WO2018209479A1 - 获取直流电力网潮流的无损耗全局线性偏心方法 - Google Patents

获取直流电力网潮流的无损耗全局线性偏心方法 Download PDF

Info

Publication number
WO2018209479A1
WO2018209479A1 PCT/CN2017/084285 CN2017084285W WO2018209479A1 WO 2018209479 A1 WO2018209479 A1 WO 2018209479A1 CN 2017084285 W CN2017084285 W CN 2017084285W WO 2018209479 A1 WO2018209479 A1 WO 2018209479A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
power
global linear
translation
voltage
Prior art date
Application number
PCT/CN2017/084285
Other languages
English (en)
French (fr)
Inventor
彭建春
江辉
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/084285 priority Critical patent/WO2018209479A1/zh
Priority to CN201780003508.9A priority patent/CN109417295B/zh
Publication of WO2018209479A1 publication Critical patent/WO2018209479A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the invention relates to the field of electric power engineering, in particular to a lossless global linear eccentricity method for acquiring a power flow of a direct current power network.
  • the existing DC power network power flow acquisition method is to first establish a nonlinear node power balance equation model, and then use an iterative method to solve. Due to the nonlinearity of the node power balance equation model, this method not only has a large amount of iterative computation and slow speed, but also has an iterative non-convergence or unreliable convergence problem. It is difficult to adapt to the DC power network operation that needs to be controlled based on the power flow solution. Claim. If the local linear power flow model based on the running base point linearization is adopted, the accuracy requirement of the regulation of the DC power network operating state can not be satisfied. Therefore, the existing DC power network power flow acquisition method either has a problem of slow calculation speed and unreliable convergence, or does not adapt to a wide range of changes in the operating state of the DC power network.
  • the embodiment of the invention provides a lossless global linear eccentricity method for acquiring a power flow of a DC power network, which can realize fast and reliable acquisition of the power flow of the DC power network, and adapt to a wide range of changes in the operating state of the DC power network.
  • the invention provides a lossless global linear eccentricity method for acquiring a power flow of a DC power network, comprising:
  • the inverse matrix is used to establish a lossless global linear eccentric matrix relation of the non-reference node translation voltage with respect to the non-reference node injection power;
  • the embodiment of the present invention first establishes a lossless global linear relationship of the node injection power with respect to the node translation voltage according to the node load parameter and the node power parameter in the known DC power network; and then according to the lossless global linear relationship, Known reference node number establishes a lossless global linear eccentricity model of the tidal current in the DC power network; and then uses the inverse matrix to establish a lossless global linearity of the non-reference node translation voltage with respect to the non-reference node injection power according to the lossless global linear eccentricity model An eccentric matrix relationship; finally, according to the lossless global linear eccentric matrix relationship and the known reference node translation voltage value, calculate the voltage value of each node in the DC power network and the transmission power value of each branch; Iterative calculation is needed, so the calculation amount is small, there is no convergence problem, and the precision is high when the operating state of the DC power network changes widely.
  • FIG. 1 is a flowchart of an implementation of a lossless global linear eccentricity method for acquiring a power flow of a DC power network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a general model of a DC power network according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of an implementation of a lossless global linear eccentricity method for acquiring a power flow of a DC power network according to an embodiment of the present invention. Get DC power as shown
  • the lossless global linear eccentricity method of the network flow can include the following steps:
  • step 101 a lossless global linear relationship of the node injection power with respect to the node translation voltage is established based on the node load parameters and the node power parameters in the known DC power grid.
  • Step 101 is specifically: establishing a lossless global linear relationship of the node injection power with respect to the node translation voltage according to the following relationship:
  • i and k are the numbers of the nodes in the DC power network, and both belong to the set of consecutive natural numbers ⁇ 1, 2,..., n ⁇ ; n is the total number of nodes in the DC power network; P Gi is connected Power supply to node i; P Di is the load power connected to node i, P Gi -P Di is the injection power of node i; g ik is the conductance of branch ik connected between node i and node k; i is the translation voltage of node i; v k is the translation voltage of node k, and both v i and v k are the standard value voltage after translation -1.0.
  • P Gi , P Di , n, g ik are all known DC power network parameters.
  • the above lossless global linear relationship is established based on the operating characteristics of the DC power network.
  • the operating characteristic of the DC power network is that the "node translation voltage" obtained after the voltage of each node in the DC power network is -1.0 is small, so that the product of the branch conductance and the square of the translation voltage of one end node, the branch conductance and its two end nodes The product of the translation voltage is always close to zero and can be ignored.
  • step 102 a lossless global linear eccentricity model of the tidal current in the DC power network is established according to the lossless global linear relationship and the known reference node number.
  • Step 102 is specifically: establishing a lossless global linear eccentricity model of the power flow in the DC power network according to the following relationship:
  • P G1 is the power supply power connected to node 1;
  • P Gi is the power supply power connected to node i;
  • P Gn-1 is the power supply power connected to node n-1;
  • P D1 is the load power connected to node 1;
  • P Di is the load power connected to node i;
  • P Dn-1 is the load power connected to node n-1;
  • j is the number of nodes in the DC power network, and belongs to the set of continuous natural numbers ⁇ 1, 2,..., n ⁇ ;
  • g ij is the conductance of the branch ij connected between node i and node j;
  • g ik is the conductance of the branch ik connected between node i and node k;
  • n is the total number of nodes in the DC power network Number;
  • the node numbered n is a known reference node;
  • (G ij ) is the original node conductance matrix of the DC power network after the row and column of
  • P G1 , P D1 , P Gi , P Di , P Gn-1 , P Dn-1 , (G ij ) are known DC power network parameters.
  • the translational voltage of the reference node is assigned a voltage center of zero value, and the center is completely biased toward the reference node, which is why the above model is a lossless global linear eccentricity model.
  • step 103 according to the lossless global linear eccentricity model, the inverse matrix is used to establish a lossless global linear eccentric matrix relation of the non-reference node translation voltage with respect to the non-reference node injection power.
  • Step 103 is specifically: establishing a lossless global linear eccentric matrix relationship of the non-reference node translation voltage with respect to the non-reference node injection power according to the following relationship:
  • (G ij ) -1 is the inverse matrix of the original node conductance matrix (G ij ) of the DC power network;
  • P G1 is the power supply power connected to node 1;
  • P Gi is the power supply power connected to node i;
  • P Gn- 1 is the power supply connected to node n-1;
  • P D1 is the load power connected to node 1;
  • P Di is the load power connected to node i;
  • P Dn-1 is the load power connected to node n-1;
  • 1 is the translation voltage of node 1;
  • v i is the translation voltage of node i;
  • v n-1 is the translation voltage of node n-1, and
  • v 1 , v i and v n-1 are the labels after translation -1.0 Value voltage.
  • the non-reference node translation voltage calculated according to it is in a large range of node injection power.
  • the change, that is, the operating state of the DC power network is accurate, and the calculation process involves only one step. Single linear relationship calculation, fast and reliable.
  • step 104 the voltage value of each node in the DC power network and the transmission power value of each branch are calculated according to the lossless global linear eccentric matrix relationship and the known reference node translation voltage value.
  • Step 104 is specifically: calculating a non-reference node translation voltage value according to a lossless global linear eccentric matrix relationship; and calculating a non-reference node voltage in the DC power network according to the following three relational expressions according to the known reference node translation voltage value Value, reference node voltage value and transmission power value of each branch:
  • V i 1+v i +v n
  • V n 1+v n

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种获取直流电力网潮流的无损耗全局线性偏心方法,首先根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式(101);然后根据无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型(102);再根据无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式(103);最后根据无损耗全局线性偏心矩阵关系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值(104);实现了计算量小、不存在收敛问题,而且在直流电力网运行状态大范围变化时精度高。

Description

获取直流电力网潮流的无损耗全局线性偏心方法 技术领域
本发明涉及电力工程领域,尤其涉及一种获取直流电力网潮流的无损耗全局线性偏心方法。
背景技术
目前,直流输电的技术和经济优势正迅速推动直流电力网的建设和发展。作为直流电力网调控基础的潮流获取方法,特别是快速、可靠、准确的全局线性潮流模型和计算方法亟待开发。
现有的直流电力网潮流获取方法,是先建立非线性的节点功率平衡方程组模型,再运用迭代方法求解。由于节点功率平衡方程组模型的非线性,这种方法不仅迭代计算量大、速度慢,而且会出现迭代不收敛、或不可靠收敛问题,难适应需要基于潮流解才能实现调控的直流电力网运行要求。若采用基于运行基点线性化的局部线性潮流模型,则又无法满足直流电力网运行状态大范围变化时调控的精度要求。因此,现有的直流电力网潮流获取方法要么存在计算速度慢和收敛不可靠问题、要么不适应直流电力网运行状态的大范围变化。
发明内容
本发明实施例提供一种获取直流电力网潮流的无损耗全局线性偏心方法,能够实现直流电力网潮流的快速可靠获取,并且适应直流电力网运行状态大范围变化。
本发明提供了一种获取直流电力网潮流的无损耗全局线性偏心方法,包括:
根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式;
根据所述无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型;
根据所述无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式;
根据所述无损耗全局线性偏心矩阵关系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值。
本发明实施例通过首先根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式;然后根据所述无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型;再根据所述无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式;最后根据所述无损耗全局线性偏心矩阵关系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值;由于无 需进行迭代计算,故计算量小、不存在收敛问题,而且在直流电力网运行状态大范围变化时精度高。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种获取直流电力网潮流的无损耗全局线性偏心方法的实现流程图;
图2是本发明实施例提供的直流电力网通用模型的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本发明实施例提供的一种获取直流电力网潮流的无损耗全局线性偏心方法的实现流程图。如图所示的获取直流电力 网潮流的无损耗全局线性偏心方法可包括以下步骤:
在步骤101中,根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式。
步骤101具体为:按照如下关系式建立节点注入功率关于节点平移电压的无损耗全局线性关系式:
Figure PCTCN2017084285-appb-000001
其中,i和k均为直流电力网中的节点的编号,且都属于连续自然数的集合{1,2,…,n};n为直流电力网中的节点的总个数;PGi为接于节点i的电源功率;PDi为接于节点i的负荷功率,PGi-PDi为节点i的注入功率;gik是连接在节点i和节点k之间的支路ik的电导;vi为节点i的平移电压;vk为节点k的平移电压,且vi和vk都是平移-1.0后的标幺值电压。
其中,PGi、PDi、n、gik都是已知的直流电力网参数。
上述无损耗全局线性关系式是根据直流电力网运行特性建立的。直流电力网运行特性即直流电力网中各节点电压平移-1.0后得到的“节点平移电压”很小,以致支路电导与其一个端节点平移电压的平方的乘积、支路电导与其两个端节点平移电压的乘积总是接近零,都可以忽略不计。
上述无损耗全局线性关系式中的所有变量都是全局变量、并非增量,而且该关系式两边不含需要用二次函数才能表达的电网损耗功率, 这正是称上述关系式为节点注入功率关于节点平移电压的无损耗全局线性关系式的缘故。
在步骤102中,根据无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型。
步骤102具体为:按照如下关系式建立直流电力网中潮流的无损耗全局线性偏心模型:
Figure PCTCN2017084285-appb-000002
其中,PG1为接于节点1的电源功率;PGi为接于节点i的电源功率;PGn-1是接于节点n-1的电源功率;PD1为接于节点1的负荷功率;PDi为接于节点i的负荷功率;PDn-1是接于节点n-1的负荷功率;j是直流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};gij是连接在节点i和节点j之间的支路ij的电导;gik是连接在节点i和节点k之间的支路ik的电导;n为直流电力网中的节点的总个数;编号为n的节点是已知的参考节点;(Gij)是删除参考节点的行和列之后的直流电力网的原始节点电导矩阵,原始节点电导矩阵的维数是(n-1)×(n-1);Gij是原始节点电导矩阵(Gij)中第i行第j列的元素;v1为节点1的平移电压;vi为节点i的平移电压;vn-1为节点n-1的平移电压,且v1、vi和vn-1都是平移-1.0后的标幺值电压。
其中,PG1、PD1、PGi、PDi、PGn-1、PDn-1、(Gij)都是已知的直流电力网参数。
上述无损耗全局线性偏心模型中,参考节点的平移电压被指定为零值的电压中心,该中心完全偏向参考节点,这正是称上述模型为无损耗全局线性偏心模型的缘故。
在步骤103中,根据无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式。
步骤103具体为:按照如下关系式建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式:
Figure PCTCN2017084285-appb-000003
其中,(Gij)-1是直流电力网的原始节点电导矩阵(Gij)的逆矩阵;PG1为接于节点1的电源功率;PGi为接于节点i的电源功率;PGn-1是接于节点n-1的电源功率;PD1为接于节点1的负荷功率;PDi为接于节点i的负荷功率;PDn-1是接于节点n-1的负荷功率;v1为节点1的平移电压;vi为节点i的平移电压;vn-1为节点n-1的平移电压,且v1、vi和vn-1都是平移-1.0后的标幺值电压。按上述关系式即可计算出非参考节点平移电压值vi,i=1,2,…,n-1。
由于上述非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式是全局变量(而非增量)关系式,按它计算得到的非参考节点平移电压在节点注入功率大范围变化、也就是直流电力网运行状态大范围变化时是准确的,且计算过程只涉及一步简 单的线性关系计算、快速可靠。
在步骤104中,根据无损耗全局线性偏心矩阵关系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值。
步骤104具体为:根据无损耗全局线性偏心矩阵关系式计算非参考节点平移电压值;并根据已知的参考节点平移电压值,按照如下3个关系式分别计算出直流电力网中非参考节点电压值、参考节点电压值和各支路传输功率值:
Vi=1+vi+vn
Vn=1+vn
Pij=gij(vi-vj)
其中,Vi为非参考节点电压值,i=1,2,…,n-1;Vn为参考节点电压值;vn为参考节点平移电压值,且是平移-1.0后的标幺值电压;vi为节点i的平移电压;vj为节点j的平移电压,且vi和vj都是平移-1.0后的标幺值电压;gij是连接在节点i和节点j之间的支路ij的电导;Pij为支路ij传输功率值、又称支路潮流;vn是已知的直流电力网参数。
这样就得到了直流电力网中的无损耗全局线性潮流的分布。上述计算式以非参考节点平移电压为核心、非常简单。非参考节点平移电压的计算在直流电力网运行状态大范围变化时准确、快速、可靠。因此,这种获取直流电力网潮流的无损耗全局线性偏心方法准确、快速、可靠。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序 的先后,各过程的执行顺序应按其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

Claims (5)

  1. 一种获取直流电力网潮流的无损耗全局线性偏心方法,其特征在于,所述获取直流电力网潮流的无损耗全局线性偏心方法包括:
    根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式;
    根据所述无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型;
    根据所述无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式;
    根据所述无损耗全局线性偏心矩阵关系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值。
  2. 根据权利要求1所述的获取直流电力网潮流的无损耗全局线性偏心方法,其特征在于,所述根据已知的直流电力网中的节点负荷参数和节点电源参数建立节点注入功率关于节点平移电压的无损耗全局线性关系式具体为:
    按照如下关系式建立节点注入功率关于节点平移电压的无损耗全局线性关系式:
    Figure PCTCN2017084285-appb-100001
    其中,i和k均为直流电力网中的节点的编号,且都属于连续自然 数的集合{1,2,…,n};n为所述直流电力网中的节点的总个数;PGi为接于节点i的电源功率;PDi为接于所述节点i的负荷功率,PGi-PDi为所述节点i的注入功率;gik是连接在所述节点i和节点k之间的支路ik的电导;υi为所述节点i的平移电压;υk为所述节点k的平移电压,且所述υi和所述υk都是平移-1.0后的标幺值电压。
  3. 根据权利要求1所述的获取直流电力网潮流的无损耗全局线性偏心方法,其特征在于,所述根据所述无损耗全局线性关系式、已知的参考节点编号建立直流电力网中潮流的无损耗全局线性偏心模型具体为:
    按照如下关系式建直流电力网中潮流的无损耗全局线性偏心模型:
    Figure PCTCN2017084285-appb-100002
    其中,PG1为接于节点1的电源功率;PGi为接于节点i的电源功率;PGn-1是接于节点n-1的电源功率;PD1为接于所述节点1的负荷功率;PDi为接于所述节点i的负荷功率;PDn-1是接于所述节点n-1的负荷功率;j是所述直流电力网中节点的编号,且属于连续自然数的集合{1,2,…,n};gij是连接在所述节点i和所述节点j之间的支路ij的电导;gik是连接在所述节点i和节点k之间的支路ik的电导;n为所述直流电力网中的节点的总个数;编号为n的节点是已知的参考节点;(Gij)是删除参考节点的行和列之后的直流电力网的原始节点电导矩 阵,所述原始节点电导矩阵的维数是(n-1)×(n-1);Gij是所述原始节点电导矩阵(Gij)中第i行第j列的元素;υ1为所述节点1的平移电压;υi为所述节点i的平移电压;υn-1为所述节点n-1的平移电压,且所述υ1、所述υi和所述υn-1都是平移-1.0后的标幺值电压。
  4. 根据权利要求1所述的获取直流电力网潮流的无损耗全局线性偏心方法,其特征在于,所述根据所述无损耗全局线性偏心模型,利用逆矩阵建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式具体为:
    按照如下关系式建立非参考节点平移电压关于非参考节点注入功率的无损耗全局线性偏心矩阵关系式:
    Figure PCTCN2017084285-appb-100003
    其中,(Gij)-1是所述直流电力网的原始节点电导矩阵(Gij)的逆矩阵;PG1为接于节点1的电源功率;PGi为接于节点i的电源功率;PGn-1是接于节点n-1的电源功率;PD1为接于所述节点1的负荷功率;PDi为接于所述节点i的负荷功率;PDn-1是接于所述节点n-1的负荷功率;υ1为所述节点1的平移电压;υi为所述节点i的平移电压;υn-1为所述节点n-1的平移电压,且所述υ1、所述υi和所述υn-1都是平移-1.0后的标幺值电压。
  5. 根据权利要求1所述的获取直流电力网潮流的无损耗全局线性偏心方法,其特征在于,所述根据所述无损耗全局线性偏心矩阵关 系式、已知的参考节点平移电压值,计算出直流电力网中的各节点的电压值和各支路传输功率值具体为:
    根据所述无损耗全局线性偏心矩阵关系式计算非参考节点平移电压值;
    根据已知的参考节点平移电压值,按照如下3个关系式分别计算出所述直流电力网中所述非参考节点电压值、所述参考节点电压值和各支路传输功率值:
    Vi=1+υin
    Vn=1+υn
    Pij=gijij)
    其中,Vi为所述非参考节点电压值,i=1,2,…,n-1;Vn为所述参考节点电压值;υn为所述参考节点平移电压值,且是平移-1.0后的标幺值电压;υi为节点i的平移电压;υj为节点j的平移电压,且所述υi和所述υj都是平移-1.0后的标幺值电压;gij是连接在所述节点i和所述节点j之间的支路ij的电导;Pij为所述支路ij传输功率值。
PCT/CN2017/084285 2017-05-15 2017-05-15 获取直流电力网潮流的无损耗全局线性偏心方法 WO2018209479A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/084285 WO2018209479A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的无损耗全局线性偏心方法
CN201780003508.9A CN109417295B (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的无损耗全局线性偏心方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084285 WO2018209479A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的无损耗全局线性偏心方法

Publications (1)

Publication Number Publication Date
WO2018209479A1 true WO2018209479A1 (zh) 2018-11-22

Family

ID=64273105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084285 WO2018209479A1 (zh) 2017-05-15 2017-05-15 获取直流电力网潮流的无损耗全局线性偏心方法

Country Status (2)

Country Link
CN (1) CN109417295B (zh)
WO (1) WO2018209479A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817283A (zh) * 2020-08-06 2020-10-23 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381397B (zh) * 2021-05-31 2022-05-06 深圳大学 获取直流电力系统最小状态潮流的节点级分散方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104578159A (zh) * 2015-01-13 2015-04-29 国家电网公司 一种含分布式电源的配电网三相潮流修正方法
CN104995811A (zh) * 2014-10-21 2015-10-21 深圳大学 交流电力网的最小相位线性有功潮流的获取方法
CN105745809A (zh) * 2015-05-19 2016-07-06 深圳大学 获取多端直流电力网非线性有功潮流的对称方法
US20160372922A1 (en) * 2015-05-19 2016-12-22 Shenzhen University Symmetric method for obtaining line-transferred linear active power flows in mtdc power networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995992B2 (en) * 2003-06-20 2006-02-07 Wisconsin Alumni Research Foundation Dual bridge matrix converter
CN104538968B (zh) * 2014-12-05 2017-01-04 广东电网有限责任公司汕头供电局 自动电压控制系统电压无功灵敏度确定方法及装置
CN104915724B (zh) * 2015-04-22 2018-08-03 华南理工大学 交直流并联输电通道功率优化分配方法和系统
CN106410835A (zh) * 2016-10-12 2017-02-15 北京科东电力控制系统有限责任公司 一种多端柔性直流输电系统的电网仿真实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956733A (zh) * 2014-04-25 2014-07-30 深圳大学 电力网中节点到支路的有功功率传输系数的对称获取方法
CN104995811A (zh) * 2014-10-21 2015-10-21 深圳大学 交流电力网的最小相位线性有功潮流的获取方法
CN104578159A (zh) * 2015-01-13 2015-04-29 国家电网公司 一种含分布式电源的配电网三相潮流修正方法
CN105745809A (zh) * 2015-05-19 2016-07-06 深圳大学 获取多端直流电力网非线性有功潮流的对称方法
US20160372922A1 (en) * 2015-05-19 2016-12-22 Shenzhen University Symmetric method for obtaining line-transferred linear active power flows in mtdc power networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817283A (zh) * 2020-08-06 2020-10-23 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的计算方法
CN111817283B (zh) * 2020-08-06 2024-03-29 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的计算方法

Also Published As

Publication number Publication date
CN109417295B (zh) 2021-08-10
CN109417295A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018209506A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性对称方法
Wang et al. Multi-stage holomorphic embedding method for calculating the power-voltage curve
WO2018209477A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型偏心方法
WO2016183805A1 (zh) 获取多端直流电力网线性有功潮流的对称方法
WO2019184132A1 (zh) 一种基于数据驱动的电网潮流方程线性化求解方法
CN113489014B (zh) 一种快速灵活全纯嵌入式电力系统最优潮流评估方法
WO2018209503A1 (zh) 获取直流电力网功率传输系数的均衡电导补偿型对称方法
WO2018209479A1 (zh) 获取直流电力网潮流的无损耗全局线性偏心方法
Weng et al. Fixed-point theorem-based voltage stability margin estimation techniques for distribution systems with renewables
WO2018209501A1 (zh) 获取直流电力网潮流的功率补偿型全局线性对称方法
WO2018209500A1 (zh) 获取直流电力网潮流的功率补偿型全局线性偏心方法
WO2018209478A1 (zh) 获取直流电力网潮流的等量电导补偿型全局线性偏心方法
WO2018209482A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性偏心方法
WO2018209480A1 (zh) 获取直流电力网潮流的均衡电导补偿型全局线性对称方法
WO2018209476A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型偏心方法
WO2018209499A1 (zh) 获取直流电力网功率传输系数的等量电导补偿型对称方法
WO2018209505A1 (zh) 获取直流电力网功率传输系数的无损耗偏心方法
Zhang A projection iterative algorithm for the Signorini problem using the boundary element method
WO2018209481A1 (zh) 获取直流电力网功率传输系数的无损耗对称方法
Guo et al. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation
WO2020154850A1 (zh) 获取交流电力网中源荷的节点平移电压分量的对称方法
Shahriari et al. Optimal multiplier load flow method using concavity theory
Blokhin et al. On an algorithm for finding the electric potential distribution in the DG-MOSFET transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909681

Country of ref document: EP

Kind code of ref document: A1