题,以2-甲基烯丙醇和碱水溶液为原料,反应精馏并通过充分的气液接触使不完全互溶的两相快速发生反应,反应可连续进行, 安全性好,无机碱残留低,可直接应用于制备高质量2-甲基烯丙醇聚醚。
一种连续制备2-甲基烯丙醇盐醇溶液的方法,以2-甲基烯丙醇和碱金属氢氧化物水溶液为原料,在组合精馏塔中通过反应精馏脱除水分,在精馏塔釜底得到2-甲基烯丙醇盐的醇溶液;所述碱金属氢氧化物水溶液的浓度为40~60%,碱金属氢氧化物水溶液与2-甲基烯丙醇的质量比为1:10~50;所述组合精馏塔上部为板式塔,下部为填料塔,所述2-甲基烯丙醇由第1块塔板进入到精馏塔,所述碱金属氢氧化物水溶液由第2块板进入精馏塔,所述板式塔的塔板的筛孔上设置气体喷射式环流混合组件,所述环流混合组件由内外两个空心管套接而成,外空心管固定于内空心管上部,所述内空心管与筛孔相通。
所述环流混合组件的分布为每平方米设置50~200个。
所述内、外空心管为锥形管,锥形管的小口朝上。
所述组合精馏塔上部板式塔的塔板数为10~30块;下部填料塔部分具有30~50块理论板。
所述填料塔内的填料是规整填料或乱堆填料。
所述碱金属氢氧化物水溶液为氢氧化钠水溶液或氢氧化钾水溶液。
所述精馏塔塔顶连接有水处理装置,所述水处理装置包括冷凝器、分层器和2-甲基烯丙醇回收塔,精馏塔塔顶的共沸物蒸汽经冷凝器冷凝后进入分层器,上层醇相和2-甲基烯丙醇进入到第1块塔板,下层水相作为2-甲基烯丙醇回收塔的进料,从回收塔塔顶出来的共沸物蒸汽进入冷凝器,回收塔塔底排出水,用于碱水溶液的配制。
所述2-甲基烯丙醇回收塔是填料塔,该塔具有20~30块理论板,所述回收塔内的填料为规整填料或乱堆填料。
本发明的发明人研究发现,如果以固体碱与2-甲基烯丙醇进行间歇反应精馏制备2-甲基烯丙醇盐,由于固体比表面小、溶解速度慢,因此,反应时间需10小时以上才能使碱的转化率达到95%左右;如果采用填料塔进行碱溶液与2-甲基烯丙醇的反应,由于二者互溶度低,传质成为反应的控制因素,因此,即使10米CY填料(约70块理论板)也只能达到70%左右的转化率。发明人经深入研究发现,采用碱溶液与2-甲基烯丙醇互溶度低,只有碱的转化率达到90%以上时,剩余的碱才能完全溶解在醇相中,因此,本发明中需要大大过量的醇与碱水溶液发生反应,同时碱溶液与2-甲基烯丙醇的反应需要比较强烈的搅拌混合才能加快反应速度。为此,本发明设计了气体喷射式环流混合组件,该混合组件可利用蒸汽的动能进行喷射,促进塔板上液-液二相的混合分散,从而提高液-液二相的传质速度。此外,板式塔较大的持液量可以保证二相反应所需的停留时间。为提高碱的转化率,在碱完全溶解之后的均相反应阶段,可以通过填料塔提供的巨大比表面积来促进反应精馏过程,从而降低体系中的游离碱含量。本发明通过板式塔与填料塔的结合,较好地解决了2-甲基烯丙醇与碱溶液非均 相反应精馏体系所存在的问题,适合工业化放大生产。
发明效果
本发明在组合精馏塔中采用反应精馏将2-甲基烯丙醇与碱水溶液通过脱水反应得到2-甲基烯丙醇盐醇溶液,反应可连续进行,安全性好,无机碱残留低,可直接应用于制备高质量2-甲基烯丙醇聚醚。
附图说明
图1是本发明组合反应精馏装置及其反应工艺流程示意图。
图2是气体喷射式环流混合组件结构示意图。
具体实施方式
下面结合实施例,对本发明的技术方案做进一步说明。
实施例1
在如图1所示的组合精馏塔1(该塔上部有10块塔板,塔板上每平方米设置有50个气体喷射式环流混合组件(未视出,与具体结构见图2),下部有理论板数为50的乱堆填料)上部第2块板连续加入浓度为40%的氢氧化钠水溶液,第1块板连续加入2-甲基烯丙醇和分层器3上层醇相,氢氧化钠水溶液与2-甲基烯丙醇的质量比为1:50,分层器3下层水相进入2-甲基烯丙醇回收塔4(该塔装有20块理论板数的乱堆填料)的塔顶,从2-甲基烯丙醇回收塔4塔顶出来的共沸物蒸汽与组合精馏塔1塔顶出来的共沸物蒸汽一起进入冷凝器2冷凝,冷凝液进入分层器3;从2-甲基烯丙醇回收塔4塔釜得到2-甲基烯丙醇进料量1.55%的水,水中2-甲基烯丙醇含量为122ppm;从组合精馏塔1塔釜得到2-甲基烯丙醇进料量100.4%的2-甲基烯丙醇钠醇溶液,其中含2-甲基烯丙醇钠为1.86%,游离碱含量为33ppm,折算氢氧化钠的转化率为99.6%。
实施例2
在如图1所示的组合精馏塔1(该塔上部有20块塔板,塔板上每平方米设置有100个气体喷射式环流混合组件(未视出,与具体结构见图2),下部有理论板数为30的规整填料)上部第2块板连续加入浓度为45%的氢氧化钠水溶液,第1块板连续加入2-甲基烯丙醇和分层器3上层醇相,氢氧化钠水溶液与2-甲基烯丙醇的质量比为1:40,分层器3下层水相进入2-甲基烯丙醇回收塔4(该塔装有30块理论板数的乱堆填料)的塔顶,从2-甲基烯丙醇回收塔4塔顶出来的共沸物蒸汽与组合精馏塔1塔顶出来的共沸物蒸汽一起进入冷凝器2冷凝,冷凝液进入分层器3;从2-甲基烯丙醇回收塔4塔釜得到2-甲基烯丙醇进料量1.88%的水,水中2-甲基烯丙醇含量为82ppm,从组合精馏塔1塔釜得到2-甲基烯丙醇进料量100.6%的 2-甲基烯丙醇钠醇溶液,其中含2-甲基烯丙醇钠2.61%,游离碱含量为51ppm,折算氢氧化钠的转化率为99.5%。
实施例3
在如图1所示的组合精馏塔1(该塔上部有25块塔板,塔板上每平方米设置有200个气体喷射式环流混合组件(未视出,与具体结构见图2),下部有理论板数为40的乱堆填料)上部第2块板连续加入浓度为50%的氢氧化钾水溶液,第1块板连续加入2-甲基烯丙醇和分层器3上层醇相,氢氧化钾水溶液与2-甲基烯丙醇的质量比为1:20,分层器3下层水相进入2-甲基烯丙醇回收塔4(该塔装有25块理论板数的乱堆填料)的塔顶,从2-甲基烯丙醇回收塔4塔顶出来的共沸物蒸汽与组合精馏塔1塔顶出来的共沸物蒸汽一起进入冷凝器2冷凝,冷凝液进入分层器3;从2-甲基烯丙醇回收塔4塔釜得到2-甲基烯丙醇进料量3.30%的水,水中2-甲基烯丙醇含量为97ppm,从组合精馏塔1塔釜得到2-甲基烯丙醇进料量101.7%的2-甲基烯丙醇钾醇溶液,其中含2-甲基烯丙醇钾4.81%,游离碱含量为122ppm,折算氢氧化钾的转化率为99.5%。
实施例4
在如图1所示的组合精馏塔1(该塔上部有30块塔板,塔板上每平方米设置有150个气体喷射式环流混合组件(未视出,与具体结构见图2),下部有理论板数为50的规整填料)上部第2块板连续加入浓度为60%的氢氧化钾水溶液,第1块板连续加入2-甲基烯丙醇和分层器3上层醇相,氢氧化钾水溶液与2-甲基烯丙醇的质量比为1:10,分层器3下层水相进入2-甲基烯丙醇回收塔4(该塔装有30块理论板数的乱堆填料)的塔顶,从2-甲基烯丙醇回收塔4塔顶出来的共沸物蒸汽与组合精馏塔1塔顶出来的共沸物蒸汽一起进入冷凝器2冷凝,冷凝液进入分层器3;从2-甲基烯丙醇回收塔4塔釜得到2-甲基烯丙醇进料量5.93%的水,水中2-甲基烯丙醇含量为85ppm,从组合精馏塔1塔釜得到2-甲基烯丙醇进料量104.1%的2-甲基烯丙醇钾醇溶液,其中含2-甲基烯丙醇钾11.29%,游离碱含量为173ppm,折算氢氧化钾的转化率为99.7%。
图2是气体喷射式环流混合组件结构示意图。
如图2所示,气体喷射式环流混合组件安装在组合精馏塔板式塔的塔板7上,环流混合组件由内外两个空心管套接而成,外空心管5固定于内空心管6上部,所述内空心管6与筛孔相通。

Claims (8)

  1. 一种连续制备2-甲基烯丙醇盐醇溶液的方法,以2-甲基烯丙醇和碱金属氢氧化物水溶液为原料,在组合精馏塔中通过反应精馏脱除水分,在精馏塔釜底得到2-甲基烯丙醇盐的醇溶液;所述碱金属氢氧化物水溶液的浓度为40~60%,碱金属氢氧化物水溶液与2-甲基烯丙醇的质量比为1:10~50;所述组合精馏塔上部为板式塔,下部为填料塔,所述2-甲基烯丙醇由第1块塔板进入到精馏塔,所述碱金属氢氧化物水溶液由第2块板进入精馏塔,所述板式塔的塔板的筛孔上设置气体喷射式环流混合组件,所述环流混合组件由内外两个空心管套接而成,外空心管固定于内空心管上部,所述内空心管与筛孔相通。
  2. 根据权利要求1所述的方法,所述环流混合组件的分布为每平方米设置50~200个。
  3. 根据权利要求1所述的方法,所述内、外空心管为锥形管,锥形管的小口朝上。
  4. 根据权利要求1所述的方法,所述组合精馏塔上部板式塔的塔板数为10~30块;下部填料塔部分具有30~50块理论板。
  5. 根据权利要求4所述的方法,所述填料塔内的填料是规整填料或乱堆填料。
  6. 根据权利要求1-5任一所述的方法,所述碱金属氢氧化物水溶液为氢氧化钠水溶液或氢氧化钾水溶液。
  7. 根据权利要求1所述的方法,所述精馏塔塔顶连接有水处理装置,所述水处理装置包括冷凝器、分层器和2-甲基烯丙醇回收塔,精馏塔塔顶的共沸物蒸汽经冷凝器冷凝后进入分层器,上层醇相和2-甲基烯丙醇进入到第1块塔板,下层水相作为2-甲基烯丙醇回收塔的进料,从回收塔塔顶出来的共沸物蒸汽进入冷凝器,回收塔塔底排出水,用于碱水溶液的配制。
  8. 根据权利要求7所述的方法,所述2-甲基烯丙醇回收塔是填料塔,该塔具有20~30块理论板,所述回收塔内的填料为规整填料或乱堆填料。
PCT/CN2018/109599 2018-03-01 2018-10-10 一种连续制备2-甲基烯丙醇盐醇溶液的方法 WO2019165783A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207010735A KR102364285B1 (ko) 2018-03-01 2018-10-10 2-메틸알릴 프로파네이트 알코올 용액의 연속 제조 방법
DE112018004253.7T DE112018004253T5 (de) 2018-03-01 2018-10-10 Verfahren zur kontinuierlichen Herstellung einer alkoholischen Lösung von 2-Methylallylalkoholat
JP2020543032A JP6977211B2 (ja) 2018-03-01 2018-10-10 2−メチルアリルアルコキシドのアルコール溶液を連続的に製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810170183.X 2018-03-01
CN201810170183.XA CN108299159B (zh) 2018-03-01 2018-03-01 一种连续制备2-甲基烯丙醇盐醇溶液的方法

Publications (1)

Publication Number Publication Date
WO2019165783A1 true WO2019165783A1 (zh) 2019-09-06

Family

ID=62849283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109599 WO2019165783A1 (zh) 2018-03-01 2018-10-10 一种连续制备2-甲基烯丙醇盐醇溶液的方法

Country Status (5)

Country Link
JP (1) JP6977211B2 (zh)
KR (1) KR102364285B1 (zh)
CN (1) CN108299159B (zh)
DE (1) DE112018004253T5 (zh)
WO (1) WO2019165783A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299159B (zh) * 2018-03-01 2020-06-12 浙江大学 一种连续制备2-甲基烯丙醇盐醇溶液的方法
CN112495315A (zh) * 2020-12-22 2021-03-16 赞宇科技集团股份有限公司 一种低杂质的脂肪酰胺丙基叔胺的生产工艺与装置
CN114591143B (zh) * 2022-03-16 2024-06-21 齐翔华利新材料有限公司 一种甲基烯丙醇钠的制备方法
CN115353441B (zh) * 2022-08-25 2024-01-30 江苏瑞恒新材料科技有限公司 一种提高回收甲醇纯度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877274A (en) * 1958-01-21 1959-03-10 Du Pont Production of sodium methoxide
CN101314557A (zh) * 2007-06-01 2008-12-03 赢创德固赛有限责任公司 制备碱金属醇盐的方法
CN108299159A (zh) * 2018-03-01 2018-07-20 浙江大学 一种连续制备2-甲基烯丙醇盐醇溶液的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1254612C2 (de) 1965-11-10 1973-05-17 Dynamit Nobel Ag Verfahren zur kontinuierlichen Herstellung von Alkalialkoholaten
DE3413212C1 (de) * 1984-04-07 1985-09-12 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von wasserfreiem Kalium-tert.-butoxid
DE3701268C1 (de) * 1987-01-17 1988-04-14 Dynamit Nobel Ag Verfahren zur kontinuierlichen Herstellung von Kalium-tert.-butoxid
JPH0977730A (ja) 1995-09-14 1997-03-25 Mitsui Toatsu Chem Inc ジアセトニトリル類の製造方法
JPH09309849A (ja) * 1996-05-22 1997-12-02 Tokuyama Corp アルコキシド化合物の製造方法
DE19900073A1 (de) 1999-01-05 2000-07-06 Degussa Verfahren zur Herstellung von Alkalialkoholaten höherer Alkohole
DE19959153A1 (de) * 1999-12-08 2001-06-21 Basf Ag Verfahren zur Herstellung von Alkalimethylaten
DE10050015A1 (de) 2000-10-06 2002-04-11 Basf Ag Verfahren zur katalytischen Herstellung von Alkalialkoholaten
DE10158354A1 (de) 2001-11-28 2003-06-12 Degussa Verfahren zur Herstellung und Reinigung von Alkalimetall- und Erdalkalimetall-Alkoholaten
DE10352877A1 (de) 2003-11-10 2005-06-16 Basf Ag Verfahren zur katalytischen Herstellung von Alkalialkoholaten
CN102504239A (zh) * 2011-11-03 2012-06-20 山西合盛邦砼建材有限公司 用于制备聚羧酸盐减水剂大单体的催化剂及其制备方法
CN106831334A (zh) * 2017-01-22 2017-06-13 青岛科技大学 一种碱法合成异丙醇钾的连续生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877274A (en) * 1958-01-21 1959-03-10 Du Pont Production of sodium methoxide
CN101314557A (zh) * 2007-06-01 2008-12-03 赢创德固赛有限责任公司 制备碱金属醇盐的方法
CN108299159A (zh) * 2018-03-01 2018-07-20 浙江大学 一种连续制备2-甲基烯丙醇盐醇溶液的方法

Also Published As

Publication number Publication date
JP2021512931A (ja) 2021-05-20
CN108299159A (zh) 2018-07-20
CN108299159B (zh) 2020-06-12
DE112018004253T5 (de) 2020-05-14
KR20200047717A (ko) 2020-05-07
JP6977211B2 (ja) 2021-12-08
KR102364285B1 (ko) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2019165783A1 (zh) 一种连续制备2-甲基烯丙醇盐醇溶液的方法
CN101235160B (zh) 一种pvc生产过程中氯化氢全回收零排放工艺与装置
CN101007751A (zh) 一种从甘油制备二氯丙醇的方法
CA2529107A1 (en) Equilibrium reaction and gas/liquid reaction in a loop reactor
CN110214132A (zh) 乙酸的制备方法
CN111847453B (zh) 一种超高纯一氧化碳制备装置与工艺
CN101353289B (zh) 从气相催化脱氯化氢法生产三氯乙烯的低沸物中提取反式二氯乙烯的方法
CN108129267B (zh) 低温全连续化反应系统及应用
CN202199337U (zh) 一种氯乙酸连续化生产装置
CN108059586B (zh) 一种甘油氯化制备二氯丙醇的方法
CN106518675B (zh) 生产草酸二甲酯并副产碳酸二甲酯的方法
CN114163333B (zh) 一种一步合成碳酸甲乙酯的方法
CN101125795A (zh) 一种甲酸的制备方法
JPH0625196B2 (ja) エピクロルヒドリンの製造方法
CN107840808A (zh) 连续反应精馏生产氰乙酸酯化物、丙二酸酯化物装置及其生产工艺
CN112409199B (zh) 一种氨基酸甲酯连续化生产工艺及装置
CN101596394B (zh) 一种甲叉反应与蒸馏过程中尾气循环吸收装置及其吸收方法
CN105985217B (zh) 一种氯甲烷生产中提高反应物利用率的反应系统及其应用
CN111943927B (zh) 一种连续反应喷射制备碳酸丙(或乙)烯酯的方法
CN1166449C (zh) 一种反应与分离的耦合装置
CN107353193A (zh) 一种无水甲酸的制备方法
CN114890893B (zh) 一种棕榈酸异丙酯连续酯化方法
CN218422814U (zh) 一种苯甲酸乙酯的生产系统
CN216093693U (zh) 一种生产α异佛尔酮的反应精馏塔
CN218530884U (zh) 碳酸甲乙酯增产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010735

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020543032

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18907574

Country of ref document: EP

Kind code of ref document: A1