WO2019160109A1 - 赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維 - Google Patents

赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維 Download PDF

Info

Publication number
WO2019160109A1
WO2019160109A1 PCT/JP2019/005676 JP2019005676W WO2019160109A1 WO 2019160109 A1 WO2019160109 A1 WO 2019160109A1 JP 2019005676 W JP2019005676 W JP 2019005676W WO 2019160109 A1 WO2019160109 A1 WO 2019160109A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
infrared
infrared absorbing
absorbing resin
polyethylene terephthalate
Prior art date
Application number
PCT/JP2019/005676
Other languages
English (en)
French (fr)
Inventor
直希 小川
文人 小林
渉 吉住
北原 清志
遼 瀧川
Original Assignee
共同印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共同印刷株式会社 filed Critical 共同印刷株式会社
Priority to US16/967,955 priority Critical patent/US11981808B2/en
Priority to CN201980011616.XA priority patent/CN111684012B/zh
Priority to EP19755081.7A priority patent/EP3753983A4/en
Priority to JP2019572297A priority patent/JP7183200B2/ja
Publication of WO2019160109A1 publication Critical patent/WO2019160109A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters

Definitions

  • the present invention relates to an infrared-absorbing resin composition and molded articles and fibers containing the same.
  • the present invention relates to an infrared-absorbing resin composition containing a tungsten-based infrared-absorbing pigment and a specific polyethylene terephthalate, and a molded article and fiber using the same.
  • Tungsten pigments are known as infrared absorbers.
  • Patent Document 1 uses a tungsten-based pigment to impart a solar radiation shielding function to a solar radiation shielding structure.
  • Patent Document 2 discloses a resin composition containing such a tungsten pigment.
  • patent document 3 is disclosing the resin composition containing such a tungsten-type pigment and polyester resin, and a molded article using the same.
  • Patent Document 4 discloses a fiber spun from an infrared-absorbing resin composition containing polyethylene terephthalate and antimony oxide and a fabric for preventing infrared transmission using the same.
  • An object of the present invention is to provide a resin composition containing a tungsten pigment and a molded article and fiber containing the same, which can provide high infrared absorption and good moldability.
  • ⁇ Aspect 1 An infrared absorbing resin composition comprising a tungsten-based infrared absorbing pigment and polyethylene terephthalate, wherein the polyethylene terephthalate is a crystalline copolymerized polyethylene terephthalate having an intrinsic viscosity of 0.60 or more, Outside absorbent resin composition.
  • ⁇ Aspect 2 The infrared-absorbing resin composition according to aspect 1, wherein the polyethylene terephthalate has an intrinsic viscosity of 0.60 or more and 1.30 or less.
  • ⁇ Aspect 3 The infrared-absorbing resin composition according to aspect 1 or 2, wherein the polyethylene terephthalate has a melting point of 210 ° C or higher and 240 ° C or lower.
  • ⁇ Aspect 4 The tungsten-based infrared absorbing pigment is General formula (1): M x W y O z ⁇ wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, One or more elements selected from the group consisting of Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, and O is oxygen.
  • X, y, and z are each a positive number, 0 ⁇ x / y ⁇ 1, and 2.2 ⁇ z / y ⁇ 3.0 ⁇ equation (2): in W y O z ⁇ wherein, W is tungsten, O is oxygen, y and z, its Any one of Embodiments 1 to 3, selected from the group consisting of tungsten oxides each having a positive number and 2.45 ⁇ z / y ⁇ 2.999 ⁇ having a magnetic phase represented by: The infrared absorbing resin composition according to 1. ⁇ Aspect 5 >> The infrared absorbing resin composition according to any one of Embodiments 1 to 4, further comprising a dispersant that is an acrylic polymer.
  • ⁇ Aspect 6 A molded article comprising the infrared absorbing resin composition according to any one of embodiments 1 to 5.
  • ⁇ Aspect 7 A method for producing a molded article, comprising molding the infrared absorbing resin composition according to any one of embodiments 1 to 5.
  • ⁇ Aspect 8 A fiber comprising the infrared absorbing resin composition according to any one of embodiments 1 to 5.
  • ⁇ Aspect 9 The fiber according to aspect 8, wherein the polyethylene terephthalate of the infrared absorbing resin composition has an intrinsic viscosity of 0.60 or more and less than 0.80.
  • ⁇ Aspect 10 >> The fiber according to the aspect 8 or 9, wherein the polyethylene terephthalate contains isophthalic acid or an ester thereof as a third monomer.
  • ⁇ Aspect 11 A fabric comprising the fiber according to any one of aspects 8 to 10.
  • FIG. 1 shows the absorption spectrum in the UV-vis-NIR range measured for the inventive and comparative sheets.
  • FIG. 2 shows photographed images of the fabrics of Example 6, Comparative Example 7, and Comparative Example 8.
  • FIG. 3 shows the transmission spectra of the fabrics of Example 6, Comparative Example 7, and Comparative Example 8.
  • the infrared absorbing resin composition of the present invention contains a tungsten-based infrared absorbing pigment and polyethylene terephthalate.
  • the polyethylene terephthalate is a crystalline copolymerized polyethylene terephthalate having an intrinsic viscosity of 0.60 or more.
  • the inventors of the present invention use an infrared-absorbing resin composition containing a tungsten-based infrared-absorbing pigment and polyethylene terephthalate as the polyethylene terephthalate and using a crystalline copolymerized polyethylene terephthalate having an intrinsic viscosity of 0.60 or more. In such a case, it was found that high infrared absorption and good moldability can be achieved at the same time.
  • polyethylene terephthalate has a specific intrinsic viscosity and is a crystalline copolymerized polyethylene terephthalate, so that the resin composition can be processed at the time of processing. It is considered that the occurrence of irregularities, fiber breakage during spinning, etc. could be suppressed and the dispersibility of the tungsten-based infrared absorbing pigment could be improved.
  • the reason why the unevenness during processing in the resin composition of the present invention can be suppressed is considered to be that the use of this specific polyethylene terephthalate can suppress the adverse effects caused by the volatile components generated from the resin composition.
  • the infrared-absorbing resin composition of the present invention can have a high infrared-absorbing property by being able to highly disperse the tungsten-based infrared-absorbing pigment, and can suppress the occurrence of irregularities during processing of the resin composition. By being able to, it has high moldability. Since the unevenness of the resin composition is related to a poor appearance of the molded product when the resin composition is molded, insufficient strength, etc., the molded product obtained by the infrared absorbing resin composition of the present invention is very advantageous. is there.
  • tungsten-based infrared absorbing pigment examples include particles of a tungsten oxide compound used for infrared absorbing applications.
  • the general formula (1) M x W y O z ⁇ wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr , Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B And one or more elements selected from the group consisting of F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, x, y, and z are positive numbers, 0 ⁇ x / y ⁇ 1, and 2.2 ⁇ z / y ⁇ 3.0 ⁇ And a composite tungsten oxide represented by the general formula (2): W y O z ⁇ W A tungsten oxide
  • a method for producing a tungsten-based infrared absorbing pigment a method for producing a composite tungsten oxide or a tungsten oxide having a magnetic phase described in JP-A-2005-187323 can be used.
  • the M element is one of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. It can be more than types.
  • the composite tungsten oxide represented by the general formula (1) may be treated with a silane coupling agent to improve near infrared absorption and transparency in the visible light wavelength region.
  • x / y indicating the addition amount of the element M is more than 0, a sufficient amount of free electrons is generated and a near infrared absorption effect can be sufficiently obtained. As the amount of the element M added is increased, the supply amount of free electrons is increased and the near-infrared absorption effect is also increased.
  • the value of x / y may be set to 1 or less to prevent the generation of an impurity phase in the pigment-containing layer.
  • the value of x / y may be 0.001 or more, 0.2 or more, or 0.30 or more, and may be 0.85 or less, 0.5 or less, or 0.35 or less.
  • the value of x / y can in particular be 0.33.
  • the composite tungsten oxide represented by the general formula (1) has a hexagonal crystal structure or a hexagonal crystal structure
  • transmission of the infrared absorbing material fine particles in the visible light wavelength region is increased
  • the absorption in the near-infrared light wavelength region increases.
  • the cation of the element M is added to the hexagonal voids, the transmission in the visible light wavelength region is increased, and the absorption in the near infrared wavelength region is increased.
  • an element M having a large ionic radius is added, a hexagonal crystal is formed.
  • hexagonal crystals are easily formed when an element having a large ionic radius such as Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, and Fe is added.
  • an element having a large ionic radius such as Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, and Fe is added.
  • the present invention is not limited to these elements, and elements other than these elements may be present as long as the additive element M exists in the hexagonal void formed by the WO 6 unit.
  • the addition amount of the additive element M can be 0.2 or more and 0.5 or less in terms of x / y, It can be 0.30 or more and 0.35 or less, and particularly 0.33.
  • the value of x / y becomes 0.33 it is considered that the additive element M is arranged in substantially all of the hexagonal voids.
  • tetragonal or cubic tungsten bronzes also have a near infrared absorption effect. These crystal structures tend to change the absorption position in the near-infrared light wavelength region, and the absorption position tends to move to the longer wavelength side in the order of cubic ⁇ tetragonal ⁇ hexagonal. Further, it is in the order of hexagonal crystal ⁇ tetragonal crystal ⁇ cubic crystal that has little absorption in the visible light wavelength region. For this reason, hexagonal tungsten bronze may be used for applications that transmit light in the visible light wavelength region and absorb light in the near infrared light wavelength region.
  • the so-called “magnetic phase” having a composition ratio in which the value of z / y satisfies the relationship of 2.45 ⁇ z / y ⁇ 2.999 is: Because of its high stability and high absorption characteristics in the near infrared wavelength region, it is preferably used as a near infrared absorbing pigment.
  • the dispersed particle diameter of the tungsten-based infrared absorbing pigment can be selected depending on the purpose of use. First, when applying while maintaining transparency, it is preferable that the dispersed particles have a volume average of 2000 nm or less. If the dispersed particle diameter is 2000 nm or less, the difference between the peak of the transmittance (reflectance) in the visible light wavelength region and the bottom of the absorption in the near-infrared light wavelength region becomes large.
  • the volume average dispersed particle diameter of the tungsten-based infrared absorbing pigment is preferably 200 nm or less, more preferably 100 nm or less, 50 nm or less, or 30 nm or less.
  • the dispersed particle diameter of the infrared-absorbing material fine particles is 200 nm or less, geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased.
  • the dispersed particle diameter is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, a smaller dispersed particle size is preferable. On the other hand, if the dispersed particle diameter is 1 nm or more, 3 nm or more, 5 nm or more, or 10 nm or more, industrial production tends to be easy.
  • the volume-average dispersed particle size of the tungsten-based infrared absorbing pigment is determined by irradiating fine particles in Brownian motion with laser light and obtaining the particle size from the light scattering information obtained from the microtrack of the dynamic light scattering method. It measured using the particle size distribution analyzer (made by Nikkiso Co., Ltd.).
  • the content of the tungsten-based infrared absorbing pigment in the resin composition is 0.1% by weight or more, 0.5% by weight or more, 1.0% by weight or more, 2.0% by weight or more, or 3.0% by weight. It may be 20% by weight or less, 10% by weight or less, 8.0% by weight or less, 5.0% by weight or less, 3.0% by weight or less, or 1.0% by weight or less. .
  • the content may be 0.1 wt% or more and 20 wt% or less, or 0.5 wt% or more and 5.0 wt% or less.
  • the polyethylene terephthalate contained in the resin composition of the present invention is a crystalline copolymerized polyethylene terephthalate having an intrinsic viscosity of 0.60 or more.
  • Intrinsic viscosity is a physical property value related to the molecular weight, degree of branching, etc. of the polymer, and the intrinsic viscosity referred to in this specification is measured by a capillary viscometer in accordance with JIS K 7367-5: 2000. Value.
  • the intrinsic viscosity of polyethylene terephthalate is 0.60 or more, 0.65 or more, 0.70 or more, 0.75 or more, 0.80 or more, 0.85 or more, 0.90 or more, 0.95 or more, 1.00 Or may be 1.10 or less, 1.25 or less, 1.20 or less, 1.15 or less, 1.10 or less, 1.05 or less, 1.00 or less, It may be 95 or less, 0.90 or less, 0.85 or less, 0.80 or less, 0.75 or less, or 0.70 or less. It is considered that the dispersibility of the tungsten-based infrared absorbing pigment can be increased when polyethylene terephthalate has such an intrinsic viscosity.
  • the intrinsic viscosity may be 0.60 or more and 1.30 or less.
  • the resin composition of the present invention when used as a fiber, it is preferably 0.60 or more and 0.80 or less.
  • the melting point of polyethylene terephthalate may be 210 ° C or higher, 215 ° C or higher, 220 ° C or higher, 225 ° C or higher, or 230 ° C or higher, and 240 ° C or lower, 235 ° C or lower, 230 ° C or lower, or 225 ° C or lower. May be.
  • a molded product can be molded under an appropriate temperature condition.
  • the melting point may be 210 ° C. or higher and 240 ° C. or lower, or 215 ° C.
  • the resin composition can be processed at a temperature at which volatile components are hardly generated, and it is easy to suppress the occurrence of unevenness during processing of the resin composition, fiber breakage during spinning, and the like.
  • the polyethylene terephthalate is copolymerized polyethylene terephthalate.
  • the copolymerized polyethylene terephthalate is a polyethylene obtained by copolymerization using not only ethylene glycol as a diol component and terephthalic acid or an ester thereof as a dicarboxylic acid component, but also a third monomer.
  • Polyethylene terephthalate is likely to become amorphous due to the inclusion of the third monomer, but the polyethylene terephthalate used in the present invention is only crystalline among the copolymerized polyethylene terephthalate containing the third monomer. The inventors have found that an advantageous effect can be provided only when such crystalline copolymerized polyethylene terephthalate is used.
  • the third monomer is not particularly limited as long as the obtained polyethylene terephthalate is crystalline as a diol component, and thereby the advantageous effects of the present invention can be obtained, but aliphatic diols such as propylene glycol, butanediol, etc. Hexanediol, octanediol, decanediol, neopentyl glycol; alicyclic diols such as 1,4-cyclohexanedimethanol; aromatic diols such as bisphenol A, bisphenol S, etc. or their ethylene oxide adducts; or these Mention may be made of triols, for example trimethylolpropane. You may use these diol components in 20 mol% or less, 10 mol% or less, or 5 mol% or less of range.
  • the third monomer is not particularly limited as long as the obtained polyethylene terephthalate is crystalline as the dicarboxylic acid component, and thereby the advantageous effects of the present invention can be obtained, but aliphatic dicarboxylic acids such as malonic acid, succinic acid, etc. Acids, glutaric acid, adipic acid, sebacic acid, and azelaic acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid And salts thereof, such as sodium sulfoisophthalate, and esters thereof.
  • aliphatic dicarboxylic acids such as malonic acid, succinic acid, etc. Acids, glutaric acid, adipic acid, sebacic acid, and azelaic acid
  • alicyclic dicarboxylic acids such as 1,4-cyclohe
  • copolymer polyethylene terephthalate using isophthalic acid or an ester thereof as the third monomer is preferable. You may use these dicarboxylic acid components in 20 mol% or less, 10 mol% or less, or 5 mol% or less of range.
  • Polyethylene terephthalate may be contained in the infrared absorbing resin composition at 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 99 mass% or less, 98 mass% or less, 95 mass% or less, 93 mass% or less, 90 mass% or less, 85 mass% or less, 80 mass% or less, or 75 mass% or less may be contained.
  • the content may be 70% by mass or more and 99% by mass or less, or 80% by mass or more and 98% by mass or less.
  • the infrared absorbing resin composition of the present invention may contain a dispersant for highly dispersing the tungsten-based infrared absorbing pigment in the polyethylene terephthalate.
  • the dispersant that can be used can be selected according to the type of the tungsten-based infrared absorbing pigment, but a dispersant that is an acrylic polymer, for example, a polymer dispersant having an acrylic main chain and a hydroxyl group or an epoxy group is used. Can be used. Examples of such a dispersant include a dispersant as described in Patent Document 2.
  • the dispersant is 0.1 part by mass, 0.5 part by mass or more, 1 part by mass or more, 3 parts by mass or more, 5 parts by mass or more, or 10 parts by mass with respect to 1 part by mass of the tungsten-based infrared absorbing pigment.
  • it may be contained in the infrared absorbing resin composition, 30 parts by mass or less, 20 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, 3 parts by mass or less, 1 part by mass or less, 0.5
  • It may be contained in the infrared-absorbing resin composition in an amount of less than or equal to 0.1 parts by mass.
  • the amount may be 0.5 parts by mass or more and 10 parts by mass or less, or 1 part by mass or more and 5 parts by mass or less with respect to 1 part by mass of the tungsten-based infrared absorbing pigment.
  • the infrared-absorbing resin composition of the present invention may further contain another thermoplastic resin as long as the advantageous effects of the present invention are obtained.
  • a thermoplastic resin for example, a polyolefin resin, a polystyrene resin, a polyester resin, an acrylic resin, a polyamide resin, a polyvinyl alcohol resin, a polyurethane resin, a polyolefin resin, Examples include polycarbonate resins, polysulfone resins, and derivatives thereof, and mixtures thereof.
  • the infrared absorbing resin composition of the present invention may further contain various additives such as an antioxidant, a plasticizer, a colorant, a pigment, and a filler, as long as the advantageous effects of the present invention are obtained.
  • the molded article of the present invention contains the above infrared absorbing resin composition.
  • the molded article of the present invention is very suitable because it has very little unevenness during molding.
  • Examples of the molded product of the present invention include molded products obtained by various molding methods such as injection molding, extrusion molding, and blow molding. Further, the molded product of the present invention may be in the form of a sheet obtained by hot pressing or the like. Such a molded product may be a three-dimensional molded product, a film, a sheet, or the like, and can be various products such as a packaging container, a building member, an automobile part, a machine part, a daily necessities, and the like.
  • the method for producing a molded article of the present invention includes molding the above infrared absorbing resin composition at a temperature of 230 ° C. to 260 ° C.
  • the method for producing a molded article of the present invention can include kneading the infrared absorbing resin composition to obtain a master batch, and molding the master batch.
  • a pellet-shaped infrared absorbing resin composition (masterbatch) Can be prepared.
  • the kneading can be performed using, for example, a batch kneader such as a kneader, a Banbury mixer, a Henschel mixer, a mixing roll, or a continuous kneader such as a twin screw extruder or a short screw extruder.
  • kneading can be carried out at the above molding temperature, that is, a temperature of 230 ° C. to 260 ° C. according to the material to be used.
  • the molded product of the present invention can be produced by molding the master batch thus obtained by a known molding method such as injection molding, extrusion molding or blow molding. Moreover, you may manufacture the molded article of a sheet form by performing hot press etc. about the infrared rays absorbing resin composition kneaded as mentioned above.
  • the fiber of the present invention can be obtained, for example, by melt spinning the above infrared-absorbing resin composition.
  • melt spinning a generally used melt spinning apparatus can be used.
  • the intrinsic viscosity of polyethylene terephthalate used in the infrared absorbing resin composition is particularly preferably 0.60 or more and less than 0.80.
  • the polyethylene terephthalate used in the infrared absorbing resin composition is preferably a crystalline copolymerized polyethylene terephthalate containing isophthalic acid or an ester thereof as the third monomer.
  • the fiber of the present invention may be spun only from the resin composition as described above, and the fiber of the present invention contains 50% by weight or more, 60% by weight or more, 70% by weight or more of the resin composition as described above, 80 wt% or more, 90 wt% or more, or 95 wt% or more may be included, and 98 wt% or less, 95 wt% or less, 90 wt% or less, 80 wt% or less, or 70 wt% or less. May be.
  • the fiber of the present invention can have well-known characteristics as described in Patent Document 4 described above, for example, other than such characteristics.
  • the method for producing the fiber of the present invention includes melt-kneading the infrared absorbing resin composition as described above, and melt-spinning the melt-kneaded resin composition.
  • a pellet-shaped infrared absorbing resin composition (masterbatch) is obtained. It can be prepared.
  • the kneading can be performed using, for example, a batch kneader such as a kneader, a Banbury mixer, a Henschel mixer, a mixing roll, or a continuous kneader such as a twin screw extruder or a short screw extruder.
  • kneading can be performed at a temperature of 230 ° C. to 260 ° C., for example, depending on the material to be used.
  • the fabric of this invention contains the above fibers. According to the study by the present inventors, such a fabric has a higher infrared absorption characteristic than a fabric made of fibers containing other infrared absorbing materials as used in the prior art, It was found that camera voyeurism can be prevented more effectively.
  • the fabric of the present invention containing a tungsten-based infrared absorbing pigment can have a high temperature rise effect when absorbing infrared rays.
  • the fabric of the present invention can also have quick drying properties.
  • the fabric of the present invention has a large amount of the above-described fibers of the present invention disposed on the surface exposed during use.
  • the fiber of the present invention is 75% more on the surface than the surface appearing on the 25% surface. The effect of increasing the temperature can be increased by making the exposed surface an exposed surface.
  • the fabric of the present invention may be composed only of the fibers as described above, and the fabric of the present invention contains 50% by weight, 60% by weight, 70% by weight, 80% by weight or more of the above fibers. 90% by weight or more, or 95% by weight or more, or 98% by weight or less, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less.
  • the fabric of the present invention can have well-known characteristics as described in, for example, the above-mentioned Patent Document 4 except for such characteristics.
  • the infrared ray absorbing resin composition of Example 1 was obtained.
  • isophthalic acid was used for PET used here as a 3rd monomer.
  • This resin composition was formed into a sheet with a hot press machine to obtain an infrared absorbing resin sheet having a thickness of 50 ⁇ m.
  • crystalline copolymerized PET Belpet IP121B, manufactured by Bell Polyester Products Co., Ltd.
  • IV intrinsic viscosity
  • amorphous PET Belpet E-03, manufactured by Bell Polyester Products Co., Ltd.
  • IV intrinsic viscosity
  • crystalline PET Belpet IP140B, manufactured by Bell Polyester Products Co., Ltd.
  • IV intrinsic viscosity
  • UV-vis-NIR absorption spectrum of the infrared absorbing resin sheet of each example was measured, and the total light transmittance and the minimum transmittance (NIR transmittance) in the near infrared region (800 to 2500 nm) were evaluated.
  • a spectrophotometer UH4150 JIS K 0115: 2004 compliant
  • Hitachi High-Tech Science was used as a measuring device.
  • the processability of the resin composition was evaluated by the unevenness of the surface.
  • the surface of the resin composition is observed with a digital microscope (Hybrid Laser Microscope OPTELICS manufactured by Lasertec), and the area ratio of the recessed portion in the region of 25 ⁇ m ⁇ 25 ⁇ m is measured.
  • the “dented portion” is defined as a region expressed in black by binarizing a color image obtained by observing with a digital microscope.
  • this resin composition was fiberized with a multifilament melt spinning apparatus to obtain a fiber of Example 4 having a thickness of 75 denier 24 filaments. During spinning, spinning was carried out for 1 hour at a temperature of 290 ° C., an extrusion rate of 4 kg / h, and a take-up speed of 1500 m / min.
  • crystalline copolymerized PET Belpet IP121B, manufactured by Bell Polyester Products Co., Ltd.
  • a fabric having a basis weight of 170 g / m 2 was obtained by weaving a 3/1 twill weave with a Shonhel type loom using the double yarn as a weft.
  • This fabric was a polyester / wool blend, the weft blend ratio was 41%, and the warp was 50:50 polyester / wool, 250 denier, and a blend ratio of 59%.
  • crystalline homo-PET Belpet PBK1, manufactured by Bell Polyester Products Co., Ltd.
  • IV intrinsic viscosity
  • melt spinning suitability of the resin composition was evaluated. When fiber breakage occurred during melt spinning, the melt-spinning suitability was set as “x”, and other cases were set as “ ⁇ ”.
  • ⁇ Anti-voyeurism> A cloth sample was placed on a plate on which an image was printed, and the image was transmitted with an infrared camera, and the presence or absence of transmission was determined by checking the image. Comparing the normal shooting with the camera and the infrared shooting, the case where the visibility of the image is lower in the infrared shooting is set to “ ⁇ ”, and the case other than that is set to “X”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

本発明は、高い赤外線吸収性及び良好な成形性を与えることができる、タングステン系顔料を含有する樹脂組成物並びにそれを含む成形品及び繊維を提供することを目的とする。 本発明は、タングステン系赤外線吸収性顔料及びポリエチレンテレフタレートを含む赤外吸収性樹脂組成物であって、前記ポリエチレンテレフタレートは、0.60以上の固有粘度を有し、かつ結晶性の共重合ポリエチレンテレフタレートである、赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維に関する。

Description

赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維
 本発明は、赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維に関する。特に、本発明は、タングステン系の赤外線吸収性顔料及び特定のポリエチレンテレフタレートを含有する赤外吸収性樹脂組成物並びにこれを用いた成形品及び繊維に関する。
 赤外線吸収剤として、タングステン系顔料が知られている。例えば、特許文献1は、タングステン系顔料を、日射遮蔽用構造体に日射遮蔽機能を付与するために用いている。また、特許文献2は、このようなタングステン系顔料を含む樹脂組成物を開示している。さらに、特許文献3は、このようなタングステン系顔料とポリエステル樹脂とを含む樹脂組成物及びこれを用いた成形品を開示している。
 特許文献4は、ポリエチレンテレフタレートと酸化アンチモンとを含む赤外線吸収性樹脂組成物から紡糸した繊維及びそれを用いた赤外線透過撮影防止用布帛を開示している。
国際公開第2005/087680号 特開2008-024902号公報 特開2011-026440号公報 特開2010-077575号公報
 本発明は、高い赤外線吸収性及び良好な成形性を与えることができる、タングステン系顔料を含有する樹脂組成物並びにそれを含む成形品及び繊維を提供することを目的とする。
 本発明者らは、以下の態様を有する本発明により、上記課題を解決できることを見出した。
《態様1》
 タングステン系赤外線吸収性顔料及びポリエチレンテレフタレートを含む赤外吸収性樹脂組成物であって、前記ポリエチレンテレフタレートは、0.60以上の固有粘度を有し、かつ結晶性の共重合ポリエチレンテレフタレートである、赤外吸収性樹脂組成物。
《態様2》
 前記ポリエチレンテレフタレートは、0.60以上1.30以下の固有粘度を有する、態様1に記載の赤外吸収性樹脂組成物。
《態様3》
 前記ポリエチレンテレフタレートは、210℃以上240℃以下の融点を有する、態様1又は2に記載の赤外吸収性樹脂組成物。
《態様4》
 前記タングステン系赤外線吸収性顔料が、
 一般式(1):M{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、及びIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}で表される複合タングステン酸化物、及び
 一般式(2):W{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}で表されるマグネリ相を有するタングステン酸化物
からなる群より選択される、態様1~3のいずれか一項に記載の赤外吸収性樹脂組成物。
《態様5》
 アクリル系高分子である分散剤をさらに含む、態様1~4のいずれか一項に記載の赤外吸収性樹脂組成物。
《態様6》
 態様1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を含む、成形品。
《態様7》
 態様1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を、成形することを含む、成形品の製造方法。
《態様8》
 態様1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を含む、繊維。
《態様9》
 前記赤外線吸収性樹脂組成物のポリエチレンテレフタレートは、0.60以上0.80未満の固有粘度を有する、態様8に記載の繊維。
《態様10》
 前記ポリエチレンテレフタレートは、第三のモノマーとしてイソフタル酸又はそのエステルを含む、態様8又は9に記載の繊維。
《態様11》
 態様8~10のいずれか一項に記載の繊維を含む、布帛。
図1は、本発明の実施例及び比較例のシートについて測定されたUV-vis-NIRの範囲の吸収スペクトルを示している。 図2は、実施例6、比較例7及び比較例8の布帛の撮影画像を示している。 図3は、実施例6、比較例7及び比較例8の布帛の透過スペクトルを示している。
《赤外吸収性樹脂組成物》
 本発明の赤外吸収性樹脂組成物は、タングステン系赤外線吸収性顔料及びポリエチレンテレフタレートを含む。ここで、そのポリエチレンテレフタレートは、0.60以上の固有粘度を有し、かつ結晶性の共重合ポリエチレンテレフタレートである。
 本発明者らは、タングステン系赤外線吸収性顔料及びポリエチレンテレフタレートを含む赤外吸収性樹脂組成物において、ポリエチレンテレフタレートとして、固有粘度が0.60以上であり、かつ結晶性の共重合ポリエチレンテレフタレートを用いた場合には、高い赤外線吸収性と良好な成形性を両立して発現できることを見出した。
 理論に拘束されないが、本発明の赤外吸収性樹脂組成物においては、ポリエチレンテレフタレートが特定の固有粘度を有し、かつ結晶性の共重合ポリエチレンテレフタレートであることによって、樹脂組成物の加工時の凹凸の発生、紡糸時の繊維切れ等を抑制することができ、かつタングステン系赤外線吸収性顔料の分散性を高めることができたと考えられる。本発明の樹脂組成物において加工時の凹凸を抑制できた理由は、この特定のポリエチレンテレフタレートを用いることによって、樹脂組成物から発生する揮発成分による悪影響が抑制できたためであると考えられる。本発明の赤外吸収性樹脂組成物は、タングステン系赤外線吸収性顔料を高度に分散できることによって高い赤外線吸収性を有することができ、また樹脂組成物の加工時の凹凸の発生を抑制することができることによって高い成形性を有する。樹脂組成物の凹凸は、樹脂組成物を成形した際の成形品の外観不良、強度不足等に関連するため、本発明の赤外吸収性樹脂組成物によって得られる成形品は、非常に有利である。
〈タングステン系赤外線吸収性顔料〉
 タングステン系赤外線吸収性顔料としては、赤外線吸収性用途で用いられるタングステ酸化物系化合物の粒子を挙げることができる。
 例えば、タングステン系赤外線吸収性顔料としては、一般式(1):M{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}で表される複合タングステン酸化物、及び一般式(2):W{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}で表されるマグネリ相を有するタングステン酸化物からなら群より選択される1種以上の赤外線吸収性顔料を挙げることができる。
 タングステン系赤外線吸収性顔料の製法として、特開2005-187323号公報に説明されている複合タングステン酸化物又はマグネリ相を有するタングステン酸化物の製法を使用することができる。
 一般式(1)で表される複合タングステン酸化物には、元素Mが添加されている。この為、一般式(1)におけるz/y=3.0の場合も含めて、自由電子が生成され、近赤外光波長領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線を吸収する材料として有効である。
 特に、近赤外線吸収性材料としての光学特性及び耐候性を向上させる観点から、M元素としては、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe及びSnのうちの1種類以上とすることができる。
 一般式(1)で表される複合タングステン酸化物を、シランカップリング剤で処理することによって、近赤外線吸収性及び可視光波長領域における透明性を高めてもよい。
 元素Mの添加量を示すx/yの値が0超であれば、十分な量の自由電子が生成され近赤外線吸収効果を十分に得ることができる。元素Mの添加量が多いほど、自由電子の供給量が増加し近赤外線吸収効果も上昇するが、通常はx/yの値が1程度で飽和する。x/yの値が1以下として、顔料含有層中における不純物相の生成を防いでもよい。x/yの値は、0.001以上、0.2以上又は0.30以上であってもよく、0.85以下、0.5以下又は0.35以下であってもよい。x/yの値は、特に0.33とすることができる。
 一般式(1)及び(2)において、z/yの値は、酸素量の制御の水準を示す。一般式(1)で表される複合タングステン酸化物は、z/yの値が2.2≦z/y≦3.0の関係を満たすので、一般式(2)で表されるタングステン酸化物と同じ酸素制御機構が働くことに加えて、z/y=3.0の場合でさえも元素Mの添加による自由電子の供給がある。一般式(1)において、z/yの値が2.45≦z/y≦3.0の関係を満たすようにしてもよい。
 一般式(1)で表される複合タングステン酸化物は、六方晶の結晶構造を有するか、又は六方晶の結晶構造からなるとき、赤外線吸収性材料微粒子の可視光波長領域の透過が大きくなり、かつ近赤外光波長領域の吸収が大きくなる。六方晶の空隙に元素Mの陽イオンが添加されて存在するとき、可視光波長領域の透過が大きくなり、近赤外光波長領域の吸収が大きくなる。ここで、一般には、イオン半径の大きな元素Mを添加したときに、六方晶が形成される。具体的には、Cs、K、Rb、Tl、In、Ba、Sn、Li、Ca、Sr、Fe等のイオン半径の大きい元素を添加したときに、六方晶が形成され易い。しかしながら、これらの元素に限定されるものではなく、これらの元素以外の元素でも、WO単位で形成される六角形の空隙に添加元素Mが存在すればよい。
 六方晶の結晶構造を有する複合タングステン酸化物が均一な結晶構造を有する場合には、添加元素Mの添加量は、x/yの値で0.2以上0.5以下とすることができ、0.30以上0.35以下とすることができ、特に0.33とすることができる。x/yの値が0.33となることで、添加元素Mが、六角形の空隙の実質的に全てに配置されると考えられる。
 また、六方晶以外では、正方晶又は立方晶のタングステンブロンズも近赤外線吸収効果がある。これらの結晶構造によって、近赤外光波長領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光波長領域の吸収が少ないのは、六方晶<正方晶<立方晶の順である。このため、可視光波長領域の光をより透過して、近赤外光波長領域の光をより吸収する用途には、六方晶のタングステンブロンズを用いてもよい。
 一般式(2)で表されるマグネリ相を有するタングステン酸化物において、z/yの値が2.45≦z/y≦2.999の関係を満たす組成比を有する所謂「マグネリ相」は、安定性が高く、近赤外光波長領域の吸収特性も高いため、近赤外線吸収顔料として好適に用いられる。
 上記のような顔料は、近赤外光波長領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調が青色系から緑色系となる物が多い。また、そのタングステン系赤外線吸収性顔料の分散粒子径は、その使用目的によって、各々選定することができる。まず、透明性を保持して応用する場合には、体積平均で2000nm以下の分散粒子径を有していることが好ましい。これは、分散粒子径が2000nm以下であれば、可視光波長領域での透過率(反射率)のピークと近赤外光波長領域の吸収とのボトムの差が大きくなり、可視光波長領域の透明性を有する近赤外線吸収顔料としての効果を発揮できるからである。さらに分散粒子径が2000nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光波長領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。
 さらに可視光波長領域の透明性を重視する場合には、粒子による散乱を考慮することが好ましい。具体的には、タングステン系赤外線吸収性顔料の体積平均の分散粒子径は、200nm以下であることが好ましく、好ましくは100nm以下、50nm以下、又は30nm以下であることがより好ましい。赤外線吸収性材料微粒子の分散粒子径が200nm以下になると、幾何学散乱又はミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は分散粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い、散乱が低減し透明性が向上する。さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましい。一方、分散粒子径が1nm以上、3nm以上、5nm以上、又は10nm以上あれば工業的な製造は容易となる傾向にある。ここで、タングステン系赤外線吸収性顔料の体積平均の分散粒子径は、ブラウン運動中の微粒子にレーザー光を照射し、そこから得られる光散乱情報から粒子径を求める動的光散乱法のマイクロトラック粒度分布計(日機装株式会社製)を用いて測定した。
 タングステン系赤外線吸収性顔料の樹脂組成物中の含有量は、0.1重量%以上、0.5重量%以上、1.0重量%以上、2.0重量%以上、又は3.0重量%以上であってもよく、20重量%以下、10重量%以下、8.0重量%以下、5.0重量%以下、3.0重量%以下、又は1.0重量%以下であってもよい。例えば、その含有量は、0.1重量%以上20重量%以下、又は0.5重量%以上5.0重量%以下であってもよい。
〈ポリエチレンテレフタレート〉
 本発明の樹脂組成物に含まれるポリエチレンテレフタレートは、固有粘度が0.60以上であり、かつ結晶性の共重合ポリエチレンテレフタレートである。
 固有粘度は、ポリマーの分子量、分岐度等に関連する物性値であり、本明細書において言及されている固有粘度は、JIS K 7367-5:2000に準拠して、毛細管粘度計によって測定される値である。
 ポリエチレンテレフタレートの固有粘度は、0.60以上、0.65以上、0.70以上、0.75以上、0.80以上、0.85以上、0.90以上、0.95以上、1.00以上、又は1.10以上であってもよく、1.30以下、1.25以下、1.20以下、1.15以下、1.10以下、1.05以下、1.00以下、0.95以下、0.90以下、0.85以下、0.80以下、0.75以下、0.70以下であってもよい。ポリエチレンテレフタレートがこのような固有粘度を有することによって、タングステン系赤外線吸収性顔料の分散性を高くすることができると考えられる。例えば、その固有粘度は、0.60以上1.30以下であってもよく、特に本発明の樹脂組成物を繊維にする場合には、0.60以上0.80以下であることが好ましい。
 そのポリエチレンテレフタレートは、結晶性を有するため、示差走査熱量分析によって測定した場合に、融点の明確なピークが観測される。ポリエチレンテレフタレートの融点が、210℃以上、215℃以上、220℃以上、225℃以上、又は230℃以上であってもよく、240℃以下、235℃以下、230℃以下、又は225℃以下であってもよい。ポリエチレンテレフタレートがこのような融点を有することによって、適切な温度条件で成形品を成形することができる。例えば、その融点は、210℃以上240℃以下、又は215℃以上235℃以下であってもよい。このような範囲であれば、揮発成分が発生しにくい温度で樹脂組成物の加工を行うことができ、樹脂組成物の加工時の凹凸の発生、紡糸時の繊維切れ等を抑制しやすい。
 そのポリエチレンテレフタレートは、共重合ポリエチレンテレフタレートである。本明細書において、共重合ポリエチレンテレフタレートとは、ジオール成分であるエチレングリコールと、ジカルボン酸成分であるテレフタル酸又はそのエステルとだけではなく、第三のモノマーを用いて共重合させて得られたポリエチレンテレフタレートをいう。ポリエチレンテレフタレートは、第三のモノマーを含むことで非晶性になりやすいが、本発明で用いられるポリエチレンテレフタレートは、第三のモノマーを含む共重合ポリエチレンテレフタレートの中でも結晶性のもののみであり、本発明者らは、このような結晶性の共重合ポリエチレンテレフタレートを用いた場合にのみ、有利な効果を提供できることを見出した。
 ここで、第三のモノマーとしては、ジオール成分として、得られるポリエチレンテレフタレートが結晶性でありそれにより本発明の有利な効果が得られる限り特に限定されないが、脂肪族ジオール、例えばプロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ネオペンチルグリコール;脂環式ジオール、例えば1,4-シクロヘキサンジメタノール;芳香族ジオール、例えばビスフェノールA、ビスフェノールS等又はそれらのエチレンオキサイド付加物;又はこれらのトリオール、例えばトリメチロールプロパンを挙げることができる。これらのジオール成分を、20モル%以下、10モル%以下、又は5モル%以下の範囲で用いてもよい。
 また、第三のモノマーとしては、ジカルボン酸成分として、得られるポリエチレンテレフタレートが結晶性でありそれにより本発明の有利な効果が得られる限り特に限定されないが、脂肪族ジカルボン酸、例えばマロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、及びアゼライン酸;脂環式ジカルボン酸、例えば1,4-シクロヘキサンジカルボン酸;芳香族ジカルボン酸、例えばフタル酸、イソフタル酸、及び2,6-ナフタレンジカルボン酸;並びにこれらの塩、例えばスルホイソフタル酸ナトリウム、及びこれらのエステルを挙げることができる。これらの中でも特に、第三のモノマーとしてイソフタル酸又はそのエステルを用いた共重合ポリエチレンテレフタレートが好ましいことがわかった。これらのジカルボン酸成分を、20モル%以下、10モル%以下、又は5モル%以下の範囲で用いてもよい。
 ポリエチレンテレフタレートは、赤外線吸収性樹脂組成物に、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上で含まれていてもよく、99質量%以下、98質量%以下、95質量%以下、93質量%以下、90質量%以下、85質量%以下、80質量%以下、又は75質量%以下で含まれていてもよい。例えば、その含有量は、70質量%以上99質量%以下、又は80質量%以上98質量%以下であってもよい。
〈分散剤〉
 本発明の赤外線吸収性樹脂組成物は、タングステン系赤外線吸収性顔料を上記のポリエチレンテレフタレートに高度に分散させるための分散剤を含有していてもよい。使用できる分散剤は、タングステン系赤外線吸収性顔料の種類に応じて選択することができるが、アクリル系高分子である分散剤、例えばアクリル主鎖と水酸基またはエポキシ基とを有する高分子分散剤を用いることができる。このような分散剤としては、例えば特許文献2に記載のような分散剤を挙げることができる。
 分散剤は、タングステン系赤外線吸収性顔料1質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、3質量部以上、5質量部以上、又は10質量部以上で、赤外線吸収性樹脂組成物に含まれていてもよく、30質量部以下、20質量部以下、10質量部以下、5質量部以下、3質量部以下、1質量部以下、0.5質量部以下、又は0.1質量部以下で赤外線吸収性樹脂組成物に含まれていてもよい。例えば、その量は、タングステン系赤外線吸収性顔料1質量部に対して、0.5質量部以上10質量部以下、又は1質量部以上5質量部以下であってもよい。
〈他の成分〉
 本発明の赤外線吸収性樹脂組成物は、本発明の有利な効果が得られる範囲において、他の熱可塑性樹脂をさらに含有していてもよい。そのような熱可塑性樹脂としては、そのような樹脂としては、例えばポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、及びこれらの誘導体、並びにこれらの混合物が挙げられる。
 本発明の赤外線吸収性樹脂組成物は、本発明の有利な効果が得られる範囲において、さらに酸化防止剤、可塑剤、着色剤、顔料、フィラー等の様々な添加剤を含んでいてもよい。
《成形品》
 本発明の成形品は、上記の赤外線吸収性樹脂組成物を含む。本発明の成形品は、成形時の凹凸の発生が非常に少なく、非常に好適である。
 本発明の成形品としては、射出成形、押出成形、ブロー成形等の様々な成形方法によって得られた成形品を挙げることができる。また、本発明の成形品としては、熱プレス等によって得られたシート状の形態であってもよい。そのような成形品としては、3次元成形品、フィルム状、シート状等であってもよく、例えば包装容器、建築部材、自動車部品、機械部品、日用品等の様々な製品となることができる。
《成形品の製造方法》
 本発明の成形品の製造方法は、上記の赤外線吸収性樹脂組成物を、230℃~260℃の温度で成形することを含む。例えば、本発明の成形品の製造方法は、上記の赤外線吸収性樹脂組成物を混練してマスターバッチを得ること、及びそのマスターバッチを成形することを含むことできる。
 例えば、成形品を成形する前に、上記の赤外線吸収性樹脂組成物に含まれる材料を混練したものをペレット状に押し出して冷却することで、ペレット状の赤外線吸収性樹脂組成物(マスターバッチ)を作製しておくことができる。
 この場合に混練は、例えば、ニーダー、バンバリーミキサー、ヘンシェルミキサー、ミキシングロールなどのバッチ式混練機、二軸押出機、短軸押出機などの連続混練機などを用いて行うことができる。この際には、使用する材料に応じて、上記の成形温度、すなわち230℃~260℃の温度で混練することができる。
 このようにして得られたマスターバッチを、射出成形、押出成形、ブロー成形等の公知の成形方法によって成形することによって、本発明の成形品を製造することができる。また、上述したように混練した赤外線吸収性樹脂組成物を、熱プレス等を行うことによって、シート状の形態の成形品を製造してもよい。
《繊維》
 本発明の繊維は、例えば、上記のような赤外線吸収性樹脂組成物を溶融紡糸することによって得ることができる。溶融紡糸においては、一般的に用いられる溶融紡糸装置を使用することが可能である。
 溶融紡糸によって繊維を製造する場合には、赤外線吸収性樹脂組成物に用いられるポリエチレンテレフタレートの固有粘度が、0.60以上0.80未満であることが特に好ましいことがわかった。特に、赤外線吸収性樹脂組成物に用いられるポリエチレンテレフタレートが、第三のモノマーとしてイソフタル酸又はそのエステルを含む結晶性の共重合ポリエチレンテレフタレートであることが好ましいことがわかった。
 本発明の繊維は、上記のような樹脂組成物のみから紡糸されてもよく、本発明の繊維は、上記のような樹脂組成物を50重量%以上、60重量%以上、70重量%以上、80重量%以上、90重量%以上、又は95重量%以上含んでいてもよく、また98重量%以下、95重量%以下、90重量%以下、80重量%以下、又は70重量%以下で含んでいてもよい。
 本発明の繊維は、このような特徴以外の点については、例えば上記の特許文献4に記載のような周知の特徴を有することができる。
《繊維の製造方法》
 本発明の繊維の製造方法は、上記のような赤外線吸収性樹脂組成物を溶融混練すること、及び溶融混練した樹脂組成物を溶融紡糸することを含む。
 例えば、繊維を紡糸する前に、上記の赤外線吸収性樹脂組成物に含まれる材料を混練したものをペレット状に押し出して冷却することで、ペレット状の赤外線吸収性樹脂組成物(マスターバッチ)を作製しておくことができる。
 この場合に混練は、例えば、ニーダー、バンバリーミキサー、ヘンシェルミキサー、ミキシングロールなどのバッチ式混練機、二軸押出機、短軸押出機などの連続混練機などを用いて行うことができる。この際には、使用する材料に応じて、例えば230℃~260℃の温度で混練することができる。
《布帛》
 本発明の布帛は、上記のような繊維を含む。本発明者らの検討によれば、このような布帛は、従来技術で用いられているような他の赤外線吸収材を含む繊維による布帛よりも、高い赤外線吸収特性を有しているため、赤外線カメラによる盗撮をより有効に防止できることが分かった。
 また、タングステン系赤外線吸収性顔料は、高い光熱変換性を有しており、赤外線を吸収した場合に、温度が上昇することが知られている。したがって、タングステン系赤外線吸収性顔料を含む本発明の布帛は、赤外線を吸収した場合に、高い温度上昇効果を有することができる。またその結果、本発明の布帛は、速乾性を有することもできる。
 このような特性を活かすために、本発明の布帛は、使用時に露出する面に、上記のような本発明の繊維を多く配置させることが好ましい。例えば、緯糸のみに本発明の繊維を使用して、3/1綾織りで織った本発明の布帛の場合、本発明の繊維が、25%表面に表れている面よりも、75%表面に表れている面を露出面にした方が、温度上昇効果を高くすることができる。一方で、盗撮防止性のみを考慮した場合には、本発明の繊維を布帛の露出面に配置させる必要はない。
 本発明の布帛は、上記のような繊維のみから構成されてもよく、本発明の布帛は、上記のような繊維を50重量%以上、60重量%以上、70重量%以上、80重量%以上、90重量%以上、又は95重量%以上含んでいてもよく、また98重量%以下、95重量%以下、90重量%以下、80重量%以下、又は70重量%以下で含んでいてもよい。
 本発明の布帛は、このような特徴以外の点については、例えば上記の特許文献4に記載のような周知の特徴を有することができる。
 本発明を以下の実施例でさらに具体的に説明をするが、本発明はこれによって限定されるものではない。
実験A:シートの評価
《製造例》
〈実施例1〉
 ポリエチレンテレフタレート(PET)として、固有粘度(IV)=0.80の結晶性の共重合PET(ベルペットIFG8L、株式会社ベルポリエステルプロダクツ製)95質量%と、タングステン系赤外線吸収性顔料として、分散剤で処理されたセシウム酸化タングステン(CWO(商標):YMDS-874、住友金属鉱山株式会社製)5質量%(セシウム酸化タングステン1質量%+分散剤4質量%)とを用いミキサー混練機で混練し、実施例1の赤外線吸収性樹脂組成物を得た。なお、ここで用いられたPETは、第三のモノマーとして、イソフタル酸が用いられていた。
 この樹脂組成物を熱プレス機でシート化し、50μmの厚さを有する赤外線吸収性樹脂シートを得た。
〈実施例2〉
 PETとして、固有粘度(IV)=0.62の結晶性の共重合PET(ベルペットIP121B、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例1と同様にして、実施例2の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。なお、ここで用いられたPETは、第三のモノマーとして、イソフタル酸が用いられていた。
〈実施例3〉
 PETとして、固有粘度(IV)=1.20の結晶性の共重合PET(クラペットKS710B-8S、株式会社クラレ製)を用いたこと以外は、実施例1と同様にして、実施例3の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。なお、ここで用いられたPETは、第三のモノマーとして、ビスフェノールAのエチレンオキサイド付加体が用いられていた。
〈比較例1〉
 PETとして、固有粘度(IV)=0.87の結晶性のPET(ベルペットEFG85A、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例1と同様にして、比較例1の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。なお、ここで用いられたPETは、モノマーとしてエチレングリコールとテレフタル酸とが用いられて製造されたホモPETであった。
〈比較例2〉
 PETとして、固有粘度(IV)=0.83の非晶性のPET(ベルペットE-03、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例1と同様にして、比較例2の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。なお、ここで用いられたPETは、第三のモノマーとして、ネオペンチルグリコールが用いられていた。
〈比較例3〉
 PETとして、固有粘度(IV)=0.58の結晶性のPET(ベルペットIP140B、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例1と同様にして、比較例3の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。なお、ここで用いられたPETは、第三のモノマーとして、イソフタル酸が用いられていた。
〈比較例4〉
 タングステン系赤外線吸収性顔料であるセシウム酸化タングステン(Cs0.33WO)を用いなかったこと以外は、実施例1と同様にして、比較例4の赤外線吸収性樹脂組成物及び赤外線吸収性樹脂シートを得た。
《評価》
〈均一性〉
 各例の赤外線吸収性樹脂シートの目視上の均一性を評価した。各シートの見た目に、CWO(商標)に起因した青色の濃淡のムラがある場合に不均一であるとして、評価を「×」とし、それ以外の場合に評価を「○」とした。なお、比較例4については、CWO(商標)を混練していないため、評価をなし(「-」)とした。
〈光吸収性〉
 各例の赤外線吸収性樹脂シートのUV-vis-NIR吸収スペクトルを測定し、全光線透過率と、近赤外域(800~2500nm)の最小透過率(NIR透過率)とを評価した。測定装置は、日立ハイテクサイエンス製分光光度計UH4150(JIS K 0115:2004準拠)を用いた。
〈加工性〉
 樹脂組成物を用いて成形した成形品の外観不良や強度不足等に関連するため、樹脂組成物の加工性をその表面の凹凸によって評価した。評価方法としては、樹脂組成物の表面をデジタルマイクロスコープ(レーザーテック製ハイブリッドレーザーマイクロスコープOPTELICS)で観察し、25μm×25μmの領域にある凹み部分の面積率を測定し、5%未満である場合を「〇」、5%以上である場合を「×」とした。なお、ここで「凹み部分」は、デジタルマイクロスコープで観察して得たカラー画像を二値化し、黒色に表された領域として定義した。
《結果》
 上記の各例の赤外線吸収性樹脂シートの構成及び評価結果を、以下の表に示す。また、赤外線吸収性のUV-vis-NIR吸収スペクトルを図1に示した。
Figure JPOXMLDOC01-appb-T000001
 PETとして、固有粘度が0.60以上であり、かつ結晶性の共重合PETを用いた場合にのみ、加工性と光吸収性とを両立した赤外線吸収性樹脂組成物が得られることがわかった。
実験B:繊維及び布帛の評価
《製造例》
〈実施例4〉
 固有粘度(IV)=0.80の結晶性の共重合PET(ベルペットIFG8L、株式会社ベルポリエステルプロダクツ製)と、固有粘度(IV)=0.62の結晶性の共重合PET(ベルペットIP121B、株式会社ベルポリエステルプロダクツ製)とを混合して、固有粘度(IV)=0.77相当の結晶性の共重合PETを得た。その結晶性の共重合PET95質量%と、タングステン系赤外線吸収性顔料として、分散剤で処理されたセシウム酸化タングステン(CWO(商標):YMDS-874、住友金属鉱山株式会社製)5質量%(セシウム酸化タングステン1.15質量%+分散剤3.85質量%)とを用い二軸押出機で混練し、赤外線吸収性樹脂組成物を得た。なお、ここで用いられたPETは、第三のモノマーとして、イソフタル酸が用いられていた。
 また、この樹脂組成物を、マルチフィラメント溶融紡糸装置で繊維化し、75デニール24フィラメントの太さを有する実施例4の繊維を得た。紡糸時には、温度290℃、押出量4kg/h、引取速度1500m/minとして、1時間紡糸した。
〈実施例5〉
 固有粘度(IV)=0.62の結晶性の共重合PET(ベルペットIP121B、株式会社ベルポリエステルプロダクツ製)のみを用いたこと以外は、実施例4と同様にして繊維を紡糸した。
〈実施例6〉
 固有粘度(IV)=0.62の結晶性の共重合PET(ベルペットIP121B、株式会社ベルポリエステルプロダクツ製)を97.5質量%とし、分散剤で処理されたセシウム酸化タングステン(CWO(商標):YMDS-874、住友金属鉱山株式会社製)を2.5質量%(セシウム酸化タングステン0.58質量%+分散剤1.92質量%)としたこと以外は、実施例4と同様にして繊維を紡糸した。
 さらに、この繊維を2本撚りあわせることで150デニール相当の双糸にした。その双糸を緯糸として用いて、ションヘル型織機で3/1綾織りで織ることで、目付170g/mの布帛を得た。この布帛は、ポリエステル/ウール混生地であり、その緯糸の混用率は41%であり、経糸は、ポリエステル/ウールが50:50で、250デニール、混用率59%であった。
〈比較例5〉
 PETとして、固有粘度(IV)=0.65の結晶性のホモPET(ベルペットPBK1、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例4と同様にして繊維を紡糸した。
〈比較例6〉
 PETとして、固有粘度(IV)=0.58の結晶性の共重合PET(ベルペットIP140B、株式会社ベルポリエステルプロダクツ製)を用いたこと以外は、実施例4と同様にして繊維を紡糸した。
〈比較例7〉
 タングステン系赤外線吸収性顔料であるセシウム酸化タングステン(C0.33WO)を用いなかったこと以外は、実施例6と同様にして繊維を紡糸し、布帛を得た。
〈比較例8〉
 ポリエチレンテレフタレートと酸化アンチモンとを含む赤外線吸収性樹脂組成物から紡糸した繊維を用いた、市販の赤外線透過撮影防止用布帛(DIASIELD(商標)、三菱商事ファッション株式会社)を用意した。なお、この布帛の目付及び厚みは、実施例6の布帛と同等であった。
〈比較例9〉
 実験Aの実施例1の赤外線吸収性樹脂組成物を用いて、マルチフィラメント溶融紡糸装置で繊維化することを検討したところ、溶融紡糸時に繊維を細く巻き取ることが困難であることが分かった。この組成物は、シート用としては有用であるものの、繊維用としては不適切であった。
《評価》
〈溶融紡糸適性〉
 樹脂組成物の溶融紡糸適性を評価した。溶融紡糸中に、繊維切れが発生した場合には、溶融紡糸適性を「×」とし、それ以外の場合を「〇」とした。
〈盗撮防止性〉
 画像が印刷してある板の上に布帛のサンプルを被せて、赤外線カメラで透過撮影して、その画像を確認することで透過の有無を判定した。カメラでの通常撮影時と、赤外線撮影時とを比較して、赤外線撮影時の方が画像の視認性が低下している場合を「〇」とし、それ以外の場合を「×」とした。
《結果》
 上記の各例の構成及び評価結果を、以下の表に示す。また、実施例6、比較例7及び比較例8の布帛の撮影画像及び透過スペクトルを図2及び図3に示した。
Figure JPOXMLDOC01-appb-T000002
 PETとして、固有粘度が0.60以上0.80未満であり、かつ結晶性の共重合PETを用いた場合にのみ、溶融紡糸適性と盗撮防止性とを両立した布帛が得られることがわかった。特に、実施例6の布帛は、従来技術の比較例8の布帛よりも、800~1500nmの透過率が低いため、その波長での盗撮防止性において優れていることがわかる。実施例6の布帛のように、800~1500nmの透過率が25%以下である場合には、盗撮防止性が非常に高く、このような布帛は、特に有用である。

Claims (11)

  1.  タングステン系赤外線吸収性顔料及びポリエチレンテレフタレートを含む赤外吸収性樹脂組成物であって、前記ポリエチレンテレフタレートは、0.60以上の固有粘度を有し、かつ結晶性の共重合ポリエチレンテレフタレートである、赤外吸収性樹脂組成物。
  2.  前記ポリエチレンテレフタレートは、0.60以上1.30以下の固有粘度を有する、請求項1に記載の赤外吸収性樹脂組成物。
  3.  前記ポリエチレンテレフタレートは、210℃以上240℃以下の融点を有する、請求項1又は2に記載の赤外吸収性樹脂組成物。
  4.  前記タングステン系赤外線吸収性顔料が、
     一般式(1):M{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、及びIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}で表される複合タングステン酸化物、及び
     一般式(2):W{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}で表されるマグネリ相を有するタングステン酸化物
    からなる群より選択される、請求項1~3のいずれか一項に記載の赤外吸収性樹脂組成物。
  5.  アクリル系高分子である分散剤をさらに含む、請求項1~4のいずれか一項に記載の赤外吸収性樹脂組成物。
  6.  請求項1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を含む、成形品。
  7.  請求項1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を、成形することを含む、成形品の製造方法。
  8.  請求項1~5のいずれか一項に記載の赤外線吸収性樹脂組成物を含む、繊維。
  9.  前記赤外線吸収性樹脂組成物のポリエチレンテレフタレートは、0.60以上0.80未満の固有粘度を有する、請求項8に記載の繊維。
  10.  前記ポリエチレンテレフタレートは、第三のモノマーとしてイソフタル酸又はそのエステルを含む、請求項8又は9に記載の繊維。
  11.  請求項8~10のいずれか一項に記載の繊維を含む、布帛。
PCT/JP2019/005676 2018-02-15 2019-02-15 赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維 WO2019160109A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/967,955 US11981808B2 (en) 2018-02-15 2019-02-15 Infrared absorbing resin composition, and molded article and fiber containing same
CN201980011616.XA CN111684012B (zh) 2018-02-15 2019-02-15 红外吸收性树脂组合物以及包含其的成型品和纤维
EP19755081.7A EP3753983A4 (en) 2018-02-15 2019-02-15 COMPOSITION OF INFRARED ABSORBENT RESIN, AND MOLDED ARTICLE AND FIBER CONTAINING IT
JP2019572297A JP7183200B2 (ja) 2018-02-15 2019-02-15 赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025104 2018-02-15
JP2018025104 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019160109A1 true WO2019160109A1 (ja) 2019-08-22

Family

ID=67618705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005676 WO2019160109A1 (ja) 2018-02-15 2019-02-15 赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維

Country Status (5)

Country Link
US (1) US11981808B2 (ja)
EP (1) EP3753983A4 (ja)
JP (1) JP7183200B2 (ja)
CN (1) CN111684012B (ja)
WO (1) WO2019160109A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200748A1 (ja) * 2020-03-31 2021-10-07
CN114245833A (zh) * 2019-08-30 2022-03-25 共同印刷株式会社 红外线吸收性纤维、编织物或无纺布
WO2023058694A1 (ja) * 2021-10-07 2023-04-13 住友金属鉱山株式会社 赤外線吸収繊維、繊維製品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280020B (zh) * 2020-10-26 2022-07-22 天津华新盈聚酯材料科技有限公司 用于生产紫红外光吸收薄膜的聚酯切片及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290315A (ja) * 1985-10-17 1987-04-24 Unitika Ltd 改質ポリエステル繊維とその製造法
JPH01229900A (ja) * 1988-03-03 1989-09-13 Teijin Ltd 不織布の製造法
JPH02104722A (ja) * 1988-10-11 1990-04-17 Mitsubishi Rayon Co Ltd ポリエステル高収縮繊維
JP2000336524A (ja) * 1999-05-31 2000-12-05 Teijin Ltd 消臭性ポリエステル繊維及びその製造方法
WO2005037932A1 (ja) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2005187323A (ja) 2003-12-05 2005-07-14 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用タングステン酸化物微粒子の製造方法、日射遮蔽体形成用タングステン酸化物微粒子および日射遮蔽体形成用分散液並びに日射遮蔽体
WO2005087680A1 (ja) 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. 日射遮蔽用合わせ構造体
JP2008024902A (ja) 2006-07-25 2008-02-07 Sumitomo Metal Mining Co Ltd 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP2009167388A (ja) * 2007-03-22 2009-07-30 Efutekkusu Kk ポリエチレンテレフタレート・非結晶性ポリエステル共重合樹脂およびその熱収縮性ラベルの製造方法
JP2010077575A (ja) 2008-09-29 2010-04-08 Unitika Trading Co Ltd 赤外線透過撮影防止用布帛及びこれを用いてなる衣服製品。
JP2011026440A (ja) 2009-07-24 2011-02-10 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽ポリエステル樹脂組成物、近赤外線遮蔽ポリエステル樹脂積層体並びに成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110557A1 (en) * 2004-09-03 2006-05-25 Zhiyong Xia Polyester polymer and copolymer compositions containing metallic tungsten particles
JP4355945B2 (ja) 2004-11-08 2009-11-04 住友金属鉱山株式会社 近赤外線吸収繊維およびこれを用いた繊維製品
JP2006307383A (ja) * 2005-04-28 2006-11-09 Teijin Fibers Ltd 鮮明性に優れた保温性ポリエステル繊維および布帛
JP2007002372A (ja) * 2005-06-27 2007-01-11 Teijin Fibers Ltd ポリエステル布帛および繊維製品
JP2008223171A (ja) * 2007-03-13 2008-09-25 Asahi Kasei Fibers Corp 赤外線透過防止性に優れた編地
CN104669756B (zh) * 2015-02-12 2018-08-17 树业环保科技股份有限公司 一种抗红外线纳米隔热聚酯薄膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290315A (ja) * 1985-10-17 1987-04-24 Unitika Ltd 改質ポリエステル繊維とその製造法
JPH01229900A (ja) * 1988-03-03 1989-09-13 Teijin Ltd 不織布の製造法
JPH02104722A (ja) * 1988-10-11 1990-04-17 Mitsubishi Rayon Co Ltd ポリエステル高収縮繊維
JP2000336524A (ja) * 1999-05-31 2000-12-05 Teijin Ltd 消臭性ポリエステル繊維及びその製造方法
WO2005037932A1 (ja) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2005187323A (ja) 2003-12-05 2005-07-14 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用タングステン酸化物微粒子の製造方法、日射遮蔽体形成用タングステン酸化物微粒子および日射遮蔽体形成用分散液並びに日射遮蔽体
WO2005087680A1 (ja) 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. 日射遮蔽用合わせ構造体
JP2008024902A (ja) 2006-07-25 2008-02-07 Sumitomo Metal Mining Co Ltd 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP2009167388A (ja) * 2007-03-22 2009-07-30 Efutekkusu Kk ポリエチレンテレフタレート・非結晶性ポリエステル共重合樹脂およびその熱収縮性ラベルの製造方法
JP2010077575A (ja) 2008-09-29 2010-04-08 Unitika Trading Co Ltd 赤外線透過撮影防止用布帛及びこれを用いてなる衣服製品。
JP2011026440A (ja) 2009-07-24 2011-02-10 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽ポリエステル樹脂組成物、近赤外線遮蔽ポリエステル樹脂積層体並びに成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753983A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245833A (zh) * 2019-08-30 2022-03-25 共同印刷株式会社 红外线吸收性纤维、编织物或无纺布
JPWO2021200748A1 (ja) * 2020-03-31 2021-10-07
WO2021200748A1 (ja) * 2020-03-31 2021-10-07 共同印刷株式会社 赤外線吸収性樹脂組成物及び赤外線吸収性繊維
CN115702207A (zh) * 2020-03-31 2023-02-14 共同印刷株式会社 红外线吸收性树脂组合物和红外线吸收性纤维
JP7366241B2 (ja) 2020-03-31 2023-10-20 共同印刷株式会社 赤外線吸収性樹脂組成物及び赤外線吸収性繊維
WO2023058694A1 (ja) * 2021-10-07 2023-04-13 住友金属鉱山株式会社 赤外線吸収繊維、繊維製品

Also Published As

Publication number Publication date
US20210032458A1 (en) 2021-02-04
JPWO2019160109A1 (ja) 2021-01-14
US11981808B2 (en) 2024-05-14
CN111684012A (zh) 2020-09-18
EP3753983A4 (en) 2021-12-15
JP7183200B2 (ja) 2022-12-05
EP3753983A1 (en) 2020-12-23
CN111684012B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2019160109A1 (ja) 赤外吸収性樹脂組成物並びにそれを含む成形品及び繊維
US20230075446A1 (en) Infrared-absorbent resin composition and infrared-absorbent fiber
CN104093781A (zh) 氟树脂膜
JP7298264B2 (ja) 樹脂着色用マスターバッチ、芳香族ポリエステル樹脂組成物、成形品およびそれらの製造方法
JP7285633B2 (ja) 光熱変換性樹脂組成物及びそれを含む繊維
JP6845059B2 (ja) 蛍光ポリエステル繊維
JP2023168441A (ja) 赤外線吸収性繊維、編織物、又は不織布
JPH08322707A (ja) 防炎性暗幕
JP3948192B2 (ja) ポリエステル系樹脂組成物、ボトル、フィルムおよびトレー
KR101201236B1 (ko) 자외선 차단성 폴리아마이드 조성물 및 이로부터 제조된 섬유
KR101651896B1 (ko) 적외선 투과율을 감소시키는 시스-코어형 폴리에스테르 섬유 및 이의 제조방법
JP2023048779A (ja) 紫外線吸収性蓄熱繊維、紫外線吸収性蓄熱生地、及び紫外線吸収性蓄熱繊維の製造方法
JP2023048761A (ja) 帯電防止性蓄熱繊維、帯電防止性蓄熱生地、及び帯電防止性蓄熱繊維の製造方法
JPH09316728A (ja) 紫外線遮蔽性ポリアミド繊維
JP2023048765A (ja) 撥水性蓄熱繊維、撥水性蓄熱生地、及び撥水性蓄熱繊維の製造方法
JP7190878B2 (ja) 微粒子分散樹脂組成物の製造方法、及び微粒子分散樹脂組成物
JP7190877B2 (ja) 微粒子分散樹脂組成物の製造方法、及び微粒子分散樹脂組成物
KR101221145B1 (ko) 자외선 차단성 폴리아마이드 수지 조성물 및 이로부터 제조된 섬유
KR101182048B1 (ko) 우수한 염색성을 가지는 자외선 차단성 폴리아마이드 수지조성물 및 이로부터 제조된 섬유
JP2023094669A (ja) 遮熱用黒色フィラメント、遮熱用黒色フィラメント製造用のマスターバッチ、及び、それらの製造方法
WO2016194757A1 (ja) 赤外光透過性ポリエステル樹脂組成物
JP2009144037A (ja) 樹脂添加用タングステン酸化物微粒子分散体、タングステン酸化物微粒子分散塩化ビニル樹脂成形体およびタングステン酸化物微粒子分散塩化ビニル樹脂成形体の製造方法
TW202242219A (zh) 紅外線吸收纖維、纖維製品
JP2012057129A (ja) ポリエステル樹脂組成物
JPH0559613A (ja) 紫外線遮蔽性能を有するポリエステル系繊維の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019755081

Country of ref document: EP

Effective date: 20200915