CN112491086B - 一种风光储独立微电网优化配置方法 - Google Patents

一种风光储独立微电网优化配置方法 Download PDF

Info

Publication number
CN112491086B
CN112491086B CN202011312439.XA CN202011312439A CN112491086B CN 112491086 B CN112491086 B CN 112491086B CN 202011312439 A CN202011312439 A CN 202011312439A CN 112491086 B CN112491086 B CN 112491086B
Authority
CN
China
Prior art keywords
wind
solar
power
grid
independent micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011312439.XA
Other languages
English (en)
Other versions
CN112491086A (zh
Inventor
杨沛豪
柴琦
王小辉
寇水潮
高峰
姜宁
郭新宇
孙梦瑶
李志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011312439.XA priority Critical patent/CN112491086B/zh
Publication of CN112491086A publication Critical patent/CN112491086A/zh
Application granted granted Critical
Publication of CN112491086B publication Critical patent/CN112491086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种风光储独立微电网优化配置方法,包括:建立太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式;建立风光储独立微电网中可调度设备k的最优运行方案方程;设定设备连续运行限值条件;设定风光储独立微电网功率配置方程;根据风光储独立微电网功率配置方程,求解风光储独立微电网优化配置方案。本发明将DR规划应用于风光储微电网优化配置中,利用DR解决独立微电网中的能量生成问题。

Description

一种风光储独立微电网优化配置方法
技术领域
本发明涉及一种风光储独立微电网优化配置方法,该方法将需求侧响应(DR)规划应用于风光储微电网优化配置中,达到减少逆变器及储能设备数量的目的,对风光储独立微电网配置进行优化。
背景技术
风能和太阳能被认为是重要的可再生资源。这些资源产生的能量随时间而变化,通常不满足需求侧使用。这种不匹配的现象增加了离网系统的储能容量。另外,如果光伏(PV)系统或风力涡轮机(WT)分别独立使用,系统规模和投资成本将增加。混合使用这些能源可以提高系统的可靠性,并可以减少投资成本和微电网储能系统容量。
在风光储独立微电网并网系统中,经常需要利用需求侧响应(DR)来降低运营成本。DR是一种为了改变电力价格而改变消费模式或为了减少消费而改变消费成本的方法。
发明内容
本发明的目的在于提供一种风光储独立微电网优化配置方法,将DR规划应用于风光储微电网优化配置中,利用DR配置独立微电网所需能量,有效对微网规模进行优化,达到减少逆变器及储能设备数量的目的,实现风光储独立微电网优化配置。
本发明采取如下技术方案来实现的:
一种风光储独立微电网优化配置方法,包括以下步骤:
1)建立太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式;
2)为了获得风光储独立微电网最优配置方案,根据步骤1)太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式,建立风光储独立微电网中可调度设备k的最优运行方案方程;
3)为了能在连续时间间隔内可调度设备连续运行,在步骤2)风光储独立微电网中可调度设备k的最优运行方案方程中,设定设备连续运行限值条件;
4)根据总消耗功率应等于总发电功率,在每一个时间段内可调度负荷和不可调度负荷消耗的电能加上储能系统充电的电能等于光伏和风能提供的电能加上储能系统的放电电能,设定风光储独立微电网功率配置方程;
5)根据步骤4)风光储独立微电网功率配置方程,求解风光储独立微电网优化配置方案。
本发明进一步的改进在于,步骤1)的具体实现方法为:建立太阳能电池板输出功率分解式,太阳能电池板的输出直流功率取决于太阳光辐射强度、吸收容量、面板面积和电池温度,太阳能电池板输出功率分解式为:
Figure BDA0002790224860000021
其中:Gt(t)(W/m2)是垂直于阵列表面的辐射入射功率,Ppv-rated是面板在标准测试STC条件下的额定功率,ηpv是太阳能电池板功率折减系数,TC,STC是电池在STC下的温度,βT是光伏温度系数,TC是运行时的电池温度,表示为:
Figure BDA0002790224860000022
其中:NOCT是正常运行电池温度,Tamb是环境温度;
风力涡轮机的输出功率是在风机在轮毂高度下风速的函数,风力涡轮机的输出功率分解式为:
Figure BDA0002790224860000023
其中:v(m/s)、vr、vcut-in,和vcut-out分别是风力机轮毂高度、额定转速、切入速度和截止转速,Pr代表额定转速下的输出功率;
储能系统充放电功率表达式为:PB(t)=PWT(t)+PPV(t)-PL(t)/ηinv
其中:PL是t时刻总用电负荷,ηinv是逆变器效率。
本发明进一步的改进在于,如果PB=0那么电池组既不充电也不放电;如果PB>0,那么电池组会由于微电网产生过剩电量而进行充电。
本发明进一步的改进在于,步骤2)的具体实现方法为:为了获得风光储独立微电网最优配置方案,根据步骤1)太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式,建立风光储独立微电网中可调度设备k的最优运行方案方程:
Figure BDA0002790224860000031
其中:二进制变量flagk是第k个设备的开/关状态,当flagk=1,该设备在运行区间内处于开通状态,flagk=0意味着关断,spank指的是第k个设备的运行区间,其中:最早开始时间用ESTk表示,最迟结束时间用LFTk表示。
本发明进一步的改进在于,步骤3)的具体实现方法为:为了能在连续时间间隔内可调度设备连续运行,在步骤2)风光储独立微电网中可调度设备k的最优运行方案方程中,设定设备连续运行限值条件:
Figure BDA0002790224860000032
其中:二进制变量ONk(t)用来判断设备k是否在时间间隔t内打开,ONk(t)=1表示设备k在时间间隔t中打开;同理,二进制变量OFFk(t)用来判断设备k是否在时间间隔t内关闭,OFFk(t)=1表示设备k在时间间隔t中处于关闭状态;
ONk(t)和OFFk(t)之间关系为:
Figure BDA0002790224860000033
本发明进一步的改进在于,为了在设备打开和关闭的同时进行保护,增加约束条件:
Figure BDA0002790224860000034
本发明进一步的改进在于,步骤4)的具体实现方法为:为了实现风光储独立微电网最优配置,总消耗功率应等于总发电功率,在每一个时间段内可调度负荷和不可调度负荷消耗的电能加上储能系统充电的电能等于光伏和风能提供的电能加上储能系统的放电电能;在风光储独立微电网功率配置中增加了耗电变量,风光储独立微电网功率配置方程:
Figure BDA0002790224860000041
其中:Ploadncl(t),Ploadcl(t),PEESch(t),Ploaddump(t)和PEESdis(t)分别表示不可调度负荷功率,可调度负荷功率,电池充电电能,多余负荷功率和电池放电电能。
本发明进一步的改进在于,步骤5)的具体实现方法为:根据步骤4)风光储独立微电网功率配置方程,求解出风光储独立微电网优化配置方案。
与现有技术相比,本发明至少具有如下有益的技术效果:
1.本发明提出一种风光储独立微电网优化配置方法,将DR规划应用于风光储微电网优化配置中,利用DR解决独立微电网中的能量生成问题。
2.本发明利用DR解决独立微电网中的能量生成问题,有效对微网规模进行优化,达到减少逆变器及储能设备数量的目的,实现对风光储独立微电网配置进行优化。
附图说明
图1为光伏/风能/电池混合微电网系统示意图;
图2为微电网优化过程示意图;
图3为微电网一天消耗负荷功率平均值数据图;
图4为微电网每小时与每日混合负荷变化示意图;
图5为一个周期内微电网消耗的负荷功率对比图。
具体实施方式
下面通过附图,对本发明的技术方案做进一步的详细描述。
如图1所示,在风光储独立微电网,PV和WT作为电压源,储能系统(电池)作为电能储存装置。风光储独立微电网通过智能系统管理进行负荷调度。智能系统利用DR规划配置独立微电网所需能量,有效对微网规模进行优化。
风光储独立微电网DR规划配置需要规定指定时间段内可调度负荷的运行次数,未分配和不足能源的数量。约束条件包括组件的运行和物理限制,能量平衡,产能限制,设备能力和电池约束。
太阳能电池板直接把太阳光转换成电能。太阳能电池板(PPV)的输出直流功率取决于太阳光辐射强度、吸收容量、面板面积和电池温度,如式(1)所示。
Figure BDA0002790224860000051
式(1)中:Gt(t)(W/m2)是垂直于阵列表面的辐射入射功率,Ppv-rated是面板在标准测试(STC)条件下的额定功率,ηpv是太阳能电池板功率折减系数(%),TC,STC是电池在STC下的温度,βT是光伏温度系数,TC是运行时的电池温度,具体求解如式(2):
Figure BDA0002790224860000052
式(2)中:NOCT是正常运行电池温度,Tamb是环境温度。
风力涡轮机的输出功率是在风机在轮毂高度下风速的函数,输出功率表示为:
Figure BDA0002790224860000053
式(3)中:v(m/s)、vr、vcut-in,和vcut-out分别是风力机轮毂高度、额定转速、切入速度和截止转速。Pr代表额定转速下的输出功率。
储能系统用于使供需达到平衡,在微电网中电池可以作为储能系统。它可以根据发电和耗电电量来决定是否充电或放电,电池的输入功率可以是正的或负的,这取决于电池组的充放电状态,如式(4)所示。
PB(t)=PWT(t)+PPV(t)-PL(t)/ηinv (4)
式(4)中:PL是t时刻总用电负荷,ηinv是逆变器效率。如果PB=0那么电池组既不充电也不放电;如果PB>0,那么电池组会由于微电网产生过剩电量而进行充电。
如图2所示,为了获得风光储独立微电网最优配置方案,需要获得风光储独立微电网中可调度设备k的最优运行方案,可调度设备k需要在一定时间内稳定运行,运行方程为:
Figure BDA0002790224860000061
式(5)中:二进制变量flagk是第k个设备的开/关状态,当flagk=1,该设备在运行区间内处于开通状态,flagk=0意味着关断。spank指的是第k个设备的运行区间,其中:最早开始时间用ESTk表示,最迟结束时间用LFTk表示。为了能在连续时间间隔内可调度设备连续运行,限值条件为:
Figure BDA0002790224860000062
式(6)中:二进制变量ONk(t)用来判断设备k是否在时间间隔t内打开,ONk(t)=1表示设备k在时间间隔t中打开。同理,二进制变量OFFk(t)用来判断设备k是否在时间间隔t内关闭,OFFk(t)=1表示设备k在时间间隔t中处于关闭状态。ONk(t)和OFFk(t)之间关系为:
Figure BDA0002790224860000063
为了在设备打开和关闭的同时进行保护。需加约束条件:
Figure BDA0002790224860000064
为了实现风光储独立微电网最优配置,总消耗功率应等于总发电功率,在每一个时间段内可调度负荷和不可调度负荷消耗的电能加上储能系统充电的电能等于光伏和风能提供的电能加上储能系统的放电电能。然而因为对储能系统充放电速率的限制和对可调度负荷能力的限制以及可再生能源发电量的不可控性,在每个时间段内总消耗功率和总发电功率完全平衡是不可能的。本发明在风光储独立微电网功率配置中增加了耗电变量,风光储独立微电网功率配置方程为:
Figure BDA0002790224860000071
式(9)中:Ploadncl(t),Ploadcl(t),PEESch(t),Ploaddump(t)和PEESdis(t)分别表示不可调度负荷功率,可调度负荷功率,电池充电电能,多余负荷功率和电池放电电能。
如图3所示,每天消耗的能量和负荷(功率)峰值分别为51.84kWh和5.7kW。随着每日变化负荷和每小时变化负荷的混合,把每小时负荷的平均值乘以一个扰动系数,可表示为:
kcv=1+δdt (10)
式(10)中:δd为均值为零的正态分布,这一分布的标准偏差体现在“日变化率”;δt为零均值的正态分布,这一分布的标准偏差体现在“每小时变化率”。
如图4所示,控制负荷规划的时间段为15分钟,一天有96个时间段。微电网的负荷消耗包含四个可调度设备,总消耗量为3.95kWh/天(约占总负荷消耗的7.5%)。还有一些不可调度的设备,消耗量为47.89kWh/天。每个可调度设备一天的输入信息如表1所示。
表1可调度设备的参考规范
Figure BDA0002790224860000072
如图5所示,在42-56区间的消耗负荷量显著增加。这种增长是因为在这段时间内发电量很大。但可以明显的看出86-93区间的消耗负荷量大幅减少,这是由于发电量不足造成的。事实上DR通过部分负荷向发电过剩区间转移使得发电侧和耗电侧电能更为接近。必须注意的是,图中每个曲线(能量)的面积之和是相等的,这表示DR的应用不会消除任何耗电负载,只是改变负载的使用时间。描述有DR和没DR时消耗负载公式为:
Figure BDA0002790224860000081
在应用DR的情况下,峰值和低频分别为3.6kW和0.60kW,在不应用DR时,峰值和低频分别为5.7kW和0.38kW。因此应用DR将显著减少峰值负荷(36.8%),从而减少所需的微电网组件的数量/容量,降低成本。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种风光储独立微电网优化配置方法,其特征在于,包括以下步骤:
1)建立太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式;
2)为了获得风光储独立微电网最优配置方案,根据步骤1)太阳能电池板输出功率分解式,风力涡轮机的输出功率分解式,储能系统充放电功率表达式,建立风光储独立微电网中可调度设备k的最优运行方案方程:
Figure FDA0003962346810000011
其中:二进制变量flagk是第k个设备的开/关状态,当flagk=1,该设备在运行区间内处于开通状态,flagk=0意味着关断,spank指的是第k个设备的运行区间,其中:最早开始时间用ESTk表示,最迟结束时间用LFTk表示;
3)为了能在连续时间间隔内可调度设备连续运行,在步骤2)风光储独立微电网中可调度设备k的最优运行方案方程中,设定设备连续运行限值条件:
Figure FDA0003962346810000012
其中:二进制变量ONk(t)用来判断设备k是否在时间间隔t内打开,ONk(t)=1表示设备k在时间间隔t中打开;同理,二进制变量OFFk(t)用来判断设备k是否在时间间隔t内关闭,OFFk(t)=1表示设备k在时间间隔t中处于关闭状态;
ONk(t)和OFFk(t)之间关系为:
Figure FDA0003962346810000013
4)根据总消耗功率应等于总发电功率,在每一个时间段内可调度负荷和不可调度负荷消耗的电能加上储能系统充电的电能等于光伏和风能提供的电能加上储能系统的放电电能,设定风光储独立微电网功率配置方程;
5)根据步骤4)风光储独立微电网功率配置方程,求解风光储独立微电网优化配置方案。
2.根据权利要求1所述的一种风光储独立微电网优化配置方法,其特征在于,步骤1)的具体实现方法为:建立太阳能电池板输出功率分解式,太阳能电池板的输出直流功率取决于太阳光辐射强度、吸收容量、面板面积和电池温度,太阳能电池板输出功率分解式为:
Figure FDA0003962346810000021
其中:Gt(t)(W/m2)是垂直于阵列表面的辐射入射功率,Ppv-rated是面板在标准测试STC条件下的额定功率,ηpv是太阳能电池板功率折减系数,TC,STC是电池在STC下的温度,βT是光伏温度系数,TC是运行时的电池温度,表示为:
Figure FDA0003962346810000022
其中:NOCT是正常运行电池温度,Tamb是环境温度;
风力涡轮机的输出功率是在风机在轮毂高度下风速的函数,风力涡轮机的输出功率分解式为:
Figure FDA0003962346810000023
其中:v(m/s)、vr、vcut-in,和vcut-out分别是风力机轮毂高度、额定转速、切入速度和截止转速,Pr代表额定转速下的输出功率;
储能系统充放电功率表达式为:PB(t)=PWT(t)+PPV(t)-PL(t)/ηinv
其中:PL是t时刻总用电负荷,ηinv是逆变器效率。
3.根据权利要求2所述的一种风光储独立微电网优化配置方法,其特征在于,如果PB=0那么电池组既不充电也不放电;如果PB>0,那么电池组会由于微电网产生过剩电量而进行充电。
4.根据权利要求1所述的一种风光储独立微电网优化配置方法,其特征在于,为了在设备打开和关闭的同时进行保护,增加约束条件:
Figure FDA0003962346810000024
5.根据权利要求4所述的一种风光储独立微电网优化配置方法,其特征在于,步骤4)的具体实现方法为:为了实现风光储独立微电网最优配置,总消耗功率应等于总发电功率,在每一个时间段内可调度负荷和不可调度负荷消耗的电能加上储能系统充电的电能等于光伏和风能提供的电能加上储能系统的放电电能;在风光储独立微电网功率配置中增加了耗电变量,风光储独立微电网功率配置方程:
Figure FDA0003962346810000031
其中:Ploadncl(t),Ploadcl(t),PEESch(t),Ploaddump(t)和PEESdis(t)分别表示不可调度负荷功率,可调度负荷功率,电池充电电能,多余负荷功率和电池放电电能。
6.根据权利要求5所述的一种风光储独立微电网优化配置方法,其特征在于,步骤5)的具体实现方法为:根据步骤4)风光储独立微电网功率配置方程,求解出风光储独立微电网优化配置方案。
CN202011312439.XA 2020-11-20 2020-11-20 一种风光储独立微电网优化配置方法 Active CN112491086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011312439.XA CN112491086B (zh) 2020-11-20 2020-11-20 一种风光储独立微电网优化配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011312439.XA CN112491086B (zh) 2020-11-20 2020-11-20 一种风光储独立微电网优化配置方法

Publications (2)

Publication Number Publication Date
CN112491086A CN112491086A (zh) 2021-03-12
CN112491086B true CN112491086B (zh) 2023-01-31

Family

ID=74932791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011312439.XA Active CN112491086B (zh) 2020-11-20 2020-11-20 一种风光储独立微电网优化配置方法

Country Status (1)

Country Link
CN (1) CN112491086B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964867A (zh) * 2021-10-29 2022-01-21 西安热工研究院有限公司 一种风光柴蓄混合能源控制系统及方法
CN114247270A (zh) * 2021-12-14 2022-03-29 西安热工研究院有限公司 一种二氧化碳循环电吸附捕集及封存系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767224A (zh) * 2015-03-04 2015-07-08 华南理工大学 一种含多类储能的并网型风光储微电网的能量管理方法
CN107742900A (zh) * 2017-11-10 2018-02-27 国网四川省电力公司技能培训中心 风光储智能微电网经济调度控制方法
CN108054784A (zh) * 2018-01-09 2018-05-18 河海大学常州校区 一种海岛微电网多源协调优化控制方法
CN108964098A (zh) * 2018-06-13 2018-12-07 燕山大学 一种独立微电网系统容量优化配置方法
CN109038823A (zh) * 2018-08-15 2018-12-18 国家电网有限公司 分布式风光储一体化微电网智能控制系统
WO2019165701A1 (zh) * 2018-02-28 2019-09-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222083B2 (en) * 2015-10-08 2019-03-05 Johnson Controls Technology Company Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767224A (zh) * 2015-03-04 2015-07-08 华南理工大学 一种含多类储能的并网型风光储微电网的能量管理方法
CN107742900A (zh) * 2017-11-10 2018-02-27 国网四川省电力公司技能培训中心 风光储智能微电网经济调度控制方法
CN108054784A (zh) * 2018-01-09 2018-05-18 河海大学常州校区 一种海岛微电网多源协调优化控制方法
WO2019165701A1 (zh) * 2018-02-28 2019-09-06 东南大学 一种交直流混联微网的随机鲁棒耦合型优化调度方法
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法
CN108964098A (zh) * 2018-06-13 2018-12-07 燕山大学 一种独立微电网系统容量优化配置方法
CN109038823A (zh) * 2018-08-15 2018-12-18 国家电网有限公司 分布式风光储一体化微电网智能控制系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrical Load Tracking Analysis for Demand Response in Energy Intensive Enterprise;Zhaojie Wang et al.;《IEEE TRANSACTIONS ON SMART GRID》;20131225;第4卷(第4期);第1917-1927页 *
The Effect of Demand Response on Operation of Smart Home Energy System with Renewable Energy Resources;Milad Gheydi et al.;《IEEE》;20161231;第1-6页 *
基于两阶段优化的风储联合发电系统日前发电计划模式;黄杨 等;《电力系统自动化》;20151225;第39卷(第24期);第8-15页 *
考虑用户满意度的户用型微电网日前优化调度;唐巍 等;《高电压技术》;20170131;第43卷(第1期);第140-148页 *

Also Published As

Publication number Publication date
CN112491086A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Bao et al. Battery charge and discharge control for energy management in EV and utility integration
CN112086998B (zh) 孤岛模式下直流微电网的能量优化调度方法
CN112491086B (zh) 一种风光储独立微电网优化配置方法
CN105552952A (zh) 一种光储联合发电系统及其能量管理方法
Balal et al. Demand side management and economic analysis using battery storage system (bss) and solar energy
Dhaked et al. Microgrid designing for electrical two-wheeler charging station supported by solar PV and fuel cell
Oussama et al. Proposed energy management for a decentralized DC-microgrid based PV-WT-HESS for an isolated community
Meliala et al. Application of off-grid solar panels system for household electricity consumptions in facing electric energy crisis
Zhang et al. Optimized scheduling model for isolated microgrid of wind-photovoltaic-thermal-energy storage system with demand response
Abdelkarim et al. Supersession of large penetration photovoltaic power transients using storage batteries
Shavolkin et al. Variant of Implementation of a Grid-Tied Solar-Wind System with a Storage Battery for Self-Consumption of Local Object
Jayaprakash et al. Development of Energy Management System for Micro Grid Operation.
CN112491087B (zh) 一种基于需求侧响应的风光储独立微电网经济优化方法
Benlahbib et al. Power management and DC link voltage regulation in renewable energy system
CN116470478A (zh) 光储充智能微电网实时充电调度方法
Hao et al. Research on optimization scheduling of wind/solar/diesel/storage micro-grid based on genetic algorithm
CN112491041B (zh) 一种储能混合微电网混合线性经济性规划方法
Belfkira et al. Modeling and optimization of wind/PV system for stand-alone site
CN112488370B (zh) 一种采用需求侧响应规划的储能优化方法
Waleed et al. Design and power load management of PV-battery-grid system
Elsayed et al. Design, control and management of PV system for residential applications with weak grid connection
Mittal et al. Design and Modeling of Hybrid Power Generation System using Solar PV and Wind Turbine
Achour et al. Modeling and Supervisory Control of Hybrid Renewable Energy Based on Wind-PV-Diesel-Battery
Hongzhen et al. Multiple Time-Scale Optimization Scheduling for Microgrids
Qi et al. Integrated control of energy management for stand-alone PV system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant