WO2019165701A1 - 一种交直流混联微网的随机鲁棒耦合型优化调度方法 - Google Patents

一种交直流混联微网的随机鲁棒耦合型优化调度方法 Download PDF

Info

Publication number
WO2019165701A1
WO2019165701A1 PCT/CN2018/084939 CN2018084939W WO2019165701A1 WO 2019165701 A1 WO2019165701 A1 WO 2019165701A1 CN 2018084939 W CN2018084939 W CN 2018084939W WO 2019165701 A1 WO2019165701 A1 WO 2019165701A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
period
load
deviation
robust
Prior art date
Application number
PCT/CN2018/084939
Other languages
English (en)
French (fr)
Inventor
顾伟
邱海峰
周苏洋
吴志
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019165701A1 publication Critical patent/WO2019165701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to the technical field of microgrid energy management, in particular to a stochastic robust coupled optimization scheduling method for AC/DC hybrid microgrid.
  • microgrid In order to reduce the pollution of fossil energy to the environment, more and more renewable energy replaces the traditional energy access to the power system, and the penetration rate of renewable energy in the power grid is greatly improved.
  • microgrid As a small autonomous system that aggregates distributed power and load, microgrid has become an effective method to solve the problem of renewable energy access to power systems. In order to ensure the stable and efficient operation of the microgrid, it is necessary to carry out the necessary energy management to establish a reasonable operation scheduling plan.
  • microgrid Due to the intermittent nature of renewable energy output and the dynamic changes of load in the system, there are many uncertain factors in the microgrid, which brings great challenges to microgrid scheduling.
  • the current research is mainly on traditional AC micro-networks, and with the rapid development of power electronics technology, more and more DC-type power sources (such as photovoltaics, fuel cells, energy storage, etc.) and DC-type loads (electric vehicles, household appliances, etc.) Access to the micro network.
  • DC-type power sources such as photovoltaics, fuel cells, energy storage, etc.
  • DC-type loads electric vehicles, household appliances, etc.
  • the AC-DC hybrid micro-grid has become one of the research hotspots of the current micro-grid.
  • Stochastic optimization and robust optimization methods are applied to the micro-network optimization scheduling to cope with the uncertainty problem.
  • Robust optimization can obtain the minimum daily running cost in the worst case scenario, but the worst scenario in reality is rare, so robust optimization is highly conservative; while stochastic optimization is less conservative than robust optimization, but Robustness is insufficient when dealing with uncertainties, and stochastic optimization requires a more accurate uncertainty probability distribution function, which is difficult to obtain in practice.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a stochastic robust coupled optimization scheduling method for AC/DC hybrid microgrid, which takes into account the AC and DC regions of the AC-DC hybrid microgrid.
  • the source-load uncertainty is based on a stochastic uncertainty set to establish a stochastic robust coupled optimal scheduling model, which can realize stochastic robust optimal scheduling of AC-DC hybrid micro-grids, improve the robustness of traditional stochastic optimization, and reduce The conservative nature of traditional robust optimization.
  • a stochastic robust coupled optimization scheduling method for an AC-DC hybrid microgrid according to the present invention includes the following steps:
  • Step 20 Obtain an operating cost coefficient of each device in the AC-DC hybrid microgrid, and substitute the stochastic uncertainty set constructed in step 10) to establish an objective function of the stochastic robust coupled optimization scheduling model;
  • Step 30 Obtain an operation limit of each device in the AC-DC hybrid microgrid, and establish a constraint condition of the stochastic robust coupling optimization scheduling model;
  • Step 40 Solving the stochastic robust coupled optimization scheduling problem formed by the step 20) objective function and the step 30) constraint condition: solving the stochastic robust coupling type optimization problem by using the column constraint generation algorithm to obtain the AC-DC hybrid microgrid Stochastic robust coordination of operational plans.
  • the source-load power prediction data of the AC-DC hybrid microgrid includes AC-DC mixing.
  • the predicted nominal value of the renewable energy output and load power and the budget period of the uncertainty period in the AC and DC areas of the Lianwei network, in addition to the number of predicted deviation intervals, the occurrence probability of each deviation interval, the predicted upper deviation value and the prediction Lower deviation value, the predicted source power prediction data is substituted into the following equation to construct a random uncertainty set:
  • W s1 , P s2 are random uncertainty sets for wind turbine output, photovoltaic output, DC load and AC load, respectively.
  • It is the predicted nominal value of wind turbine output, photovoltaic output, DC load and AC load at t time
  • ⁇ w , ⁇ p , ⁇ l, dc and ⁇ l, ac is the uncertainty of wind turbine output, photovoltaic output, DC load and AC load.
  • N t is the total period of a scheduling period; with They are the actual value of the fan output, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter, and p s1 is the occurrence probability of the deviation interval in the s1 deviation interval of the t-time period wind turbine prediction; with The actual value of the PV output in the s2th deviation interval of the t-period PV prediction, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter, respectively, p s2 is the occurrence probability of the deviation interval; with The actual value of the DC load power, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter in the s3th deviation interval of the t-time period DC load prediction, respectively, p s3 is the occurrence probability of the deviation interval; with They are the actual value of the AC load power, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter
  • the operating cost coefficient of each device in the AC-DC hybrid microgrid includes the diesel fuel All operating cost factors related to generator, energy storage, bidirectional converter, fan, photovoltaic and AC/DC load, substituting the operating cost coefficient into the following formula to establish a random robust coupled optimization scheduling model in the form of min-max-min Objective function:
  • the value of I DE,t is 1 indicates that the diesel generator is in the t period Start, 0 means not activated; M DE, t take a value of 1 means that the diesel generator is shut down during the t period, 0 means not shut down; U DE, t is 1 means the diesel generator is in the t period It is in the power-on state, and when it is 0, it indicates that it is in the stop state; A value of 1 indicates that there is a forward commutation during the t period, and 0 indicates that there is no forward commutation. A value of 1 indicates that there is a negative commutation in the t period, and 0 indicates that there is no negative commutation.
  • the running limit values of the devices in the AC-DC hybrid microgrid obtained include All operating limits related to diesel generators, energy storage, bidirectional converters, fans, photovoltaics, and AC and DC loads are substituted into the following equations to establish the constraints of the stochastic robust coupled optimal scheduling model:
  • Equation (4) is the power generation constraint of the fan and photovoltaic;
  • the equations (5)-(7) are the minimum continuous startup time, the minimum continuous shutdown time and the maximum continuous startup time constraint of the diesel generator. with They are the minimum continuous start-up period limit of the diesel generator, the minimum continuous shutdown period limit and the maximum continuous start-up period limit, r represents the start period of the diesel generator flag; and
  • Equation (10) is the energy storage state constraint
  • S min and S max are the lower and upper limits of the energy storage allowable state
  • S(t) and S(t-1) is the state of charge of energy storage in the period t and t-1
  • ⁇ C and ⁇ D are the charging and discharging efficiency limits of energy storage
  • S(0) is the initial state of charge of energy storage.
  • S(N t ) is the state of charge of the stored energy at the end of the scheduling period
  • equations (11)-(12) are the commutation power and power fluctuation constraints of the bidirectional converter.
  • Equations (15)-(16) are the power balance constraints for DC and AC zones. with The forward and negative commutation efficiency limits for the bidirectional converter.
  • the specific content of the step 40) includes:
  • Step 401) Write the stochastic robust optimization scheduling model in the form of min-max-min represented by equations (1)-(16) into the following matrix representation:
  • Equation (18) represents the constraint conditions only related to x, A , b, B, and e are the constant matrices in the constraint; Equation (19) represents the constraint condition only related to y s , D, f, E, and g are the constant matrices in the constraint; Equation (20) represents The constraints associated with x and y s , F, h, and G are the constant matrices in the constraint; Equation (21) represents the constraints associated with w s1 , p s2 , and y s , both J and K are the constraints Constant matrix in; formula (22) represents The constraint associated with y s , M and N are the constant
  • Step 402 Based on the model of the matrix representation in step 401), the sub-problem of the stochastic robust optimization scheduling model is formed by using the column constraint generation algorithm:
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ dc and ⁇ ac are the dual variables of y s in the formulas (19)-(22);
  • Step 403) Based on the model of the matrix representation in step 401) and the sub-problem of step 402), the column constraint generation algorithm is used to form the main problem of the stochastic robust optimization scheduling model:
  • l is the total number of iterations
  • k is the current number of iterations
  • n is the total number of random intervals.
  • the main problem is optimized by substituting x as a known variable.
  • the sub-problems are w s1 , p s2 , and Optimization result, It is the optimization result of y s in the sub-problem after the kth iteration;
  • ⁇ s is the optimization variable related to the sub-question objective function value;
  • the wind, photovoltaic, DC load and AC load take the s1, s2, s3 and s4 deviations respectively
  • the corresponding scene in the interval is marked as the sth scene;
  • Step 404) Using the integer optimization modeling toolbox YALMIP to call the solver SCIP iterative solution to the sub-problem of step 402) and the main problem of step 403) to obtain a robust coordinated operation mode of the AC-DC hybrid microgrid.
  • the present invention has the following technical effects:
  • the present invention establishes a stochastic robust coupled optimal scheduling model based on the constructed stochastic uncertainty set, which improves the robustness of traditional stochastic optimization and reduces the conservativeness of traditional robust optimization;
  • the method constructs a random uncertainty set based on the predicted deviation interval of the source load and its occurrence probability.
  • the construction of the random uncertainty set only needs the prediction bias value of multiple intervals and its occurrence probability. Both of the prediction systems are easier to obtain than the exact probability distribution function.
  • Figure 1 is a flow chart of an embodiment of the present invention
  • FIG. 2 is a topological structural diagram of an AC-DC hybrid microgrid according to an embodiment of the present invention.
  • a stochastic robust coupled optimal scheduling model is established. This model improves the robustness of traditional stochastic optimization and reduces the traditional robust optimization. Conservative.
  • the method constructs a random uncertainty set based on the prediction bias interval of the source load and its occurrence probability. In practice, the construction of the random uncertainty set only needs the prediction bias value of multiple intervals and its occurrence probability, in the engineering prediction system. Both are easier to obtain than accurate probability distribution functions.
  • the topology structure of the AC-DC hybrid micro-grid is as shown in FIG. 2 .
  • the method includes the following steps:
  • Step 20 Obtain an operating cost coefficient of each device in the AC-DC hybrid microgrid, and substitute the stochastic uncertainty set constructed in step 10) to establish an objective function of the stochastic robust coupled optimization scheduling model;
  • Step 30 Obtain an operation limit of each device in the AC-DC hybrid microgrid, and establish a constraint condition of the stochastic robust coupling optimization scheduling model;
  • Step 40 Solving the stochastic robust coupled optimization scheduling problem formed by the step 20) objective function and the step 30) constraint condition: solving the stochastic robust coupling type optimization problem by using the column constraint generation algorithm to obtain the AC-DC hybrid microgrid Stochastic robust coordination of operational plans.
  • the source-load power prediction data of the AC-DC hybrid microgrid includes AC-DC mixing.
  • the predicted nominal value of the renewable energy output and load power and the budget period of the uncertainty period in the AC and DC areas of the Lianwei network, in addition to the number of predicted deviation intervals, the occurrence probability of each deviation interval, the predicted upper deviation value and the prediction Lower deviation value, the predicted source power prediction data is substituted into the following equation to construct a random uncertainty set:
  • W s1 , P s2 are random uncertainty sets for wind turbine output, photovoltaic output, DC load and AC load, respectively.
  • It is the predicted nominal value of wind turbine output, photovoltaic output, DC load and AC load at t time
  • ⁇ w , ⁇ p , ⁇ l, dc and ⁇ l, ac is the uncertainty of wind turbine output, photovoltaic output, DC load and AC load.
  • N t is the total period of a scheduling period; with They are the actual value of the fan output, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter, and p s1 is the occurrence probability of the deviation interval in the s1 deviation interval of the t-time period wind turbine prediction; with The actual value of the PV output in the s2th deviation interval of the t-period PV prediction, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter, respectively, p s2 is the occurrence probability of the deviation interval; with The actual value of the DC load power, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter and the lower deviation introduction parameter in the s3th deviation interval of the t-time period DC load prediction, respectively, p s3 is the occurrence probability of the deviation interval; with They are the actual value of the AC load power, the predicted upper deviation value, the predicted lower deviation value, the upper deviation introduction parameter
  • the operating cost coefficient of each device in the AC-DC hybrid microgrid includes the diesel fuel All operating cost factors related to generator, energy storage, bidirectional converter, fan, photovoltaic and AC/DC load, substituting the operating cost coefficient into the following formula to establish a random robust coupled optimization scheduling model in the form of min-max-min Objective function:
  • the value of I DE,t is 1 indicates that the diesel generator is in the t period Start, 0 means not activated; M DE, t take a value of 1 means that the diesel generator is shut down during the t period, 0 means not shut down; U DE, t is 1 means the diesel generator is in the t period It is in the power-on state, and when it is 0, it indicates that it is in the stop state; A value of 1 indicates that there is a forward commutation during the t period, and 0 indicates that there is no forward commutation. A value of 1 indicates that there is a negative commutation in the t period, and 0 indicates that there is no negative commutation.
  • the running limit values of the devices in the AC-DC hybrid microgrid obtained include All operating limits related to diesel generators, energy storage, bidirectional converters, fans, photovoltaics, and AC and DC loads are substituted into the following equations to establish the constraints of the stochastic robust coupled optimal scheduling model:
  • Equation (4) is the power generation constraint of the fan and photovoltaic;
  • the equations (5)-(7) are the minimum continuous startup time, the minimum continuous shutdown time and the maximum continuous startup time constraint of the diesel generator. with They are the minimum continuous start-up period limit of the diesel generator, the minimum continuous shutdown period limit and the maximum continuous start-up period limit, r represents the start period of the diesel generator flag; and
  • Equation (10) is the energy storage state constraint
  • S min and S max are the lower and upper limits of the energy storage allowable state
  • S(t) and S(t-1) is the state of charge of energy storage in the period t and t-1
  • ⁇ C and ⁇ D are the charging and discharging efficiency limits of energy storage
  • S(0) is the initial state of charge of energy storage.
  • S(N t ) is the state of charge of the stored energy at the end of the scheduling period
  • equations (11)-(12) are the commutation power and power fluctuation constraints of the bidirectional converter.
  • Equations (15)-(16) are the power balance constraints for DC and AC zones. with The forward and negative commutation efficiency limits for the bidirectional converter.
  • the specific content of the step 40) includes:
  • Step 401) Write the stochastic robust optimization scheduling model in the form of min-max-min represented by equations (1)-(16) into the following matrix representation:
  • Equation (18) represents the constraint conditions only related to x, A , b, B, and e are the constant matrices in the constraint; Equation (19) represents the constraint condition only related to y s , D, f, E, and g are the constant matrices in the constraint; Equation (20) represents The constraints associated with x and y s , F, h, and G are the constant matrices in the constraint; Equation (21) represents the constraints associated with w s1 , p s2 , and y s , both J and K are the constraints Constant matrix in; formula (22) represents The constraint associated with y s , M and N are the constant
  • Step 402 Based on the model of the matrix representation in step 401), the sub-problem of the stochastic robust optimization scheduling model is formed by using the column constraint generation algorithm:
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ dc and ⁇ ac are the dual variables of y s in the formulas (19)-(22);
  • Step 403) Based on the model of the matrix representation in step 401) and the sub-problem of step 402), the column constraint generation algorithm is used to form the main problem of the stochastic robust optimization scheduling model:
  • l is the total number of iterations
  • k is the current number of iterations
  • n is the total number of random intervals.
  • the main problem is optimized by substituting x as a known variable.
  • the sub-problems are w s1 , p s2 , and Optimization result, It is the optimization result of y s in the sub-problem after the kth iteration;
  • ⁇ s is the optimization variable related to the sub-question objective function value;
  • the wind, photovoltaic, DC load and AC load take the s1, s2, s3 and s4 deviations respectively
  • the corresponding scene in the interval is marked as the sth scene;
  • Step 404) Using the integer optimization modeling toolbox YALMIP to call the solver SCIP iterative solution to the sub-problem of step 402) and the main problem of step 403) to obtain a robust coordinated operation mode of the AC-DC hybrid microgrid.
  • the method of the embodiment of the present invention proposes a stochastic robust coupled optimal scheduling model for the AC-DC hybrid microgrid, taking into account the source-load uncertainty of the AC and DC regions, based on the prediction bias of the source-load output. Interval and its occurrence probability to construct a random uncertainty set.
  • the first stage determines the start and stop of the diesel generator and the running state of the bidirectional converter.
  • the second stage optimizes the operating power of each equipment unit and uses the column constraint generation algorithm to solve the problem quickly. The lowest operating cost and piconet operation plan in the worst case scenario can be obtained.

Abstract

本发明公开了一种交直流混联微网的随机鲁棒耦合型优化调度方法,包括以下步骤:步骤10)获取交直流混联微网的源荷功率预测数据,构造随机不确定性集;步骤20)建立随机鲁棒耦合型优化调度模型的目标函数;步骤30)建立随机鲁棒耦合型优化调度模型的约束条件;步骤40)求解随机鲁棒耦合型优化调度问题:利用列约束生成算法求解随机鲁棒耦合型优化问题,获得交直流混联微网的随机鲁棒协调运行计划。该方法考虑到传统鲁棒优化调度模型保守性强的缺点,将随机优化和鲁棒优化相结合,在保证系统鲁棒性的基础上能够提高交直流混联微网的运行经济性,为制定交直流混联微网的运行方式提供指导和帮助。

Description

一种交直流混联微网的随机鲁棒耦合型优化调度方法 技术领域
本发明涉及微网能量管理技术领域,特别是一种交直流混联微网的随机鲁棒耦合型优化调度方法。
背景技术
为了减少化石能源对环境的污染,越来越多可再生能源替代了传统能源接入电力系统,电网中的可再生能源渗透率大大提高。微网作为一种集聚分布式电源及负荷的小型自治系统,已经成为解决可再生能源接入电力系统的有效方法。为了保证微网稳定高效地运行,需要对其进行必要的能量管理以制定合理的运行调度计划。
由于可再生能源出力的间歇性及系统中负荷的动态变化,微网中存在较多的不确定性因素,这给微网调度带来了巨大挑战。此外目前研究主要针对传统交流微网,而随着电力电子技术的快速发展,越来越多直流型电源(如光伏、燃料电池、储能等)及直流型负荷(电动汽车、家用电器等)接入了微网。为了减少了换流设备的投资成本,同时降低了功率变换过程中的能量损耗,学者提出一种新型微网结构——交直流混联微网。该类微网通过双向换流器连接交流母线与直流母线,实现了交流和直流的分区供电,交直流混联微网已经成为现阶段微网的研究热点之一。随机优化及鲁棒优化方法被应用于微网优化调度中以应对不确定性问题。鲁棒优化能够获取最恶劣场景下的最小日运行费用,但现实中最恶劣场景很少出现,因此鲁棒优化具有较强的保守性;而随机优化相比于鲁棒优化保守性降低,但在应对不确定性时鲁棒性不足,并且随机优化需要较精确的不确定性概率分布函数,实际中难以获取。
发明内容
本发明所要解决的技术问题是克服现有技术的不足而提供一种交直流混联微网的随机鲁棒耦合型优化调度方法,该方法计及交直流混联微网中交流区和直流区的源荷不确定性,基于一种随机不确定性集建立随机鲁棒耦合型优化调度模型,能够实现交直流混联微网的随机鲁棒优化调度,提高传统随机优化的鲁棒性,降低传统鲁棒优化的保守性。
本发明为解决上述技术问题采用以下技术方案:
根据本发明提出的一种交直流混联微网的随机鲁棒耦合型优化调度方法,包括以下步骤:
步骤10)、获取交直流混联微网的源荷功率预测数据,构造随机不确定性集;
步骤20)、获取交直流混联微网中各设备的运行成本系数,代入步骤10)所构造的随机不确定性集,建立随机鲁棒耦合型优化调度模型的目标函数;
步骤30)、获取交直流混联微网中各设备的运行限值,建立随机鲁棒耦合型优化调度模型的约束条件;
步骤40)、求解由步骤20)目标函数和步骤30)约束条件形成的随机鲁棒耦合型优化调度问题:利用列约束生成算法求解随机鲁棒耦合型优化问题,获得交直流混联微网的随机鲁棒协调运行计划。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤10)中,交直流混联微网的源荷功率预测数据包括交直流混联微网中交流区和直流区可再生能源出力及负荷功率的预测标称值及不确定性时段预算数,此外还有预测偏差区间数、各个偏差区间的发生概率、预测上偏差值和预测下偏差值,将所述的源荷功率预测数据代入下式中构造随机不确定性集:
Figure PCTCN2018084939-appb-000001
Figure PCTCN2018084939-appb-000002
Figure PCTCN2018084939-appb-000003
Figure PCTCN2018084939-appb-000004
式中,W s1、P s2
Figure PCTCN2018084939-appb-000005
Figure PCTCN2018084939-appb-000006
分别为风机出力、光伏出力、直流负荷和交流负荷的随机不确定性集,其中
Figure PCTCN2018084939-appb-000007
Figure PCTCN2018084939-appb-000008
是t时段风机出力、光伏出力、直流负荷和交流负荷的预测标称值,Π w、Π p、Π l,dc和Π l,ac为风机出力、光伏出力、直流负荷和交流负荷的不确定性时段预算数,N t为一个调度周期总时段;
Figure PCTCN2018084939-appb-000009
Figure PCTCN2018084939-appb-000010
分别是t时段风机预测第s1个偏差区间中风机出力的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s1为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000011
Figure PCTCN2018084939-appb-000012
Figure PCTCN2018084939-appb-000013
分别是t时段光伏预测第s2个偏差区间中光伏出力的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s2为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000014
Figure PCTCN2018084939-appb-000015
Figure PCTCN2018084939-appb-000016
分别是t时段直流负荷预测第s3个偏差区间中直流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s3为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000017
Figure PCTCN2018084939-appb-000018
分别是t时段交流负荷预测第s4个偏差区间中交流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s4为该偏差区间的发生概率。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤20)中,交直流混联微网中各设备的运行成本系数包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行成本系数,将运行成本系数代入下式建立min-max-min形式的随机鲁棒耦合型优化调度模型的目标函数:
Figure PCTCN2018084939-appb-000019
式(2)中相关参数根据下式计算得到:
Figure PCTCN2018084939-appb-000020
Figure PCTCN2018084939-appb-000021
Figure PCTCN2018084939-appb-000022
Figure PCTCN2018084939-appb-000023
式中,
Figure PCTCN2018084939-appb-000024
Figure PCTCN2018084939-appb-000025
分别为柴油发电机的启动、关停和燃料成本;
Figure PCTCN2018084939-appb-000026
Figure PCTCN2018084939-appb-000027
Figure PCTCN2018084939-appb-000028
分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本;
Figure PCTCN2018084939-appb-000029
为储能损耗成本;
Figure PCTCN2018084939-appb-000030
为负荷切除停电惩罚成本;
Figure PCTCN2018084939-appb-000031
Figure PCTCN2018084939-appb-000032
分别为风机出力、光伏出力、直流负荷和交流负荷的预测偏差区间数;
Figure PCTCN2018084939-appb-000033
Figure PCTCN2018084939-appb-000034
分别为柴油发电机的启动和关停成本系数;I DE,t为t时段柴油发电机的启动标志位;M DE,t为t时段柴油发电机的关停标志位;U DE,t表示t时段柴油发电机的运行状态标志位;
Figure PCTCN2018084939-appb-000035
是t时段双 向换流器正向换流运行状态标志位,
Figure PCTCN2018084939-appb-000036
是t时段双向换流器负向换流运行状态标志位,其中功率由交流区流向直流区为正向换流,反之为负向换流;
Figure PCTCN2018084939-appb-000037
为柴油发电机的燃料成本系数;a DE和b DE为柴油发电机的油耗特性成本系数;P DE,t为柴油发电机在t时段的运行功率;
Figure PCTCN2018084939-appb-000038
为柴油发电机的额定功率;Δt为两时段的时间间隔;
Figure PCTCN2018084939-appb-000039
Figure PCTCN2018084939-appb-000040
Figure PCTCN2018084939-appb-000041
分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;
Figure PCTCN2018084939-appb-000042
为储能损耗成本系数;
Figure PCTCN2018084939-appb-000043
为负荷切除停电惩罚成本系数;
Figure PCTCN2018084939-appb-000044
Figure PCTCN2018084939-appb-000045
分别为储能在t时段的充电功率和放电功率;
Figure PCTCN2018084939-appb-000046
为双向换流器在t时段的正向换流功率,
Figure PCTCN2018084939-appb-000047
为双向换流器的负向换流功率;P WT,t和P PV,t分别是风机和光伏在t时段的发电功率;
Figure PCTCN2018084939-appb-000048
Figure PCTCN2018084939-appb-000049
分别表示t时段交流区和直流区被切除的负荷功率;
Figure PCTCN2018084939-appb-000050
Figure PCTCN2018084939-appb-000051
是t时段交流和直流可调度负荷运行功率。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤20)中,I DE,t取值为1表示柴油发电机在t时段被启动,0表示未被启动;M DE,t取值为1表示柴油发电机在t时段被关停,0表示未被关停;U DE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;
Figure PCTCN2018084939-appb-000052
取值为1表示t时段存在正向换流,0表示不存在正向换流,
Figure PCTCN2018084939-appb-000053
取值为1表示t时段存在负向换流,0表示不存在负向换流。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤30)中,获取的交直流混联微网中各设备的运行限值包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行限值,将运行限值代入下式建立随机鲁棒耦合型优化调度模型的约束条件:
Figure PCTCN2018084939-appb-000054
Figure PCTCN2018084939-appb-000055
Figure PCTCN2018084939-appb-000056
I DE,t+M DE,t≤1,I DE,t-M DE,t=U DE,t-U DE,t-1   (31)
Figure PCTCN2018084939-appb-000057
Figure PCTCN2018084939-appb-000058
Figure PCTCN2018084939-appb-000059
Figure PCTCN2018084939-appb-000060
Figure PCTCN2018084939-appb-000061
Figure PCTCN2018084939-appb-000062
Figure PCTCN2018084939-appb-000063
Figure PCTCN2018084939-appb-000064
Figure PCTCN2018084939-appb-000065
式(4)为风机和光伏的发电功率约束;式(5)-(7)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,
Figure PCTCN2018084939-appb-000066
Figure PCTCN2018084939-appb-000067
分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值,r表示柴油发电机标志位的开始时段;式(8)为柴油发电机运行功率上下限及爬坡速度约束,
Figure PCTCN2018084939-appb-000068
Figure PCTCN2018084939-appb-000069
为柴油发电机开机状态下运行功率的上下限值,
Figure PCTCN2018084939-appb-000070
Figure PCTCN2018084939-appb-000071
为柴油发电机单位时段内下爬坡和上爬坡的速率限值;式(9)为储能最大充放电功率约束,
Figure PCTCN2018084939-appb-000072
Figure PCTCN2018084939-appb-000073
为储能的最大充电和放电功率限值;式(10)为储能荷电状态约束,S min和S max为储能允许荷电状态的下限值和上限值,S(t)和S(t-1)为t和t-1时段储能的荷电状态,η C和η D为储能的充电和放电效率限值,S(0)为储能的初始荷电状态限值,S(N t)为储能在调度周期末的荷电状态限值;式(11)-(12)为双向换流器的换流功率及功率波动约束,
Figure PCTCN2018084939-appb-000074
Figure PCTCN2018084939-appb-000075
表示正向换流和负向换流的运行功率限值,
Figure PCTCN2018084939-appb-000076
Figure PCTCN2018084939-appb-000077
表示双向换流器在相邻时段功率波动的下限值和上限值;式(13)-(14)为各时段交直流被切除负荷和可调度负荷的运行功率、交直流可调度负荷用电量约束,
Figure PCTCN2018084939-appb-000078
Figure PCTCN2018084939-appb-000079
是t时段交流和直流最大可切除负荷功率限值,
Figure PCTCN2018084939-appb-000080
Figure PCTCN2018084939-appb-000081
是t时段交流和直流可调度负荷的最大运行功率限值,[t ac,1,t ac,end]为交流可调度负荷的运行时段区间限值,[t dc,1,t dc,end]为直流可调度负荷的运行时段区间限值,
Figure PCTCN2018084939-appb-000082
Figure PCTCN2018084939-appb-000083
是交流和直流可调度负荷的计划用电量限值;式(15)-(16)为直流区和交流区的功率平衡约束,
Figure PCTCN2018084939-appb-000084
Figure PCTCN2018084939-appb-000085
为双向换流器的正向和负向换流效率限值。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优 化方案,所述步骤40)的具体内容包括:
步骤401):将式(1)-(16)表示的min-max-min形式的随机鲁棒优化调度模型写成以下矩阵表示形式:
Figure PCTCN2018084939-appb-000086
s.t. Ax≤b,Bx=e,x∈{0,1}     (42)
Dy s≤f,Ey s=g,      (43)
Fy s≤h-Gx,     (44)
Jy s≤w s1,Ky s≤p s2,     (45)
Figure PCTCN2018084939-appb-000087
式中,x为式(2)中第一层的0-1状态变量集合,w s1、p s2
Figure PCTCN2018084939-appb-000088
Figure PCTCN2018084939-appb-000089
为第二层的随机不确定性集变量集合,y s为第三层的功率变量集合,c和d为该目标函数中的常数矩阵;式(18)表示仅与x相关的约束条件,A、b、B和e均为该约束中的常数矩阵;式(19)表示仅与y s相关的约束条件,D、f、E和g均为该约束中的常数矩阵;式(20)表示与x和y s相关的约束条件,F、h和G均为该约束中的常数矩阵;式(21)表示与w s1、p s2和y s相关的约束条件,J和K均为该约束中的常数矩阵;式(22)表示与
Figure PCTCN2018084939-appb-000090
和y s相关的约束条件,M和N均为该约束中的常数矩阵,上标T为矩阵的转置;
步骤402):基于步骤401)中矩阵表示形式的模型,利用列约束生成算法形成该随机鲁棒优化调度模型的子问题:
Figure PCTCN2018084939-appb-000091
式中,α、β、χ、γ、ψ、μ dc和μ ac为式(19)-(22)中y s的对偶变量;
步骤403):基于步骤401)中矩阵表示形式的模型和步骤402)的子问题,利用列约束生成算法形成该随机鲁棒优化调度模型的主问题:
Figure PCTCN2018084939-appb-000092
式中,l为总迭代次数,k为当前迭代次数,n为总随机区间数,
Figure PCTCN2018084939-appb-000093
该主问题优化出的x作为已知变量代入子问题,
Figure PCTCN2018084939-appb-000094
Figure PCTCN2018084939-appb-000095
为第k次迭代后子问题中w s1、p s2
Figure PCTCN2018084939-appb-000096
Figure PCTCN2018084939-appb-000097
的优化结果,
Figure PCTCN2018084939-appb-000098
为第k次迭代后子问题中y s的优化结果;η s为与子问题目标函数值相关的优化变量;风机、光伏、直流负荷和交流负荷分别取第s1、s2、s3和s4个偏差区间时对应的场景标记为第s个场景;
步骤404):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤402)的子问题和步骤403)的主问题,获得交直流混联微网的鲁棒协调运行方式。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
(1)本发明基于所构造的随机不确定性集建立了随机鲁棒耦合型优化调度模型,该模型提高传统随机优化的鲁棒性,降低传统鲁棒优化的保守性;
(2)本方法基于源荷出力的预测偏差区间及其发生概率来构造随机不确定性集,实际中随机不确定性集的构造仅需要多个区间的预测偏差值及其出现概率,在工程预测系统中二者相比于精确的概率分布函数更容易获取。
附图说明
图1为本发明实施例的流程图;
图2为本发明实施例中交直流混联微网的拓扑结构图。
具体实施方式
下面结合附图,对本发明实施例的技术方案做进一步的说明。
随机优化及鲁棒优化方法均被应用于微网优化调度中以应对不确定性问题。随机优化利用概率分布函数反映实际微网中可能出现的不确定性场景,但场景生成需要较精确的不确定性概率分布函数,这在工程中往往难以获取,此外众多的场景大大增加了随机优化模型求解的运算量。相比于随机优化,鲁棒优化在已知不确定性分布区间的情况下即能快速搜索出经济调度最恶劣场景,鲁棒优化调度虽然能得到最恶劣场景下的调度计划,但最恶劣场景很少出现,因此鲁棒优化结果具有较强的保守性。本方法综合考虑到 两种优化方法的优缺点,基于所构造的随机不确定性集建立了随机鲁棒耦合型优化调度模型,该模型提高传统随机优化的鲁棒性,降低传统鲁棒优化的保守性。本方法基于源荷出力的预测偏差区间及其发生概率来构造随机不确定性集,实际中随机不确定性集的构造仅需要多个区间的预测偏差值及其出现概率,在工程预测系统中二者相比于精确的概率分布函数更容易获取。
如图1所示,本发明方法的实施例,交直流混联微网的拓扑结构如图2所示。该方法包括以下步骤:
步骤10)、获取交直流混联微网的源荷功率预测数据,构造随机不确定性集;
步骤20)、获取交直流混联微网中各设备的运行成本系数,代入步骤10)所构造的随机不确定性集,建立随机鲁棒耦合型优化调度模型的目标函数;
步骤30)、获取交直流混联微网中各设备的运行限值,建立随机鲁棒耦合型优化调度模型的约束条件;
步骤40)、求解由步骤20)目标函数和步骤30)约束条件形成的随机鲁棒耦合型优化调度问题:利用列约束生成算法求解随机鲁棒耦合型优化问题,获得交直流混联微网的随机鲁棒协调运行计划。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤10)中,交直流混联微网的源荷功率预测数据包括交直流混联微网中交流区和直流区可再生能源出力及负荷功率的预测标称值及不确定性时段预算数,此外还有预测偏差区间数、各个偏差区间的发生概率、预测上偏差值和预测下偏差值,将所述的源荷功率预测数据代入下式中构造随机不确定性集:
Figure PCTCN2018084939-appb-000099
Figure PCTCN2018084939-appb-000100
Figure PCTCN2018084939-appb-000101
Figure PCTCN2018084939-appb-000102
式中,W s1、P s2
Figure PCTCN2018084939-appb-000103
Figure PCTCN2018084939-appb-000104
分别为风机出力、光伏出力、直流负荷和交流负荷的随机不确定性集,其中
Figure PCTCN2018084939-appb-000105
Figure PCTCN2018084939-appb-000106
是t时段风机出力、光伏出力、直流负荷和交流 负荷的预测标称值,Π w、Π p、Π l,dc和Π l,ac为风机出力、光伏出力、直流负荷和交流负荷的不确定性时段预算数,N t为一个调度周期总时段;
Figure PCTCN2018084939-appb-000107
Figure PCTCN2018084939-appb-000108
分别是t时段风机预测第s1个偏差区间中风机出力的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s1为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000109
Figure PCTCN2018084939-appb-000110
Figure PCTCN2018084939-appb-000111
分别是t时段光伏预测第s2个偏差区间中光伏出力的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s2为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000112
Figure PCTCN2018084939-appb-000113
Figure PCTCN2018084939-appb-000114
分别是t时段直流负荷预测第s3个偏差区间中直流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s3为该偏差区间的发生概率;
Figure PCTCN2018084939-appb-000115
Figure PCTCN2018084939-appb-000116
分别是t时段交流负荷预测第s4个偏差区间中交流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s4为该偏差区间的发生概率。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤20)中,交直流混联微网中各设备的运行成本系数包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行成本系数,将运行成本系数代入下式建立min-max-min形式的随机鲁棒耦合型优化调度模型的目标函数:
Figure PCTCN2018084939-appb-000117
式(2)中相关参数根据下式计算得到:
Figure PCTCN2018084939-appb-000118
Figure PCTCN2018084939-appb-000119
Figure PCTCN2018084939-appb-000120
Figure PCTCN2018084939-appb-000121
式中,
Figure PCTCN2018084939-appb-000122
Figure PCTCN2018084939-appb-000123
分别为柴油发电机的启动、关停和燃料成本;
Figure PCTCN2018084939-appb-000124
Figure PCTCN2018084939-appb-000125
Figure PCTCN2018084939-appb-000126
分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本;
Figure PCTCN2018084939-appb-000127
为储能损耗成本;
Figure PCTCN2018084939-appb-000128
为负荷切除停电惩罚成本;
Figure PCTCN2018084939-appb-000129
Figure PCTCN2018084939-appb-000130
分别为风机出力、光伏出力、直流负荷和交流负荷的预测偏差区间数;
Figure PCTCN2018084939-appb-000131
Figure PCTCN2018084939-appb-000132
分别为柴油发电机的启动和关停成本系数;I DE,t为t时段柴油发电机的启动标志位;M DE,t为t时段柴油发电机的关停标志位;U DE,t表示t时段柴油发电机的运行状态标志位;
Figure PCTCN2018084939-appb-000133
是t时段双向换流器正向换流运行状态标志位,
Figure PCTCN2018084939-appb-000134
是t时段双向换流器负向换流运行状态标志位,其中功率由交流区流向直流区为正向换流,反之为负向换流;
Figure PCTCN2018084939-appb-000135
为柴油发电机的燃料成本系数;a DE和b DE为柴油发电机的油耗特性成本系数;P DE,t为柴油发电机在t时段的运行功率;
Figure PCTCN2018084939-appb-000136
为柴油发电机的额定功率;Δt为两时段的时间间隔;
Figure PCTCN2018084939-appb-000137
Figure PCTCN2018084939-appb-000138
Figure PCTCN2018084939-appb-000139
分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;
Figure PCTCN2018084939-appb-000140
为储能损耗成本系数;
Figure PCTCN2018084939-appb-000141
为负荷切除停电惩罚成本系数;
Figure PCTCN2018084939-appb-000142
Figure PCTCN2018084939-appb-000143
分别为储能在t时段的充电功率和放电功率;
Figure PCTCN2018084939-appb-000144
为双向换流器在t时段的正向换流功率,
Figure PCTCN2018084939-appb-000145
为双向换流器的负向换流功率;P WT,t和P PV,t分别是风机和光伏在t时段的发电功率;
Figure PCTCN2018084939-appb-000146
Figure PCTCN2018084939-appb-000147
分别表示t时段交流区和直流区被切除的负荷功率;
Figure PCTCN2018084939-appb-000148
Figure PCTCN2018084939-appb-000149
是t时段交流和直流可调度负荷运行功率。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤20)中,I DE,t取值为1表示柴油发电机在t时段被启动,0表示未被启动;M DE,t取值为1表示柴油发电机在t时段被关停,0表示未被关停;U DE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;
Figure PCTCN2018084939-appb-000150
取值为1表示t时段存在正向换流,0表示不存在正向换流,
Figure PCTCN2018084939-appb-000151
取值为1表示t时段存在负向换流,0表示不存在负向换流。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤30)中,获取的交直流混联微网中各设备的运行限值包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行限值,将运行限 值代入下式建立随机鲁棒耦合型优化调度模型的约束条件:
Figure PCTCN2018084939-appb-000152
Figure PCTCN2018084939-appb-000153
Figure PCTCN2018084939-appb-000154
I DE,t+M DE,t≤1,I DE,t-M DE,t=U DE,t-U DE,t-1   (55)
Figure PCTCN2018084939-appb-000155
Figure PCTCN2018084939-appb-000156
Figure PCTCN2018084939-appb-000157
Figure PCTCN2018084939-appb-000158
Figure PCTCN2018084939-appb-000159
Figure PCTCN2018084939-appb-000160
Figure PCTCN2018084939-appb-000161
Figure PCTCN2018084939-appb-000162
Figure PCTCN2018084939-appb-000163
式(4)为风机和光伏的发电功率约束;式(5)-(7)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,
Figure PCTCN2018084939-appb-000164
Figure PCTCN2018084939-appb-000165
分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值,r表示柴油发电机标志位的开始时段;式(8)为柴油发电机运行功率上下限及爬坡速度约束,
Figure PCTCN2018084939-appb-000166
Figure PCTCN2018084939-appb-000167
为柴油发电机开机状态下运行功率的上下限值,
Figure PCTCN2018084939-appb-000168
Figure PCTCN2018084939-appb-000169
为柴油发电机单位时段内下爬坡和上爬坡的速率限值;式(9)为储能最大充放电功率约束,
Figure PCTCN2018084939-appb-000170
Figure PCTCN2018084939-appb-000171
为储能的最大充电和放电功率限值;式(10)为储能荷电状态约束,S min和S max为储能允许荷电状态的下限值和上限值,S(t)和S(t-1)为t和t-1时段储能的荷电状态,η C和η D为储能的充电和放电效率限值,S(0)为储能的初始荷电状态限值,S(N t)为储能在调度周期末的荷电状态限值;式(11)-(12)为双向换流器的换流功率及功率波动约束,
Figure PCTCN2018084939-appb-000172
Figure PCTCN2018084939-appb-000173
表示正向换流和负向换流的运行功率限值,
Figure PCTCN2018084939-appb-000174
Figure PCTCN2018084939-appb-000175
表示双向换流器在相邻时段功率波动的下限值和上限值;式(13)-(14)为各时段交直流被切除负荷和可调度负荷的运行功 率、交直流可调度负荷用电量约束,
Figure PCTCN2018084939-appb-000176
Figure PCTCN2018084939-appb-000177
是t时段交流和直流最大可切除负荷功率限值,
Figure PCTCN2018084939-appb-000178
Figure PCTCN2018084939-appb-000179
是t时段交流和直流可调度负荷的最大运行功率限值,[t ac,1,t ac,end]为交流可调度负荷的运行时段区间限值,[t dc,1,t dc,end]为直流可调度负荷的运行时段区间限值,
Figure PCTCN2018084939-appb-000180
Figure PCTCN2018084939-appb-000181
是交流和直流可调度负荷的计划用电量限值;式(15)-(16)为直流区和交流区的功率平衡约束,
Figure PCTCN2018084939-appb-000182
Figure PCTCN2018084939-appb-000183
为双向换流器的正向和负向换流效率限值。
作为本发明所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法进一步优化方案,所述步骤40)的具体内容包括:
步骤401):将式(1)-(16)表示的min-max-min形式的随机鲁棒优化调度模型写成以下矩阵表示形式:
Figure PCTCN2018084939-appb-000184
s.t. Ax≤b,Bx=e,x∈{0,1}    (66)
Dy s≤f,Ey s=g,    (67)
Fy s≤h-Gx,    (68)
Jy s≤w s1,Ky s≤p s2,     (69)
Figure PCTCN2018084939-appb-000185
式中,x为式(2)中第一层的0-1状态变量集合,w s1、p s2
Figure PCTCN2018084939-appb-000186
Figure PCTCN2018084939-appb-000187
为第二层的随机不确定性集变量集合,y s为第三层的功率变量集合,c和d为该目标函数中的常数矩阵;式(18)表示仅与x相关的约束条件,A、b、B和e均为该约束中的常数矩阵;式(19)表示仅与y s相关的约束条件,D、f、E和g均为该约束中的常数矩阵;式(20)表示与x和y s相关的约束条件,F、h和G均为该约束中的常数矩阵;式(21)表示与w s1、p s2和y s相关的约束条件,J和K均为该约束中的常数矩阵;式(22)表示与
Figure PCTCN2018084939-appb-000188
和y s相关的约束条件,M和N均为该约束中的常数矩阵,上标T为矩阵的转置;
步骤402):基于步骤401)中矩阵表示形式的模型,利用列约束生成算法形成该随机鲁棒优化调度模型的子问题:
Figure PCTCN2018084939-appb-000189
式中,α、β、χ、γ、ψ、μ dc和μ ac为式(19)-(22)中y s的对偶变量;
步骤403):基于步骤401)中矩阵表示形式的模型和步骤402)的子问题,利用列约束生成算法形成该随机鲁棒优化调度模型的主问题:
Figure PCTCN2018084939-appb-000190
式中,l为总迭代次数,k为当前迭代次数,n为总随机区间数,
Figure PCTCN2018084939-appb-000191
该主问题优化出的x作为已知变量代入子问题,
Figure PCTCN2018084939-appb-000192
Figure PCTCN2018084939-appb-000193
为第k次迭代后子问题中w s1、p s2
Figure PCTCN2018084939-appb-000194
Figure PCTCN2018084939-appb-000195
的优化结果,
Figure PCTCN2018084939-appb-000196
为第k次迭代后子问题中y s的优化结果;η s为与子问题目标函数值相关的优化变量;风机、光伏、直流负荷和交流负荷分别取第s1、s2、s3和s4个偏差区间时对应的场景标记为第s个场景;
步骤404):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤402)的子问题和步骤403)的主问题,获得交直流混联微网的鲁棒协调运行方式。
本发明实施例的方法,针对交直流混联微网,计及交流区和直流区的源荷不确定性提出了一种随机鲁棒耦合型优化调度模型,该模型基于源荷出力的预测偏差区间及其发生概率来构造随机不确定性集,第一阶段确定柴油发电机的启停和双向换流器的运行状态,第二阶段优化各设备单元的运行功率,利用列约束生成算法快速求解能够获得最恶劣场景下的最小运行费用及微网运行计划。
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解,本发明不受上述具体实施例的限制,上述具体实施例和说明书中的描述只是为了进一步说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由权利要求书及其等效物界定。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围内。

Claims (6)

  1. 一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,包括以下步骤:
    步骤10)、获取交直流混联微网的源荷功率预测数据,构造随机不确定性集;
    步骤20)、获取交直流混联微网中各设备的运行成本系数,代入步骤10)所构造的随机不确定性集,建立随机鲁棒耦合型优化调度模型的目标函数;
    步骤30)、获取交直流混联微网中各设备的运行限值,建立随机鲁棒耦合型优化调度模型的约束条件;
    步骤40)、求解由步骤20)目标函数和步骤30)约束条件形成的随机鲁棒耦合型优化调度问题:利用列约束生成算法求解随机鲁棒耦合型优化问题,获得交直流混联微网的随机鲁棒协调运行计划。
  2. 根据权利要求1所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,所述步骤10)中,交直流混联微网的源荷功率预测数据包括交直流混联微网中交流区和直流区可再生能源出力及负荷功率的预测标称值及不确定性时段预算数,此外还有预测偏差区间数、各个偏差区间的发生概率、预测上偏差值和预测下偏差值,将所述的源荷功率预测数据代入下式中构造随机不确定性集:
    Figure PCTCN2018084939-appb-100001
    Figure PCTCN2018084939-appb-100002
    Figure PCTCN2018084939-appb-100003
    Figure PCTCN2018084939-appb-100004
    式中,W s1、P s2
    Figure PCTCN2018084939-appb-100005
    Figure PCTCN2018084939-appb-100006
    分别为风机出力、光伏出力、直流负荷和交流负荷的随机不确定性集,其中
    Figure PCTCN2018084939-appb-100007
    是t时段风机出力、光伏出力、直流负荷和交流负荷的预测标称值,Π w、Π p、Π l,dc和Π l,ac为风机出力、光伏出力、直流负荷和交流负荷的不确定性时段预算数,N t为一个调度周期总时段;
    Figure PCTCN2018084939-appb-100009
    Figure PCTCN2018084939-appb-100010
    分别是t时段风机预测第s1个偏差区间中风机出力的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s1为该偏差区间的发生概率;
    Figure PCTCN2018084939-appb-100011
    Figure PCTCN2018084939-appb-100012
    Figure PCTCN2018084939-appb-100013
    分别是t时段光伏预测第s2个偏差区间中光伏出力的实际值、预测上偏差值、 预测下偏差值、上偏差引入参数和下偏差引入参数,p s2为该偏差区间的发生概率;
    Figure PCTCN2018084939-appb-100014
    Figure PCTCN2018084939-appb-100015
    Figure PCTCN2018084939-appb-100016
    分别是t时段直流负荷预测第s3个偏差区间中直流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s3为该偏差区间的发生概率;
    Figure PCTCN2018084939-appb-100017
    Figure PCTCN2018084939-appb-100018
    分别是t时段交流负荷预测第s4个偏差区间中交流负荷功率的实际值、预测上偏差值、预测下偏差值、上偏差引入参数和下偏差引入参数,p s4为该偏差区间的发生概率。
  3. 根据权利要求2所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,所述步骤20)中,交直流混联微网中各设备的运行成本系数包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行成本系数,将运行成本系数代入下式建立min-max-min形式的随机鲁棒耦合型优化调度模型的目标函数:
    Figure PCTCN2018084939-appb-100019
    式(2)中相关参数根据下式计算得到:
    Figure PCTCN2018084939-appb-100020
    Figure PCTCN2018084939-appb-100021
    Figure PCTCN2018084939-appb-100022
    Figure PCTCN2018084939-appb-100023
    式中,
    Figure PCTCN2018084939-appb-100024
    Figure PCTCN2018084939-appb-100025
    分别为柴油发电机的启动、关停和燃料成本;
    Figure PCTCN2018084939-appb-100026
    Figure PCTCN2018084939-appb-100027
    Figure PCTCN2018084939-appb-100028
    分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本;
    Figure PCTCN2018084939-appb-100029
    为储能损耗成本;
    Figure PCTCN2018084939-appb-100030
    为负荷切除停电惩罚成本;
    Figure PCTCN2018084939-appb-100031
    Figure PCTCN2018084939-appb-100032
    分别为风机出力、光伏出力、直流负荷和交流负荷的预测偏差区间数;
    Figure PCTCN2018084939-appb-100033
    Figure PCTCN2018084939-appb-100034
    分别为柴油发电 机的启动和关停成本系数;I DE,t为t时段柴油发电机的启动标志位;M DE,t为t时段柴油发电机的关停标志位;U DE,t表示t时段柴油发电机的运行状态标志位;
    Figure PCTCN2018084939-appb-100035
    是t时段双向换流器正向换流运行状态标志位,
    Figure PCTCN2018084939-appb-100036
    是t时段双向换流器负向换流运行状态标志位,其中功率由交流区流向直流区为正向换流,反之为负向换流;
    Figure PCTCN2018084939-appb-100037
    为柴油发电机的燃料成本系数;a DE和b DE为柴油发电机的油耗特性成本系数;P DE,t为柴油发电机在t时段的运行功率;
    Figure PCTCN2018084939-appb-100038
    为柴油发电机的额定功率;Δt为两时段的时间间隔;
    Figure PCTCN2018084939-appb-100039
    Figure PCTCN2018084939-appb-100040
    Figure PCTCN2018084939-appb-100041
    分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;
    Figure PCTCN2018084939-appb-100042
    为储能损耗成本系数;
    Figure PCTCN2018084939-appb-100043
    为负荷切除停电惩罚成本系数;
    Figure PCTCN2018084939-appb-100044
    Figure PCTCN2018084939-appb-100045
    分别为储能在t时段的充电功率和放电功率;
    Figure PCTCN2018084939-appb-100046
    为双向换流器在t时段的正向换流功率,
    Figure PCTCN2018084939-appb-100047
    为双向换流器的负向换流功率;P WT,t和P PV,t分别是风机和光伏在t时段的发电功率;
    Figure PCTCN2018084939-appb-100048
    Figure PCTCN2018084939-appb-100049
    分别表示t时段交流区和直流区被切除的负荷功率;
    Figure PCTCN2018084939-appb-100050
    Figure PCTCN2018084939-appb-100051
    是t时段交流和直流可调度负荷运行功率。
  4. 根据权利要求3所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,所述步骤20)中,I DE,t取值为1表示柴油发电机在t时段被启动,0表示未被启动;M DE,t取值为1表示柴油发电机在t时段被关停,0表示未被关停;U DE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;
    Figure PCTCN2018084939-appb-100052
    取值为1表示t时段存在正向换流,0表示不存在正向换流,
    Figure PCTCN2018084939-appb-100053
    取值为1表示t时段存在负向换流,0表示不存在负向换流。
  5. 根据权利要求3所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,所述步骤30)中,获取的交直流混联微网中各设备的运行限值包括与柴油发电机、储能、双向换流器、风机、光伏及交直流负荷相关的所有的运行限值,将运行限值代入下式建立随机鲁棒耦合型优化调度模型的约束条件:
    Figure PCTCN2018084939-appb-100054
    Figure PCTCN2018084939-appb-100055
    Figure PCTCN2018084939-appb-100056
    I DE,t+M DE,t≤1,I DE,t-M DE,t=U DE,t-U DE,t-1              (7)
    Figure PCTCN2018084939-appb-100057
    Figure PCTCN2018084939-appb-100058
    Figure PCTCN2018084939-appb-100059
    Figure PCTCN2018084939-appb-100060
    Figure PCTCN2018084939-appb-100061
    Figure PCTCN2018084939-appb-100062
    Figure PCTCN2018084939-appb-100063
    Figure PCTCN2018084939-appb-100064
    Figure PCTCN2018084939-appb-100065
    式(4)为风机和光伏的发电功率约束;式(5)-(7)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,
    Figure PCTCN2018084939-appb-100066
    Figure PCTCN2018084939-appb-100067
    分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值,r表示柴油发电机标志位的开始时段;式(8)为柴油发电机运行功率上下限及爬坡速度约束,
    Figure PCTCN2018084939-appb-100068
    Figure PCTCN2018084939-appb-100069
    为柴油发电机开机状态下运行功率的上下限值,
    Figure PCTCN2018084939-appb-100070
    Figure PCTCN2018084939-appb-100071
    为柴油发电机单位时段内下爬坡和上爬坡的速率限值;式(9)为储能最大充放电功率约束,
    Figure PCTCN2018084939-appb-100072
    Figure PCTCN2018084939-appb-100073
    为储能的最大充电和放电功率限值;式(10)为储能荷电状态约束,S min和S max为储能允许荷电状态的下限值和上限值,S(t)和S(t-1)为t和t-1时段储能的荷电状态,η C和η D为储能的充电和放电效率限值,S(0)为储能的初始荷电状态限值,S(N t)为储能在调度周期末的荷电状态限值;式(11)-(12)为双向换流器的换流功率及功率波动约束,
    Figure PCTCN2018084939-appb-100074
    Figure PCTCN2018084939-appb-100075
    表示正向换流和负向换流的运行功率限值,
    Figure PCTCN2018084939-appb-100076
    Figure PCTCN2018084939-appb-100077
    表示双向换流器在相邻时段功率波动的下限值和上限值;式(13)-(14)为各时段交直流被切除负荷和可调度负荷的运行功率、交直流可调度负荷用电量约束,
    Figure PCTCN2018084939-appb-100078
    Figure PCTCN2018084939-appb-100079
    是t时段交流和直流最大可切除负荷功率限值,
    Figure PCTCN2018084939-appb-100080
    Figure PCTCN2018084939-appb-100081
    是t时段交流和直流可调度负荷的最大运行功率限值,[t ac,1,t ac,end]为交流可调度负荷的运行时段区间限值,[t dc,1,t dc,end]为直流可调度负荷的运行时段区间限值,
    Figure PCTCN2018084939-appb-100082
    Figure PCTCN2018084939-appb-100083
    是交流和直流可调度负荷的计划用电量限值;式(15)-(16)为直流区和交流区的功率平衡约束,
    Figure PCTCN2018084939-appb-100084
    Figure PCTCN2018084939-appb-100085
    为双向换流器的正向和负向换流 效率限值。
  6. 根据权利要求5所述的一种交直流混联微网的随机鲁棒耦合型优化调度方法,其特征在于,所述步骤40)的具体内容包括:
    步骤401):将式(1)-(16)表示的min-max-min形式的随机鲁棒优化调度模型写成以下矩阵表示形式:
    Figure PCTCN2018084939-appb-100086
    s.t. Ax≤b,Bx=e,x∈{0,1}         (18)
    Dy s≤f,Ey s=g,                     (19)
    Fy s≤h-Gx,                         (20)
    Jy s≤w s1,Ky s≤p s2,                   (21)
    Figure PCTCN2018084939-appb-100087
    式中,x为式(2)中第一层的0-1状态变量集合,w s1、p s2
    Figure PCTCN2018084939-appb-100088
    Figure PCTCN2018084939-appb-100089
    为第二层的随机不确定性集变量集合,y s为第三层的功率变量集合,c和d为该目标函数中的常数矩阵;式(18)表示仅与x相关的约束条件,A、b、B和e均为该约束中的常数矩阵;式(19)表示仅与y s相关的约束条件,D、f、E和g均为该约束中的常数矩阵;式(20)表示与x和y s相关的约束条件,F、h和G均为该约束中的常数矩阵;式(21)表示与w s1、p s2和y s相关的约束条件,J和K均为该约束中的常数矩阵;式(22)表示与
    Figure PCTCN2018084939-appb-100090
    和y s相关的约束条件,M和N均为该约束中的常数矩阵,上标T为矩阵的转置;
    步骤402):基于步骤401)中矩阵表示形式的模型,利用列约束生成算法形成该随机鲁棒优化调度模型的子问题:
    Figure PCTCN2018084939-appb-100091
    式中,α、β、χ、γ、ψ、μ dc和μ ac为式(19)-(22)中y s的对偶变量;
    步骤403):基于步骤401)中矩阵表示形式的模型和步骤402)的子问题,利用列约束生成算法形成该随机鲁棒优化调度模型的主问题:
    Figure PCTCN2018084939-appb-100092
    式中,l为总迭代次数,k为当前迭代次数,n为总随机区间数,
    Figure PCTCN2018084939-appb-100093
    该主问题优化出的x作为已知变量代入子问题,
    Figure PCTCN2018084939-appb-100094
    Figure PCTCN2018084939-appb-100095
    为第k次迭代后子问题中w s1、p s2
    Figure PCTCN2018084939-appb-100096
    Figure PCTCN2018084939-appb-100097
    的优化结果,
    Figure PCTCN2018084939-appb-100098
    为第k次迭代后子问题中y s的优化结果;η s为与子问题目标函数值相关的优化变量;风机、光伏、直流负荷和交流负荷分别取第s1、s2、s3和s4个偏差区间时对应的场景标记为第s个场景;
    步骤404):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤402)的子问题和步骤403)的主问题,获得交直流混联微网的鲁棒协调运行方式。
PCT/CN2018/084939 2018-02-28 2018-04-27 一种交直流混联微网的随机鲁棒耦合型优化调度方法 WO2019165701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810166474.1A CN108258695B (zh) 2018-02-28 2018-02-28 一种交直流混联微网的随机鲁棒耦合型优化调度方法
CN201810166474.1 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019165701A1 true WO2019165701A1 (zh) 2019-09-06

Family

ID=62745418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084939 WO2019165701A1 (zh) 2018-02-28 2018-04-27 一种交直流混联微网的随机鲁棒耦合型优化调度方法

Country Status (2)

Country Link
CN (1) CN108258695B (zh)
WO (1) WO2019165701A1 (zh)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146825A (zh) * 2020-01-03 2020-05-12 天津大学 计及不同主体的含pet交直流混合微网双层控制方法
CN111259309A (zh) * 2020-01-14 2020-06-09 沈阳工业大学 一种基于电转气和燃料电池的多能源系统稳定性优化方法
CN111600315A (zh) * 2020-06-02 2020-08-28 河北水利电力学院 一种配电网无功优化方法
CN111740408A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 一种基于鲁棒随机模型的光热电站最优报价决策方法
CN111898877A (zh) * 2020-07-13 2020-11-06 西安交通大学 一种提升电网恢复速度的灾前抢修人员预部署方法
CN112018825A (zh) * 2020-09-18 2020-12-01 云南电网有限责任公司电力科学研究院 一种多端口电能路由器能量协调控制方法
CN112491086A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种风光储独立微电网优化配置方法
CN112510702A (zh) * 2020-11-26 2021-03-16 国网安徽省电力有限公司经济技术研究院 一种可再生能源发电制气的综合能源站规划方法及系统
CN112688328A (zh) * 2020-12-04 2021-04-20 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网时间协调能量优化配置方法
CN112688307A (zh) * 2020-12-04 2021-04-20 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网控制器及控制方法
CN112803567A (zh) * 2021-01-29 2021-05-14 西安交通大学 基于智能楼宇光储供电设备的参数优化设计方法及系统
CN112819278A (zh) * 2020-12-31 2021-05-18 广西大学 一种求解两阶段鲁棒优化机组组合模型的分段仿射方法
CN113065682A (zh) * 2020-01-02 2021-07-02 中国电力科学研究院有限公司 一种气电综合能源系统调度方法及装置
CN113076626A (zh) * 2021-03-17 2021-07-06 武汉工程大学 基于分布鲁棒优化的分布式光伏极限并网容量评估方法
CN113112063A (zh) * 2021-04-07 2021-07-13 国网新疆电力有限公司经济技术研究院 一种含风电电力系统的多场景鲁棒调度方法和装置
CN113139674A (zh) * 2020-11-30 2021-07-20 海南电网有限责任公司 交直流混联系统一体化现货市场出清优化方法
CN113394789A (zh) * 2021-07-02 2021-09-14 山东大学 考虑高比例可再生能源接入的电力系统一体化调度方法
CN113595135A (zh) * 2021-07-12 2021-11-02 西南交通大学 一种并弱电网型电氢耦合直流微电网双层同步控制方法
CN113612252A (zh) * 2021-07-19 2021-11-05 南方电网科学研究院有限责任公司 含风电场的交直流混联电网静态电压稳定优化控制方法
CN113675846A (zh) * 2021-08-24 2021-11-19 合肥市武汉大学创新技术研究院 基于聚合效应的配电网分布式储能优化调度方法
CN113705962A (zh) * 2021-07-16 2021-11-26 国网江苏省电力有限公司南京供电分公司 一种基于分布鲁棒优化的虚拟电厂日前调度方法
CN113852137A (zh) * 2021-09-27 2021-12-28 国网新疆电力有限公司电力科学研究院 两阶段鲁棒优化的电力系统运行灵活性容量评估方法
CN114049004A (zh) * 2021-11-11 2022-02-15 东南大学 一种电氢能源站容量随机规划方法、系统和装置
CN114142460A (zh) * 2021-11-17 2022-03-04 浙江华云电力工程设计咨询有限公司 综合能源系统中储能双层目标优化配置方法及终端
CN114142473A (zh) * 2021-12-06 2022-03-04 浙江华云电力工程设计咨询有限公司 一种风光容量未知情况下的微电网配置方法及系统
CN114204598A (zh) * 2021-12-14 2022-03-18 国网江苏省电力有限公司南通供电分公司 一种考虑柔性负荷参与调控的孤岛微网稳定性控制方法
CN114204542A (zh) * 2021-12-14 2022-03-18 国网江苏省电力有限公司南通供电分公司 考虑风险敏感的能量路由器直流母线电压稳定性控制方法
CN114336585A (zh) * 2021-09-24 2022-04-12 北京交通大学 基于多智能体协同的多微网能量管理方法、系统和电子设备
CN114336781A (zh) * 2022-01-04 2022-04-12 合肥工业大学 考虑碳捕集电厂与光伏发电协同配合的低碳优化运行方法
CN114362253A (zh) * 2021-12-24 2022-04-15 贵州电网有限责任公司 一种采用柔性电力电子开关的分布式电源实时消纳方法
CN114465246A (zh) * 2022-02-21 2022-05-10 华北电力大学 一种计及调速器死区与限幅环节的机组组合优化方法
CN114707289A (zh) * 2021-12-28 2022-07-05 国网江苏省电力有限公司经济技术研究院 基于机会约束的电热耦合综合能源系统多目标优化方法
CN114896768A (zh) * 2022-04-21 2022-08-12 河海大学 一种基于新能源分位数回归的虚拟电厂分布鲁棒优化方法
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
CN115021327A (zh) * 2022-05-19 2022-09-06 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115065070A (zh) * 2022-06-09 2022-09-16 国网江苏省电力有限公司淮安供电分公司 一种基于鲁棒h∞控制的微电网频率控制方法
CN115189377A (zh) * 2022-08-01 2022-10-14 四川大学 基于光伏发电量预测的微网优化调度方法、装置和设备
CN115600761A (zh) * 2022-11-09 2023-01-13 山东大学(Cn) 考虑不确定性因素的综合能源生产单元自调度方法和系统
CN115640894A (zh) * 2022-10-21 2023-01-24 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN115967111A (zh) * 2023-03-16 2023-04-14 国网山东省电力公司东营市河口区供电公司 基于储能双向变流器的储能变流系统及方法
CN115986821A (zh) * 2022-12-30 2023-04-18 北京市热力集团有限责任公司 基于综合能源的智能监测分析系统
CN116073448A (zh) * 2023-03-22 2023-05-05 国网山东省电力公司临沂供电公司 一种基于低碳效益的配电系统源网荷储协同调峰方法
CN116316894A (zh) * 2023-03-29 2023-06-23 东华大学 一种基于鲁棒估计和双重进化的微电网电力调度优化方法
CN116341762A (zh) * 2023-05-23 2023-06-27 武汉中元华电科技股份有限公司 高海拔风电供电系统最优能流求解方法及系统
CN116613821A (zh) * 2023-07-13 2023-08-18 国网浙江省电力有限公司宁波供电公司 一种多能协同运行方法、运行平台、设备及存储介质
CN116780649A (zh) * 2023-06-16 2023-09-19 国网浙江省电力有限公司嘉兴供电公司 一种多能互补利用的分布式鲁棒优化运行方法
CN117039872A (zh) * 2023-08-11 2023-11-10 哈尔滨工业大学 考虑自适应不确定集的多时间尺度弱鲁棒电源调度方法
CN117060491A (zh) * 2023-10-11 2023-11-14 中国电建集团西北勘测设计研究院有限公司 风光混合储能系统的运行优化方法、系统、介质及设备
CN117332997A (zh) * 2023-12-01 2024-01-02 国网江苏省电力有限公司经济技术研究院 一种综合能源系统低碳优化调度方法、装置及设备
CN117559563A (zh) * 2023-11-23 2024-02-13 国网湖北省电力有限公司经济技术研究院 一种风光储充一体化微网运行方案的优化方法及系统
CN112688307B (zh) * 2020-12-04 2024-04-12 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网控制器及控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154850A1 (zh) * 2019-01-28 2020-08-06 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN110994697B (zh) * 2019-12-03 2022-07-26 国网浙江平阳县供电有限责任公司 含光储联合体的交直流配电网优化运行控制方法及系统
CN111342450B (zh) * 2020-03-07 2022-08-23 西南交通大学 考虑不确定光伏与负荷的牵引供电系统鲁棒能量管理方法
CN113538169A (zh) * 2021-07-23 2021-10-22 国网天津市电力公司 交直流混联城市电网发展适应性评估方法
CN113673141B (zh) * 2021-10-21 2022-01-07 中建安装集团有限公司 一种基于数据驱动的能量路由器建模及优化控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035073A1 (en) * 2009-01-14 2011-02-10 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
CN106355344A (zh) * 2016-09-08 2017-01-25 四川大学 一种基于正交阵列的微电网鲁棒优化运行方法
CN106786793A (zh) * 2016-12-14 2017-05-31 东南大学 一种基于鲁棒优化的冷热电联供型微网运行方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877338B (zh) * 2017-03-29 2019-07-16 华北电力大学(保定) 含高密度间歇性能源的交直流微电网不确定优化运行方法
CN107239863B (zh) * 2017-04-12 2020-07-14 广东电网有限责任公司电力调度控制中心 一种电网安全约束的鲁棒机组组合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035073A1 (en) * 2009-01-14 2011-02-10 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
CN106355344A (zh) * 2016-09-08 2017-01-25 四川大学 一种基于正交阵列的微电网鲁棒优化运行方法
CN106786793A (zh) * 2016-12-14 2017-05-31 东南大学 一种基于鲁棒优化的冷热电联供型微网运行方法

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113065682A (zh) * 2020-01-02 2021-07-02 中国电力科学研究院有限公司 一种气电综合能源系统调度方法及装置
CN111146825A (zh) * 2020-01-03 2020-05-12 天津大学 计及不同主体的含pet交直流混合微网双层控制方法
CN111259309A (zh) * 2020-01-14 2020-06-09 沈阳工业大学 一种基于电转气和燃料电池的多能源系统稳定性优化方法
CN111259309B (zh) * 2020-01-14 2023-05-26 沈阳工业大学 一种基于电转气和燃料电池的多能源系统稳定性优化方法
CN111600315A (zh) * 2020-06-02 2020-08-28 河北水利电力学院 一种配电网无功优化方法
CN111600315B (zh) * 2020-06-02 2023-11-17 河北水利电力学院 一种配电网无功优化方法
CN111740408A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 一种基于鲁棒随机模型的光热电站最优报价决策方法
CN111898877A (zh) * 2020-07-13 2020-11-06 西安交通大学 一种提升电网恢复速度的灾前抢修人员预部署方法
CN111898877B (zh) * 2020-07-13 2023-07-04 西安交通大学 一种提升电网恢复速度的灾前抢修人员预部署方法
CN112018825B (zh) * 2020-09-18 2023-11-21 云南电网有限责任公司电力科学研究院 一种多端口电能路由器能量协调控制方法
CN112018825A (zh) * 2020-09-18 2020-12-01 云南电网有限责任公司电力科学研究院 一种多端口电能路由器能量协调控制方法
CN112491086A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种风光储独立微电网优化配置方法
CN112491086B (zh) * 2020-11-20 2023-01-31 西安热工研究院有限公司 一种风光储独立微电网优化配置方法
CN112510702A (zh) * 2020-11-26 2021-03-16 国网安徽省电力有限公司经济技术研究院 一种可再生能源发电制气的综合能源站规划方法及系统
CN113139674A (zh) * 2020-11-30 2021-07-20 海南电网有限责任公司 交直流混联系统一体化现货市场出清优化方法
CN113139674B (zh) * 2020-11-30 2023-07-25 海南电网有限责任公司 交直流混联系统一体化现货市场出清优化方法
CN112688307B (zh) * 2020-12-04 2024-04-12 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网控制器及控制方法
CN112688307A (zh) * 2020-12-04 2021-04-20 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网控制器及控制方法
CN112688328B (zh) * 2020-12-04 2024-02-13 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网时间协调能量优化配置方法
CN112688328A (zh) * 2020-12-04 2021-04-20 国网江苏省电力有限公司连云港供电分公司 一种交直流混合微电网时间协调能量优化配置方法
CN112819278B (zh) * 2020-12-31 2023-07-11 广西大学 一种求解两阶段鲁棒优化机组组合模型的分段仿射方法
CN112819278A (zh) * 2020-12-31 2021-05-18 广西大学 一种求解两阶段鲁棒优化机组组合模型的分段仿射方法
CN112803567A (zh) * 2021-01-29 2021-05-14 西安交通大学 基于智能楼宇光储供电设备的参数优化设计方法及系统
CN113076626B (zh) * 2021-03-17 2022-10-04 武汉工程大学 基于分布鲁棒优化的分布式光伏极限并网容量评估方法
CN113076626A (zh) * 2021-03-17 2021-07-06 武汉工程大学 基于分布鲁棒优化的分布式光伏极限并网容量评估方法
CN113112063A (zh) * 2021-04-07 2021-07-13 国网新疆电力有限公司经济技术研究院 一种含风电电力系统的多场景鲁棒调度方法和装置
CN113394789B (zh) * 2021-07-02 2022-10-28 山东大学 考虑高比例可再生能源接入的电力系统一体化调度方法
CN113394789A (zh) * 2021-07-02 2021-09-14 山东大学 考虑高比例可再生能源接入的电力系统一体化调度方法
CN113595135B (zh) * 2021-07-12 2023-05-12 西南交通大学 一种并弱电网型电氢耦合直流微电网双层同步控制方法
CN113595135A (zh) * 2021-07-12 2021-11-02 西南交通大学 一种并弱电网型电氢耦合直流微电网双层同步控制方法
CN113705962A (zh) * 2021-07-16 2021-11-26 国网江苏省电力有限公司南京供电分公司 一种基于分布鲁棒优化的虚拟电厂日前调度方法
CN113705962B (zh) * 2021-07-16 2024-03-05 国网江苏省电力有限公司南京供电分公司 一种基于分布鲁棒优化的虚拟电厂日前调度方法
CN113612252B (zh) * 2021-07-19 2023-12-26 南方电网科学研究院有限责任公司 含风电场的交直流混联电网静态电压稳定优化控制方法
CN113612252A (zh) * 2021-07-19 2021-11-05 南方电网科学研究院有限责任公司 含风电场的交直流混联电网静态电压稳定优化控制方法
CN113675846A (zh) * 2021-08-24 2021-11-19 合肥市武汉大学创新技术研究院 基于聚合效应的配电网分布式储能优化调度方法
CN114336585A (zh) * 2021-09-24 2022-04-12 北京交通大学 基于多智能体协同的多微网能量管理方法、系统和电子设备
CN114336585B (zh) * 2021-09-24 2023-08-01 北京交通大学 基于多智能体协同的多微网能量管理方法、系统和电子设备
CN113852137A (zh) * 2021-09-27 2021-12-28 国网新疆电力有限公司电力科学研究院 两阶段鲁棒优化的电力系统运行灵活性容量评估方法
CN114049004A (zh) * 2021-11-11 2022-02-15 东南大学 一种电氢能源站容量随机规划方法、系统和装置
CN114049004B (zh) * 2021-11-11 2024-04-19 东南大学 一种电氢能源站容量随机规划方法、系统和装置
CN114142460B (zh) * 2021-11-17 2024-03-15 浙江华云电力工程设计咨询有限公司 综合能源系统中储能双层目标优化配置方法及终端
CN114142460A (zh) * 2021-11-17 2022-03-04 浙江华云电力工程设计咨询有限公司 综合能源系统中储能双层目标优化配置方法及终端
CN114142473B (zh) * 2021-12-06 2024-02-02 浙江华云电力工程设计咨询有限公司 一种风光容量未知情况下的微电网配置方法及系统
CN114142473A (zh) * 2021-12-06 2022-03-04 浙江华云电力工程设计咨询有限公司 一种风光容量未知情况下的微电网配置方法及系统
CN114204598B (zh) * 2021-12-14 2023-12-22 国网江苏省电力有限公司南通供电分公司 一种考虑柔性负荷参与调控的孤岛微网稳定性控制方法
CN114204542B (zh) * 2021-12-14 2024-03-29 国网江苏省电力有限公司南通供电分公司 考虑风险敏感的能量路由器直流母线电压稳定性控制方法
CN114204542A (zh) * 2021-12-14 2022-03-18 国网江苏省电力有限公司南通供电分公司 考虑风险敏感的能量路由器直流母线电压稳定性控制方法
CN114204598A (zh) * 2021-12-14 2022-03-18 国网江苏省电力有限公司南通供电分公司 一种考虑柔性负荷参与调控的孤岛微网稳定性控制方法
CN114362253B (zh) * 2021-12-24 2024-03-01 贵州电网有限责任公司 一种采用柔性电力电子开关的分布式电源实时消纳方法
CN114362253A (zh) * 2021-12-24 2022-04-15 贵州电网有限责任公司 一种采用柔性电力电子开关的分布式电源实时消纳方法
CN114707289A (zh) * 2021-12-28 2022-07-05 国网江苏省电力有限公司经济技术研究院 基于机会约束的电热耦合综合能源系统多目标优化方法
CN114336781B (zh) * 2022-01-04 2023-03-21 合肥工业大学 考虑碳捕集电厂与光伏发电协同配合的低碳优化运行方法
CN114336781A (zh) * 2022-01-04 2022-04-12 合肥工业大学 考虑碳捕集电厂与光伏发电协同配合的低碳优化运行方法
CN114465246B (zh) * 2022-02-21 2023-04-18 华北电力大学 一种计及调速器死区与限幅环节的机组组合优化方法
CN114465246A (zh) * 2022-02-21 2022-05-10 华北电力大学 一种计及调速器死区与限幅环节的机组组合优化方法
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
CN114896768B (zh) * 2022-04-21 2024-03-01 河海大学 一种基于新能源分位数回归的虚拟电厂分布鲁棒优化方法
CN114896768A (zh) * 2022-04-21 2022-08-12 河海大学 一种基于新能源分位数回归的虚拟电厂分布鲁棒优化方法
CN115021327B (zh) * 2022-05-19 2024-03-01 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115021327A (zh) * 2022-05-19 2022-09-06 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115065070B (zh) * 2022-06-09 2023-11-21 国网江苏省电力有限公司淮安供电分公司 一种基于鲁棒h∞控制的微电网频率控制方法
CN115065070A (zh) * 2022-06-09 2022-09-16 国网江苏省电力有限公司淮安供电分公司 一种基于鲁棒h∞控制的微电网频率控制方法
CN115189377A (zh) * 2022-08-01 2022-10-14 四川大学 基于光伏发电量预测的微网优化调度方法、装置和设备
CN115189377B (zh) * 2022-08-01 2023-04-18 四川大学 基于光伏发电量预测的微网优化调度方法、装置和设备
CN115640894B (zh) * 2022-10-21 2024-03-26 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN115640894A (zh) * 2022-10-21 2023-01-24 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN115600761A (zh) * 2022-11-09 2023-01-13 山东大学(Cn) 考虑不确定性因素的综合能源生产单元自调度方法和系统
CN115986821B (zh) * 2022-12-30 2023-10-13 北京市热力集团有限责任公司 基于综合能源的智能监测分析系统
CN115986821A (zh) * 2022-12-30 2023-04-18 北京市热力集团有限责任公司 基于综合能源的智能监测分析系统
CN115967111A (zh) * 2023-03-16 2023-04-14 国网山东省电力公司东营市河口区供电公司 基于储能双向变流器的储能变流系统及方法
CN116073448B (zh) * 2023-03-22 2024-03-08 国网山东省电力公司临沂供电公司 一种基于低碳效益的配电系统源网荷储协同调峰方法
CN116073448A (zh) * 2023-03-22 2023-05-05 国网山东省电力公司临沂供电公司 一种基于低碳效益的配电系统源网荷储协同调峰方法
CN116316894A (zh) * 2023-03-29 2023-06-23 东华大学 一种基于鲁棒估计和双重进化的微电网电力调度优化方法
CN116341762A (zh) * 2023-05-23 2023-06-27 武汉中元华电科技股份有限公司 高海拔风电供电系统最优能流求解方法及系统
CN116341762B (zh) * 2023-05-23 2023-07-25 武汉中元华电科技股份有限公司 高海拔风电供电系统最优能流求解方法及系统
CN116780649B (zh) * 2023-06-16 2024-03-01 国网浙江省电力有限公司嘉兴供电公司 一种多能互补利用的分布式鲁棒优化运行方法
CN116780649A (zh) * 2023-06-16 2023-09-19 国网浙江省电力有限公司嘉兴供电公司 一种多能互补利用的分布式鲁棒优化运行方法
CN116613821B (zh) * 2023-07-13 2023-10-24 国网浙江省电力有限公司宁波供电公司 一种多能协同运行方法、运行平台、设备及存储介质
CN116613821A (zh) * 2023-07-13 2023-08-18 国网浙江省电力有限公司宁波供电公司 一种多能协同运行方法、运行平台、设备及存储介质
CN117039872A (zh) * 2023-08-11 2023-11-10 哈尔滨工业大学 考虑自适应不确定集的多时间尺度弱鲁棒电源调度方法
CN117039872B (zh) * 2023-08-11 2024-04-19 哈尔滨工业大学 考虑自适应不确定集的多时间尺度弱鲁棒电源调度方法
CN117060491B (zh) * 2023-10-11 2024-01-30 中国电建集团西北勘测设计研究院有限公司 风光混合储能系统的运行优化方法、系统、介质及设备
CN117060491A (zh) * 2023-10-11 2023-11-14 中国电建集团西北勘测设计研究院有限公司 风光混合储能系统的运行优化方法、系统、介质及设备
CN117559563A (zh) * 2023-11-23 2024-02-13 国网湖北省电力有限公司经济技术研究院 一种风光储充一体化微网运行方案的优化方法及系统
CN117559563B (zh) * 2023-11-23 2024-03-29 国网湖北省电力有限公司经济技术研究院 一种风光储充一体化微网运行方案的优化方法及系统
CN117332997B (zh) * 2023-12-01 2024-02-23 国网江苏省电力有限公司经济技术研究院 一种综合能源系统低碳优化调度方法、装置及设备
CN117332997A (zh) * 2023-12-01 2024-01-02 国网江苏省电力有限公司经济技术研究院 一种综合能源系统低碳优化调度方法、装置及设备

Also Published As

Publication number Publication date
CN108258695A (zh) 2018-07-06
CN108258695B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2019165701A1 (zh) 一种交直流混联微网的随机鲁棒耦合型优化调度方法
CN108832665B (zh) 一种考虑风电不确定性的电热综合系统分布式鲁棒协调优化调度建模方法
WO2019128012A1 (zh) 一种交直流混合微网鲁棒优化协调调度方法
Lin et al. Decentralized solution for combined heat and power dispatch through benders decomposition
CN109980685B (zh) 一种考虑不确定性的主动配电网分布式优化运行方法
Kou et al. Stochastic coordination of plug-in electric vehicles and wind turbines in microgrid: A model predictive control approach
WO2019165702A1 (zh) 一种多微网系统的双层协调鲁棒优化调度方法
CN108629449B (zh) 一种用于交直流混合微网的分布鲁棒式优化调度方法
Fu et al. Research on joint optimal dispatching method for hybrid power system considering system security
CN108448619B (zh) 计及不可控发电机功率跟踪的交直流微网鲁棒调度方法
CN108539732B (zh) 基于多区间不确定性鲁棒优化的交直流微网经济调度
CN108233430B (zh) 一种计及系统能源波动性的交直流混合微网优化方法
CN105244869A (zh) 一种含微网的配电网动态随机调度控制方法
CN103824134A (zh) 一种用于虚拟电厂的两阶段优化调度方法
CN112583017B (zh) 考虑储能运行约束的混合微电网能量分配方法及系统
CN104882905A (zh) 一种考虑暂态安全约束的新能源接纳能力评估方法
CN103414206A (zh) 一种考虑安全约束的水光火联合优化发电计划优化方法
CN108448632B (zh) 计及储能荷电状态循环的交直流微网日内滚动优化调度方法
CN105071389A (zh) 计及源网荷互动的交直流混合微电网优化运行方法及装置
CN111082466B (zh) 考虑风电不确定性的新能源接入与网架扩建优化方法
CN110007600A (zh) 一种具有约束的多能流协调调度辅助决策系统
Ameur et al. Intelligent optimization and management system for renewable energy systems using multi-agent
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
Wang et al. Stochastic dynamic programming based optimal energy scheduling for a hybrid fuel cell/PV/battery system under uncertainty
CN108629445B (zh) 计及储能动态损耗的交直流混合微网鲁棒调度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18907854

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18907854

Country of ref document: EP

Kind code of ref document: A1