WO2018209501A1 - 获取直流电力网潮流的功率补偿型全局线性对称方法 - Google Patents

获取直流电力网潮流的功率补偿型全局线性对称方法 Download PDF

Info

Publication number
WO2018209501A1
WO2018209501A1 PCT/CN2017/084353 CN2017084353W WO2018209501A1 WO 2018209501 A1 WO2018209501 A1 WO 2018209501A1 CN 2017084353 W CN2017084353 W CN 2017084353W WO 2018209501 A1 WO2018209501 A1 WO 2018209501A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
node
global linear
voltage
network
Prior art date
Application number
PCT/CN2017/084353
Other languages
English (en)
French (fr)
Inventor
江辉
彭建春
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/084353 priority Critical patent/WO2018209501A1/zh
Priority to CN201780003511.0A priority patent/CN109257948B/zh
Publication of WO2018209501A1 publication Critical patent/WO2018209501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the invention relates to the field of electric power engineering, in particular to a power compensation type global linear symmetry method for acquiring a power flow of a direct current power network.
  • the existing DC power network power flow acquisition method is to first establish a nonlinear node power balance equation model, and then use an iterative method to solve. Due to the nonlinearity of the node power balance equation model, this method not only has a large amount of iterative computation and slow speed, but also has an iterative non-convergence or unreliable convergence problem. It is difficult to adapt to the DC power network operation that needs to be controlled based on the power flow solution. Claim. If the local linear power flow model based on the running base point linearization is adopted, the accuracy requirement of the regulation of the DC power network operating state can not be satisfied. Therefore, the existing DC power network power flow acquisition method either has a problem of slow calculation speed and unreliable convergence, or does not adapt to a wide range of changes in the operating state of the DC power network.
  • Embodiments of the present invention provide a power compensation type globally for acquiring a power flow of a DC power network
  • the linear symmetry method can realize the fast and reliable acquisition of the DC power network flow and adapt to the wide range of operation of the DC power network.
  • the invention provides a power compensation type global linear symmetry method for acquiring a power flow of a DC power network, comprising:
  • a power compensation type global linear symmetric matrix relationship of the whole network node translation voltage with respect to the injection power of the non-power balance node is established by using the M-P inverse matrix;
  • the embodiment of the present invention first establishes a power compensation global linear relationship of the node injection power with respect to the node translation voltage according to the node load parameter and the node power parameter in the known DC power network; and then according to the power compensation type global linear relationship and Knowing the power balance node number establishes the power compensation type global linear symmetry model of the tidal current in the DC power network; and then uses the MP inverse matrix to establish the power of the whole network node translation voltage with respect to the non-power balance node injection power according to the power compensation type global linear symmetry model Compensated global linear symmetric matrix relation; finally, according to the power compensation type global linear symmetric matrix relation, calculate the voltage value of each node in the DC power network and the transmission power value of each branch; since iterative calculation is not needed, the calculation amount Small, there is no convergence problem, and in the DC power network High accuracy when the operating state changes widely.
  • FIG. 1 is a flowchart of an implementation of a power compensation type global linear symmetry method for acquiring a power flow of a DC power network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a general model of a DC power network according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of an implementation of a power compensation type global linear symmetry method for acquiring a power flow of a DC power network according to an embodiment of the present invention.
  • the power compensation type global linear symmetry method for obtaining the DC power network power flow as shown in the figure may include the following steps:
  • step 101 a power compensation type global linear relationship of the node injection power with respect to the node translation voltage is established according to the node load parameter and the node power parameter in the known DC power network.
  • Step 101 is specifically: establishing a power compensation global linear relationship of the node injection power with respect to the node translation voltage according to the following relationship:
  • i and k are the numbers of the nodes in the DC power network, and both belong to the set of consecutive natural numbers ⁇ 1, 2,..., n ⁇ ; n is the total number of nodes in the DC power network; P Gi is connected The power of the power at node i; P Di is the load power connected to node i; P Ci is the compensation power of node i; P Gi -P Di -P Ci is the injected power of node i; g ik is connected at node i and The conductance of the branch ik between the nodes k; v i is the translation voltage of the node i; v k is the translation voltage of the node k, and both v i and v k are the standard value voltages after the translation -1.0.
  • the compensation power of node i is used to compensate the nonlinear term of the original power expression, and according to the formula Calculated; v i0 is the base point translation voltage of node i; v k0 is the base point translation voltage of node k, and v i0 and v k0 are the standard value voltages after translation -1.0.
  • P Gi , P Di , n, g ik , v i0 , v k0 are all known DC power network parameters.
  • All variables in the above-mentioned power compensation type global linear relation are global variables, not increments, and the power compensation type global linear relationship on the left side contains the node compensation power for compensating the nonlinear term of the original power expression, which is positive It is said that the above relationship is a power compensation type global linear relationship.
  • the above-mentioned power compensation type global linear relationship is established according to the operating characteristics of the DC power network.
  • the operating characteristic of the DC power network is that the "node translation voltage" obtained after the voltage of each node in the DC power network is shifted to -1.0 is small, so that the branch conductance is The product of the square of the translation voltage of one end node, the product of the branch conductance and the translation voltage of its two end nodes is always close to zero, and the accuracy of the result is minimal when replaced with a constant.
  • step 102 a power compensated global linear symmetric model of the power flow in the DC power network is established according to the power compensation type global linear relationship and the known power balance node number.
  • Step 102 is specifically: establishing a power compensation global linear symmetric model of the power flow in the DC power network according to the following relationship:
  • P G1 , P D1 , P C1 , P Gi , P Di , P Ci , P Gn-1 , P Dn-1 , P Cn-1 , (G ij ) are all known DC power network parameters.
  • the nodeless translation voltage is specified as a reference voltage center of zero value, and the translation voltage of each node in the DC power network is treated unbiasedly, that is, symmetrically treated, which is exactly
  • the above model is called the power compensation type global linear symmetry model.
  • step 103 according to the power compensation type global linear symmetry model, the M-P inverse matrix is used to establish a power compensation type global linear symmetric matrix relation of the whole network node translation voltage with respect to the non-power balance node injection power.
  • Step 103 is specifically: establishing a power compensation type global linear symmetric matrix relationship of the whole network node translation voltage with respect to the injection power of the non-power balance node according to the following relationship:
  • (G ij ) + is the MP inverse matrix of the original node conductance matrix (G ij ) of the DC power network;
  • P G1 is the power supply power of node 1;
  • P Gi is the power supply power of node i;
  • P Gn-1 is the node n -1 power supply power;
  • P D1 is the load power of node 1;
  • P Di is the load power of node i;
  • P Dn-1 is the load power of node n-1;
  • P C1 is the compensation power of node 1;
  • P Ci is the node
  • P Cn-1 is the compensation power of node n-1;
  • v 1 is the translation voltage of node 1;
  • v j is the translation voltage of node j;
  • v n is the translation voltage of node n, and
  • v 1 , v Both j and v n are the target voltages after translation -1.0.
  • the power compensation type global linear symmetric matrix relation of the whole network node translation voltage with respect to the injection power of the non-power balance node is a global variable (rather than an incremental relationship)
  • the translation voltage of each node of the whole network calculated by the node is injected at the node.
  • step 104 the voltage value of each node in the DC power network and the transmission power value of each branch are calculated according to the power compensation type global linear symmetric matrix relation.
  • Step 104 is specifically: calculating a translation voltage value of each node in the DC power network according to a power compensation type global linear symmetric matrix relationship; and calculating, according to the translation voltage values of each node, each node in the DC power network according to the following two relationship formulas Voltage value and transmission power value of each branch:
  • V j 1+v j
  • the target value voltage; g ij is the conductance of the branch ij connected between node i and node j; P ij is the branch ij transmission power value, also known as the branch current.
  • the above calculation formula is based on the translation voltage of each node in the DC power network, which is very simple. Straight The calculation of the translation voltage of each node in the flow power network is accurate, fast and reliable when the operating state of the DC power network changes widely. Therefore, the power-compensated global linear symmetry model and algorithm for tidal currents in DC power networks are accurate, fast, and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种获取直流电力网潮流的功率补偿型全局线性对称方法,首先根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式(101);然后根据功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型(102);再根据功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式(103);最后根据功率补偿型全局线性对称矩阵关系式,计算所述直流电力网中各节点的电压值和各支路传输功率值(104);实现了计算量小、不存在收敛问题,而且在直流电力网运行状态大范围变化时精度高。

Description

获取直流电力网潮流的功率补偿型全局线性对称方法 技术领域
本发明涉及电力工程领域,尤其涉及一种获取直流电力网潮流的功率补偿型全局线性对称方法。
背景技术
目前,直流输电的技术和经济优势正迅速推动直流电力网的建设和发展。作为直流电力网调控基础的潮流获取方法,特别是快速、可靠、准确的全局线性潮流模型和计算方法亟待开发。
现有的直流电力网潮流获取方法,是先建立非线性的节点功率平衡方程组模型,再运用迭代方法求解。由于节点功率平衡方程组模型的非线性,这种方法不仅迭代计算量大、速度慢,而且会出现迭代不收敛、或不可靠收敛问题,难适应需要基于潮流解才能实现调控的直流电力网运行要求。若采用基于运行基点线性化的局部线性潮流模型,则又无法满足直流电力网运行状态大范围变化时调控的精度要求。因此,现有的直流电力网潮流获取方法要么存在计算速度慢和收敛不可靠问题、要么不适应直流电力网运行状态的大范围变化。
发明内容
本发明实施例提供一种获取直流电力网潮流的功率补偿型全局 线性对称方法,能够实现直流电力网潮流的快速可靠获取,并且适应直流电力网运行状态大范围变化。
本发明提供了一种获取直流电力网潮流的功率补偿型全局线性对称方法,包括:
根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式;
根据所述功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型;
根据所述功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式;
根据所述功率补偿型全局线性对称矩阵关系式,计算所述直流电力网中各节点的电压值和各支路传输功率值。
本发明实施例通过首先根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式;然后根据功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型;再根据功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式;最后根据功率补偿型全局线性对称矩阵关系式,计算所述直流电力网中各节点的电压值和各支路传输功率值;由于无需进行迭代计算,故计算量小、不存在收敛问题,而且在直流电力网 运行状态大范围变化时精度高。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种获取直流电力网潮流的功率补偿型全局线性对称方法的实现流程图;
图2是本发明实施例提供的直流电力网通用模型的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本发明实施例提供的一种获取直流电力网潮流的功率补偿型全局线性对称方法的实现流程图。如图所示的获取直流电力网潮流的功率补偿型全局线性对称方法可包括以下步骤:
在步骤101中,根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式。
步骤101具体为:按照如下关系式建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式:
Figure PCTCN2017084353-appb-000001
其中,i和k均为直流电力网中的节点的编号,且都属于连续自然数的集合{1,2,…,n};n为直流电力网中的节点的总个数;PGi为接于节点i的电源功率;PDi为接于节点i的负荷功率;PCi为节点i的补偿功率;PGi-PDi-PCi为节点i的注入功率;gik是连接在节点i和节点k之间的支路ik的电导;vi为节点i的平移电压;vk为节点k的平移电压,且vi和vk都是平移-1.0后的标幺值电压。
节点i的补偿功率用于补偿原始功率表达式的非线性项,且按照算式
Figure PCTCN2017084353-appb-000002
计算;vi0为节点i的基点平移电压;vk0为节点k的基点平移电压,且vi0和vk0都是平移-1.0后的标幺值电压。
PGi、PDi、n、gik、vi0、vk0都是已知的直流电力网参数。
上述功率补偿型全局线性关系式中的所有变量都是全局变量、并非增量,而且该功率补偿型全局线性关系式左边含有用于补偿原始功率表达式的非线性项的节点补偿功率,这正是称上述关系式为功率补偿型全局线性关系式的缘故。
上述功率补偿型全局线性关系式是按照直流电力网运行特性建立的,直流电力网运行特性为直流电力网中各节点电压平移-1.0后得到的“节点平移电压”很小,以致支路电导与其一个端节点平移电压的平方的乘积、支路电导与其两个端节点平移电压的乘积总是接近零,都用常量替代时对结果的精度影响很小。
在步骤102中,根据功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型。
步骤102具体为:按照如下关系式建立直流电力网中潮流的功率补偿型全局线性对称模型:
Figure PCTCN2017084353-appb-000003
其中,PG1为节点1的电源功率;PGi为节点i的电源功率;PGn-1为节点n-1的电源功率;PD1为节点1的负荷功率;PDi为节点i的负荷功率;PDn-1是节点n-1的负荷功率;PC1为节点1的补偿功率;PCi为节点i的补偿功率;PCn-1为节点n-1的补偿功率;j是直流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};gij是连接在节点i和节点j之间的支路ij的电导;gik是连接在节点i和节点k之间的支路ik的电导;n为直流电力网中的节点的总个数;编号为n的节点是已知的功率平衡节点;(Gij)是删除功率平衡节点的行之后的直流电力网的原始节点电导矩阵,原始节点电导矩阵的维数是(n-1)×n;Gij是 原始节点电导矩阵(Gij)中第i行第j列的元素;v1为节点1的平移电压;vj为节点j的平移电压;vn为节点n的平移电压,且v1、vj和vn都是平移-1.0后的标幺值电压。
PG1、PD1、PC1、PGi、PDi、PCi、PGn-1、PDn-1、PCn-1、(Gij)都是已知的直流电力网参数。
上述功率补偿型全局线性对称模型中,无节点平移电压被指定为零值的参考电压中心,直流电力网中各节点的平移电压被无偏向性地等同对待、也就是被对称对待,这正是称上述模型为功率补偿型全局线性对称模型的缘故。
在步骤103中,根据功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式。
步骤103具体为:按照如下关系式建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式:
Figure PCTCN2017084353-appb-000004
其中,(Gij)+是直流电力网的原始节点电导矩阵(Gij)的M-P逆矩阵;PG1为节点1的电源功率;PGi为节点i的电源功率;PGn-1为节点n-1的电源功率;PD1为节点1的负荷功率;PDi为节点i的负荷功率;PDn-1是节点n-1的负荷功率;PC1为节点1的补偿功率;PCi为节点i的补偿功率;PCn-1为节点n-1的补偿功率;v1为节点1的平移电压;vj为 节点j的平移电压;vn为节点n的平移电压,且v1、vj和vn都是平移-1.0后的标幺值电压。按上述关系式即可计算出全网各节点j(j=1,2,…,n)的平移电压值vj
由于上述全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式是全局变量(而非增量)关系式,按它计算得到的全网各节点平移电压在节点注入功率大范围变化时,也就是直流电力网运行状态大范围变化时是准确的,且计算过程只涉及一步简单的线性关系计算、快速可靠。
在步骤104中,根据功率补偿型全局线性对称矩阵关系式,计算直流电力网中各节点的电压值和各支路传输功率值。
步骤104具体为:根据功率补偿型全局线性对称矩阵关系式计算直流电力网中的各节点平移电压值;根据各节点平移电压值,按照如下2个关系式分别计算出直流电力网中的各节点电压值和各支路传输功率值:
Vj=1+vj
Pij=gij(vi-vj)
其中,Vj为各节点电压值,j=1,2,…,n;vi为节点i的平移电压;vj为节点j的平移电压,且vi和vj都是平移-1.0后的标幺值电压;gij是连接在节点i和节点j之间的支路ij的电导;Pij为支路ij传输功率值,又称支路潮流。
这样就得到了直流电力网中功率补偿型全局线性潮流的分布。上述计算式以直流电力网中的各个节点平移电压为核心、非常简单。直 流电力网中的各个节点平移电压的计算在直流电力网运行状态大范围变化时准确、快速、可靠。因此,这种直流电力网中潮流的功率补偿型全局线性对称模型和算法准确、快速、可靠。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应按其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

Claims (5)

  1. 一种获取直流电力网潮流的功率补偿型全局线性对称方法,其特征在于,所述获取直流电力网潮流的功率补偿型全局线性对称方法包括:
    根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式;
    根据所述功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型;
    根据所述功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式;
    根据所述功率补偿型全局线性对称矩阵关系式,计算所述直流电力网中各节点的电压值和各支路传输功率值。
  2. 根据权利要求1所述的获取直流电力网潮流的功率补偿型全局线性对称方法,其特征在于,所述根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式具体为:
    按照如下关系式建立节点注入功率关于节点平移电压的功率补偿型全局线性关系式:
    Figure PCTCN2017084353-appb-100001
    其中,i和k均为直流电力网中的节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述直流电力网中的节点的总个数;PGi为接于节点i的电源功率;PDi为接于所述节点i的负荷功率;PCi为所述节点i的补偿功率;PGi-PDi-PCi为所述节点i的注入功率;gik是连接在所述节点i和节点k之间的支路ik的电导;υi为所述节点i的平移电压;υk为所述节点k的平移电压,且所述υi和所述υk都是平移-1.0后的标幺值电压;
    所述节点i的补偿功率用于补偿原始功率表达式的非线性项,且按照算式
    Figure PCTCN2017084353-appb-100002
    计算;υi0为所述节点i的基点平移电压;υk0为所述节点k的基点平移电压,且所述υi0和所述υk0都是平移-1.0后的标幺值电压。
  3. 根据权利要求1所述的获取直流电力网潮流的功率补偿型全局线性对称方法,其特征在于,所述根据所述功率补偿型全局线性关系式和已知的功率平衡节点编号建立直流电力网中潮流的功率补偿型全局线性对称模型具体为:
    按照如下关系式建立直流电力网中潮流的功率补偿型全局线性对称模型:
    Figure PCTCN2017084353-appb-100003
    其中,PG1为节点1的电源功率;PGi为节点i的电源功率;PGn-1为 节点n-1的电源功率;PD1为所述节点1的负荷功率;PDi为所述节点i的负荷功率;PDn-1是所述节点n-1的负荷功率;PC1为所述节点1的补偿功率;PCi为所述节点i的补偿功率;PCn-1为所述节点n-1的补偿功率;j是所述直流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};gij是连接在所述节点i和所述节点j之间的支路ij的电导;gik是连接在所述节点i和节点k之间的支路ik的电导;n为所述直流电力网中的节点的总个数;编号为n的节点是已知的功率平衡节点;(Gij)是删除功率平衡节点的行之后的直流电力网的原始节点电导矩阵,所述原始节点电导矩阵的维数是(n-1)×n;Gij是所述原始节点电导矩阵(Gij)中第i行第j列的元素;υ1为所述节点1的平移电压;υj为所述节点j的平移电压;υn为节点n的平移电压,且所述υ1、所述υj和所述υn都是平移-1.0后的标幺值电压。
  4. 根据权利要求1所述的获取直流电力网潮流的功率补偿型全局线性对称方法,其特征在于,所述根据所述功率补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式具体为:
    按照如下关系式建立全网节点平移电压关于非功率平衡节点注入功率的功率补偿型全局线性对称矩阵关系式:
    Figure PCTCN2017084353-appb-100004
    其中,(Gij)+是所述直流电力网的原始节点电导矩阵(Gij)的M-P 逆矩阵;PG1为节点1的电源功率;PGi为节点i的电源功率;PGn-1为节点n-1的电源功率;PD1为所述节点1的负荷功率;PDi为所述节点i的负荷功率;PDn-1是所述节点n-1的负荷功率;PC1为所述节点1的补偿功率;PCi为所述节点i的补偿功率;PCn-1为所述节点n-1的补偿功率;υ1为所述节点1的平移电压;υj为节点j的平移电压;υn为节点n的平移电压,且所述υ1、所述υj和所述υn都是平移-1.0后的标幺值电压。
  5. 根据权利要求1所述的获取直流电力网潮流的功率补偿型全局线性对称方法,其特征在于,所述根据所述功率补偿型全局线性对称矩阵关系式,计算所述直流电力网中各节点的电压值和各支路传输功率值具体为:
    根据所述功率补偿型全局线性对称矩阵关系式计算所述直流电力网中的各节点平移电压值;
    根据所述各节点平移电压值,按照如下2个关系式分别计算出所述直流电力网中的各节点电压值和各支路传输功率值:
    Vj=1+υj
    Pij=gijij)
    其中,Vj为所述各节点电压值,j=1,2,…,n;υi为节点i的平移电压;υj为节点j的平移电压,且所述υi和所述υj都是平移-1.0后的标幺值电压;gij是连接在所述节点i和所述节点j之间的支路ij的电导;Pij为所述支路ij传输功率值。
PCT/CN2017/084353 2017-05-15 2017-05-15 获取直流电力网潮流的功率补偿型全局线性对称方法 WO2018209501A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/084353 WO2018209501A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的功率补偿型全局线性对称方法
CN201780003511.0A CN109257948B (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的功率补偿型全局线性对称方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084353 WO2018209501A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的功率补偿型全局线性对称方法

Publications (1)

Publication Number Publication Date
WO2018209501A1 true WO2018209501A1 (zh) 2018-11-22

Family

ID=64273171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084353 WO2018209501A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的功率补偿型全局线性对称方法

Country Status (2)

Country Link
CN (1) CN109257948B (zh)
WO (1) WO2018209501A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154850A1 (zh) * 2019-01-28 2020-08-06 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN113852104A (zh) * 2021-09-22 2021-12-28 国网山东省电力公司电力科学研究院 一种三相不对称配电网潮流计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008993A1 (en) * 2007-07-06 2009-01-08 Rozman Gregory I Hybrid electromechanical power transfer system
CN102403724A (zh) * 2011-11-09 2012-04-04 深圳大学 交直流混联电力网中节点电压灵敏度的对称获取方法
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104995811A (zh) * 2014-10-21 2015-10-21 深圳大学 交流电力网的最小相位线性有功潮流的获取方法
CN104995810A (zh) * 2014-11-18 2015-10-21 深圳大学 交流电力网中源荷同变的对称功率传输系数的获取方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545206A (zh) * 2011-12-22 2012-07-04 河海大学 基于ad和保留非线性法的vsc-hvdc潮流计算方法
CN105745809B (zh) * 2015-05-19 2018-07-17 深圳大学 获取多端直流电力网非线性有功潮流的对称方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008993A1 (en) * 2007-07-06 2009-01-08 Rozman Gregory I Hybrid electromechanical power transfer system
CN102403724A (zh) * 2011-11-09 2012-04-04 深圳大学 交直流混联电力网中节点电压灵敏度的对称获取方法
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104995811A (zh) * 2014-10-21 2015-10-21 深圳大学 交流电力网的最小相位线性有功潮流的获取方法
CN104995810A (zh) * 2014-11-18 2015-10-21 深圳大学 交流电力网中源荷同变的对称功率传输系数的获取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154850A1 (zh) * 2019-01-28 2020-08-06 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN113852104A (zh) * 2021-09-22 2021-12-28 国网山东省电力公司电力科学研究院 一种三相不对称配电网潮流计算方法
CN113852104B (zh) * 2021-09-22 2023-10-10 国网山东省电力公司电力科学研究院 一种三相不对称配电网潮流计算方法

Also Published As

Publication number Publication date
CN109257948A (zh) 2019-01-22
CN109257948B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2018209506A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性对称方法
WO2018209477A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型偏心方法
WO2016183805A1 (zh) 获取多端直流电力网线性有功潮流的对称方法
WO2016183806A1 (zh) 获取多端直流电力网非线性有功潮流的对称方法
WO2018209503A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型对称方法
WO2016077994A1 (zh) 交流电力网中源荷同变的对称功率传输系数的获取方法
CN109617080B (zh) 基于改进的雅可比矩阵的直角坐标牛顿法潮流计算方法
WO2018209501A1 (zh) 获取直流电力网潮流的功率补偿型全局线性对称方法
Weng et al. Fixed-point theorem-based voltage stability margin estimation techniques for distribution systems with renewables
WO2018209479A1 (zh) 获取直流电力网潮流的无损耗全局线性偏心方法
WO2018209500A1 (zh) 获取直流电力网潮流的功率补偿型全局线性偏心方法
WO2018209480A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性对称方法
WO2018209478A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性偏心方法
WO2018209482A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性偏心方法
CN113300693A (zh) 一种近阈值单元电路延时模型
WO2018209499A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型对称方法
WO2018209476A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型偏心方法
WO2018209505A1 (zh) 获取直流电力网功率传输系数的无损耗偏心方法
WO2018209481A1 (zh) 获取直流电力网功率传输系数的无损耗对称方法
Barik et al. Finite-time sliding mode power control of grid-connected three-phase photovoltaic array
WO2020154850A1 (zh) 获取交流电力网中源荷的节点平移电压分量的对称方法
Fu et al. Nonlinear robust control for parallel AC/DC transmission systems: A new adaptive back-stepping approach
Ghule et al. Power based modeling and stabilization of telegraphers equations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17910213

Country of ref document: EP

Kind code of ref document: A1