WO2018209503A1 - 获取直流电力网功率传输系数的均衡电导补偿型对称方法 - Google Patents

获取直流电力网功率传输系数的均衡电导补偿型对称方法 Download PDF

Info

Publication number
WO2018209503A1
WO2018209503A1 PCT/CN2017/084356 CN2017084356W WO2018209503A1 WO 2018209503 A1 WO2018209503 A1 WO 2018209503A1 CN 2017084356 W CN2017084356 W CN 2017084356W WO 2018209503 A1 WO2018209503 A1 WO 2018209503A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
power
conductance
network
compensation type
Prior art date
Application number
PCT/CN2017/084356
Other languages
English (en)
French (fr)
Inventor
彭建春
江辉
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to CN201780003493.6A priority Critical patent/CN109478781B/zh
Priority to PCT/CN2017/084356 priority patent/WO2018209503A1/zh
Publication of WO2018209503A1 publication Critical patent/WO2018209503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the invention relates to the field of electric power engineering, in particular to an equalization conductance compensation type symmetry method for obtaining a power transmission coefficient of a direct current power network.
  • DC power grid is an emerging power transmission network. Drawing on the control method of the traditional AC power network branch road safety, the power transmission coefficient of the DC power network is an indispensable tool for the control of its branch safety. Therefore, an accurate, fast and reliable method for obtaining the power transmission coefficient of the DC power network needs to be developed.
  • the global linear acquisition method of the power transmission coefficient of the AC power grid is based on the assumption that the voltage amplitude of each node is equal to 1.0 p.u. and the voltage phase difference between the nodes of each branch is close to zero, simplifying the steady state model of the AC power grid.
  • the node voltage in the DC power network only contains amplitude (excluding phase). If the voltage of each node is assumed to be equal to 1.0 pu, the power transmitted by each branch is always zero.
  • the AC power network theory cannot be used to obtain the global power transmission coefficient of the DC power network. Linear acquisition method.
  • the steady-state model based on the linearization of the DC power network is used to obtain the power transmission coefficient of the DC power network, the local linear characteristics cannot meet the accuracy requirements of the safety regulation of the branch when the operating state of the DC power network changes widely. Therefore, there is no global linear acquisition method for the DC power network power transmission coefficient.
  • the existing local linearization acquisition method does not adapt to the wide range of DC power network operation state.
  • the embodiment of the invention provides an equalization conductance compensation type symmetry method for acquiring a power transmission coefficient of a DC power network, which can realize global linearization acquisition of a power transmission coefficient of a DC power network.
  • the invention provides an equalization conductance compensation type symmetry method for obtaining a power transmission coefficient of a DC power network, comprising:
  • an M-P inverse matrix is used to establish an equilibrium conductance compensation global linear symmetric matrix relationship of the whole network node translation voltage with respect to the injection power of the whole network node;
  • the embodiment of the present invention first establishes a balanced linear conductivity relationship of the node injection power with respect to the node translation voltage according to the node load parameter and the node power parameter in the DC power network; and then establishes a DC according to the global linear relationship of the balanced conductance compensation type.
  • FIG. 1 is a flowchart of an implementation of an equalization conductance compensation type symmetry method for acquiring a power transmission coefficient of a DC power network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a general model of a DC power network according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of an implementation of an equalization conductance compensation type symmetry method for acquiring a power transmission coefficient of a DC power network according to an embodiment of the present invention.
  • the equalization conductance compensation type symmetry method for obtaining the DC power network power transmission coefficient as shown in the figure may include the following steps:
  • step 101 an equalized conductance compensation global linear relationship of the node injection power with respect to the node translation voltage is established according to the node load parameter and the node power parameter in the known DC power network.
  • Step 101 is specifically: establishing a global linear relationship of the balanced conductance compensation type of the node injection power with respect to the node translation voltage according to the following relationship:
  • P Gi , P Di , n, g ik , v i0 , v k0 are all known DC power network parameters.
  • All the variables in the above-mentioned balanced conductance compensation global linear relation are global variables, not increments; in addition, the coefficients ⁇ ik g ik and - ⁇ i of v i and v k in the above-mentioned equalization conductance compensation type global linear relation * g ik are self-conducting and mutual conductance, respectively, which increase the conductance terms (v i0 -0.5v k0 )g ik and -0.5v i0 g ik , respectively, compared to conventional self-conductance and mutual conductance.
  • the above-mentioned balanced conductance compensation global linear relationship is established according to the operating characteristics of the DC power network.
  • the operating characteristic of the DC power network is that the "node translation voltage" obtained after the voltage of each node in the DC power network is shifted to -1.0 is small, and the constant is used instead of the branch.
  • the product of the path conductance and its end node translation voltage has little effect on the accuracy of the result.
  • step 102 a DC power is established according to the global linear relationship of the balanced conductance compensation type.
  • Step 102 is specifically as follows: establishing a steady-state conductance compensation global linear symmetry model of the DC power network according to the following relationship:
  • P G1 , P D1 , P Gi , P Di , P Gn , P Dn , (G ij ) are known DC power network parameters.
  • no node translation voltage is referred to
  • the zero-valued reference voltage center, the translation voltage and the injection power of each node of the whole network are treated unbiasedly, that is, symmetrically treated. This is called the balanced conductivity compensation type global linear symmetric model. reason.
  • step 103 according to the equalization conductance compensation type global linear symmetry model, the M-P inverse matrix is used to establish an equilibrium conductance compensation global linear symmetric matrix relation of the whole network node translation voltage with respect to the injection power of the whole network node.
  • Step 103 is specifically: establishing a balanced conductance compensation global linear symmetric matrix relationship of the whole network node translation voltage with respect to the injection power of the whole network node according to the following relationship:
  • (a ij ) and (G ij ) + are the MP inverse matrix of the equalization conductance compensation node conductance matrix (G ij ) of the DC power network;
  • P G1 is the power supply of node 1;
  • P Gi is the power supply of node i power;
  • P Gn is the source power node n;
  • P Dn is the node n load power;
  • V 1 is offset in the voltage of node 1;
  • V i is The translation voltage of node i;
  • v n is the translation voltage of node n, and
  • v 1 , v i and v n are the target voltages after translation -1.0.
  • the translation voltage of each node in the whole network is calculated according to the large variation of the node injection power, that is, the DC power network operation.
  • the state is accurate when the range is varied, and the linear features also make the calculation fast and reliable.
  • step 104 the global linear symmetric matrix relationship is established according to the balanced conductance compensation type. Equilibrium Conductance Compensated Global Linear Symmetric Relation of Branch Transmitter Transmission Power for Total Network Node Injection Power.
  • Step 104 is specifically: establishing a balanced linear conductivity relationship of the balanced conductance compensation type of the branch transmission power with respect to the injection power of the entire network according to the following relationship:
  • g ik is the conductance of the branch ik connected between node i and node k;
  • v i0 is the base point translation voltage of node i;
  • v k0 is the base point translation voltage of node k, and v i0 and v k0 are both The value of the standard value after translation -1.0;
  • P ik is the power transmitted by the branch ik;
  • n is the total number of nodes in the DC power network;
  • a ij is the equalization conductance compensation type node conductance matrix of the DC power network (G ij An element of the i-th row and the j-th column of the MP inverse matrix; a kj
  • step 105 the power transmission coefficients of the DC power network are obtained according to the definition of the equalization conductance compensation type global linear symmetric relationship and the known power transmission coefficient.
  • Step 105 is specifically: calculating a power transmission coefficient of the DC power network according to the following relationship:
  • a kj is an element of the kth row and the j-th column of the MP inverse matrix of the equalization conductance compensation type node conductance matrix (G ij ) of the DC power network.
  • the above relationship is based on the M-P inverse matrix of the equalization conductance compensation type node conductance matrix of the DC power network, and the inverse matrix must exist, so that it can be reliably obtained.
  • the global linear characteristic of the relationship between the above-mentioned branch transmission power and the injection power of the entire network node makes the calculation of the power transmission coefficient accurate and fast when the operating state of the DC power network changes widely. Therefore, the balanced conductance compensation symmetry method for obtaining the power transmission coefficient of the DC power network is accurate, fast, and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种获取直流电力网功率传输系数的均衡电导补偿型对称方法,首先根据直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式(101);然后根据均衡电导补偿型全局线性关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型(102);利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式(103);再建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式(104);最后根据均衡电导补偿型全局线性对称关系式获取直流电力网的功率传输系数(105);实现了精度高和计算快速可靠,且在电力网运行状态大范围变化时提高了调控的准确性和实时性。

Description

获取直流电力网功率传输系数的均衡电导补偿型对称方法 技术领域
本发明涉及电力工程领域,尤其涉及一种获取直流电力网功率传输系数的均衡电导补偿型对称方法。
背景技术
直流电力网是一种新兴的电能传输网络。借鉴传统交流电力网支路安全性的调控方法,直流电力网功率传输系数是其支路安全性调控的必备工具。因此,获取直流电力网功率传输系数的准确、快速、可靠方法亟待开发。
交流电力网功率传输系数的全局线性获取方法,是假定各节点电压幅值等于1.0p.u.和各支路两端节点的电压相位差接近零,简化交流电力网稳态模型的基础上得到的。直流电力网中节点电压只含幅值(不含相位),若假定各节点电压等于1.0p.u.,则各支路传输的功率恒为零,借鉴交流电力网理论无法得到直流电力网功率传输系数的全局线性获取方法。若采用基于直流电力网运行基点线性化的稳态模型获取直流电力网功率传输系数,则其局部线性特征又无法满足直流电力网运行状态大范围变化时支路安全性调控的精度要求。因此,对直流电力网功率传输系数,目前尚无全局线性的获取方法,现有的局部线性化的获取方法又不适应直流电力网运行状态的大范围变化。
发明内容
本发明实施例提供一种获取直流电力网功率传输系数的均衡电导补偿型对称方法,能够实现直流电力网功率传输系数的全局线性化获取。
本发明提供了一种获取直流电力网功率传输系数的均衡电导补偿型对称方法,包括:
根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式;
根据所述均衡电导补偿型全局线性关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型;
根据所述均衡电导补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式;
根据所述均衡电导补偿型全局线性对称矩阵关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式;
根据所述均衡电导补偿型全局线性对称关系式和已知的功率传输系数的定义获取直流电力网的功率传输系数。
本发明实施例通过首先根据直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式;然后根据均衡电导补偿型全局线性关系式建立直流 电力网稳态的均衡电导补偿型全局线性对称模型;根据均衡电导补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式;再根据均衡电导补偿型全局线性对称矩阵关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式;最后根据均衡电导补偿型全局线性对称关系式和已知的功率传输系数的定义获取直流电力网的功率传输系数;由于采用了直流电力网的稳态模型并通过均衡电导补偿计入了功率表达式中非线性项的影响,故计算精度高;又由于其全局线性特征,故不仅对任意结构直流电力网功率传输系数的计算快速可靠,而且适应电力网运行状态大范围变化时调控的准确性和实时性要求,从而解决了对直流电力网功率传输系数当前尚无全局线性的获取方法,而局部线性化的获取方法又不适应直流电力网运行状态大范围变化的问题。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种获取直流电力网功率传输系数的均衡电导补偿型对称方法的实现流程图;
图2是本发明实施例提供的直流电力网通用模型的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本发明实施例提供的一种获取直流电力网功率传输系数的均衡电导补偿型对称方法的实现流程图。如图所示的获取直流电力网功率传输系数的均衡电导补偿型对称方法可包括以下步骤:
在步骤101中,根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式。
步骤101具体为:按照如下关系式建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式:
Figure PCTCN2017084356-appb-000001
其中,i和k均为直流电力网中的节点的编号,且都属于连续自然数的集合{1,2,...,n};n为直流电力网中的节点的总个数;PGi为接于 节点i的电源功率;PDi为接于节点i的负荷功率;PGi-PDi为节点i的注入功率;gik是连接在节点i和节点k之间的支路ik的电导;vi为节点i的平移电压;vk为节点k的平移电压,且vi和vk都是平移-1.0后的标幺值电压;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为节点i的基点平移电压;vk0为节点k的基点平移电压,且vi0和vk0都是平移-1.0后的标幺值电压。
PGi、PDi、n、gik、vi0、vk0都是已知的直流电力网参数。
上述均衡电导补偿型全局线性关系式中的所有变量都是全局变量、并非增量;此外,上述均衡电导补偿型全局线性关系式中的vi和vk的系数μikgik和-μi*gik分别是自电导和互电导,两者与传统自电导和互电导相比分别增加了电导项(vi0-0.5vk0)gik和-0.5vi0gik。这两个电导项是将上述关系式右边原始功率表达式的非线性项均衡分配(即按Shapley值分配)给vi和vk、再归集出vi和vk的系数并在基点量化这两个系数得到的,用于补偿原始功率表达式的非线性项。这正是称上述关系式为节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式的缘故。
上述均衡电导补偿型全局线性关系式是按照直流电力网运行特性建立的,直流电力网运行特性为直流电力网中各节点电压平移-1.0后得到的“节点平移电压”很小,用常量替代支路电导与其端节点平移电压的乘积时对结果的精度影响很小。
在步骤102中,根据均衡电导补偿型全局线性关系式建立直流电 力网稳态的均衡电导补偿型全局线性对称模型。
步骤102具体为:按照如下关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型:
Figure PCTCN2017084356-appb-000002
其中,PG1为节点1的电源功率;PGi为节点i的电源功率;PGn为节点n的电源功率;PD1为节点1的负荷功率;PDi为节点i的负荷功率;PDn是节点n的负荷功率;j是直流电力网中节点的编号,且属于连续自然数的集合{1,2,...,n};gij是连接在节点i和节点j之间的支路ij的电导;gik是连接在节点i和节点k之间的支路ik的电导;n为直流电力网中的节点的总个数;(Gij)是直流电力网的均衡电导补偿型节点电导矩阵,均衡电导补偿型节点电导矩阵的维数是n×n;Gij是均衡电导补偿型节点电导矩阵(Gij)中第i行第j列的元素;v1为节点1的平移电压;vi为节点i的平移电压;vn为节点n的平移电压,且v1、vi和vn都是平移-1.0后的标幺值电压;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为节点i的基点平移电压;vk0为节点k的基点平移电压,且vi0和vk0都是平移-1.0后的标幺值电压。
PG1、PD1、PGi、PDi、PGn、PDn、(Gij)都是已知的直流电力网参数。
上述均衡电导补偿型全局线性对称模型中,无节点平移电压被指 定为零值的参考电压中心,全网各节点的平移电压和注入功率都被无偏向性地等同对待、也就是被对称对待,这正是称上述模型为均衡电导补偿型全局线性对称模型的缘故。
在步骤103中,根据均衡电导补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式。
步骤103具体为:按照如下关系式建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式:
Figure PCTCN2017084356-appb-000003
其中,(aij)和(Gij)+均是直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵;PG1为节点1的电源功率;PGi为节点i的电源功率;PGn为节点n的电源功率;PD1为节点1的负荷功率;PDi为节点i的负荷功率;PDn是节点n的负荷功率;v1为节点1的平移电压;vi为节点i的平移电压;vn为节点n的平移电压,且v1、vi和vn都是平移-1.0后的标幺值电压。
由于上述均衡电导补偿型全局线性对称矩阵关系式是全局变量(而非增量)关系式,按它计算得到的全网各节点平移电压在节点注入功率大范围变化时,也就是直流电力网运行状态大范围变化时是准确的,且线性特征还使计算快速可靠。
在步骤104中,根据均衡电导补偿型全局线性对称矩阵关系式建 立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式。
步骤104具体为:按照如下关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式:
Figure PCTCN2017084356-appb-000004
其中,gik是连接在节点i和节点k之间的支路ik的电导;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为节点i的基点平移电压;vk0为节点k的基点平移电压,且vi0和vk0都是平移-1.0后的标幺值电压;Pik是支路ik传输的功率;n为直流电力网中的节点的总个数;aij是直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第i行第j列的元素;akj是直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第k行第j列的元素;PGj是接于节点j的电源功率;PDj是接于节点j的负荷功率,PGj-PDj为节点j的注入功率。
在步骤105中,根据均衡电导补偿型全局线性对称关系式和已知的功率传输系数的定义获取直流电力网的功率传输系数。
步骤105具体为:按照如下关系式计算直流电力网的功率传输系数:
Dik,j=(μikaiji*akj)gik
其中,gik是连接在节点i和节点k之间的支路ik的电导;Dik,j是 从节点j到支路ik的功率传输系数;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为节点i的基点平移电压;vk0为节点k的基点平移电压,且vi0和vk0都是平移-1.0后的标幺值电压;aij是直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第i行第j列的元素;akj是直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第k行第j列的元素。
对直流电力网中支路和节点的全部组合,按照上述关系式计算得到的所有结果就是直流电力网的功率传输系数,从而实现直流电力网功率传输系数的获取。
上述关系式以直流电力网的均衡电导补偿型节点电导矩阵的M-P逆矩阵为基础,该逆矩阵一定存在,因此能可靠求得。另外,上述支路传输功率关于全网节点注入功率的关系式的全局线性特性,使功率传输系数的计算在直流电力网运行状态大范围变化时准确、快速。因此,这种获取直流电力网功率传输系数的均衡电导补偿型对称方法准确、快速、可靠。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应按其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

Claims (6)

  1. 一种获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述获取直流电力网功率传输系数的均衡电导补偿型对称方法包括:
    根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式;
    根据所述均衡电导补偿型全局线性关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型;
    根据所述均衡电导补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式;
    根据所述均衡电导补偿型全局线性对称矩阵关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式;
    根据所述均衡电导补偿型全局线性对称关系式和已知的功率传输系数的定义获取所述直流电力网的功率传输系数。
  2. 根据权利要求1所述的获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的均衡电导补偿型全局线性关系式具体为:
    按照如下关系式建立节点注入功率关于节点平移电压的均衡电 导补偿型全局线性关系式:
    Figure PCTCN2017084356-appb-100001
    其中,i和k均为直流电力网中的节点的编号,且都属于连续自然数的集合{1,2,…,n};n为所述直流电力网中的节点的总个数;PGi为接于节点i的电源功率;PDi为接于所述节点i的负荷功率;PGi-PDi为所述节点i的注入功率;gik是连接在所述节点i和节点k之间的支路ik的电导;vi为所述节点i的平移电压;vk为所述节点k的平移电压,且所述vi和所述vk都是平移-1.0后的标幺值电压;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为所述节点i的基点平移电压;vk0为所述节点k的基点平移电压,且所述vi0和所述vk0都是平移-1.0后的标幺值电压。
  3. 根据权利要求1所述的获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述根据所述均衡电导补偿型全局线性关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型具体为:
    按照如下关系式建立直流电力网稳态的均衡电导补偿型全局线性对称模型:
    Figure PCTCN2017084356-appb-100002
    其中,PG1为节点1的电源功率;PGi为节点i的电源功率;PGn为节点n的电源功率;PD1为所述节点1的负荷功率;PDi为所述节点i的负荷功率;PDn是所述节点n的负荷功率;j是所述直流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};gij是连接在所述节点i和所述节点j之间的支路ij的电导;gik是连接在所述节点i和节点k之间的支路ik的电导;n为所述直流电力网中的节点的总个数;(Gij)是直流电力网的均衡电导补偿型节点电导矩阵,所述均衡电导补偿型节点电导矩阵的维数是n×n;Gij是所述均衡电导补偿型节点电导矩阵(Gij)中第i行第j列的元素;v1为所述节点1的平移电压;vi为所述节点i的平移电压;vn为所述节点n的平移电压,且所述v1、所述vi和所述vn都是平移-1.0后的标幺值电压;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为所述节点i的基点平移电压;vk0为所述节点k的基点平移电压,且所述vi0和所述vk0都是平移-1.0后的标幺值电压。
  4. 根据权利要求1所述的获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述根据所述均衡电导补偿型全局线性对称模型,利用M-P逆矩阵建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式具体为:
    按照如下关系式建立全网节点平移电压关于全网节点注入功率的均衡电导补偿型全局线性对称矩阵关系式:
    Figure PCTCN2017084356-appb-100003
    其中,(aij)和(Gij)+均是所述直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵;PG1为节点1的电源功率;PGi为节点i的电源功率;PGn为节点n的电源功率;PD1为所述节点1的负荷功率;PDi为所述节点i的负荷功率;PDn是所述节点n的负荷功率;v1为所述节点1的平移电压;vi为所述节点i的平移电压;vn为所述节点n的平移电压,且所述v1、所述vi和所述vn都是平移-1.0后的标幺值电压。
  5. 根据权利要求1所述的获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述根据所述均衡电导补偿型全局线性对称矩阵关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式具体为:
    按照如下关系式建立支路传输功率关于全网节点注入功率的均衡电导补偿型全局线性对称关系式:
    Figure PCTCN2017084356-appb-100004
    其中,gik是连接在节点i和节点k之间的支路ik的电导;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为所述节点i的基点平移电压;vk0为所述节点k的基点平移电压,且所述vi0和所述vk0都是平移-1.0后的标幺值电压;Pik是所述支路ik传输的功率;n为所述 直流电力网中的节点的总个数;aij是所述直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第i行第j列的元素;akj是所述直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第k行第j列的元素;PGj是接于所述节点j的电源功率;PDj是接于所述节点j的负荷功率,PGj-PDj为所述节点j的注入功率。
  6. 根据权利要求1所述的获取直流电力网功率传输系数的均衡电导补偿型对称方法,其特征在于,所述根据所述均衡电导补偿型全局线性对称关系式和已知的功率传输系数的定义获取所述直流电力网的功率传输系数具体为:
    按照如下关系式计算所述直流电力网的功率传输系数:
    Dik,j=(μikaiji*akj)gik
    其中,gik是连接在节点i和节点k之间的支路ik的电导;Dik,j是从节点j到所述支路ik的功率传输系数;μik是按照μik=(1+vi0-0.5vk0)确定的第一直流电力网参数;μi*是按照μi*=(1+0.5vi0)确定的第二直流电力网参数;vi0为所述节点i的基点平移电压;vk0为所述节点k的基点平移电压,且所述vi0和所述vk0都是平移-1.0后的标幺值电压;aij是所述直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第i行第j列的元素;akj是所述直流电力网的均衡电导补偿型节点电导矩阵(Gij)的M-P逆矩阵中第k行第j列的元素。
PCT/CN2017/084356 2017-05-15 2017-05-15 获取直流电力网功率传输系数的均衡电导补偿型对称方法 WO2018209503A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003493.6A CN109478781B (zh) 2017-05-15 2017-05-15 获取直流电力网功率传输系数的均衡电导补偿型对称方法
PCT/CN2017/084356 WO2018209503A1 (zh) 2017-05-15 2017-05-15 获取直流电力网功率传输系数的均衡电导补偿型对称方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084356 WO2018209503A1 (zh) 2017-05-15 2017-05-15 获取直流电力网功率传输系数的均衡电导补偿型对称方法

Publications (1)

Publication Number Publication Date
WO2018209503A1 true WO2018209503A1 (zh) 2018-11-22

Family

ID=64273224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084356 WO2018209503A1 (zh) 2017-05-15 2017-05-15 获取直流电力网功率传输系数的均衡电导补偿型对称方法

Country Status (2)

Country Link
CN (1) CN109478781B (zh)
WO (1) WO2018209503A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111758195A (zh) * 2019-01-28 2020-10-09 深圳大学 获取交流电力网中源荷的支路圴方电流分量的对称方法
CN111758196A (zh) * 2019-01-28 2020-10-09 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN111758198A (zh) * 2019-01-28 2020-10-09 深圳大学 交流电力网支路开断型静态安全性检验的线性非对称方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364037B (zh) * 2021-06-15 2023-01-17 中国矿业大学(北京) 一种提高弱电网下mmc-hvdc稳定性的全频带电导补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403724A (zh) * 2011-11-09 2012-04-04 深圳大学 交直流混联电力网中节点电压灵敏度的对称获取方法
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104578159A (zh) * 2015-01-13 2015-04-29 国家电网公司 一种含分布式电源的配电网三相潮流修正方法
CN105745809A (zh) * 2015-05-19 2016-07-06 深圳大学 获取多端直流电力网非线性有功潮流的对称方法
US20160372922A1 (en) * 2015-05-19 2016-12-22 Shenzhen University Symmetric method for obtaining line-transferred linear active power flows in mtdc power networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538968B (zh) * 2014-12-05 2017-01-04 广东电网有限责任公司汕头供电局 自动电压控制系统电压无功灵敏度确定方法及装置
CN106410835A (zh) * 2016-10-12 2017-02-15 北京科东电力控制系统有限责任公司 一种多端柔性直流输电系统的电网仿真实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403724A (zh) * 2011-11-09 2012-04-04 深圳大学 交直流混联电力网中节点电压灵敏度的对称获取方法
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104578159A (zh) * 2015-01-13 2015-04-29 国家电网公司 一种含分布式电源的配电网三相潮流修正方法
CN105745809A (zh) * 2015-05-19 2016-07-06 深圳大学 获取多端直流电力网非线性有功潮流的对称方法
US20160372922A1 (en) * 2015-05-19 2016-12-22 Shenzhen University Symmetric method for obtaining line-transferred linear active power flows in mtdc power networks

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111758195A (zh) * 2019-01-28 2020-10-09 深圳大学 获取交流电力网中源荷的支路圴方电流分量的对称方法
CN111758196A (zh) * 2019-01-28 2020-10-09 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN111758198A (zh) * 2019-01-28 2020-10-09 深圳大学 交流电力网支路开断型静态安全性检验的线性非对称方法
CN111758198B (zh) * 2019-01-28 2023-09-15 深圳大学 交流电力网支路开断型静态安全性检验的线性非对称方法
CN111758196B (zh) * 2019-01-28 2023-09-15 深圳大学 获取交流电力网中源荷的节点平移电压分量的对称方法
CN111758195B (zh) * 2019-01-28 2023-09-15 深圳大学 获取交流电力网中源荷的支路均方电流分量的对称方法

Also Published As

Publication number Publication date
CN109478781A (zh) 2019-03-15
CN109478781B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018209477A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型偏心方法
WO2018209503A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型对称方法
WO2018209506A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性对称方法
Liu et al. Cooperative adaptive output regulation for second-order nonlinear multiagent systems with jointly connected switching networks
Su et al. Interval homogeneity-based control for a class of nonlinear systems with unknown power drifts
WO2016077994A1 (zh) 交流电力网中源荷同变的对称功率传输系数的获取方法
Zhang et al. Asymptotic stability and synchronization of fractional-order neural networks with unbounded time-varying delays
Li et al. Integrated observer based fault estimation for a class of Lipschitz nonlinear systems
WO2018209501A1 (zh) 获取直流电力网潮流的功率补偿型全局线性对称方法
WO2018209479A1 (zh) 获取直流电力网潮流的无损耗全局线性偏心方法
WO2018209499A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型对称方法
WO2018209476A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型偏心方法
WO2018209482A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性偏心方法
Heemels et al. Computation of periodic solutions in maximal monotone dynamical systems with guaranteed consistency
WO2018209480A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性对称方法
WO2018209500A1 (zh) 获取直流电力网潮流的功率补偿型全局线性偏心方法
WO2018209481A1 (zh) 获取直流电力网功率传输系数的无损耗对称方法
WO2018209478A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性偏心方法
WO2018209505A1 (zh) 获取直流电力网功率传输系数的无损耗偏心方法
Liu et al. Cooperative global robust output regulation for second-order nonlinear multi-agent systems with jointly connected switching networks
Fu et al. Nonlinear robust control for parallel AC/DC transmission systems: A new adaptive back-stepping approach
Liang et al. Distributed Fixed-Time Output Regulation for a Class of Nonlinear Multi-Agent Systems with Unity Relative Degree
Françolin et al. Costate estimation of state-inequality path constrained optimal control problems using collocation at Legendre-Gauss-Radau points
CN114815610A (zh) 一种基于输出反馈的非线性感应加热电路系统的控制方法
O'Regan et al. Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: an upper and lower solution approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909933

Country of ref document: EP

Kind code of ref document: A1