WO2020154850A1 - 获取交流电力网中源荷的节点平移电压分量的对称方法 - Google Patents

获取交流电力网中源荷的节点平移电压分量的对称方法 Download PDF

Info

Publication number
WO2020154850A1
WO2020154850A1 PCT/CN2019/073443 CN2019073443W WO2020154850A1 WO 2020154850 A1 WO2020154850 A1 WO 2020154850A1 CN 2019073443 W CN2019073443 W CN 2019073443W WO 2020154850 A1 WO2020154850 A1 WO 2020154850A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
power
source
voltage
load
Prior art date
Application number
PCT/CN2019/073443
Other languages
English (en)
French (fr)
Inventor
彭建春
江辉
王怀智
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to CN201980002747.1A priority Critical patent/CN111758196B/zh
Priority to US16/630,215 priority patent/US20210223329A1/en
Priority to PCT/CN2019/073443 priority patent/WO2020154850A1/zh
Publication of WO2020154850A1 publication Critical patent/WO2020154850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the present invention relates to the field of electric power engineering, and in particular to a symmetric method and computer-readable storage medium for obtaining node translation voltage components of (electric) source (negative) loads in an AC power network.
  • node voltage effective value
  • source-load power the deep, simple and precise relationship between node voltage (effective value) and source-load power is the key to efficiently regulating AC power grid voltage and ensuring power quality.
  • the node voltage component of the source load is a new tool for in-depth regulation of AC power grid voltage, which is in urgent need of research and development.
  • the existing AC power grid-wide node voltage regulation methods either first construct a reactive power optimization model, and then obtain the regulation plan through optimization; or first obtain the sensitivity of the node voltage to the source-load power, and then implement the approximate linear relationship expressed by the sensitivity. Because the former is an optimized model, it is not only unable to guarantee a reliable voltage control scheme, and the calculation amount of optimization is always large; the latter is inaccurate because of the local linear characteristic of the sensitivity of the node voltage to the source-load power, which in turn leads to Repeated regulation.
  • the embodiments of the present invention provide a symmetric method and computer-readable storage medium for obtaining the node translation voltage component of the source load in an AC power network, and aim to solve the problem of low efficiency and unreliability of the existing AC power network node voltage regulation method.
  • the first aspect of the embodiments of the present invention provides a symmetric method for obtaining the node translation voltage component of the source load in an AC power network, including:
  • the M-P inverse matrix is used to establish a linear symmetric matrix expression of the node translation voltage and the node voltage phase of the entire network with respect to the source load power of the nodes of the entire network;
  • a linear symmetric algebraic calculation formula for obtaining the node translation voltage component of the source charge is established according to the linear symmetric matrix expression of the node translation voltage and the node voltage phase of the entire network with respect to the source charge power of the entire network node.
  • a second aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the above-mentioned acquisition of the node translation voltage of the source load in the AC power network is achieved Steps of the component symmetry method.
  • the above-mentioned symmetric method for obtaining the node translation voltage component of the source load in the AC power network is implemented according to the linear symmetric algebraic calculation formula of the node translation voltage component of the source load to obtain the node translation voltage component of the source load in the power network.
  • the linear symmetric algebraic calculation formula of the node translation voltage component of the source load is applicable to the translation voltage of all nodes and the source load power of all nodes in the AC power network, the source load power of all nodes is treated equally, so the node of the source load
  • the translational voltage component is symmetrical to all source loads; on the other hand, since the linear symmetrical algebraic calculation formula of the nodal translational voltage component of the source load is a full variable (not incremental) expression of the source load power, the source load The wide range of power changes are accurate, and the amount of calculation is reduced. This symmetrical and accurate relationship between the node translation voltage component and the source-load power solves the problems of time-consuming, unreliable, inaccurate, and low-efficiency problems of the existing AC power network node voltage regulation method.
  • FIG. 1 is an implementation flowchart of a symmetric method for obtaining a node translation voltage component of a source load in an AC power network according to an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a general model of an AC power network provided by an embodiment of the present invention.
  • a symmetric method for obtaining a node translation voltage component of a source load in an AC power network may include the following steps:
  • Step S101 Establish a linear expression of the node source load power with respect to the node translation voltage and the node voltage phase according to the node source charge power and branch admittance in the AC power network;
  • Step S102 establishing a steady-state linear symmetric model of the AC power network according to the linear expression of the node source-load power with respect to the node translation voltage and the node voltage phase;
  • Step S103 according to the steady-state linear symmetric model of the AC power network, use the M-P inverse matrix to establish a linear symmetric matrix expression of the node translation voltage and the node voltage phase of the entire network with respect to the node source load power of the entire network;
  • Step S104 Establish a linear symmetric algebraic calculation formula for obtaining the node translation voltage component of the source charge according to the linear symmetric matrix expression of the node translation voltage and the node voltage phase of the entire network with respect to the source charge power of the entire network node.
  • the node translation voltage components of all node source loads can be obtained, so as to realize the node translation voltage components of source loads in the AC power network. Obtain.
  • This symmetrical and accurate relationship between the node translation voltage component and the source-load power solves the problems of time-consuming, unreliable, inaccurate, and low-efficiency problems of the existing AC power network node voltage regulation method.
  • step S101 the method of establishing a linear expression of the node source load power with respect to the node translation voltage and the node voltage phase according to the node source load power and branch admittance in the AC power network is specifically:
  • i and k are the number of nodes in the network AC power, and both belong to the set of consecutive natural numbers ⁇ 1,2, ..., n ⁇ ; n is the total number of said AC power network nodes; P i and Q i are source is connected to node i and the active charge-charge reactive power source, and charge the power source referred to as node i; P i is equal to the power supply active power to the node i minus load active power, said Q i It is equal to the reactive power of the power supply connected to the node i minus the reactive power of the load; g ik and b ik are the conductance and susceptance of the branch ik connected between the node i and the node k, and are collectively called the branch ik admittance; [theta] i and [theta] k are the phase voltage of the node i and the node k; V i and V k are offset in the voltage node i and node k
  • step S102 the method for establishing a steady-state linear symmetric model of the AC power network according to the linear expression of the node source-load power with respect to the node translation voltage and the node voltage phase is specifically:
  • i and j are the numbers of nodes in the AC power network, and both belong to the set of continuous natural numbers ⁇ 1,2,...,n ⁇ ; n is the total number of nodes in the AC power network; P 1 and Q 1 respectively Is the source load active power and source load reactive power connected to node 1, and collectively referred to as the source load power of node 1.
  • the P 1 is equal to the active power of the power source connected to node 1 minus the active power of the load, the Q 1 power supply to the node is equal to the reactive power by subtracting a load reactive power;
  • P i and Q i are connected to a source node i and the active charge-charge reactive power source, and charge the power source referred to as node i;
  • P i is equal to the active power between the power of node i by subtracting the load active power, Q i is equal to the power supply to the node i by subtracting the reactive power load reactive power;
  • P n and Q n are connected to a node
  • the source charge active power and source charge reactive power of n are collectively referred to as the source charge power of node n;
  • the P n is equal to the active power of the power supply connected to node n minus the active power of the load, and the Q n is equal to the active power connected to the node
  • the above-mentioned steady-state model of the power grid is linear, and all the node source load powers are included in the model and are treated equally. This is why it is called the linear symmetric model.
  • step S103 the method of using the M-P inverse matrix to establish the linear symmetric matrix expression of the translational voltage and the phase of the node voltage in the whole network with respect to the source load power of the nodes in the whole network is specifically as follows:
  • i is the number of the node in the AC power network, and belongs to the set of continuous natural numbers ⁇ 1,2,...,n ⁇ ; n is the total number of nodes in the AC power network; ⁇ 1 , ⁇ i and ⁇ n are respectively The voltage phases of node 1, node i and node n; v 1 , v i and v n are the translational voltages of node 1, node i and node n respectively, and they are all standard unit voltages after translation -1.0; P 1 and Q 1 is the source load active power and source load reactive power connected to node 1, and collectively referred to as the source load power of node 1.
  • the P 1 is equal to the active power of the power supply connected to node 1 minus the active power of the load, so said Q is equal to 1 to the node 1 is the reactive power by subtracting power load reactive power;
  • P i and Q i are connected to a source node i and a source charge active reactive power source charge, and referred to as node i charge power;
  • P i is equal to the active power between the power of node i by subtracting the load active power, Q i is equal to the reactive power supply to the node i minus the load reactive power;
  • P n and Q n are The source load active power and source load reactive power connected to node n are collectively referred to as the source load power of node n;
  • the P n is equal to the active power of the power supply connected to node n minus the active power of the load, and the Q n is equal to The reactive power of the power supply connected to the node n minus the reactive power of the load;
  • step S104 the method for establishing a linear symmetric algebraic calculation formula for obtaining the node translation voltage component of the source load according to the linear symmetric matrix expression of the node translation voltage and the node voltage phase with respect to the node source charge power of the entire network is specifically as follows: :
  • v i,j a 2i,2j-1 P j +a 2i,2j Q j
  • i and j are the numbers of nodes in the AC power network, and both belong to the set of continuous natural numbers ⁇ 1,2,...,n ⁇ ; n is the total number of nodes in the AC power network; v i, j are all The component of the translation voltage of the node i attributed to the source load of the node j, referred to as the node translation voltage component of the source load, and is the unit value voltage after the translation -1.0; a 2i, 2j-1 and a 2i , 2j are respectively the element in the 2i row and the 2j-1 column and the element in the 2i row and 2j column in the MP inverse matrix of the 2n ⁇ 2n-dimensional full-node admittance matrix; P j and Q j are respectively connected to node j The source load active power and source load reactive power are collectively referred to as the source load power of node j; the P j is equal to the active power of the power supply connected to node j minus the active power of the
  • the linear symmetric algebraic calculation formula for the node translation voltage component of the source load is applicable to the translation voltage of all nodes and the source load power of all nodes in the AC power network.
  • the source load power of all nodes is treated equally. This is exactly what the present invention is called obtaining
  • the reason is the symmetrical method of the node translation voltage component of the source load in the AC power network.
  • the linear symmetric algebraic formula is a full variable (not incremental) expression of the source load power, and it is therefore accurate for a wide range of source load power changes. This symmetrical and accurate relationship between the node translation voltage component and the source-load power solves the problems of time-consuming, unreliable, inaccurate, and low-efficiency problems of the existing AC power network node voltage regulation method.
  • a computer-readable storage medium provided by an embodiment of the present invention is a medium storing a computer program.
  • the computer program may be a source code program, an object code program, an executable file, or some intermediate form.
  • the steps of the symmetric method for obtaining the node translation voltage component of the source load in the AC power network as described in the above embodiment are realized.
  • the computer-readable storage medium may include any entity or device capable of carrying the computer program, such as a U disk, a mobile hard disk, an optical disk, a computer memory, a random access memory, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种获取交流电力网中源荷的节点平移电压分量的对称方法,首先根据交流电力网中节点源荷功率和支路导纳建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式(S101);再根据节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型(S102);然后根据交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式(S103);最后根据全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式(S104),从而实现交流电力网中源荷的节点平移电压分量的获取。这种源荷的节点平移电压分量为调控交流电力网电压、保障全网电能质量提供了一种新的高效准确工具。

Description

获取交流电力网中源荷的节点平移电压分量的对称方法 技术领域
本发明涉及电力工程领域,尤其涉及一种获取交流电力网中(电)源(负)荷的节点平移电压分量的对称方法和计算机可读存储介质。
背景技术
在交流电网中,节点电压(有效值)与源荷功率的深层次简洁精准关系,是高效调控交流电力网电压、保障电能质量的关键。源荷的节点电压分量是一种深层次的调控交流电力网电压的新工具、亟待研发。
现有的交流电力网全网节点电压调控方法,要么先构建无功优化模型,再通过优化得到调控方案实现;要么先获取节点电压对源荷功率的灵敏度,再利用灵敏度表达的近似线性关系实现。前者因为是优化模型而不仅无法保障可靠得到电压调控方案,且优化求解的计算量总是很大;后者因为节点电压对源荷功率的灵敏度的局部线性特征而使电压调控不准确,继而导致反复调控。
因此,现有的交流电力网全网节点电压调控方法要么费时且不可靠,要么不准确且低效能。
发明内容
本发明实施例提供一种获取交流电力网中源荷的节点平移电压分量的对称方法和计算机可读存储介质,旨在解决现有的交流电力网全网节点电压调控方法效率低且不可靠的问题。
本发明实施例第一方面提供了一种获取交流电力网中源荷的节点平移电压分量的对称方法,包括:
根据交流电力网中节点源荷功率和支路导纳建立节点源荷功率关于节点平 移电压和节点电压相位的线性表达式;
根据所述节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型;
根据所述交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式;
根据所述全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式。
本发明实施例第二方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述获取交流电力网中源荷的节点平移电压分量的对称方法的步骤。
上述获取交流电力网中源荷的节点平移电压分量的对称方法在实施过程中根据源荷的节点平移电压分量的线性对称代数计算式获取电力网中源荷的节点平移电压分量。一方面,由于源荷的节点平移电压分量的线性对称代数计算式适用交流电力网中全部节点的平移电压和全部节点的源荷功率,全部节点的源荷功率都被等同对待,因此源荷的节点平移电压分量对所有源荷都是对称的;另一方面,由于源荷的节点平移电压分量的线性对称代数计算式是源荷功率的全变量(而非增量)表达式,因此对源荷功率的大范围变化都准确,而且减少了计算量。这种节点平移电压分量与源荷功率之间的对称精准关系解决了现有的交流电力网全网节点电压调控方法费时且不可靠、不准确和低效能的问题。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种获取交流电力网中源荷的节点平移电压分量的对称方法的实现流程图;
图2是本发明实施例提供的交流电力网通用模型的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
请参见图1和图2,本发明实施例提供的一种获取交流电力网中源荷的节点平移电压分量的对称方法可包括以下步骤:
步骤S101,根据交流电力网中节点源荷功率和支路导纳建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式;
步骤S102,根据所述节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型;
步骤S103,根据所述交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式;
步骤S104,根据所述全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式。
对交流电力网中全部节点平移电压和全部节点源荷功率都按照上述线性对称代数计算式计算,即可得到全部节点源荷的节点平移电压分量,从而实现交流电力网中源荷的节点平移电压分量的获取。这种节点平移电压分量与源荷功率之间的对称精准关系解决了现有的交流电力网全网节点电压调控方法费时且不可靠、不准确和低效能的问题。
步骤S101中,所述根据所述交流电力网中节点源荷功率和支路导纳建立节 点源荷功率关于节点平移电压和节点电压相位的线性表达式的方法具体为:
按照如下关系式建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式:
Figure PCTCN2019073443-appb-000001
Figure PCTCN2019073443-appb-000002
其中,i和k均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;所述P i等于接于节点i的电源有功功率减去负荷有功功率,所述Q i等于接于节点i的电源无功功率减去负荷无功功率;g ik和b ik分别是连接在节点i和节点k之间的支路ik的电导和电纳,且统称为支路ik的导纳;θ i和θ k分别为节点i和节点k的电压相位;v i和v k分别为节点i和节点k的平移电压,且都是平移-1.0后的标幺值电压。
步骤S102中,所述根据所述节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型的方法具体为:
按照如下关系式建立交流电力网稳态的线性对称模型:
[P 1Q 1…P iQ i…P nQ n] T=(G *,*)[θ 1v 1…θ iv i…θ nv n] T
且(G *,*)先置零、再扫描支路按下式累加构建:G 2i-1,2i-1=G 2i-1,2i-1-b ij,G 2i-1,2i=G 2i-1,2i+g ij,G 2i-1,2j-1=G 2i-1,2j-1+b ij,G 2i-1,2j=G 2i-1,2j-g ij,G 2i,2i-1=G 2i,2i-1-g ij,G 2i,2i=G 2i,2i-b ij,G 2i,2j-1=G 2i,2j-1+g ij,G 2i,2j=G 2i,2j+b ij
其中,i和j均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;P 1和Q 1分别为接于节点1的源荷有功功率和源荷无功功率,且统称为节点1的源荷功率;所述P 1等于接于节点1的电源有功功率减去负荷有功功率,所述Q 1等于接于节点1的电源无功 功率减去负荷无功功率;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;所述P i等于接于节点i的电源有功功率减去负荷有功功率,所述Q i等于接于节点i的电源无功功率减去负荷无功功率;P n和Q n分别为接于节点n的源荷有功功率和源荷无功功率,且统称为节点n的源荷功率;所述P n等于接于节点n的电源有功功率减去负荷有功功率,所述Q n等于接于节点n的电源无功功率减去负荷无功功率;g ij和b ij分别是连接在节点i和节点j之间的支路ij的电导和电纳,且统称为支路ij的导纳;θ 1、θ i和θ n分别为节点1、节点i和节点n的电压相位;v 1、v i和v n分别为节点1、节点i和节点n的平移电压,且都是平移-1.0后的标幺值电压;(G *,*)是2n×2n维全节点导纳矩阵;G 2i-1,2i-1、G 2i-1,2i、G 2i-1,2j-1、G 2i-1,2j、G 2i,2i-1、G 2i,2i、G 2i,2j-1、G 2i,2j都分别是所述全节点导纳矩阵(G *,*)中第2i-1行第2i-1列、第2i-1行第2i列、第2i-1行第2j-1列、第2i-1行第2j列、第2i行第2i-1列、第2i行第2i列、第2i行第2j-1列、第2i行第2j列的元素。
上述电力网稳态模型是线性的,且全部节点源荷功率都被列入该模型中、都被等同对待,这正是称之为线性对称模型的缘故。
步骤S103中,所述根据所述交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式的方法具体为:
按照如下关系式建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式:
1v 1…θ iv i…θ nv n] T=(a *,*)[P 1Q 1…P iQ i…P nQ n] T
(a *,*)=(G *,*) +
其中,i为交流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;θ 1、θ i和θ n分别为节点1、节点i和节点n的电压相位;v 1、v i和v n分别为节点1、节点i和节点n的平移电压,且都是平移-1.0后的标幺值电压;P 1和Q 1分别为接于节点1的源荷有功功率和源荷无功功率,且 统称为节点1的源荷功率;所述P 1等于接于节点1的电源有功功率减去负荷有功功率,所述Q 1等于接于节点1的电源无功功率减去负荷无功功率;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;所述P i等于接于节点i的电源有功功率减去负荷有功功率,所述Q i等于接于节点i的电源无功功率减去负荷无功功率;P n和Q n分别为接于节点n的源荷有功功率和源荷无功功率,且统称为节点n的源荷功率;所述P n等于接于节点n的电源有功功率减去负荷有功功率,所述Q n等于接于节点n的电源无功功率减去负荷无功功率;(G *,*)是2n×2n维全节点导纳矩阵;上标符号+是求M-P逆矩阵的运算符;(a *,*)是所述全节点导纳矩阵(G *,*)的M-P逆矩阵。
步骤S104中,所述根据所述全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式的方法具体为:
按照如下关系式建立源荷的节点平移电压分量的线性对称代数计算式:
v i,j=a 2i,2j-1P j+a 2i,2jQ j
其中,i和j均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;v i,j是所述节点i的平移电压中归属接于所述节点j的源荷的分量、简称源荷的节点平移电压分量,且是平移-1.0后的标幺值电压;a 2i,2j-1和a 2i,2j都分别是2n×2n维全节点导纳矩阵的M-P逆矩阵中第2i行第2j-1列的元素和第2i行第2j列的元素;P j和Q j分别为接于节点j的源荷有功功率和源荷无功功率,且统称为节点j的源荷功率;所述P j等于接于节点j的电源有功功率减去负荷有功功率,所述Q j等于接于节点j的电源无功功率减去负荷无功功率。
上述源荷的节点平移电压分量的线性对称代数计算式适用交流电力网中全部节点的平移电压和全部节点的源荷功率,全部节点的源荷功率都被等同对待,这正是称本发明为获取交流电力网中源荷的节点平移电压分量的对称方法的缘故。此外,该线性对称代数计算式是源荷功率的全变量(而非增量)表达式, 它因此对源荷功率的大范围变化都准确。这种节点平移电压分量与源荷功率之间的对称精准关系解决了现有的交流电力网全网节点电压调控方法费时且不可靠、不准确和低效能的问题。
本发明实施例提供的一种计算机可读存储介质,是存储有计算机程序的介质。所述计算机程序可以为源代码程序、对象代码程序、可执行文件或某些中间形式等。所述计算机程序被处理器执行时实现如上实施例所述获取交流电力网中源荷的节点平移电压分量的对称方法的步骤。所述计算机可读存储介质可以包括能够携带所述计算机程序的任何实体或装置,例如U盘、移动硬盘、光盘、计算机存储器、随机存取存储器等。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种获取交流电力网中源荷的节点平移电压分量的对称方法,其特征在于,包括:
    根据交流电力网中节点源荷功率和支路导纳建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式;
    根据所述节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型;
    根据所述交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式;
    根据所述全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式。
  2. 根据权利要求1所述的获取交流电力网中源荷的节点平移电压分量的对称方法,其特征在于,所述根据所述交流电力网中节点源荷功率和支路导纳建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式的方法具体为:
    按照如下关系式建立节点源荷功率关于节点平移电压和节点电压相位的线性表达式:
    Figure PCTCN2019073443-appb-100001
    Figure PCTCN2019073443-appb-100002
    其中,i和k均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;g ik和b ik分别是连接在节点i和节点k之间的支路ik的电导和电纳,且统称为支路ik的导纳;θ i和θ k分别为节点i和节点k的电压相位;υ i和υ k分别为节点i和节点k的平移电压,且都是平移-1.0后的标幺值电压。
  3. 根据权利要求1所述的获取交流电力网中源荷的节点平移电压分量的对 称方法,其特征在于,所述根据所述节点源荷功率关于节点平移电压和节点电压相位的线性表达式建立交流电力网稳态的线性对称模型的方法具体为:
    按照如下关系式建立交流电力网稳态的线性对称模型:
    [P 1Q 1…P iQ i…P nQ n] T=(G *,*)[θ 1υ 1…θ iυ i…θ nυ n] T
    且(G *,*)先置零,再扫描支路按下式累加构建:G 2i-1,2i-1=G 2i-1,2i-1-b ij,G 2i-1,2i=G 2i-1,2i+g ij,G 2i-1,2j-1=G 2i-1,2j-1+b ij,G 2i-1,2j=G 2i-1,2j-g ij,G 2i,2i-1=G 2i,2i-1-g ij,G 2i,2i=G 2i,2i-b ij,G 2i,2j-1=G 2i,2j-1+g ij,G 2i,2j=G 2i,2j+b ij
    其中,i和j均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;P 1和Q 1分别为接于节点1的源荷有功功率和源荷无功功率,且统称为节点1的源荷功率;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;P n和Q n分别为接于节点n的源荷有功功率和源荷无功功率,且统称为节点n的源荷功率;g ij和b ij分别是连接在节点i和节点j之间的支路ij的电导和电纳,且统称为支路ij的导纳;θ 1、θ i和θ n分别为节点1、节点i和节点n的电压相位;υ 1、υ i和υ n分别为节点1、节点i和节点n的平移电压,且都是平移-1.0后的标幺值电压;(G *,*)是2n×2n维全节点导纳矩阵;G 2i-1,2i-1、G 2i-1,2i、G 2i-1,2j-1、G 2i-1,2j、G 2i,2i-1、G 2i,2i、G 2i,2j-1、G 2i,2j都是所述全节点导纳矩阵(G *,*)中的元素。
  4. 根据权利要求1所述的获取交流电力网中源荷的节点平移电压分量的对称方法,其特征在于,所述根据所述交流电力网稳态的线性对称模型,利用M-P逆矩阵建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式的方法具体为:
    按照如下关系式建立全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式:
    1υ 1…θ iυ i…θ nυ n] T=(a *,*)[P 1Q 1…P iQ i…P nQ n] T
    (a *,*)=(G *,*) +
    其中,i为交流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;θ 1、θ i和θ n分别为节点1、节点i和节点n的电压相位;υ 1、υ i和υ n分别为节点1、节点i和节点n的平移电压,且都是平移-1.0后的标幺值电压;P 1和Q 1分别为接于节点1的源荷有功功率和源荷无功功率,且统称为节点1的源荷功率;P i和Q i分别为接于节点i的源荷有功功率和源荷无功功率,且统称为节点i的源荷功率;P n和Q n分别为接于节点n的源荷有功功率和源荷无功功率,且统称为节点n的源荷功率;(G *,*)是2n×2n维全节点导纳矩阵;上标符号+是求M-P逆矩阵的运算符;(a *,*)是所述全节点导纳矩阵(G *,*)的M-P逆矩阵。
  5. 根据权利要求1所述的获取交流电力网中源荷的节点平移电压分量的对称方法,其特征在于,所述根据所述全网节点平移电压和节点电压相位关于全网节点源荷功率的线性对称矩阵表达式建立获取源荷的节点平移电压分量的线性对称代数计算式的方法具体为:
    按照如下关系式建立获取源荷的节点平移电压分量的线性对称代数计算式:
    υ i,j=a 2i,2j-1P j+a 2i,2jQ j
    其中,i和j均为交流电力网中节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述交流电力网中节点的总个数;υ i,j是所述节点i的平移电压中归属接于所述节点j的源荷的分量,简称源荷的节点平移电压分量,且是平移-1.0后的标幺值电压;a 2i,2j-1和a 2i,2j都是2n×2n维全节点导纳矩阵的M-P逆矩阵中的元素;P j和Q j分别为接于节点j的源荷有功功率和源荷无功功率,且统称为节点j的源荷功率。
  6. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述获取交流电力网中源荷的节点平移电压分量的对称方法的步骤。
PCT/CN2019/073443 2019-01-28 2019-01-28 获取交流电力网中源荷的节点平移电压分量的对称方法 WO2020154850A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002747.1A CN111758196B (zh) 2019-01-28 2019-01-28 获取交流电力网中源荷的节点平移电压分量的对称方法
US16/630,215 US20210223329A1 (en) 2019-01-28 2019-01-28 Symmetric method for obtaining bus-translation-voltage components induced by sources and loads at individual buses in ac power networks
PCT/CN2019/073443 WO2020154850A1 (zh) 2019-01-28 2019-01-28 获取交流电力网中源荷的节点平移电压分量的对称方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073443 WO2020154850A1 (zh) 2019-01-28 2019-01-28 获取交流电力网中源荷的节点平移电压分量的对称方法

Publications (1)

Publication Number Publication Date
WO2020154850A1 true WO2020154850A1 (zh) 2020-08-06

Family

ID=71839858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073443 WO2020154850A1 (zh) 2019-01-28 2019-01-28 获取交流电力网中源荷的节点平移电压分量的对称方法

Country Status (3)

Country Link
US (1) US20210223329A1 (zh)
CN (1) CN111758196B (zh)
WO (1) WO2020154850A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258695A (zh) * 2018-02-28 2018-07-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法
US20180323624A1 (en) * 2017-05-03 2018-11-08 Dell Products L.P. Circuits, systems and methods for balancing power for system load components
WO2018209501A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网潮流的功率补偿型全局线性对称方法
WO2018209500A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网潮流的功率补偿型全局线性偏心方法
WO2018209499A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网功率传输系数的等量电导补偿型对称方法
CN109275344A (zh) * 2017-05-15 2019-01-25 深圳大学 获取直流电力网功率传输系数的均衡电导补偿型偏心方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883796A (en) * 1997-04-07 1999-03-16 Wisconsin Alumni Research Foundation Dynamic series voltage restoration for sensitive loads in unbalanced power systems
CN109478781B (zh) * 2017-05-15 2021-08-31 深圳大学 获取直流电力网功率传输系数的均衡电导补偿型对称方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323624A1 (en) * 2017-05-03 2018-11-08 Dell Products L.P. Circuits, systems and methods for balancing power for system load components
WO2018209501A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网潮流的功率补偿型全局线性对称方法
WO2018209500A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网潮流的功率补偿型全局线性偏心方法
WO2018209499A1 (zh) * 2017-05-15 2018-11-22 深圳大学 获取直流电力网功率传输系数的等量电导补偿型对称方法
CN109275344A (zh) * 2017-05-15 2019-01-25 深圳大学 获取直流电力网功率传输系数的均衡电导补偿型偏心方法
CN108258695A (zh) * 2018-02-28 2018-07-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法

Also Published As

Publication number Publication date
CN111758196A (zh) 2020-10-09
US20210223329A1 (en) 2021-07-22
CN111758196B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
Farivar et al. Local voltage control in distribution systems: An incremental control algorithm
Zamzam et al. Beyond relaxation and Newton–Raphson: Solving AC OPF for multi-phase systems with renewables
Gan et al. Optimal power flow in direct current networks
Peng et al. Voltage-based distributed optimal control for generation cost minimization and bounded bus voltage regulation in DC microgrids
Farivar et al. Optimal inverter VAR control in distribution systems with high PV penetration
Zhou et al. Data-adaptive robust unit commitment in the hybrid AC/DC power system
Amrane et al. A new optimal reactive power planning based on differential search algorithm
Sivanagaraju et al. Enhancing voltage stability of radial distribution systems by network reconfiguration
Zaheeruddin et al. Intelligent fractional-order-based centralized frequency controller for microgrid
Kamel et al. Modeling and analysis of voltage and power control devices in current injections load flow method
WO2020154847A1 (zh) 获取交流电力网中源荷的网损功率分量的对称方法
Ebeed et al. Constraints violation handling of GUPFC in Newton-Raphson power flow
Syai'in et al. Microgrid power flow using Homotopic and Runge-Kutta Method
Khan et al. Optimal placement of multiple distributed generators using a novel voltage stability indicator employing arithmetic optimization algorithm
WO2020154850A1 (zh) 获取交流电力网中源荷的节点平移电压分量的对称方法
Saxena et al. LCL filter design of STATCOM using genetic algorithm scheme for SCIG based microgrid operation
Yang et al. Implementation of a novel unified power flow controller into Newton-Raphson load flow
Mishra et al. Novel load frequency control scheme for hybrid power systems employing interline power flow controller and redox flow battery
WO2020154849A1 (zh) 获取交流电力网中源荷的支路圴方电流分量的对称方法
WO2018209479A1 (zh) 获取直流电力网潮流的无损耗全局线性偏心方法
WO2018209501A1 (zh) 获取直流电力网潮流的功率补偿型全局线性对称方法
Anjana et al. Hardware implementation of shunt APF using modified Fuzzy control algorithm with STM32F407VGT microcontroller
Hao et al. Two-level reconfiguration algorithm of branch exchange and variable neighbourhood search for active distribution network
Zhang et al. Double integral-based distributed secondary control for islanded microgrid with switching communication topology and time-varying delays
Das et al. A gravitational search algorithm based static VAR compensator switching function optimization technique for minimum harmonic injection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913569

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913569

Country of ref document: EP

Kind code of ref document: A1