WO2019163059A1 - 連続生産システム及び方法 - Google Patents
連続生産システム及び方法 Download PDFInfo
- Publication number
- WO2019163059A1 WO2019163059A1 PCT/JP2018/006513 JP2018006513W WO2019163059A1 WO 2019163059 A1 WO2019163059 A1 WO 2019163059A1 JP 2018006513 W JP2018006513 W JP 2018006513W WO 2019163059 A1 WO2019163059 A1 WO 2019163059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection
- powder
- processing apparatus
- raw material
- continuous production
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title abstract description 13
- 238000007689 inspection Methods 0.000 claims abstract description 177
- 239000002994 raw material Substances 0.000 claims abstract description 91
- 239000000843 powder Substances 0.000 claims abstract description 84
- 238000010924 continuous production Methods 0.000 claims description 50
- 238000001035 drying Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 238000012216 screening Methods 0.000 abstract 3
- 230000002950 deficient Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007664 blowing Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/10—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/15—Medicinal preparations ; Physical properties thereof, e.g. dissolubility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8592—Grain or other flowing solid samples
Definitions
- the present invention relates to a continuous production system and method.
- the inspection performed to maintain the quality of a product is performed by, for example, extracting a sample from a container containing raw materials. For example, when the inspection result is defective, the raw material that has been in the container from which the sample has been extracted is discarded.
- quality is indirectly measured using other parameters related to the parameters such as moisture, particle size distribution, and lubricant content. Management method is adopted. If parameters such as moisture and particle size distribution are measured by, for example, spectroscopic analysis, it is important to suppress disturbances that reduce the accuracy of measurement such as bulk density fluctuations of the powder to be measured. Further, in continuous production, when a quality defect is detected from the measured parameters, it is necessary to quickly discharge the defective quality part in the manufacturing process before mixing with other parts.
- an object of the present invention is to provide a continuous production system and method capable of improving the reliability of parameters when powder is handled as a raw material in a continuous production facility.
- the powder sent from the first processing device between the first processing device and the second processing device provided in the continuous production system for continuously producing products from the raw material powder is provided.
- An inspection sorting device having an inspection room into which the body flows is provided, and when a predetermined amount of powder accumulates in the inspection room, the path from the first processing device to the inspection room is closed, and then the powder in the inspection room is inspected. After finishing the inspection, we decided to release the powder after discharging the powder.
- the present invention is a continuous production system for continuously producing products from raw material powder, wherein the first processing device that performs the first processing on the raw material powder, and the first processing device are the first.
- the inspection chamber powder is inspected after closing the path leading from the first processing apparatus to the inspection chamber, and after the inspection, the powder is discharged from the inspection chamber. Release the closure.
- the powder sent from the first processing device provided between the first processing device and the second processing device provided in the continuous production system for continuously producing products from the raw material powder When a predetermined amount of powder accumulates in the inspection room into which the gas flows, the path from the first processing apparatus to the inspection room is closed, and then the powder in the inspection room is inspected. Therefore, the inspection of the powder in the inspection chamber is performed in a state where the bulk density of the raw material is constant every time. There is almost no possibility that the measurement value of the inspection varies depending on the bulk density of the powder. Therefore, in a continuous production system that continuously produces products from powdery raw materials, it is possible to suppress measurement value fluctuations due to changes in the bulk density of the powder at each inspection and obtain measurement values with high accuracy. is there.
- the inspection sorting device has an inlet side gate valve that opens and closes a path leading from the first processing device to the inspection room. When a predetermined amount of powder accumulates in the inspection room, the inlet side gate valve is closed. When the inspection of the powder in the inspection chamber is executed and the inspection of the powder in the inspection chamber is finished, the inlet side gate valve may be opened after the powder is discharged from the inspection chamber. In the case of a continuous production system having such an inspection / sorting device, the raw material that has been sent from the first processing device to the inspection / sorting device during the inspection and accumulated on the upstream side of the inlet-side gate valve has opened the inlet-side gate valve. Since it enters the inspection room at the time, the raw material can be inspected without omission.
- the inspection sorting device is provided at the bottom of the inspection room, and has an exit side gate valve that opens and closes the discharge path of the inspection room, and a predetermined amount is placed in the inspection room with the outlet side gate valve closed.
- the exit side gate valve that opens and closes the discharge path of the inspection room, and a predetermined amount is placed in the inspection room with the outlet side gate valve closed.
- the inspection sorting apparatus has a flow path switching means for switching the discharge path of the inspection room between a path connecting from the inspection room to the second processing apparatus and a path connecting from the inspection room to other than the second processing apparatus.
- the discharge path may be switched by the flow path switching unit according to the result of the inspection, and the closure may be released after the powder is discharged from the inspection chamber.
- the inspection sorting device has a sensor that detects whether or not the powder accumulated in the inspection room has reached a predetermined height, and the sensor detects that a predetermined amount of powder has accumulated in the inspection room. Then, an inspection may be performed.
- powder can be stored at a certain height in the inspection chamber.
- the first processing device may adjust the operation amount according to the result of the inspection.
- the first processing device is a dryer that dries the raw material powder and the second processing device is a mixer that mixes the raw material powder
- the temperature of the dryer or the like depends on the result of the inspection.
- the air content can be adjusted to control the water content of the raw material.
- the present invention is a continuous production method for continuously producing a product from raw material powder, wherein the first processing device performs a first process on the raw material powder, and the first processing device performs the first process.
- an inspection sorting apparatus having an inspection chamber that is provided in a path between a second processing apparatus that performs second processing on the performed powder and into which the powder sent from the first processing apparatus flows, When a predetermined amount of powder accumulates, the path from the first processing device to the inspection room is closed, and then the powder in the inspection room is inspected. When the inspection is completed, the powder is discharged from the inspection room and then closed. May be canceled.
- the above-described continuous production system and method can improve the reliability of parameters when handling powder as a raw material in a continuous production facility.
- FIG. 1 is a diagram illustrating a continuous production system according to an embodiment.
- FIG. 2 is a diagram showing an example of an inspection and sorting device provided in the continuous production system.
- FIG. 3 is a diagram for explaining the operation of the inspection and sorting apparatus.
- FIG. 4 is a graph showing an example of the correlation between the moisture content of the raw material at the outlet of the dryer and the operation amount of the dryer.
- FIG. 5 is a graph showing an example of the change over time in the moisture content of the raw material leaving the dryer.
- FIG. 6 is a view showing a modified example of the inspection sorting device.
- FIG. 1 is a diagram illustrating a continuous production system 1 according to the embodiment.
- the continuous production system 1 is a system for producing tablets from powdery raw materials.
- a mixer 2, a granulator 3, a dryer 4, a mixer 5, a tableting machine 6, and a coating machine. 7 is provided.
- the mixer 2 has an inlet into which powder raw materials are charged, and mixes various powders and liquids that are raw materials for tablets.
- the granulator 3 binds the raw material mixed in the mixer 2 to the small particle group to form a granule.
- the dryer 4 adds various additional raw materials to the raw material granulated by the granulator 3 and dries them.
- the mixer 5 mixes the granular raw material dried by the dryer 4.
- the tableting machine 6 puts the granular raw materials mixed in the mixer 5 into a mold and compresses them into tablets.
- the coating machine 7 coats the tablets solidified by the tableting machine 6.
- a series of equipment from the mixer 2 to the coating machine 7 is connected. Therefore, in the continuous production system 1, various processes respectively performed in a series of facilities from the mixer 2 to the coating machine 7 are continuously performed on the raw material charged into the mixer 2.
- FIG. 1 a series of devices from the mixer 2 to the coating machine 7 are illustrated one by one, but the continuous production system 1 is not limited to such a form.
- one or more mixers 2, granulators 3, and dryers 4 may be prepared, and a plurality of types of raw materials may be mixed by the mixer 5.
- a series of equipment from the mixer 2 to the coating machine 7 is controlled by a control device (not shown) provided in the continuous production system 1.
- the control device determines the operation amount of each device based on the measurement values of various sensors provided in the continuous production system 1.
- a measured value referred to by the control device for example, in addition to values obtained from each device from the mixer 2 to the coating machine 7 such as the rotational speed of the screw feeder provided in the mixer 2 and the temperature of the dryer 4, each device is The value obtained from the sensor provided in the middle of the connecting path is included. Examples of the position of the sensor provided in the middle of the path connecting the devices include the positions indicated by reference signs A to E in FIG.
- the control apparatus will be the granulator 3 and mixing.
- the operation amount of the machine 5 can be changed.
- the sensor is installed in the code
- a control apparatus will be the said according to the property of the raw material which left the mixer 2, for example.
- the destination of the raw material can be changed to other than the granulator 3.
- FIG. 2 is a diagram showing an example of the inspection and sorting device 10 provided in the continuous production system 1.
- the inspection / sorting device 10 can be provided at an appropriate location of the continuous production system 1.
- the inspection / sorting device 10 is provided in the middle of a path connecting the devices from the mixer 2 to the coating machine 7 as indicated by reference signs A to E in FIG.
- the inspection / separation apparatus 10 includes an inflow path 11 into which a raw material sent from an apparatus connected to the upstream side of the inspection / separation apparatus 10 flows, an inlet side gate valve 12 installed at the lower end of the inflow path 11, and an inlet side gate valve 12 below.
- the outlet side gate valve 18 installed in the lower part of the glass 14 is provided.
- laser sensors 15 and 24 that perform optical measurement in the examination room 16 through the sight glass 14 and a spectroscopic analyzer 17 are provided.
- the inspection / separation apparatus 10 In the inspection / separation apparatus 10, when the raw material is sent from the equipment connected to the upstream side of the inspection / separation apparatus 10 when the inlet-side gate valve 12 is in the open state and the outlet-side gate valve 18 is in the closed state, The material accumulates.
- the laser sensor 15 detects that a predetermined amount of raw material has accumulated in the inspection chamber 16
- the inlet side gate valve 12 is closed and the raw material inspection using the spectroscopic analyzer 17 is performed.
- a flow path switching valve 21 (which is an example of the “flow path switching means” in the present application) having valve holes 19 and 20 is provided below the outlet side gate valve 18. It is sent to the outflow path 22 or the outflow path 23 according to the result.
- the presence or absence of the raw material remaining in the inspection chamber 16 is inspected by the laser sensor 24.
- an example using a near-infrared sensor as an example of the spectrometer 17 will be described, but the continuous production system disclosed in the present application is not limited to such a form.
- a so-called diverter valve will be described as an example of the flow path switching valve 21, but the continuous production system disclosed in the present application is not limited to such a form.
- a path switching mechanism may be used.
- FIG. 3 is an explanatory diagram of the operation of the inspection / sorting device 10.
- the inspection sorting device 10 is connected to the control device of the continuous production system 1.
- the inspection / sorting device 10 operates as follows in accordance with a control signal sent from the control device of the continuous production system 1. That is, in the inspection / separation apparatus 10, when the raw material is sent from the equipment connected to the upstream side of the inspection / separation apparatus 10 when the inlet side gate valve 12 is open and the outlet side gate valve 18 is closed, FIG. As shown in (A), the raw material accumulates in the examination room 16. When the laser sensor 15 detects that the raw material accumulated in the examination room 16 has reached a predetermined height, the inlet side gate valve 12 is closed as shown in FIG.
- the inlet side gate valve 12 When the inlet side gate valve 12 is closed, the flow of new raw material from the inflow path 11 to the examination room 16 stops. While the inflow of new raw material from the inflow path 11 to the examination room 16 is stopped, the bulk density of the raw material in the examination room 16 is kept constant. Therefore, after the inlet side gate valve 12 is closed, the inspection of the raw material in the inspection room 16 using the spectroanalyzer 17 is started. If the inspection using the spectrometer 17 is performed with the inlet side gate valve 12 closed, there is no change in the bulk density of the raw material due to an increase in the height of the raw material accumulated in the inspection chamber 16, which is stable. Inspection results can be obtained.
- the switching operation of the flow path switching valve 21 is performed according to the inspection result. For example, when the inspection result of the raw material collected in the examination room 16 is good, as shown in FIG. 3C, the outflow path 22 connected to the equipment responsible for the next process for the raw material accumulated in the examination room 16. The direction of the flow path switching valve 21 is switched so as to communicate with the valve hole 20. Further, for example, when the inspection result of the raw material accumulated in the inspection chamber 16 is defective, the direction of the flow path switching valve 21 is set so that the outflow path 23 for discarding the raw material accumulated in the inspection chamber 16 communicates with the valve hole 19. Switches.
- the inspection chamber is opened from the air blowing path 13 at the same time or after a predetermined time has elapsed since the opening. Air blow into the inside of the inspection room 16 is started, and the raw material in the inspection room 16 is quickly discharged from the inside of the inspection room 16. After the discharge of the raw material is completed, the air blow from the air blowing path 13 into the inspection chamber 16 is stopped and the outlet side gate valve 18 is closed at the same time, and the optical inspection of the remaining raw material is performed using the laser sensor 24. After the cleaning effect is confirmed, the inlet side gate valve 12 is opened again.
- the inlet side gate valve 12 When the inlet side gate valve 12 is opened, the raw material that has been sent from the equipment on the upstream side of the inspection and sorting apparatus 10 and accumulated on the upper side of the inlet side gate valve 12 while the inlet side gate valve 12 is closed is inside the inspection chamber 16. Flow into.
- the series of operations described with reference to FIGS. 3A to 3D are repeatedly performed in units of several tens of seconds to several minutes. Therefore, there is almost no possibility of substantially impeding the continuous operation of the equipment connected to the upstream side or the downstream side of the inspection / sorting device 10. And since the inspection of the raw material using the spectrometer 17 is performed with the inlet side gate valve 12 closed at a predetermined height detected by the laser sensor 15, the bulk density of the raw material is constant every time. Will be done. Therefore, there is almost no possibility that the measurement value of the spectroscopic analyzer 17 varies depending on the bulk density of the powder.
- the dryer 4 of the continuous production system 1 shown in FIG. 1 various additional raw materials are added to the raw material granulated by the granulator 3, and drying is performed.
- the dryer 4 is provided with one or more heaters for performing heat drying, and the energization amount of the heater is adjusted by the control device so as to obtain an appropriate drying temperature.
- the dryer 4 is provided with a variable speed blower, and the rotational speed of the blower is controlled by a control device so that the raw material granulated by the granulator 3 passes through the dryer 4 at an appropriate wind speed. Adjusted.
- FIG. 4 is a graph showing an example of the correlation between the moisture content of the raw material at the outlet of the dryer 4 and the operation amount of the dryer 4.
- the temperature of the dryer 4 needs to be set higher depending on the moisture content in order to promote drying.
- the temperature of the dryer 4 needs to be set lower depending on the moisture content in order to prevent overdrying. Therefore, in the dryer 4, the operation amounts of the heater and the blower are feedback-controlled in accordance with the moisture content of the raw material discharged from the dryer 4, and the temperature and air volume are adjusted. If this feedback control is appropriately performed, the moisture content of the raw material discharged from the dryer 4 falls within the specified management range.
- the moisture content of the raw material discharged from the dryer 4 deviates from the specified management range.
- the moisture content of the raw material from the dryer 4 is within the specified management range even though the operation amount is out of the normal range. May appear to be.
- the normal range of the manipulated variable and the controlled variable is determined in advance, such a malfunction in measuring the moisture content can be detected.
- the inspection and sorting device 10 is installed in the middle of the path connecting the dryer 4 and the mixer 5, based on the moisture content of the raw material that has exited the dryer 4, Feedback control of the temperature and air volume of the dryer 4 is possible. Further, if a particle size measuring device is provided in the inspection / sorting device 10, for example, feedback control of the operation amount (for example, the number of granulation rotations) of the granulator 3 on the upstream side of the dryer 4 is possible. Become.
- FIG. 5 is a graph showing an example of the change over time in the moisture content of the raw material leaving the dryer 4. For example, as shown in FIG. 5, there is a possibility that the moisture content of the raw material leaving the dryer 4 temporarily deviates from the management range. In such a case, it is not desirable to send the raw material that deviates from the moisture content management range to the mixer 5.
- the inspection / separation apparatus 10 is provided with the flow path switching valve 21, if the inspection / separation apparatus 10 is installed in the middle of the path connecting the dryer 4 and the mixer 5, the inspection in the inspection room 16 can be performed. About the raw material from which the moisture content has deviated from the management range, it is possible to discharge
- FIG. 6 is a view showing a modified example of the inspection sorting device 10.
- the flow path switching valve 21 of the inspection / sorting apparatus 10 has a plate-like valve element that slides left and right, so that either the outflow path 22 or the outflow path 23 is in the inspection room. 16 may be communicated.
- the flow path switching valve 21 of the inspection and sorting apparatus 10 may be, for example, a disk-shaped valve body that switches the flow path, or a plate-shaped valve body that switches the flow path. May be.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Sorting Of Articles (AREA)
Abstract
本発明は、連続式の生産設備において粉体を原料として取り扱う場合におけるパラメータの信頼性を向上可能な連続生産システム及び方法を提供することを解決課題とする。原料の粉体から製品を連続生産する連続生産システムであって、原料の粉体に第1の処理を行う第1処理装置と、第1処理装置が第1の処理を行った粉体へ第2の処理を行う第2処理装置と、第1処理装置から送られた粉体が流入する検査室を有する検査選別装置と、を備え、検査選別装置は、検査室に所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路を閉鎖した後に検査室内の粉体の検査を実行し、検査を終えると、検査室内から粉体を排出した後に閉鎖を解除する。
Description
本発明は、連続生産システム及び方法に関する。
例えば、医薬品や食品の製造においては、製品の品質を維持するために各種の検査が行われている。例えば、医薬品の錠剤の製造においては、錠剤を所定の硬度にするため、造粒機や乾燥機を使って製造された粉粒体は、打錠機へ投入される前に水分含有量が測定される(例えば、特許文献1を参照)。
紛体の原料を取り扱う製造現場では、混合や造粒、乾燥といった各工程を担う装置がそれぞれ用意され、各工程間における原料(以下、「中間製品」も含む)の移動に容器が用いられている。バッチ式とも呼ばれるこのような製造方法において、製品の品質を維持するために行われる検査は、例えば、原料が入った容器から試料を抜き取って行われる。そして、例えば、検査結果が不良の場合、当該試料を抜き取った容器に入っていた原料は廃棄される。
しかし、バッチ式の場合、試料が不良と判定されれば、試料を抜き取った容器内の原料は、良品が混在する可能性があるにも関わらず全て不良と判定されて廃棄されることになる。そこで、医薬品や食品を連続式で製造することにし、品質不良が生じないように製造プロセスのパラメータを自動制御することが望ましい。医薬品や食品の連続生産において製造プロセスのパラメータを適切に自動制御するには、品質に関わるパラメータを高精度に連続で測定する必要がある。しかし、例えば、硬度や溶解性といったパラメータは非破壊で直接的に連続で測定することはできない。よって、硬度や溶解性といった非破壊で直接的に連続で測定することができないパラメータについては、水分や粒径分布、潤沢剤含量といった当該パラメータに関連性のある他のパラメータを用いて品質を間接的に管理する手法が採られる。そして、水分や粒径分布といったパラメータを、例えば、分光分析で測定する場合であれば、測定対象の粉体の嵩密度変動といった計測の精度を低下させる外乱の抑制が重要となる。また、連続生産においては、測定されたパラメータから品質不良が検知された場合、製造プロセス中の品質不良部分が他の部分と混ざる前に速やかに排出する必要がある。
そこで、本発明は、連続式の生産設備において粉体を原料として取り扱う場合におけるパラメータの信頼性を向上可能な連続生産システム及び方法を提供することを解決課題とする。
上記課題を解決するため、本発明では、原料の粉体から製品を連続生産する連続生産システムに設けた第1処理装置と第2処理装置との間に、第1処理装置から送られた粉体が流入する検査室を有する検査選別装置を設け、検査室に所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路を閉鎖した後に検査室内の粉体の検査を実行し、検査を終えたら粉体を排出してから閉鎖を解除することにした。
詳細には、本発明は、原料の粉体から製品を連続生産する連続生産システムであって、原料の粉体に第1の処理を行う第1処理装置と、第1処理装置が第1の処理を行った粉体へ第2の処理を行う第2処理装置と、第1処理装置から送られた粉体が流入する検査室を有する検査選別装置と、を備え、検査選別装置は、検査室に所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路を閉鎖した後に検査室内の粉体の検査を実行し、検査を終えると、検査室内から粉体を排出した後に閉鎖を解除する。
上記の連続生産システムでは、原料の粉体から製品を連続生産する連続生産システムに設けた第1処理装置と第2処理装置との間に設けられた、第1処理装置から送られた粉体が流入する検査室において、所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路が閉鎖された後に検査室内の粉体の検査が行われる。よって、検査室内における粉体の検査は、原料の嵩密度が毎回一定の状態で行われることになる。粉体の嵩密度次第で検査の計測値が変動する可能性が殆ど無い。したがって、粉状の原料から製品を連続的に生産する連続生産システムにおいて、粉体の嵩密度が検査毎に変化することによる計測値の変動を抑制し、計測値を精度良く得ることが可能である。
なお、検査選別装置は、第1処理装置から検査室へ繋がる経路を開閉する入口側仕切弁を有しており、検査室に所定量の粉体が溜まると、入口側仕切弁を閉じた後に検査室内の粉体の検査を実行し、検査室内の粉体の検査を終えると、検査室内から粉体を排出した後に入口側仕切弁を開くものであってもよい。このような検査選別装置を有する連続生産システムであれば、検査中に第1処理装置から検査選別装置へ送られて入口側仕切弁の上流側に溜まった原料が、入口側仕切弁を開いた際に検査室内に入るため、当該原料についても漏れなく検査することができる。
また、検査選別装置は、検査室の底部に設けられており、検査室の排出経路を開閉する出口側仕切弁を有しており、出口側仕切弁が閉じた状態で検査室に所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路を閉鎖した後に検査室内の粉体の検査を実行し、検査を終えると、出口側仕切弁を開いて検査室内から粉体を排出した後に閉鎖を解除するものであってもよい。このような検査選別装置を有する連続生産システムであれば、検査室内の原料が下側から出口側仕切弁で支えられた状態になるので、当該原料の検査を安定的に行うことができる。
また、検査選別装置は、検査室の排出経路を、検査室から第2処理装置へ繋がる経路と、検査室から第2処理装置以外へ繋がる経路との間で切り替える流路切替手段を有しており、検査を終えると、検査の結果に応じて流路切替手段で排出経路を切り替え、検査室内から粉体を排出した後に閉鎖を解除するものであってもよい。このような検査選別装置を有する連続生産システムであれば、例えば、検査結果が不良の場合に、不良の原料が第2処理装置へ送られるのを防ぐことが可能である。
また、検査選別装置は、検査室に溜まる粉体が所定の高さに達したか否かを検知するセンサを有しており、検査室に所定量の粉体が溜まったことをセンサで検知すると検査を実行するものであってもよい。このような検査選別装置を有する連続生産システムであれば、検査室内に粉体を一定の高さで溜めることが可能となる。
また、第1処理装置は、検査の結果に応じて動作量を調整するものであってよい。例えば、第1処理装置が原料の粉体を乾燥させる乾燥機であり、第2処理装置が原料の粉体を混合させる混合機の場合である場合、検査の結果に応じて乾燥機の温度や風量を調整し、原料の含水量を制御できる。
なお、本発明は、方法の側面から捉えることもできる。例えば、本発明は、原料の粉体から製品を連続生産する連続生産方法であって、原料の粉体に第1の処理を行う第1処理装置と、第1処理装置が第1の処理を行った粉体へ第2の処理を行う第2処理装置との間の経路に設けられており、第1処理装置から送られた粉体が流入する検査室を有する検査選別装置において、検査室に所定量の粉体が溜まると、第1処理装置から検査室へ繋がる経路を閉鎖した後に検査室内の粉体の検査を実行し、検査を終えると、検査室内から粉体を排出した後に閉鎖を解除するものであってもよい。
上記の連続生産システムや方法であれば、連続式の生産設備において粉体を原料として取り扱う場合におけるパラメータの信頼性を向上可能である。
以下、実施形態について説明する。以下に示す実施形態は、単なる例示であり、本開示の技術的範囲を以下の態様に限定するものではない。
<ハードウェア構成>
図1は、実施形態に係る連続生産システム1を示した図である。本実施形態では、医薬品を製造する場合を例に説明するが、例えば、食品やその他各種製品の製造にも適用可能である。連続生産システム1は、粉状の原料から錠剤を生産するシステムであり、図1に示すように、混合機2、造粒機3、乾燥機4、混合機5、打錠機6、コーティング機7を備える。混合機2は、粉体の原料が投入される投入口を有し、錠剤の原料である各種の粉や液体を混合する。造粒機3は、混合機2で混合された原料を小粒子群に結着させて粒状にする。乾燥機4は、造粒機3で造粒された原料に各種の追加原料を加えて乾燥させる。混合機5は、乾燥機4で乾燥された粒状の原料を混合する。打錠機6は、混合機5で混合された粒状の原料を型枠に入れて圧縮し、錠剤にする。コーティング機7は、打錠機6で固化された錠剤にコーティングを施す。連続生産システム1では、混合機2からコーティング機7へ至る一連の設備が繋がっている。よって、連続生産システム1では、混合機2に投入された原料に対し、混合機2からコーティング機7へ至る一連の設備でそれぞれ行われる様々な処理が連続的に行われる。
図1は、実施形態に係る連続生産システム1を示した図である。本実施形態では、医薬品を製造する場合を例に説明するが、例えば、食品やその他各種製品の製造にも適用可能である。連続生産システム1は、粉状の原料から錠剤を生産するシステムであり、図1に示すように、混合機2、造粒機3、乾燥機4、混合機5、打錠機6、コーティング機7を備える。混合機2は、粉体の原料が投入される投入口を有し、錠剤の原料である各種の粉や液体を混合する。造粒機3は、混合機2で混合された原料を小粒子群に結着させて粒状にする。乾燥機4は、造粒機3で造粒された原料に各種の追加原料を加えて乾燥させる。混合機5は、乾燥機4で乾燥された粒状の原料を混合する。打錠機6は、混合機5で混合された粒状の原料を型枠に入れて圧縮し、錠剤にする。コーティング機7は、打錠機6で固化された錠剤にコーティングを施す。連続生産システム1では、混合機2からコーティング機7へ至る一連の設備が繋がっている。よって、連続生産システム1では、混合機2に投入された原料に対し、混合機2からコーティング機7へ至る一連の設備でそれぞれ行われる様々な処理が連続的に行われる。
なお、図1では、混合機2からコーティング機7へ至る一連の機器が1つずつ図示されているが、連続生産システム1はこのような形態に限定されるものではない。例えば、混合機2や造粒機3、乾燥機4が1乃至複数用意されており、複数種の原料が混合機5で混合されるようにしてもよい。
混合機2からコーティング機7へ至る一連の設備は、連続生産システム1に設けられた図示しない制御装置によって制御される。制御装置は、連続生産システム1に備わる各種センサの計測値に基づいて各機器の操作量を決定する。制御装置が参照する計測値としては、例えば、混合機2に備わるスクリューフィーダーの回転速度や乾燥機4の温度といった混合機2からコーティング機7までの各機器から得られる値の他、各機器を繋ぐ経路の途中に設けられたセンサから得られる値が含まれる。各機器を繋ぐ経路の途中に設けられるセンサの位置としては、例えば、図1において符号A~Eで示されるような位置が挙げられる。乾燥機4と混合機5とを繋ぐ経路の途中にある符号Cにセンサが設置されていれば、制御装置は、例えば、乾燥機4を出た原料の性状に応じて造粒機3や混合機5の操作量を変更することができる。また、例えば、混合機2と造粒機3とを繋ぐ経路の途中にある符号Bにセンサが設置されていれば、制御装置は、例えば、混合機2を出た原料の性状に応じて当該原料の行先を造粒機3以外へ変更することが可能となる。
図2は、連続生産システム1に備わる検査選別装置10の一例を示した図である。検査選別装置10は、連続生産システム1の適宜の箇所に設けることが可能である。検査選別装置10は、例えば、図1において符号A~Eで示されるような、混合機2からコーティング機7へ至る各機器を繋ぐ経路の途中に設けられる。
検査選別装置10は、検査選別装置10の上流側に繋がる機器から送られた原料が流入する流入経路11、流入経路11の下端に設置された入口側仕切弁12、入口側仕切弁12の下側に形成された検査室16、入口側仕切弁12付近に設けられたエアー吹込み経路13、検査室16の壁面を構成すると共に検査室16内を周囲から透視可能にするサイトグラス14、サイトグラス14の下部に設置された出口側仕切弁18を備える。検査室16の周囲には、サイトグラス14を通して検査室16内の光学的な測定を行うレーザーセンサ15,24と分光分析計17が設けられている。検査選別装置10では、入口側仕切弁12が開弁状態にあり且つ出口側仕切弁18が閉弁状態において、検査選別装置10の上流側に繋がる機器から原料が送られると、検査室16には当該原料が溜まる。そして、検査室16に所定の量の原料が溜まったことがレーザーセンサ15に検知されると入口側仕切弁12が閉じ、分光分析計17を使った原料の検査が行われる。出口側仕切弁18の下側には弁孔19,20を有する流路切替弁21(本願でいう「流路切替手段」の一例である)が設けられており、検査を終えた原料は検査結果に応じて流出経路22或いは流出経路23へ送られる。そして、検査室16に残留する原料の有無がレーザーセンサ24で検査される。なお、本実施形態では、分光分析計17の一例として近赤外線センサを用いたものを例に説明するが、本願で開示する連続生産システムはこのような形態に限定されるものではない。また、本実施形態では、流路切換弁21の一例としていわゆるダイバーダ弁を例に説明するが、本願で開示する連続生産システムはこのような形態に限定されるものでなく、その他の方式の流路切替機構を用いたものであってもよい。
図3は、検査選別装置10の動作説明図である。検査選別装置10は、連続生産システム1の制御装置に接続されている。そして、検査選別装置10は、連続生産システム1の制御装置から送られる制御信号に従い、以下のように動作する。すなわち、検査選別装置10では、入口側仕切弁12が開弁状態にあり且つ出口側仕切弁18が閉弁状態において、検査選別装置10の上流側に繋がる機器から原料が送られると、図3(A)に示されるように、検査室16内に原料が溜まる。そして、検査室16内に溜まる原料が所定の高さに達したことがレーザーセンサ15によって検知されると、図3(B)に示されるように、入口側仕切弁12が閉じる。入口側仕切弁12が閉じると、流入経路11から検査室16への新たな原料の流入が停止する。流入経路11から検査室16への新たな原料の流入が停止されている間、検査室16内の原料の嵩密度は一定に保たれる。そこで、入口側仕切弁12が閉じられた後は、分光分析計17を使った検査室16内の原料の検査が開始される。分光分析計17を使った検査が入口側仕切弁12の閉弁状態で行われれば、検査室16内に溜まる原料の高さの増大に起因する原料の嵩密度の変化が無いため、安定した検査結果を得ることが可能となる。
検査室16内に溜まる原料の検査が完了した後は、検査結果に応じ流路切替弁21の切替動作が行われる。例えば、検査室16内に溜まる原料の検査結果が良好な場合、図3(C)に示されるように、検査室16内に溜まる原料に対して次に行う処理を担う機器が繋がる流出経路22が弁孔20と連通するように流路切替弁21の向きが切り替わる。また、例えば、検査室16内に溜まる原料の検査結果が不良の場合、検査室16内に溜まる原料を廃棄するための流出経路23が弁孔19と連通するように流路切替弁21の向きが切り替わる。流路切替弁21の切替動作が完了した後は、図3(D)に示されるように、出口側仕切弁18が開くと同時もしくは開いてから一定時間経過後にエアー吹込み経路13から検査室16内へのエアーブローが開始され、検査室16内にあった原料は検査室16内から速やかに排出される。原料の排出が完了した後は、エアー吹込み経路13から検査室16内へのエアーブローが停止されると同時に出口側仕切弁18が閉じ、レーザーセンサ24を使って残留原料の光学的な検査が行われ、洗浄効果が確認された後、入口側仕切弁12が再び開く。入口側仕切弁12が開くと、入口側仕切弁12が閉じている間に検査選別装置10の上流側の機器から送られて入口側仕切弁12の上側に溜まっていた原料が検査室16内に流入する。
検査選別装置10では、図3(A)~(D)を使って説明した上記一連の動作が数十秒から数分単位で繰り返し行われる。よって、検査選別装置10の上流側や下流側に繋がる機器の連続的な動作に実質的な支障を与える可能性は殆ど無い。そして、分光分析計17を使った原料の検査は、レーザーセンサ15によって検知される所定の高さで入口側仕切弁12が閉弁状態で行われるため、原料の嵩密度が毎回一定の状態で行われることになる。よって、粉体の嵩密度次第で分光分析計17の計測値が変動する可能性も殆ど無い。したがって、検査選別装置10を使った検査であれば、粉状の原料から錠剤を連続的に生産する連続生産システム1においても、粉体の嵩密度次第で変動するような計測値を精度良く得ることが可能である。また、検査選別装置10であれば、連続生産システム1で連続的に取り扱われる原料の全てを検査室16で検査し、流路切替弁21で選別することが可能であるため、仮に連続生産システム1で不良品が一時的に発生した場合であっても、検査室16内に溜まる量の単位で良品と不良品とに分別することが可能であり、廃棄される原料を可及的に低減することが可能となる。
以下、検査選別装置10が図1の符号Cに設置された場合に連続生産システム1で実現可能となる全体の制御フローの一例について説明する。
図1に示した連続生産システム1の乾燥機4では、造粒機3で造粒された原料に各種の追加原料が加えられて乾燥が行われる。乾燥機4には、加熱乾燥を行うための1以上のヒータが設けられており、適切な乾燥温度となるようにヒータの通電量が制御装置で調整される。また、乾燥機4には、可変速のブロワーが設けられており、造粒機3で造粒された原料が乾燥機4内を適切な風速で通過するようにブロワーの回転速度が制御装置で調整される。
図4は、乾燥機4の出口における原料の含水率と乾燥機4の操作量との相関関係の一例を示したグラフである。例えば、含水率が比較的多い場合、乾燥を促進するため、乾燥機4の温度も含水率に応じて高めに設定する必要がある。また、含水率が比較的少ない場合、過乾燥を防ぐため、乾燥機4の温度も含水率に応じて低めに設定する必要がある。そこで、乾燥機4では、乾燥機4から出た原料の含水率に応じてヒータやブロワーの操作量がフィードバック制御され、温度や風量の調整が行われる。このフィードバック制御が適切に行われていれば、乾燥機4から出た原料の含水率は、規定の管理範囲内に収まる。一方、フィードバック制御が適切に行われなければ、乾燥機4から出た原料の含水率は、規定の管理範囲を逸脱する。また、含水率の計測やプロセスに何らかの不具合が生じることにより、操作量が正常範囲を逸脱しているにも関わらず、乾燥機4から出た原料の含水率が規定の管理範囲内に収まっているように見える場合がある。図4に示されるように、操作量と制御量の正常範囲が予め定まっていれば、このような含水率の計測の不具合等を検出することもできる。
粉体を原料とする医薬品の連続生産において、粉体の含水率を連続的に計測することは一般的に難しい。しかし、上記の検査選別装置10では、図3(A)~(D)を使って説明した上記一連の動作が数分単位で繰り返し行われるため、乾燥機4と混合機5を繋ぐ経路の途中に検査選別装置10を設置しても、上流側に繋がる乾燥機4や下流側に繋がる混合機5の連続的な動作に実質的な支障を与える可能性は殆ど無い。そして、分光分析計17を使った原料の含水量の検査が、レーザーセンサ15によって検知される所定の高さで入口側仕切弁12が閉弁状態で行われるため、原料の嵩密度の変動による含水量の計測値の変動が生ずる可能性も殆ど無い。よって、本実施形態の連続生産システム1において、乾燥機4と混合機5を繋ぐ経路の途中に上記の検査選別装置10を設置すれば、乾燥機4を出た原料の含水率を基に、乾燥機4の温度や風量のフィードバック制御が可能となる。また、検査選別装置10に粒径の測定装置を併設すれば、例えば、乾燥機4よりも上流側にある造粒機3の操作量(例えば、造粒回転数等)のフィードバック制御も可能となる。
また、検査選別装置10には流路切替弁21が設けられているため、本実施形態の連続生産システム1において、乾燥機4と混合機5を繋ぐ経路の途中に上記の検査選別装置10を設置すれば、連続的に処理される原料を検査結果に応じて排出することも可能である。図5は、乾燥機4を出た原料の含水率の時間変化の一例を示したグラフである。例えば、図5に示されるように、乾燥機4を出た原料の含水率が管理範囲を一時的に逸脱する可能性がある。そのような場合、含水率の管理範囲を逸脱した原料を混合機5へ送ることは望ましくない。しかし、検査選別装置10には流路切換弁21が設けられているため、乾燥機4と混合機5を繋ぐ経路の途中に上記の検査選別装置10を設置すれば、検査室16における検査で含水率が管理範囲を逸脱している原料については、流路切替弁21で混合機5以外の箇所へ排出することが可能である。
図6は、検査選別装置10の変形例を示した図である。検査選別装置10の流路切替弁21は、例えば、図6に示されるように、板状の弁体が左右にスライドすることにより、流出経路22と流出経路23のうち何れか一方が検査室16と連通可能なようにしてもよい。また、検査選別装置10の流路切替弁21は、例えば、円板状の弁体が流路を切り替えるものであってもよいし、或いは、板状の弁体が流路を切り替えるものであってもよい。
1・・連続生産システム:2・・混合機:3・・造粒機:4・・乾燥機:5・・混合機:6・・打錠機:7・・コーティング機:10・・検査選別装置:11・・流入経路:12・・入口側仕切弁・13・・エアー吹込み経路:14・・サイトグラス:15,24・・レーザーセンサ:16・・検査室:17・・分光分析計:18・・出口側仕切弁:19,20・・弁孔:21・・流路切替弁:22,23・・流出経路
Claims (8)
- 原料の粉体から製品を連続生産する連続生産システムであって、
原料の粉体に第1の処理を行う第1処理装置と、
前記第1処理装置が前記第1の処理を行った粉体へ第2の処理を行う第2処理装置と、
前記第1処理装置から送られた粉体が流入する検査室を有する検査選別装置と、を備え、
前記検査選別装置は、
前記検査室に所定量の粉体が溜まると、前記第1処理装置から前記検査室へ繋がる経路を閉鎖した後に前記検査室内の粉体の検査を実行し、
前記検査を終えると、前記検査室内から粉体を排出した後に前記閉鎖を解除する、
連続生産システム。 - 前記検査選別装置は、
前記第1処理装置から前記検査室へ繋がる経路を開閉する入口側仕切弁を有しており、
前記検査室に前記所定量の粉体が溜まると、前記入口側仕切弁を閉じた後に前記検査室内の粉体の検査を実行し、
前記検査室内の粉体の検査を終えると、前記検査室内から粉体を排出した後に前記入口側仕切弁を開く、
請求項1に記載の連続生産システム。 - 前記検査選別装置は、
前記検査室の底部に設けられており、前記検査室の排出経路を開閉する出口側仕切弁を有しており、
前記出口側仕切弁が閉じた状態で前記検査室に前記所定量の粉体が溜まると、前記第1処理装置から前記検査室へ繋がる経路を閉鎖した後に前記検査室内の粉体の検査を実行し、
前記検査を終えると、前記出口側仕切弁を開いて前記検査室内から粉体を排出した後に前記閉鎖を解除する、
請求項1または2に記載の連続生産システム。 - 前記検査選別装置は、
前記検査室の排出経路を、前記検査室から前記第2処理装置へ繋がる経路と、前記検査室から前記第2処理装置以外へ繋がる経路との間で切り替える流路切替手段を有しており、
前記検査を終えると、前記検査の結果に応じて前記流路切替手段で前記排出経路を切り替え、前記検査室内から粉体を排出した後に前記閉鎖を解除する、
請求項1から3の何れか一項に記載の連続生産システム。 - 前記検査選別装置は、前記検査室に溜まる粉体が所定の高さに達したか否かを検知するセンサを有しており、前記検査室に前記所定量の粉体が溜まったことを前記センサで検知すると前記検査を実行する、
請求項1から4の何れか一項に記載の連続生産システム。 - 前記第1処理装置は、前記検査の結果に応じて動作量を調整する、
請求項1から5の何れか一項に記載の連続生産システム。 - 前記第1処理装置は、原料の粉体を乾燥させる乾燥機であり、
前記第2処理装置は、原料の粉体を混合させる混合機である、
請求項1から6の何れか一項に記載の連続生産システム。 - 原料の粉体から製品を連続生産する連続生産方法であって、
原料の粉体に第1の処理を行う第1処理装置と、前記第1処理装置が前記第1の処理を行った粉体へ第2の処理を行う第2処理装置との間の経路に設けられており、前記第1処理装置から送られた粉体が流入する検査室を有する検査選別装置において、
前記検査室に所定量の粉体が溜まると、前記第1処理装置から前記検査室へ繋がる経路を閉鎖した後に前記検査室内の粉体の検査を実行し、
前記検査を終えると、前記検査室内から粉体を排出した後に前記閉鎖を解除する、
連続生産方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018566605A JP6578456B1 (ja) | 2018-02-22 | 2018-02-22 | 連続生産システム、方法および検査選別装置 |
PCT/JP2018/006513 WO2019163059A1 (ja) | 2018-02-22 | 2018-02-22 | 連続生産システム及び方法 |
US16/975,094 US11944590B2 (en) | 2018-02-22 | 2018-02-22 | Continuous manufacturing system and method |
EP18907262.2A EP3757566A4 (en) | 2018-02-22 | 2018-02-22 | CONTINUOUS MANUFACTURING SYSTEM AND METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/006513 WO2019163059A1 (ja) | 2018-02-22 | 2018-02-22 | 連続生産システム及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163059A1 true WO2019163059A1 (ja) | 2019-08-29 |
Family
ID=67688262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006513 WO2019163059A1 (ja) | 2018-02-22 | 2018-02-22 | 連続生産システム及び方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11944590B2 (ja) |
EP (1) | EP3757566A4 (ja) |
JP (1) | JP6578456B1 (ja) |
WO (1) | WO2019163059A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020130088A1 (ja) * | 2018-12-19 | 2020-06-25 | 三菱ケミカルエンジニアリング株式会社 | 連続生産システム及び連続生産方法 |
CN113695260A (zh) * | 2021-10-26 | 2021-11-26 | 张家港市沃尔特精密机械有限公司 | 一种能检测粉料干燥率的分选出料机 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023174448A (ja) * | 2022-05-27 | 2023-12-07 | ニプロ株式会社 | 粉体検査装置および粉体検査方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11267596A (ja) * | 1998-03-23 | 1999-10-05 | Kubota Corp | 粒状体検査装置 |
JP2008183168A (ja) * | 2007-01-30 | 2008-08-14 | Ebara Corp | 錠剤製造システム |
WO2009130539A1 (en) * | 2008-04-23 | 2009-10-29 | Gea Process Engineering (Nps) Ltd. | Apparatus for analysing solid, particulate material and method of analysing using the apparatus |
JP2012525895A (ja) * | 2009-05-07 | 2012-10-25 | ジーイーエイ・ファーマ・システムズ・リミテッド | 錠剤の製造モジュール及び錠剤の連続製造方法 |
JP5798400B2 (ja) | 2011-07-26 | 2015-10-21 | 富士電機株式会社 | 医薬品製造制御装置、医薬品製造制御方法、医薬品製造制御プログラム、医薬品製造システム |
JP2018034113A (ja) * | 2016-08-31 | 2018-03-08 | フロイント産業株式会社 | 逸脱処理装置及び逸脱処理方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4117935A (en) * | 1976-06-09 | 1978-10-03 | Bedford Engineering Corp. | Apparatus for and method of measuring product mass |
US4193502A (en) * | 1977-04-29 | 1980-03-18 | Westinghouse Electric Corp. | Pellet dimension checker |
US4222488A (en) * | 1979-08-20 | 1980-09-16 | Western Electric Company, Inc. | Methods and apparatus for sorting articles |
US4570783A (en) * | 1983-08-17 | 1986-02-18 | Newcom William F | Method for automatic operation of an accumulator |
DE3929709A1 (de) * | 1989-09-07 | 1991-03-14 | Merten Kg Pulsotronic | Einrichtung zum ausscheiden von metallteilchen |
US5157976A (en) * | 1990-07-27 | 1992-10-27 | Hajime Industries Ltd. | Powder granule sample inspection apparatus |
US5106241A (en) * | 1990-08-14 | 1992-04-21 | Matsui Manufacturing Co., Ltd. | Multi material switching type collector |
JPH0650761Y2 (ja) * | 1990-09-13 | 1994-12-21 | 日本アルミニウム工業株式会社 | 粉粒体検査装置 |
AU3585497A (en) * | 1996-06-27 | 1998-01-14 | Weyerhaeuser Company | Fluid switch |
US7057722B2 (en) * | 2002-04-04 | 2006-06-06 | Euro-Celtique S.A. | Method and apparatus for determining the homogeneity of a granulation during tableting |
JP3916230B2 (ja) * | 2002-10-31 | 2007-05-16 | 日機装株式会社 | 粉体測定装置 |
WO2014080322A1 (en) * | 2012-11-20 | 2014-05-30 | Teknologian Tutkimuskeskus Vtt | An optical sampling apparatus and method for utilizing the sampling apparatus |
JP6767079B2 (ja) * | 2017-09-29 | 2020-10-14 | 三菱ケミカルエンジニアリング株式会社 | 粉体輸送用の配管および粉体輸送方法 |
JP6549760B1 (ja) * | 2018-06-26 | 2019-07-24 | 三菱ケミカルエンジニアリング株式会社 | 生産システム、生産方法、及び制御装置 |
JP6481916B1 (ja) * | 2018-06-26 | 2019-03-13 | 三菱ケミカルエンジニアリング株式会社 | 生産システム、生産方法及び制御装置 |
JP7224166B2 (ja) * | 2018-12-19 | 2023-02-17 | 三菱ケミカルエンジニアリング株式会社 | 連続生産システム及び連続生産方法 |
EP3756640A1 (en) * | 2019-06-26 | 2020-12-30 | Fette Compacting GmbH | System and method for continuous production of solid dosage forms |
-
2018
- 2018-02-22 JP JP2018566605A patent/JP6578456B1/ja active Active
- 2018-02-22 WO PCT/JP2018/006513 patent/WO2019163059A1/ja unknown
- 2018-02-22 US US16/975,094 patent/US11944590B2/en active Active
- 2018-02-22 EP EP18907262.2A patent/EP3757566A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11267596A (ja) * | 1998-03-23 | 1999-10-05 | Kubota Corp | 粒状体検査装置 |
JP2008183168A (ja) * | 2007-01-30 | 2008-08-14 | Ebara Corp | 錠剤製造システム |
WO2009130539A1 (en) * | 2008-04-23 | 2009-10-29 | Gea Process Engineering (Nps) Ltd. | Apparatus for analysing solid, particulate material and method of analysing using the apparatus |
JP2012525895A (ja) * | 2009-05-07 | 2012-10-25 | ジーイーエイ・ファーマ・システムズ・リミテッド | 錠剤の製造モジュール及び錠剤の連続製造方法 |
JP5798400B2 (ja) | 2011-07-26 | 2015-10-21 | 富士電機株式会社 | 医薬品製造制御装置、医薬品製造制御方法、医薬品製造制御プログラム、医薬品製造システム |
JP2018034113A (ja) * | 2016-08-31 | 2018-03-08 | フロイント産業株式会社 | 逸脱処理装置及び逸脱処理方法 |
Non-Patent Citations (4)
Title |
---|
"Development of innovative continuous granulating apparatus Granuformer concept model ", GRANUFORMER, vol. 56, no. 7, 1 July 2014 (2014-07-01), pages 2 - 3, XP009522999 * |
See also references of EP3757566A4 |
SHIGEMI ISOBE: "Continuous production system for pharmaceuticals (solid preparations)", FUNTAI GIJUTSU , vol. 8, no. 12, 31 December 2016 (2016-12-31), pages 27 - 31, XP009522980, ISSN: 1883-3292 * |
TERADA TAKASHI: "application of pat tools on continuous manufacturing of solid dosage forms", JOURNAL OF PHARMACEUTICAL MACHINERY AND ENGINEERING, vol. 25, no. 5, 22 December 2016 (2016-12-22), pages 55 (451) - 58 (454), XP009522996, ISSN: 2186-3237 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020130088A1 (ja) * | 2018-12-19 | 2020-06-25 | 三菱ケミカルエンジニアリング株式会社 | 連続生産システム及び連続生産方法 |
US11964446B2 (en) | 2018-12-19 | 2024-04-23 | Mitsubishi Chemical Engineering Corporation | Continuous production system and continuous production method |
CN113695260A (zh) * | 2021-10-26 | 2021-11-26 | 张家港市沃尔特精密机械有限公司 | 一种能检测粉料干燥率的分选出料机 |
CN113695260B (zh) * | 2021-10-26 | 2021-12-31 | 张家港市沃尔特精密机械有限公司 | 一种能检测粉料干燥率的分选出料机 |
Also Published As
Publication number | Publication date |
---|---|
US20200397658A1 (en) | 2020-12-24 |
JP6578456B1 (ja) | 2019-09-18 |
US11944590B2 (en) | 2024-04-02 |
JPWO2019163059A1 (ja) | 2020-02-27 |
EP3757566A1 (en) | 2020-12-30 |
EP3757566A4 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10189054B2 (en) | Deviation handling apparatus and deviation handling method | |
JP6578456B1 (ja) | 連続生産システム、方法および検査選別装置 | |
JP6549760B1 (ja) | 生産システム、生産方法、及び制御装置 | |
WO2020003652A1 (ja) | 生産システム、生産方法、制御装置、及び生産プロセスの解析方法 | |
WO2020130088A1 (ja) | 連続生産システム及び連続生産方法 | |
KR20140109448A (ko) | 습기 판단과 제어를 위한 방법 및 장치 | |
BRPI0925048B1 (pt) | Módulo para produção de comprimidos e método para a produção contínua de comprimidos | |
JP5918808B2 (ja) | 錠剤の製造モジュール及び錠剤の連続製造方法 | |
Sacher et al. | PAT implementation for advanced process control in solid dosage manufacturing–A practical guide | |
CN1906477B (zh) | 松散产品的光谱特性的测量方法及其实现装置 | |
Treffer et al. | Hot melt extrusion as a continuous pharmaceutical manufacturing process | |
JP2020004367A (ja) | 生産システム、生産方法及び制御装置 | |
US20240024922A1 (en) | System For Automatically Inspecting And Sorting Pellets | |
WO2023228820A1 (ja) | 粉体検査装置および粉体検査方法 | |
US10088417B2 (en) | Apparatus and method for analyzing a flow of material | |
JP2024062189A (ja) | 粉体検査装置 | |
JP2024044255A (ja) | 粉体流通装置 | |
JP7012512B2 (ja) | 管理装置、製造システムおよび管理方法 | |
JP2024035408A (ja) | 熱分析装置 | |
Gupta et al. | Process Analytical Technology-Recent Advances | |
DE102023123302A1 (de) | Thermoanalysevorrichtung | |
JPH09292331A (ja) | 粉体成分測定装置 | |
JPH1062411A (ja) | ポリオレフィン粉粒体分析装置 | |
JPH02252524A (ja) | 押出成形における異物検査,制御方法 | |
JP2000102738A (ja) | 穀物自主検定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018566605 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18907262 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018907262 Country of ref document: EP Effective date: 20200922 |