CN111259309A - 一种基于电转气和燃料电池的多能源系统稳定性优化方法 - Google Patents

一种基于电转气和燃料电池的多能源系统稳定性优化方法 Download PDF

Info

Publication number
CN111259309A
CN111259309A CN202010036480.2A CN202010036480A CN111259309A CN 111259309 A CN111259309 A CN 111259309A CN 202010036480 A CN202010036480 A CN 202010036480A CN 111259309 A CN111259309 A CN 111259309A
Authority
CN
China
Prior art keywords
gas
fuel cell
weight ratio
electric
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010036480.2A
Other languages
English (en)
Other versions
CN111259309B (zh
Inventor
滕云
钟磊
孙鹏
左浩
王泽镝
张俊久
田龙飚
袁元缘
孙月莹
金红洋
魏来
徐震
马俊雄
袁浦
朱祥祥
吴磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN202010036480.2A priority Critical patent/CN111259309B/zh
Publication of CN111259309A publication Critical patent/CN111259309A/zh
Application granted granted Critical
Publication of CN111259309B publication Critical patent/CN111259309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开一种基于电转气和燃料电池的多能源系统稳定性优化方法,属于多能源系统稳定性控制技术领域,该方法在整个多能源系统稳定性方面优先考虑用电转气与燃料电池协调参与调节系统稳定性,把电转气和燃料电池在运行时的权重进行优化,优化过程中不仅考虑了电转气与燃料电池两者参数影响,还对系统的一些状态事件进行了考虑约束,实时优化过程中每次优化结束对制定事件状态进行监测与更新,使得优化具有实时性,最终达到一个最优的优化效果。本发明实时优化电转气与燃料电池两者的权重比,使整个系统运行更加稳定、灵活。

Description

一种基于电转气和燃料电池的多能源系统稳定性优化方法
技术领域
本发明涉及多能源系统稳定性控制技术领域,尤其涉及一种基于电转气和燃料电池的多能源系统稳定性优化方法。
背景技术
近年来随着多能源系统的不断发展,多能源系统相较于传统的供能系统有较大优势。多通互补能源系统的能源利用率很高,同时其能源供应的稳定性有较大的改善能力,在多能互补能源系统运行过程中也能够产生更多的环境等系列效益。但同时由于多能源系统属于一种典型的非线性系统,其本身具有变量复杂、特性众多、随机性强等特点,如何合理优化各种能源协调运行,以及能源之间的相互转化关系,最大限度的存储互补,能够使多能源系统运行稳定性更加优化。而电转气技术在减少“弃风”、“弃光”问题上非常有效,相比现在多数使用的蓄电池储电在储能容量配置可能是容量配置得过大或者过小,导致系统储能容量部分闲置或者不能够满足系统稳定性运行的要求,其电转气技术更加灵活多变,而且相对高昂的蓄电池成本,电转气装置的经济性和环境效益更好,但是一般的多能源系统在储能配置时利用到电转气装置把电能进行能源转化存储时优先级较低,且没有和燃料电池进行对整个多能源系统协调处理,两者之间的协调优化更是没有考虑到,各个装置的权重对系统的影响也没有考虑,而本发明在整个多能源系统稳定性方面优先考虑用电转气与燃料电池协调参与调节系统稳定性,把电转气和燃料电池的在运行时权重进行优化,使得这两者在实时优化运行,使得整个系统运行更加稳定,考虑更加全面。这样一个利用电转气装置把多余的电能转成气存储和燃料电池把气转换为电能过程,达到相应的功率平衡,把系统中的功率波动带来的系列不稳定情况进行一定的调节,使其相较更加稳定,实现了电池的替代,使整个系统凸显灵活、稳定。
发明内容
针对上述现有技术的不足,本发明提供一种基于电转气和燃料电池的多能源系统稳定性优化方法。含电转气和燃料电池协调的多能源系统如图2所示,图2中黑色实线圈出部分在原有系统中为蓄电池,本发明中由电转气和燃料电池协调实现了电池替代,当系统风光发电量多时原由蓄电池进行储电,本发明由电转气装置对多余的电量进行转气,对系统储气;当系统的电量少时,原由蓄电池将存储的电量进行放电,本发明由燃料电池通过燃烧储气发电。这样一个过程实现了电池的替代,使整个系统灵活、稳定,且在整个过程中对各部分进行优化,使系统的稳定性得到提高。
本发明所采取的技术方案是:一种基于电转气和燃料电池的多能源系统稳定性优化方法,其流程如图1所示,包括如下步骤:
步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);
对电转气装置的参数采集,将一天划分为N时段,t时段内,电解槽效率η、储气罐内部压强Ptank、储气罐体积V、储气罐温度T、储气罐数量n、每个储气罐装置的t时段初始时刻的储气量Es,i(t)、t时段每个储气罐储入气量Ein,i(t)、t时段每个储罐输出气量Eout,i(t)、气体摩尔体积Vm、每个电转气装置额定功率Pi,p2g、优化前每个电转气装置的权重比αi(0);
所述燃料电池参数包括:耗能系数ε、燃料电池数量M、燃料电池效率ηfc、燃料电池开路电压U0、塔菲尔斜率j、燃料电池电流ic、燃料电池内部电流in、交换电流ie、质量转移常数a、限制电流il、每个燃料电池容量Cm,fl、一立方米氢气完全燃烧释放热值R、每个燃料电池t时段消耗氢气量Ei,h(t)、膜电阻Rx,气体常数k,每个燃料电池额定功率Pm,fl、优化前每个燃料电池权重比λm(0)。
步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算,其流程如图3所示;
步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列EL,i(t),为之后优化计算做准备:
获取每个储气罐装置的t时段初始时刻的储气量队列Es,i(t)可表示为:
Es,i(t)=[Es,1(t),Es,2(t),…Es,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段内输入电转气的气量队列Ein,i(t)可表示为:
Ein,i(t)=[Ein,1(t),Ein,2(t),…Ein,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段内输出的气量队列Eout,i(t)可表示为:
Eout,i(t)=[Eout,1(t),Eout,2(t),…Eout,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段最后累积的气量队列EL,i(t)可表示为:
EL,i(t)=[EL,1(t),EL,2(t),…EL,n(t)],t∈[1,2,…N]
构造动态更新函数可表示如下:
EL,i(t)=Es,i(t)+Ein,i(t)-Eout,i(t),t∈[1,2,…N],i∈[1,2,…n]
步骤2.2:制定优化电转气装置权重比的触发机制:
含电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列EL,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件1:含电转气多能源系统里的风光出力的变化量超出一定的阈值:
S(t+1)-S(t)>δS(t)
其中,S(t+1)、S(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;
事件2:系统内气负荷需求变化量超过一定的阈值。
LG(t+1)-LG(t)>τLG(t)
其中,LG(t+1)、LG(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;
事件3:多能源系统内分时气价发生变化:
J(t+1)≠J(t)
其中,J(t+1)、J(t)分别为两时段的气价;
上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):
Figure BDA0002366203540000031
其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积Vm;R为一立方米氢气完全燃烧释放热值;EL,i(t)为t时段储气罐累积气量;Ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;Eout,i(t)为t时段储罐输出气量;Ptank为储气罐内部压强;V储气罐体积;T为储气罐温度;
步骤2.4:判断电转气装置是否处于最后工作时刻,即电解槽是否处于0状态;若是,则结束,输出优化权重比结果;否则更新初始方程重复步骤2.1至步骤2.4,更新方程如下:
EL,i(t+1)=EL,i(t)+Ein,i(t+1)-Eout,i(t+1),t∈[1,2…N]
步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算,其流程如图4所示;
步骤3.1:每个燃料电池装置消耗气体量队列Em,h(t)表示为:
Em,h(t)=[E1,h,E2,h…EM,h],i=[1,2,…M],t∈[1,2,…N]
步骤3.2:制定优化燃料电池权重比的触发机制:
含电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列Em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件Ⅰ:多能源系统内基础电负荷量缺量超过一定的阈值:
Le(t+1)-Le(t)>ζLe(t)
其中,Le(t+1)、Le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;
事件Ⅱ:多能源系统里分时电价发生变化:
X(t+1)≠X(t)
其中,X(t+1)、X(t)分别为两时段的气价;
事件Ⅲ:多能源系统里风光出力的缺量超过一定阈值:
Figure BDA0002366203540000041
其中,S(t+1)、S(t)分别表示两时段的风光出力,
Figure BDA0002366203540000042
为风光出力缺量超出阈值系数;
上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):
Figure BDA0002366203540000051
其中,λm(t)为燃料电池功率;ε为耗能系数;M为燃料电池数量,m为电池编号;Em,h(t)为燃料电池t时段消耗气体量;R为1立方米氢气完全燃烧的热值;Vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;U0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;Rx为膜电阻;a质量转移常数;il为限制电流;Cm,fl为燃料电池的容量,Δt为燃料电池开始工作时到优化结束时的时间间隔;
步骤3.4:判断燃料电池装置是否处于最后工作时刻,即燃料电池启动状态是否处于0状态;若是,则结束并输出优化权重比结果;否则t=t+1,重复步骤3.1至步骤3.4。
步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。
步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:
Figure BDA0002366203540000052
其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…M;Ws为整个系统容量;
步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:
Figure BDA0002366203540000053
其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…M;Ws为整个系统容量。
步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率Δθ:
Δθ=(θ-θ0)×100%
其中,Δθ为含电转气装置与燃料电池优化后系统稳定性提高率。
采用上述技术方案所产生的有益效果在于:
1、本发明提供的一种基于电转气和燃料电池的多能源系统稳定性优化方法,采用了对电转气装置和燃料电池装置协调建立的多能源系统优化,两者的协调实现了传统的蓄电池的功能,达到了电池替代的效果,使得整个这样的一个系统具有更好的灵活处理能力。
2、本发明在对含电转气和燃料电池的这样一个多能源系统稳定性优化时分别考虑电转气和燃料电池两者所占系统的权重比,针对优化对象明显,这样的优化过程更加简单,效果更加精确。
3、在电转气和燃料电池两者所占权重比的优化过程中考虑了大量的数据,且在优化时对变量进行实时优化,对数据进行实时的更新使得优化具有实时性,最终达到一个最优的优化效果。
4、优化过程中不仅考虑了电转气与燃料电池两者参数影响,还对系统的一些状态事件进行了考虑约束,实时优化过程中每次优化结束对本发明系统里的制定事件状态进行监测,这样的考虑使得优化更具合理性。
附图说明
图1为本发明一种基于电转气和燃料电池的多能源系统稳定性优化方法的流程图;
图2为本发明多能源系统结构框图;
图3为本发明每个电转气装置权重比的优化流程图;
图4为本发明每个燃料电池权重比的优化流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例将一天划分为N=72个时段,即每个时间段的间隔为20min,本实施例设电转气装置和燃料电池装置最初开始工作时t=1,t∈[1,72],且本实施例循环达到优化结束条件时的时间为t=32,本实施例对所给变量进行优化过程中,为方便计算,设其他参数都以常数给出。
如图1所示,本实施例的方法如下所述。
步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);
所述电转气装置的参数包括电解槽效率η=0.52、储气罐内部压强Ptank=3.2Mpa、储气罐体积V=62.5m3、储气罐温度T=25摄氏度、本实施例假设一个电转气对应一个储气罐,储气罐数量n=8个、每个电转气装置优化前权重比[0.09,0.11,0.10,0.16,0.11,0.14,0.13,0.16]、气体摩尔体积Vm=24.5L/mol、设每个电转气装置额定功率都为Pi,p2g=3.8kW;
所述燃料电池参数包括:燃料电池效率ηfc=0.74、燃料电池开路电压U0=0.98V、塔菲尔斜率j=0.05、燃料电池电流ic=2.1A、燃料电池内部电流in=0.5A、交换电流ie=0.36A、质量转移常数a=0.205、限制电流il=100A 100A、燃料电池数量M=7、每个燃料电池优化前权重比[0.06,0.17,0.20,0.19,0.09,0.15,0.14]、膜电阻Rx=0.24Ω、耗能系数ε=0.42、气体常数k=8.314,本发明假设每个燃料电池容量都一样为Cm,fl=4kW·h,一立方米氢气完全燃烧释放热值R=9.7m3/KW·h,每个燃料电池额定功率Pm,fl=4kW,设多能源系统装机容量Ws=60MW。
步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算;
步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列EL,i(t),为之后优化计算做准备:
获取每个储气罐装置的t时段初始时刻的储气量队列Es,i(t)可表示为:
Es,i(t)=[Es,1(t),Es,2(t),…Es,n(t)],t∈[1,2,…N]
则设t=1时初始数据
Es,i(1)=[Es,1(1),Es,2(1),…Es,8(1)],t=1;
=[10.3m3,12m3,8m3,20.5m3,16.4m3,21.4m3,13.7m3,30.2m3];
每个储气罐装置在t时段内输入电转气的气量队列Ein,i(t)可表示为:
Ein,i(t)=[Ein,1(t),Ein,2(t),…Ein,n(t)],t∈[1,2,…N]
则设t=1时初始输入气量数据为:
Ein,i(1)=[Ein,1(1),Ein,2(1),…Ein,8(1)],t=1;
=[30.5m3,31.6m3,28.4m3,40.8m3,36.6m3,28.5m3,42.5m3,26.5m3];
每个储气罐装置在t时段内输出的气量队列Eout,i(t)可表示为:
Eout,i(t)=[Eout,1(t),Eout,2(t),…Eout,n(t)],t∈[1,2,…N]
则设t=1时初始输出气量数据为:
Eout,i(1)=[Eout,1(1),Eout,2(1),…Eout,8(1)],t=1;
=[28.6m3,38.3m3,24.9m3,29.7m3,32.6m3,19.7m3,40.1m3,25.1m3];
每个储气罐装置在t时段最后累积的气量队列EL,i(t)可表示为:
EL,i(t)=[EL,1(t),EL,2(t),…EL,n(t)],t∈[1,2,…N]
则设t=1时计算得初始累积气量数据为:
EL,i(1)=[EL,1(1),EL,2(1),…EL,8(1)],t=1;
=[12.2m3,5.3m3,11.5m3,31.6m3,20.4m3,30.2m3,16.1m3,31.6m3];
构造动态更新函数可表示如下:
EL,i(t)=Es,i(t)+Ein,i(t)-Eout,i(t),t∈[1,2,…N],i∈[1,2,…n]
时时对系统需要的上述数据进行收集和计算,最终求得:
EL,i(32)=[EL,1(32),EL,2(32),…EL,8(32)],t=32;
=[18.2m3,15.3m3,21.4m3,30.1m3,19.3m3,23.9m3,25.8m3,27.8m3]
步骤2.2:制定优化电转气装置权重比的触发机制:
电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列EL,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件1:多能源系统内风光出力的变化量超出一定的阈值:
S(t+1)-S(t)>δS(t)
其中,S(t+1)、S(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;
事件2:多能源系统内气负荷需求变化量超过一定的阈值。
LG(t+1)-LG(t)>τLG(t)
其中,LG(t+1)、LG(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;
事件3:多能源系统内分时气价发生变化:
J(t+1)≠J(t)
其中,J(t+1)、J(t)分别为两时段的气价;
此次发明系统有上述事件有发生,触动触发机制,开始优化过程,上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):
Figure BDA0002366203540000091
其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积Vm;R为一立方米氢气完全燃烧释放热值;EL,i(t)为t时段储气罐累积气量;Ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;Eout,i(t)为t时段储罐输出气量;Ptank为储气罐内部压强;V储气罐体积;T为储气罐温度;
Figure BDA0002366203540000092
计算得:
αi(32)=[α1(32),α2(32),…α8(32)]
=[0.149,0.143,0.145,0.138,0.140,0.145,0.137,0.146]
步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算;
步骤3.1:每个燃料电池装置消耗气体量队列Em,h(t)表示为:
Em,h(t)=[E1,h,E2,h…EM,h],m=[1,2,…M],t∈[1,2,…N]
时刻对系统需要的上述数据进行收集和计算,得到t=32时:
Em,h(32)=[E1,h(32),E2,h(32)…E7,h(32)]
=[33.0m3,38.6m3,40.2m3,41.4m3,34.1m3,33.1m3,31.8m3,]
步骤3.2:制定优化燃料电池权重比的触发机制:
电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列Em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件Ⅰ:多能源系统内基础电负荷量缺量超过一定的阈值:
Le(t+1)-Le(t)>ζLe(t)
其中,Le(t+1)、Le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;
事件Ⅱ:多能源系统内分时电价发生变化:
X(t+1)≠X(t)
其中,X(t+1)、X(t)分别为两时段的气价;
事件Ⅲ:多能源系统内风光出力的缺量超过一定阈值:
Figure BDA0002366203540000101
其中,S(t+1)、S(t)分别表示两时段的风光出力,
Figure BDA0002366203540000102
为风光出力缺量超出阈值系数;
此次发明系统有上述事件有发生,触动触发机制,开始优化过程。上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):
Figure BDA0002366203540000103
其中,λm(t)为燃料电池功率;ε为耗能系数;M为燃料电池数量,m为电池编号;Em,h(t)为燃料电池t时段消耗气体量;R为1立方米氢气完全燃烧的热值;Vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;U0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;Rx为膜电阻;a质量转移常数;il为限制电流;Cm,fl为燃料电池的容量,Δt为燃料电池开始工作时到优化结束时的时间间隔;
代入数据:
Figure BDA0002366203540000111
计算得:
λm(32)=[λ1(32),λ2(32),…λ7(32)]
=[0.145,0.141,0.140,0.139,0.144,0.145,0.146]
步骤3.4:此时燃料电池装置启动状态处于0,处于最后工作时刻,结束优化过程,输出上一部优化结果λm(32)。
步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。
步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:
Figure BDA0002366203540000112
其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…M;Ws为整个系统容量;
代入数据计算:
Figure BDA0002366203540000113
步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:
Figure BDA0002366203540000114
其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…M;Ws为整个系统容量。
代入数据计算得:
Figure BDA0002366203540000121
步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率Δθ:
Δθ=θ-θ0×100%
其中,Δθ为含电转气装置与燃料电池优化后系统稳定性提高率。
代入数据:Δθ=θ-θ0=(4.45-4.16)×100%=29%
可以看出稳定性提高了29%。

Claims (5)

1.一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于:包括如下步骤:
步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);
步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算;
步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算;
步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。
2.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于:所述电转气装置的参数包括t时段内,电解槽效率η、储气罐内部压强Ptank、储气罐体积V、储气罐温度T、储气罐数量n、每个储气罐装置的t时段初始时刻的储气量Es,i(t)、t时段每个储气罐储入气量Ein,i(t)、t时段每个储罐输出气量Eout,i(t)、气体摩尔体积Vm、每个电转气装置额定功率Pi,p2g
所述燃料电池参数包括:耗能系数ε、燃料电池数量M、燃料电池效率ηfc、燃料电池开路电压U0、塔菲尔斜率j、燃料电池电流ic、燃料电池内部电流in、交换电流ie、质量转移常数a、限制电流il、每个燃料电池容量Cm,fl、一立方米氢气完全燃烧释放热值R、每个燃料电池t时段消耗氢气量Ei,h(t)、膜电阻Rx,气体常数k,每个燃料电池额定功率Pm,fl
3.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤2的过程如下:
步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列EL,i(t),为之后优化计算做准备:
获取每个储气罐装置的t时段初始时刻的储气量队列Es,i(t)可表示为:
Es,i(t)=[Es,1(t),Es,2(t),…Es,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段内输入电转气的气量队列Ein,i(t)可表示为:
Ein,i(t)=[Ein,1(t),Ein,2(t),…Ein,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段内输出的气量队列Eout,i(t)可表示为:
Eout,i(t)=[Eout,1(t),Eout,2(t),…Eout,n(t)],t∈[1,2,…N]
每个储气罐装置在t时段最后累积的气量队列EL,i(t)可表示为:
EL,i(t)=[EL,1(t),EL,2(t),…EL,n(t)],t∈[1,2,…N]
构造动态更新函数可表示如下:
EL,i(t)=Es,i(t)+Ein,i(t)-Eout,i(t),t∈[1,2,…N],i∈[1,2,…n]
步骤2.2:制定优化电转气装置权重比的触发机制:
触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列EL,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件1:风光出力的变化量超出一定的阈值:
S(t+1)-S(t)>δS(t)
其中,S(t+1)、S(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;
事件2:气负荷需求变化量超过一定的阈值:
LG(t+1)-LG(t)>τLG(t)
其中,LG(t+1)、LG(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;
事件3:分时气价发生变化:
J(t+1)≠J(t)
其中,J(t+1)、J(t)分别为两时段的气价;
上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):
Figure FDA0002366203530000031
其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积Vm;R为一立方米氢气完全燃烧释放热值;EL,i(t)为t时段储气罐累积气量;Ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;Eout,i(t)为t时段储罐输出气量;Ptank为储气罐内部压强;V储气罐体积;T为储气罐温度;
步骤2.4:判断电转气装置是否处于最后工作时刻,即电解槽是否处于0状态;若是,则结束,输出优化权重比结果;否则更新初始方程重复步骤2.1至步骤2.4,更新方程如下:
EL,i(t+1)=EL,i(t)+Ein,i(t+1)-Eout,i(t+1),t∈[1,2…N]。
4.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤3的过程如下:
步骤3.1:每个燃料电池装置消耗气体量队列Em,h(t)表示为:
Em,h(t)=[E1,h,E2,h…EM,h],i=[1,2,…M],t∈[1,2,…N]
步骤3.2:制定优化燃料电池权重比的触发机制:
触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列Em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;
事件Ⅰ:基础电负荷量缺量超过一定的阈值:
Le(t+1)-Le(t)>ζLe(t)
其中,Le(t+1)、Le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;
事件Ⅱ:分时电价发生变化:
X(t+1)≠X(t)
其中,X(t+1)、X(t)分别为两时段的气价;
事件Ⅲ:风光出力的缺量超过一定阈值:
Figure FDA0002366203530000041
其中,S(t+1)、S(t)分别表示两时段的风光出力,
Figure FDA0002366203530000042
为风光出力缺量超出阈值系数;
上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;
步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):
Figure FDA0002366203530000043
其中,λm(t)为燃料电池功率;ε为耗能系数;M为燃料电池数量,m为电池编号;Em,h(t)为燃料电池t时段消耗气体量;R为1立方米氢气完全燃烧的热值;Vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;U0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;Rx为膜电阻;a质量转移常数;il为限制电流;Cm,fl为燃料电池的容量,Δt为燃料电池开始工作时到优化结束时的时间间隔;
步骤3.4:判断燃料电池装置是否处于最后工作时刻,即燃料电池启动状态是否处于0状态;若是,则结束并输出优化权重比结果;否则t=t+1,重复步骤3.1至步骤3.4。
5.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤4的过程如下:
步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:
Figure FDA0002366203530000044
其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…M;Ws为整个系统容量;
步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:
Figure FDA0002366203530000051
其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…M;Ws为整个系统容量;
步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率Δθ:
Δθ=(θ-θ0)×100%
其中,Δθ为含电转气装置与燃料电池优化后系统稳定性提高率。
CN202010036480.2A 2020-01-14 2020-01-14 一种基于电转气和燃料电池的多能源系统稳定性优化方法 Active CN111259309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010036480.2A CN111259309B (zh) 2020-01-14 2020-01-14 一种基于电转气和燃料电池的多能源系统稳定性优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010036480.2A CN111259309B (zh) 2020-01-14 2020-01-14 一种基于电转气和燃料电池的多能源系统稳定性优化方法

Publications (2)

Publication Number Publication Date
CN111259309A true CN111259309A (zh) 2020-06-09
CN111259309B CN111259309B (zh) 2023-05-26

Family

ID=70948822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010036480.2A Active CN111259309B (zh) 2020-01-14 2020-01-14 一种基于电转气和燃料电池的多能源系统稳定性优化方法

Country Status (1)

Country Link
CN (1) CN111259309B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
CN108494012A (zh) * 2018-01-31 2018-09-04 浙江工业大学 一种计及电转气技术的区域综合能源系统在线优化方法
CN110009152A (zh) * 2019-04-03 2019-07-12 东南大学 一种考虑电转气和不确定性的区域综合能源系统运行鲁棒优化方法
CN110009244A (zh) * 2019-04-12 2019-07-12 西安交通大学 一种考虑抗灾恢复的区域综合能源系统优化调度方法
WO2019165701A1 (zh) * 2018-02-28 2019-09-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法
CN110417006A (zh) * 2019-07-24 2019-11-05 三峡大学 考虑多能协同优化的综合能源系统多时间尺度能量调度方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
CN108494012A (zh) * 2018-01-31 2018-09-04 浙江工业大学 一种计及电转气技术的区域综合能源系统在线优化方法
WO2019165701A1 (zh) * 2018-02-28 2019-09-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法
CN110009152A (zh) * 2019-04-03 2019-07-12 东南大学 一种考虑电转气和不确定性的区域综合能源系统运行鲁棒优化方法
CN110009244A (zh) * 2019-04-12 2019-07-12 西安交通大学 一种考虑抗灾恢复的区域综合能源系统优化调度方法
CN110417006A (zh) * 2019-07-24 2019-11-05 三峡大学 考虑多能协同优化的综合能源系统多时间尺度能量调度方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张有兵 等: "计及电转气技术的区域综合能源系统在线优化方法", 电网技术 *
曾红 等: "含电转气设备的气电互联综合能源系统多目标优化", 电测与仪表 *

Also Published As

Publication number Publication date
CN111259309B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN112069734B (zh) 一种电热泵-热电联合系统的优化调控方法及系统
CN109858759B (zh) 一种工业园区综合能源平衡调度方法
CN105375479A (zh) 一种基于模型预测控制的分布式能源能量管理方法
CN110991000B (zh) 计及固体氧化物燃料电池和电转气的能量枢纽建模方法
CN112990523B (zh) 区域综合能源系统分层优化运行方法
CN113850474A (zh) 一种热电氢多能流综合能源系统及其优化调度方法
CN114583725A (zh) 基于氢的近零碳排放综合能源系统及其运行优化方法
CN115115130A (zh) 一种基于模拟退火算法的风光储制氢系统日前调度方法
Pérez-Herranz et al. Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides
CN112910009B (zh) 一种混合可再生能源耦合制氢方法及其系统
CN112968515B (zh) 一种燃料电池应急电源能量管理策略及系统
CN117254502A (zh) 基于电-氢混合储能综合能源系统多目标优化调度方法
CN112883630A (zh) 用于风电消纳的多微网系统日前优化经济调度方法
CN117153278A (zh) 考虑多类型电解槽差异化的电热氢系统优化方法及系统
CN111259309A (zh) 一种基于电转气和燃料电池的多能源系统稳定性优化方法
CN109378842B (zh) 电储热负荷和电池储能协调最大化减小峰谷差方法
CN116914785A (zh) 一种电热氢系统优化运行方法
CN116256978A (zh) 一种混合电解水制氢系统优化控制方法及系统
CN116073376A (zh) 一种电-氢-热耦合系统多时间尺度调度控制方法及系统
CN116316553A (zh) 一种氢电耦合系统多时间尺度分层运行控制方法
CN115169973A (zh) 一种基于储氢装置的区域综合能源优化调度方法及系统
CN111313418A (zh) 一种压缩空气储能的电力系统及其调度方法
CN116111592B (zh) 一种考虑规模化电制氢运行特性的优化调度方法
CN111181158A (zh) 一种基于人工神经网络的风电场经济调度方法
CN115640894B (zh) 一种基于双时间尺度的综合能源系统优化调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant