WO2019160039A1 - 光半導体装置 - Google Patents

光半導体装置 Download PDF

Info

Publication number
WO2019160039A1
WO2019160039A1 PCT/JP2019/005350 JP2019005350W WO2019160039A1 WO 2019160039 A1 WO2019160039 A1 WO 2019160039A1 JP 2019005350 W JP2019005350 W JP 2019005350W WO 2019160039 A1 WO2019160039 A1 WO 2019160039A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor laser
electrode layer
face
electrical connection
Prior art date
Application number
PCT/JP2019/005350
Other languages
English (en)
French (fr)
Inventor
龍一郎 湊
大木 泰
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2020500556A priority Critical patent/JP7288425B2/ja
Priority to CN201980013122.5A priority patent/CN111712979B/zh
Priority to EP19753933.1A priority patent/EP3754799B1/en
Publication of WO2019160039A1 publication Critical patent/WO2019160039A1/ja
Priority to US16/929,254 priority patent/US11451008B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical semiconductor device, in particular, a semiconductor laser device with an element output of 100 mW or more, and further relates to a high-power semiconductor laser device with an element output of several W or more.
  • Semiconductor laser devices are utilized as lasers for optical communication and industrial lasers used for processing.
  • a laser for optical communication it is necessary to propagate light through an optical fiber for a long distance (for example, several hundred kilometers), and a single mode laser is generally used to suppress deterioration of signal quality.
  • an industrial laser requires a higher output than an optical communication laser and does not need to propagate a long distance, so a multimode laser specialized for high output is used.
  • multimode lasers high power is achieved by widening the laser waveguide width and allowing multiple modes within the waveguide (ie, multimode).
  • the high output means an output of about several W to 20 W (both at room temperature and CW drive) as an output of the element.
  • a general semiconductor laser device includes a semiconductor laminated portion formed on a substrate, an active region sandwiched between a first end surface on the light output side and a second end surface facing the first end surface, and an upper portion of the semiconductor laminated portion.
  • a first electrode layer provided and a second electrode layer provided below are provided.
  • the semiconductor laser element 1 is bonded to a substrate called a submount 6 in which a metal film 4 such as Au is formed on a ceramic substrate 5 such as AlN. Is done.
  • a bonding wire 2 such as Au is connected to the electrode layer of the semiconductor laser element 1 as an electrical connection part for injecting a current into the semiconductor laser element 1.
  • the bonding wire 2 shows a configuration in which a large number of bonding wires 2 are evenly arranged on the electrode layer of the high-power semiconductor laser device 1 as an example of the prior art (conventional configuration 1).
  • the bonding wire 2 has a very thin diameter of about 15 ⁇ m to 50 ⁇ m. Therefore, in a high power semiconductor laser device of several W to 20 W injecting a large current of several A to 30 A, a very large number of bonding wires are used. 2 must be connected to the electrode layer of the semiconductor laser element 1.
  • the number of the bonding wires 2 increases, there are disadvantages such as an increase in the material cost of Au or the like and an increase in process tact time.
  • the surface area of the semiconductor laser device 1 is very small (for example, width 0.3 mm to 0.5 mm ⁇ length 3 mm to 5 mm), there is a problem that the footprint for connecting the bonding wire 2 is limited. .
  • Patent Document 1 for the purpose of reducing the number of bonding wires in a high-power semiconductor laser device without degrading the performance of the semiconductor laser device.
  • Patent Document 1 since the consumption rate of carriers in the active layer is slow at a portion where the photon density in the active layer is low and fast at a portion where the photon density is high, the current supplied (injected) to the semiconductor laser element is When uniform in the cavity length direction, carriers are insufficient in a portion where the photon density in the active layer is high, and carriers are excessive in a portion where the photon density is low. It is described that the lack of carriers in the active layer is a cause of saturating the optical output of the semiconductor laser. In order to solve this problem, it has been proposed to bond a bonding wire at a position in the resonator length direction corresponding to the local maximum point in the resonator length direction in the photon density distribution in the active layer.
  • the present inventors examined a configuration as shown in FIG. 3 with reference to Patent Document 1 (conventional configuration 2). That is, in the semiconductor laser device 1 in which the reflectance of the reflective film formed on the first end surface E1 is lower than the reflectance of the reflective film formed on the second end surface E2, the first end surface E1 portion has a photon density. It becomes the maximum point. Further, the same number of bonding wires 2 as those in the configuration of FIG. 2 are arranged close to the first end face E1 side so that a current of several A or more can flow through the high-power semiconductor laser element 1.
  • the conventional configuration 1 in which a large number of bonding wires 2 are arranged uniformly (the configuration in FIG. 2) and the same number of bonding wires 2 as the conventional configuration 1 are brought closer to the first end face E1 side.
  • the conventional configuration 2 with reference to Patent Document 1 certainly increases the optical output, but the driving voltage is remarkable. Has risen to This is presumably because the bonding wire 2 generates heat and the electrical resistance increases due to current concentration on the bonding wire 2 bonded toward the first end surface E1 where the carrier consumption rate is fast.
  • Industrial lasers are required to have high electrical-to-optical conversion efficiency (WPE: Wall Plug Efficiency). WPE is defined as the ratio of the final optical output of the semiconductor laser device to the input power (current ⁇ voltage). Therefore, an increase in drive voltage leads to a decrease in WPE, which is not preferable in terms of semiconductor laser performance.
  • the present invention provides a high-performance optical semiconductor device, particularly a high-power semiconductor laser device, which increases the optical output while lowering the driving voltage and realizes an increase in WPE, in particular.
  • the semiconductor stacked unit the first end surface on the light output side, the active region sandwiched between the second end surface facing the first end surface, and the upper portion of the semiconductor stacked unit are provided.
  • An optical semiconductor element comprising: a first electrode layer and a second electrode layer provided below; and at least one of the first electrode layer and the second electrode layer of the optical semiconductor element and a current in the active region
  • An optical semiconductor device to which an electrical connecting portion for injecting a liquid is connected, wherein the first end surface of the upper area of the optical semiconductor element out of the contact area between the electrical connecting portion and the optical semiconductor element When the contact area included in the half of the side is ⁇ and the contact area included in the half of the second end face is ⁇ , ⁇ > ⁇ is satisfied, and ⁇ > 0.
  • An optical semiconductor device is provided.
  • a part of the electrical connection portion connected to a half of the upper area of the optical semiconductor element on the second end face side is in the vicinity of the second end face.
  • a part of the electrical connection portion connected to 1 ⁇ 2 of the second end face side of the upper area of the optical semiconductor element is 1 ⁇ 4 from the second end face side.
  • the electrical connection portion has a current density distribution in a direction connecting the first end face and the second end face in the active region, and a photon density in the same direction in the active region.
  • the above-described optical semiconductor device is provided, which is arranged and connected so as to approximate a distribution.
  • the optical semiconductor device is a semiconductor laser device in which an output of light output from the first end surface is 100 mW or more. Is provided.
  • the optical semiconductor element is a semiconductor laser element in which light output from the first end surface is laser light having an output of 1 W or more, and the laser light oscillates in multimode.
  • the above optical semiconductor device is provided.
  • the optical semiconductor element is a semiconductor optical amplifying element that inputs laser light from the second end face and outputs laser light of 10 mW or more from the first end face.
  • An optical semiconductor device as described above is provided.
  • FIG. 1 is a schematic perspective view of a semiconductor laser device according to the present invention. It is typical sectional drawing of the semiconductor laser element shown in FIG. 1 is a perspective view of an example of a semiconductor laser device according to the present invention.
  • 5 is a graph showing an effect of improving electro-optical conversion efficiency according to an embodiment of the present invention by comparing an embodiment of the present invention with a conventional configuration.
  • 5 is a graph showing an effect of improving electro-optical conversion efficiency according to an embodiment of the present invention by comparing an embodiment of the present invention with a conventional configuration.
  • 5 is a graph showing an effect of improving electro-optical conversion efficiency according to an embodiment of the present invention by comparing an embodiment of the present invention with a conventional configuration.
  • It is a top view which shows the modification of arrangement
  • the semiconductor laser device 1 is an edge-emitting semiconductor laser device that oscillates laser light in a multimode.
  • the multimode oscillation means having a wide waveguide that allows a plurality of waveguide modes.
  • FIG. 5 is a schematic perspective view of the semiconductor laser device 1 according to the embodiment of the present invention.
  • the semiconductor laser device 1 includes a semiconductor laminated portion 8 and a first end face E1 on the light output side and an active region 11 sandwiched between a second end face E2 facing the first end face E1.
  • a low reflectivity film 9 having a reflectance of, for example, 10% or less is formed on the first end face E1 on the light output side of the semiconductor laminated portion 8, and a reflectivity is provided on the second end face E2 facing the first end face E1, for example.
  • a high reflectivity film 10 having a thickness of 90% or more is formed.
  • the semiconductor laser element 1 guides laser light in the active region 11 and emits laser light from the first end face E1 through the low reflectivity film 9.
  • the element length L of the semiconductor laser element 1 determined by the distance between the first end face E1 and the second end face E2 is, for example, about 1 mm to 6 mm, more preferably about 3 mm to 5 mm.
  • FIG. 6 is an example of a cross-sectional view of the semiconductor laser device 1 shown in FIG.
  • the semiconductor laser device 1 includes a first electrode layer 23 formed on the upper surface, a second electrode layer 13 formed on the lower surface, a substrate 14 made of n-type GaAs, and a substrate 14. And a passivation film 22.
  • the semiconductor stacked unit 8 includes an n-type buffer layer 15, an n-type cladding layer 16, an n-type guide layer 17, an active layer 18, a p-type guide layer 19, a p-type cladding layer 20, p formed sequentially on the substrate 14.
  • a mold contact layer 21 is provided.
  • the n-type buffer layer 15 is made of GaAs and is a buffer layer for growing a stacked structure of high-quality epitaxial layers on the substrate 14.
  • the n-type cladding layer 16 and the n-type guide layer 17 are made of AlGaAs whose refractive index and thickness are set so as to realize a desired optical confinement state in the stacking direction.
  • the Al composition of the n-type guide layer 17 is, for example, 20% or more and less than 40%.
  • the n-type cladding layer 16 has a refractive index smaller than that of the n-type guide layer 17.
  • the thickness of the n-type guide layer 17 is preferably 50 nm or more, for example, about 1000 nm.
  • the thickness of the n-type cladding layer 16 is preferably about 1 ⁇ m to 3 ⁇ m.
  • These n-type semiconductor layers contain, for example, silicon (Si) as an n-type dopant.
  • the active layer 18 includes a lower barrier layer 18a, a quantum well layer 18b, and an upper barrier layer 18c, and has a single quantum well (SQW) structure.
  • the lower barrier layer 18a and the upper barrier layer 18c have a barrier function of confining carriers in the quantum well layer 18b, and are made of high-purity AlGaAs not intentionally doped.
  • the quantum well layer 18b is made of high-purity InGaAs that is not intentionally doped.
  • the In composition and film thickness of the quantum well layer 18b and the compositions of the lower barrier layer 18a and the upper barrier layer 18c are set according to a desired emission center wavelength (for example, 900 nm to 1080 nm).
  • the structure of the active layer 18 may be a multiple quantum well (MQW) structure in which a desired number of stacked structures of the quantum well layer 18b and barrier layers formed above and below the quantum well layer 18b or a single quantum well structure may be used.
  • MQW multiple quantum well
  • the structure of the high-purity layer that is not intentionally doped has been described.
  • a donor or an acceptor may be intentionally added to the quantum well layer 18b, the lower barrier layer 18a, and the upper barrier layer 18c.
  • the p-type guide layer 19 and the p-type cladding layer 20 are paired with the n-type cladding layer 16 and the n-type guide layer 17 described above, and have a refractive index and a thickness so as to realize a desired optical confinement state in the stacking direction. Is made of AlGaAs.
  • the Al composition of the p-type guide layer 19 is, for example, 20% or more and less than 40%.
  • the p-type cladding layer 20 has a refractive index smaller than that of the p-type guide layer 19.
  • the Al composition of the p-type cladding layer 20 is set slightly larger than that of the n-type cladding layer 16.
  • the Al composition of the p-type guide layer 19 is set smaller than the Al composition of the p-type cladding layer 20.
  • the thickness of the p-type guide layer 19 is preferably 50 nm or more, for example, about 1000 nm.
  • the thickness of the p-type cladding layer 20 is preferably about 1 ⁇ m to 3 ⁇ m.
  • these p-type semiconductor layers contain carbon (C) as a p-type dopant.
  • the C concentration of the p-type guide layer 19 is set to 0.1 to 1.0 ⁇ 10 17 cm ⁇ 3 , for example, and is preferably about 0.5 to 1.0 ⁇ 10 17 cm ⁇ 3 .
  • the C concentration of the p-type cladding layer 20 is set to 1.0 ⁇ 10 17 cm ⁇ 3 or more, for example.
  • the p-type contact layer 21 is made of GaAs doped with Zn or C at a high concentration.
  • a first electrode layer 23 is formed on the upper surface of the p-type contact layer 21.
  • the first electrode layer 23 is formed of, for example, a Ti / Pt / Au metal multilayer film or an alloy film mainly composed of Au or Zn, and the thickness thereof is, for example, 2 ⁇ m or less, and further 0.5 to 0.1 ⁇ m. preferable.
  • Au plating with a thickness of 10 to 3 ⁇ m may be formed on the upper surface of the first electrode layer 23.
  • a second electrode layer 13 is formed on the lower surface of the substrate 14 made of n-type GaAs.
  • the second electrode layer 13 is formed with an alloy film made of, for example, Au, Ge, or Ni, and the thickness thereof is preferably 2 ⁇ m or less, and more preferably 0.5 to 0.1 ⁇ m.
  • a ridge structure for confining light in the lateral direction of FIG. 6 is formed in the region immediately below the opening 22 a of the semiconductor stacked portion 8.
  • the waveguide width 12 determined by the width of the bottom of the ridge structure is, for example, not less than 80 ⁇ m and not more than 500 ⁇ m.
  • the passivation film 22 is an insulating film made of SiNx, for example, and has an opening 22a.
  • the current confinement to the active region 11 is realized by limiting the contact area between the first electrode layer 23 and the semiconductor laminated portion 8 by the passivation film 22.
  • the semiconductor laser element 1 formed as described above is bonded onto the submount 6 as shown in FIG. 7, and a bonding wire such as Au is used as an electrical connection for injecting current into the semiconductor laser element 1. 2 are connected and assembled into a semiconductor laser device.
  • the submount 6 for example, a substrate in which a metal film 4 such as Au is formed on a substrate such as a CuW alloy, or a substrate in which a metal film 4 such as Au is formed on a ceramic substrate such as AlN is used.
  • a solder 7 such as an AuSn alloy is used for joining the semiconductor laser element 1 and the submount 6, for example.
  • One method is a method of bonding a semiconductor laser element to a submount through a second electrode layer, which is called a junction-side-up-mount.
  • a bonding wire such as Au is connected to the first electrode layer of the semiconductor laser element as an electrical connection for injecting current into the active region.
  • the diameter of the bonding wire is, for example, 15 to 50 ⁇ m.
  • junction-side-down mount Another method is a method of joining a semiconductor laser element to a submount through a first electrode layer, which is called a junction-side-down mount.
  • a bonding wire such as Au is connected to the second electrode layer of the semiconductor laser element as an electrical connection for injecting current into the active region.
  • a junction-down junction is often used.
  • the bonding wire 2 is connected to the second electrode layer 13 as an electrical connection portion with the configuration shown in FIG.
  • the contact area included in 1 ⁇ 2 on the first end face E1 side in the upper area of the semiconductor laser element 1 is ⁇
  • the second end face E2 of the upper area is ⁇ .
  • the bonding wires 2 are connected so as to satisfy the relationship of ⁇ > ⁇ .
  • the contact area 24 per one bonding wire 2 can be determined as an area where the end of the bonding wire 2 is in contact with the second electrode layer 13 as shown in FIG. 9, for example.
  • the value obtained by multiplying the contact area 24 per one bonding wire 2 by the number of bonding wires 2 in the 1 ⁇ 2 region on the first end face E1 side in the upper area of the semiconductor laser element 1 is ⁇ .
  • a value obtained by multiplying the number of bonding wires 2 in the 1 ⁇ 2 region on the second end face E2 side is ⁇ .
  • At least one (two in this case) bonding wires 2 are connected to the second end face E2 side of the upper area of the semiconductor laser element 1, and ⁇ > 0. .
  • the bonding wire 2 is arranged and connected to the second electrode layer 13 as an electrical connection portion with the configuration as shown in FIG. That is, out of the contact area between the electrical connection portion and the second electrode layer 13, the contact area included in 1 ⁇ 2 of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇ , and the second upper area is the second area.
  • the contact area included in 1 ⁇ 2 on the end face E2 side is ⁇
  • the relationship ⁇ > ⁇ is satisfied
  • at least one bonding wire 2 is provided on the second end face E2 side of the upper area of the semiconductor laser element 1.
  • the bonding wire 2 is disposed so as to approximate the current density distribution in the direction connecting the first end face E1 and the second end face E2 in the active region 11 of the semiconductor laser element 1 to the photon density distribution in the same direction. .
  • the light intensity distribution in the active region 11 of the semiconductor laser device 1 was obtained by the following equation.
  • the light intensity P (z) at the distance z from the second end face E2 in the active region 11 is represented by the following equation.
  • A is a proportional constant
  • Rf is the reflectance of the low reflectance film 9 formed on the first end face E1
  • Rb is the reflectance of the high reflectance film 10 formed on the second end face E2
  • L is the first end face E1.
  • Rf 0.5%
  • Rb 95%
  • L 4.5 mm.
  • the contact area included in 1 ⁇ 2 of the upper area of the semiconductor laser element 1 on the first end face E1 side is ⁇
  • the second end face E2 side In the arrangement of the bonding wire 2 of the first embodiment that satisfies the relationship of ⁇ > ⁇ and ⁇ > 0, where ⁇ is a contact area included in 1 ⁇ 2 of the driving voltage, the driving voltage is lower than that of the conventional configuration 2 did.
  • the contact area included in 1 ⁇ 2 of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇
  • the contact area on the second end face E2 side is
  • the contact area included in 1/2 is ⁇
  • ⁇ > ⁇ is satisfied
  • ⁇ > 0 the current density in the direction connecting the first end face E1 and the second end face E2 in the active region 11
  • the driving voltage is further reduced.
  • the light output of the first and second embodiments is hardly lowered as compared with the light output of the conventional configuration 2.
  • 13A, 13B, and 13C show the results of comparing the optical output, the drive voltage, and the electro-optical conversion efficiency in the above four configurations of the conventional configuration 1, the conventional configuration 2, the first embodiment, and the second embodiment. .
  • the conventional configuration 1 in which a large number of bonding wires are evenly arranged has the lowest electro-optical conversion efficiency (WPE), and the conventional configuration 2 in which a large number of bonding wires are arranged close to the first end surface side has a light output.
  • WPE electro-optical conversion efficiency
  • the driving voltage was large and the WPE was bad.
  • the optical output is slightly inferior to that of the conventional configuration 2, but the driving voltage is remarkably lowered, so that the WPE is high.
  • the contact area included in 1 ⁇ 2 of the upper area of the semiconductor laser element 1 on the first end face E1 side is ⁇
  • the contact area included in the second end face E2 side is 1.
  • / 2 satisfies ⁇ > 0 and ⁇ > 0, and the current density distribution in the direction connecting the first end surface E1 and the second end surface E2 in the active region, where ⁇ is the contact area included in ⁇
  • the WPE is the highest and the most preferable bonding wire arrangement is shown.
  • the electrical resistance of the electrode layer to be connected needs to be sufficiently larger than the electrical connection part such as a bonding wire.
  • the first electrode layer 23 of the semiconductor laser element 1 for example, a Ti / Pt / Au metal multilayer film or Au, Zn as a main component.
  • the thickness of the first electrode layer 23 formed of an alloy film or the like is preferably 2 ⁇ m or less, and more preferably 0.5 to 0.1 ⁇ m.
  • the second electrode is formed of an alloy film made of, for example, Au, Ge, or Ni.
  • the thickness of the layer 13 is preferably 2 ⁇ m or less, and more preferably 0.5 to 0.1 ⁇ m.
  • the present embodiment is an application example of the first embodiment.
  • a bonding ribbon 32 made of a ribbon of Au foil or the like is used as an electrical connection portion in the second embodiment.
  • the electrode layer 13 was connected.
  • at least one (here, two) bonding wires 2 are connected to the second end face E2 side.
  • the contact area included in half of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇
  • the contact area included in 1 ⁇ 2 of the area on the second end face E2 side is ⁇
  • the relationship ⁇ > ⁇ is satisfied.
  • the contact area between the second electrode layer 13 and the bonding ribbon 32 as an electrical connection portion is the area of the connection portion 33 of the bonding ribbon 32.
  • an area included in a half of the upper area of the semiconductor laser element 1 on the first end face E1 side corresponds to ⁇ .
  • This embodiment is an application example of the second embodiment. That is, in the configuration as shown in FIG. 15, the pad 56 is formed on the second electrode layer 13 of the semiconductor laser element 1, and the bonding wire 2 is connected to the pad 56.
  • the pad 56 is formed by Au plating or the like having a low electric resistance, and the thickness thereof is 3 ⁇ m to 10 ⁇ m, for example.
  • the pad 56 and the bonding wire 2 connected on the pad 56 can be regarded as equipotential. Therefore, in the present embodiment, the pad 56 corresponds to an electrical connection portion connected to the second electrode layer 13 of the semiconductor laser element 1.
  • the contact area included in half of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇
  • the contact area included in 1 ⁇ 2 of the area on the second end face E2 side is ⁇
  • the relationship ⁇ > ⁇ is satisfied.
  • the contact area between the electrical connection portion and the second electrode layer 13 corresponds to the area of the pad 56.
  • the sum of the areas included in 1 ⁇ 2 on the first end face E 1 side in the upper area of the semiconductor laser element 1 is ⁇ , and similarly the area included in 1 ⁇ 2 on the second end face E 2 side. The sum corresponds to ⁇ .
  • the pad 56 is a current density distribution in the direction connecting the first end face E1 and the second end face E2 in the active region 11 of the semiconductor laser element 1 on the second electrode layer 13 of the semiconductor laser element 1. Is approximated to a photon density distribution in the same direction. Therefore, like the second embodiment, this embodiment is an example of the most preferable arrangement of electrical connection portions, and a semiconductor laser device with good performance that realizes an increase in WPE can be obtained.
  • This embodiment is an application example of the second embodiment. That is, in the configuration as shown in FIG. 16, the first end face E1 side of the semiconductor laser element 1 is the bottom and the second end face E2 side is the apex on the second electrode layer 13 of the semiconductor laser element 1. A triangular pad 56 is formed. Further, the bonding wire 2 is connected on the pad 56.
  • the pad 56 is formed by Au plating or the like having a low electric resistance, and the thickness thereof is 3 ⁇ m to 10 ⁇ m, for example.
  • the pad 56 and the bonding wire 2 connected on the pad 56 can be regarded as equipotential. Therefore, in the present embodiment, as in the fourth embodiment, the pad 56 corresponds to an electrical connection portion connected to the second electrode layer 13 of the semiconductor laser element 1.
  • the contact area included in half of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇
  • the contact area included in 1 ⁇ 2 of the area on the second end face E2 side is ⁇
  • the relationship ⁇ > ⁇ is satisfied.
  • the contact area between the electrical connection portion and the second electrode layer 13 corresponds to the area of the pad 56.
  • the pad 56 is integrated, but of the area of the pad 56, the area of the portion included in 1 ⁇ 2 of the upper area of the semiconductor laser device 1 on the first end face E 1 side is the same as ⁇ . Further, the area of the portion included in 1 ⁇ 2 on the second end face E2 side corresponds to ⁇ . Further, the pad 56 has a substantially triangular shape such that the second end face E2 side of the upper area of the semiconductor laser element 1 is the apex, and ⁇ > 0.
  • the pad 56 is a current density distribution in the direction connecting the first end face E1 and the second end face E2 in the active region 11 of the semiconductor laser element 1 on the second electrode layer 13 of the semiconductor laser element 1. Is approximated to a photon density distribution in the same direction. That is, the width of the pad 56 (the width perpendicular to the direction connecting the first end surface E1 and the second end surface E2) is maximum on the first end surface E1 side of the semiconductor laser element 1, and follows the light intensity distribution shown in FIG. The second end surface E2 is formed so that the width decreases.
  • this embodiment is an example of the most preferable configuration of the electrical connection portion as in the second embodiment, and a semiconductor laser device with good performance that realizes an increase in WPE can be obtained.
  • the semiconductor laser element 1 is joined to the submount 6 via the first electrode layer 23 (by junction down junction), and the semiconductor laser element 1 is electrically connected to the second electrode layer 13 of the semiconductor laser element 1.
  • the pad 56 is formed as the general connection portion
  • the pad 56 as in the fourth embodiment or the fifth embodiment is formed as the electrical connection portion on the first electrode layer 23 of the semiconductor laser element 1
  • the semiconductor laser element 1 is joined to the submount 6 via the pad 56 formed on the first electrode layer 23, the same effect can be obtained.
  • the present embodiment is a modification of the second embodiment. That is, in the configuration as shown in FIG. 17, the bonding wires 2 are arranged as the electrical connection portions on the second electrode layer 13 of the semiconductor laser device 1 in a single-row configuration instead of a two-row configuration. did.
  • the bonding wires are not necessarily configured in two rows. It is not preferable to connect more bonding wires than necessary to the electrode layer of the semiconductor laser element because it causes disadvantages such as an increase in the cost of materials such as Au and an increase in process cycle time.
  • the contact area included in 1 ⁇ 2 of the upper area of the semiconductor laser device 1 on the first end face E1 side is ⁇
  • the upper area When the contact area included in 1 ⁇ 2 on the second end face E2 side is ⁇ , the relation of ⁇ > ⁇ is satisfied, and at least one bonding is provided on the second end face E2 side of the upper area of the semiconductor laser device 1.
  • Wire 2 is connected and ⁇ > 0.
  • the bonding wire 2 is arranged so that the current density distribution in the direction connecting the first end face E1 and the second end face E2 in the active region 11 of the semiconductor laser element 1 approximates the photon density distribution in the same direction.
  • this embodiment is an example of the most preferable electrical connection configuration in a semiconductor laser device with an output of about 10 mW to 2 W, for example, and it is possible to obtain a high-performance semiconductor laser device that realizes an increase in WPE. it can.
  • the semiconductor laser element is joined to the submount by the junction down junction and the electrical connection portion is connected or formed to the second electrode layer.
  • the semiconductor laser element is joined to the submount by the junction up junction. They may be joined and an electrical connection may be connected or formed to the first electrode layer.
  • the optical semiconductor element is a semiconductor laser element
  • the type of the optical semiconductor element is not particularly limited.
  • the optical semiconductor element may be a semiconductor optical amplifier that inputs laser light from the second end face and outputs laser light of 10 mW or more from the first end face.
  • the optical semiconductor element may be an integrated semiconductor element in which a semiconductor laser element and an optical semiconductor amplifier are integrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

駆動電圧を低下させつつ光出力を増大させ、特に電気-光変換効率の増大を実現した、性能の良い光半導体装置、特に高出力の半導体レーザ装置を提供する。半導体積層部と、光出力側の第一端面及び第一端面と対向する第二端面にはさまれた活性領域と、半導体積層部の上部に設けられた第一電極層及び下部に設けられた第二電極層とを備えた光半導体素子と、光半導体素子の第一電極層又は第二電極層の少なくとも一方に、活性領域に電流を注入するための電気的接続部が接続された光半導体装置であって、電気的接続部と、光半導体素子との接触面積のうち、光半導体素子の上部面積の第一端面側の1/2に含まれる接触面積をα、第二端面側の1/2に含まれる接触面積をβとしたとき、α>βを満たし、かつ、β>0であることを特徴とする光半導体装置。

Description

光半導体装置
 本発明は、光半導体装置、特に、素子の出力が100mW以上となるような半導体レーザ装置、さらに、素子の出力が数W以上となるような高出力の半導体レーザ装置に関する。
 半導体レーザ装置は、光通信用レーザや加工などに用いられる産業用レーザなどとして活用されている。光通信用レーザでは、光ファイバ中に光を長距離(たとえば数百キロメートル)伝搬させる必要があり、信号品質の劣化を抑制するためにシングルモードのレーザが使用されることが一般的である。一方、産業用レーザでは、光通信用レーザ以上の高出力が必要とされ、かつ長距離を伝搬させる必要がないため、高出力に特化したマルチモードのレーザが使用される。マルチモードレーザでは、レーザの導波路の幅を広くして、導波路内で複数のモードを許容する(つまり、マルチモード)ことによって、高出力が達成される。ここで高出力とは、素子の出力として、たとえば数W~20W(ともに室温、CW駆動)程度の出力のことである。
 一般的な半導体レーザ素子は、基板上に形成された半導体積層部と光出力側の第一端面及び第一端面と対向する第二端面にはさまれた活性領域と、半導体積層部の上部に設けられた第一電極層及び、下部に設けられた第二電極層を備えている。
 高出力な半導体レーザ装置においては、図1に示すように、半導体レーザ素子1は、AlNなどのセラミックス基板5上にAuなどの金属膜4が形成された、サブマウント6とよばれる基板に接合される。さらに、半導体レーザ素子1の電極層には、半導体レーザ素子1に電流を注入するための電気的接続部として、Auなどのボンディングワイヤ2が接続される。図2に、従来技術の例として、高出力の半導体レーザ素子1の電極層の上に、多数のボンディングワイヤ2を均等に配置した構成を示す(従来構成1)。一般に、ボンディングワイヤ2の直径は15μm~50μm程度と非常に細いので、数A~30Aの大電流を注入する、数W~20Wの高出力の半導体レーザ装置では、非常に多くの本数のボンディングワイヤ2を半導体レーザ素子1の電極層に接続する必要がある。しかしながら、ボンディングワイヤ2の本数が増えると、Auなどの材料コストアップ、工程タクト時間の増加などのデメリットが生じる。さらに半導体レーザ素子1の表面積は非常に小さい(たとえば、幅0.3mm~0.5mm×長さ3mm~5mm)ので、ボンディングワイヤ2を接続するためのフットプリントが限られているという問題がある。
 そこで本発明者らは、高出力な半導体レーザ装置において、半導体レーザ装置の性能を悪化させることなく、ボンディングワイヤの数を減らすことを目的に、特許文献1を参考にした。
特許第3672272号
 特許文献1には、活性層内部でのキャリアの消費速度は、活性層内の光子密度が低い部分で遅く、光子密度が高い部分で速くなるため、半導体レーザ素子へ供給(注入)する電流が共振器長方向に均一であると、活性層内の光子密度が高い部分ではキャリアが不足し、光子密度の低い部分ではキャリアが過剰となる。そして、この活性層内のキャリア不足が半導体レーザの光出力を飽和させる原因であることが記載されている。そして、この課題を解決するために、活性層内の光子密度分布における共振器長方向での極大点に対応する共振器長方向の位置にボンディングワイヤを接合することが提案されている。
 本発明者らは、この特許文献1を参考に、図3に示すような構成を検討した(従来構成2)。すなわち、第一端面E1に形成された反射膜の反射率が、第二端面E2に形成された反射膜の反射率より低くなるような半導体レーザ素子1では、第一端面E1部が光子密度の極大点となる。さらに、高出力の半導体レーザ素子1に、数A以上の電流を流すことができるように、第一端面E1側に図2の構成と同数のボンディングワイヤ2を寄せて配置した。
 しかしながら、図4Aおよび4Bに示すように、多数のボンディングワイヤ2を均等に配置した従来構成1(図2の構成)と、第一端面E1側に従来構成1と同数のボンディングワイヤ2を寄せて配置した従来構成2(図3の構成)との光出力及び駆動電圧を比較したところ、特許文献1を参考にした従来構成2では、確かに光出力が増大しているが、駆動電圧が顕著に上昇してしまっている。これは、キャリアの消費速度が速い第一端面E1側に寄せて接合したボンディングワイヤ2への電流集中により、ボンディングワイヤ2が発熱し、電気抵抗が上昇してしまったためと考えられる。
 産業用レーザでは、電気-光変換効率(WPE:Wall Plug Efficiency)が高いことが求められる。WPEは、投入電力(電流×電圧)に対する半導体レーザ装置の最終的な光出力の割合として定義される。そのため、駆動電圧の上昇はWPEの低下につながり、半導体レーザの性能上好ましくない。
 本発明は、駆動電圧を低下させつつ光出力を増大させ、特にWPEの増大を実現した、性能の良い光半導体装置、特に高出力の半導体レーザ装置を提供する。
 本発明の一態様によれば、半導体積層部と、光出力側の第一端面及び第一端面と対向する第二端面にはさまれた活性領域と、前記半導体積層部の上部に設けられた第一電極層及び下部に設けられた第二電極層と、を備えた光半導体素子と、前記光半導体素子の前記第一電極層又は前記第二電極層の少なくとも一方に、前記活性領域に電流を注入するための電気的接続部が接続された光半導体装置であって、前記電気的接続部と、前記光半導体素子との接触面積のうち、前記光半導体素子の上部面積の前記第一端面側の1/2に含まれる前記接触面積をα、前記第二端面側の1/2に含まれる前記接触面積をβとしたとき、α>βを満たし、かつ、β>0であることを特徴とする光半導体装置が提供される。
 本発明の他の態様によれば、前記光半導体素子の上部面積の前記第二端面側の1/2に接続された前記電気的接続部の一部は、前記第二端面近傍にあることを特徴とする、上記の光半導体装置が提供される。
 本発明の他の態様によれば、前記光半導体素子の上部面積の前記第二端面側の1/2に接続された前記電気的接続部の一部は、前記第二端面側から1/4の領域にあることを特徴とする、上記の光半導体装置が提供される。
 本発明の他の態様によれば、前記電気的接続部は、前記活性領域内の前記第一端面と前記第二端面を結ぶ方向の電流密度分布を、前記活性領域内における同方向の光子密度分布に近似させるように配置し、接続されていることを特徴とする、上記の光半導体装置が提供される。
 本発明の他の態様によれば、前記光半導体素子は、前記第一端面から出力される光の出力が100mW以上であるような半導体レーザ素子であることを特徴とする、上記の光半導体装置が提供される。
 本発明の他の態様によれば、前記光半導体素子は、前記第一端面から出力される光が出力1W以上のレーザ光であり、前記レーザ光をマルチモード発振するような半導体レーザ素子であることを特徴とする、上記の光半導体装置が提供される。
 本発明の他の態様によれば、前記光半導体素子は、前記第二端面からレーザ光を入力し、前記第一端面から10mW以上のレーザ光を出力するような、半導体光増幅素子であることを特徴とする、上記の光半導体装置が提供される。
従来の構成に係る半導体レーザ装置の一例の斜視図である。 従来構成1における電気的接続部の配置を示す上面図である。 従来構成2における電気的接続部の配置を示す上面図である。 従来構成1と従来構成2の光出力及び駆動電圧を比較した結果を示すグラフである。 従来構成1と従来構成2の光出力及び駆動電圧を比較した結果を示すグラフである。 本発明に係る半導体レーザ素子の模式的な斜視図である。 図5に示す半導体レーザ素子の模式的な断面図である。 本発明に係る半導体レーザ装置の一例の斜視図である。 本発明の実施形態1における電気的接続部の配置を示す上面図である。 ボンディングワイヤと第一電極層または第二電極層との接触面積を示す図である。 本発明の実施形態2における電気的接続部の配置を示す上面図である。 活性領域内における光強度分布を示すグラフである。 本発明の実施形態と、従来の構成の光出力及び駆動電圧を比較検討した結果を示すグラフである。 本発明の実施形態と、従来の構成の光出力及び駆動電圧を比較検討した結果を示すグラフである。 本発明の実施形態と従来の構成を比較し、本発明の実施形態が電気-光変換効率が向上する効果を示すグラフである。 本発明の実施形態と従来の構成を比較し、本発明の実施形態が電気-光変換効率が向上する効果を示すグラフである。 本発明の実施形態と従来の構成を比較し、本発明の実施形態が電気-光変換効率が向上する効果を示すグラフである。 本発明の電気的接続部の配置の一変形例を示す上面図である。 本発明の電気的接続部の配置の一変形例を示す上面図である。 本発明の電気的接続部の配置の一変形例を示す上面図である。 本発明の電気的接続部の配置の一変形例を示す上面図である。
 以下に、図面を参照して本発明に係る光半導体装置の実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 まず、本発明の実施の形態に係る光半導体素子の例として、半導体レーザ素子1について説明する。本実施の形態に係る半導体レーザ素子1は、レーザ光をマルチモード発振する端面発光型の半導体レーザ素子である。なお、ここでマルチモード発振するとは、複数の導波モードを許容する幅の広い導波路を有することを意味する。
 図5は、本発明の実施の形態に係る半導体レーザ素子1の模式的な斜視図である。図5に示すように、この半導体レーザ素子1は、半導体積層部8と、光出力側の第一端面E1及び第一端面E1と対向する第二端面E2にはさまれた活性領域11とを有する。半導体積層部8の光出力側の第一端面E1には、たとえば反射率が10%以下の低反射率膜9が形成され、第一端面E1と対向する第二端面E2には、たとえば反射率が90%以上の高反射率膜10が形成されている。半導体レーザ素子1は、活性領域内11にてレーザ光を導波し、第一端面E1より低反射率膜9を介してレーザ光を出射する。
 第一端面E1と第二端面E2との距離で決まる、半導体レーザ素子1の素子長さLは、たとえば1mm~6mm、さらに好ましくは3mm~5mm程度である。
 図6は、図5に示す半導体レーザ素子1の断面図の一例である。図6に示すように、半導体レーザ素子1は、上面に形成された第一電極層23と、下面に形成された第二電極層13と、n型のGaAsからなる基板14と、基板14上に形成された半導体積層部8と、パッシベーション膜22とを備える。
 半導体積層部8は、基板14上に順次形成された、n型バッファ層15、n型クラッド層16、n型ガイド層17、活性層18、p型ガイド層19、p型クラッド層20、p型コンタクト層21を備える。
 n型バッファ層15は、GaAsからなり、基板14上に高品質のエピタキシャル層の積層構造を成長するための緩衝層である。n型クラッド層16とn型ガイド層17とは、積層方向に対する所望の光閉じ込め状態を実現するように、屈折率と厚さとが設定されたAlGaAsからなる。なお、n型ガイド層17のAl組成は、たとえば20%以上40%未満である。また、n型クラッド層16は、n型ガイド層17よりも屈折率が小さくなっている。また、n型ガイド層17の厚さは、50nm以上、たとえば1000nm程度であることが好ましい。n型クラッド層16の厚さは、1μm~3μm程度が好ましい。また、これらのn型半導体層は、n型ドーパントとしてたとえば珪素(Si)を含む。
 活性層18は、下部バリア層18a、量子井戸層18b、上部バリア層18cを備え、単一の量子井戸(SQW)構造を有する。下部バリア層18aおよび上部バリア層18cは、量子井戸層18bにキャリアを閉じ込める障壁の機能を有し、故意にドーピングをしない高純度のAlGaAsからなる。量子井戸層18bは、故意にドーピングをしない高純度のInGaAsからなる。量子井戸層18bのIn組成および膜厚、下部バリア層18aおよび上部バリア層18cの組成は、所望の発光中心波長(たとえば900nm~1080nm)に応じて設定される。なお、活性層18の構造は、量子井戸層18bとその上下に形成されたバリア層の積層構造を所望の数だけ繰り返した多重量子井戸(MQW)構造でもよいし、単一量子井戸構造でもよい。また、上記では、故意にドーピングをしない高純度層での構成を説明したが、量子井戸層18b、下部バリア層18aおよび上部バリア層18cに故意にドナーやアクセプタが添加される場合もある。
 p型ガイド層19およびp型クラッド層20は、上述のn型クラッド層16およびn型ガイド層17と対になり、積層方向に対する所望の光閉じ込め状態を実現するように、屈折率と厚さとが設定されたAlGaAsからなる。p型ガイド層19のAl組成は、たとえば20%以上40%未満である。p型クラッド層20は、p型ガイド層19よりも屈折率が小さくなっている。層中の光のフィールドをn型クラッド層16の方向にずらして導波路損失を小さくするために、p型クラッド層20のAl組成はn型クラッド層16に比べて若干大きめに設定される。そして、p型ガイド層19のAl組成は、p型クラッド層20のAl組成に比べ小さく設定される。また、p型ガイド層19の厚さは、50nm以上、たとえば1000nm程度であることが好ましい。p型クラッド層20の厚さは、1μm~3μm程度が好ましい。また、これらのp型半導体層は、p型ドーパントとして炭素(C)を含む。p型ガイド層19のC濃度は、たとえば0.1~1.0×1017cm-3に設定され、0.5~1.0×1017cm-3程度が好適である。p型クラッド層20のC濃度は、たとえば1.0×1017cm-3以上に設定される。また、p型コンタクト層21は、ZnまたはCが高濃度にドーピングされたGaAsからなる。
 p型コンタクト層21の上面には第一電極層23が形成される。第一電極層23は、たとえばTi/Pt/Auの金属多層膜又はAu、Znを主成分とする合金膜などが形成され、その厚さはたとえば2μm以下、さらに0.5~0.1μmが好ましい。第一電極層23の上面には、第一電極層23と良好な電気的接続を得るために、たとえば厚さ10~3μmのAuメッキを形成してもよい。
 n型のGaAsからなる基板14の下面には第二電極層13が形成される。第二電極層13は、たとえばAu、Ge、Niからなる合金膜が形成され、その厚さはたとえば2μm以下、さらに0.5~0.1μmが好ましい。
 図6に示すように、半導体積層部8の開口部22aの直下の領域は、図6の横方向において光を閉じ込めるためのリッジ構造が形成されている。リッジ構造の底部の幅で決まる、導波路幅12は、たとえば80μm以上500μm以下である。
 パッシベーション膜22は、たとえばSiNxからなる絶縁膜であり、開口部22aを有する。この半導体レーザ素子1では、パッシベーション膜22により第一電極層23と半導体積層部8との接触面積を制限することにより、活性領域11への電流狭窄を実現している。
 上記で形成された半導体レーザ素子1は、図7に示すように、サブマウント6上に接合され、さらに、半導体レーザ素子1に電流を注入するための電気的接続部として、Auなどのボンディングワイヤ2が接続され、半導体レーザ装置に組み立てられる。
 サブマウント6は、たとえばCuW合金などの基板上にAuなどの金属膜4を形成したもの、又はAlNなどのセラミックス基板上にAuなどの金属膜4を形成したものが用いられる。また、半導体レーザ素子1とサブマウント6との接合には、たとえばAuSn合金などのはんだ7などが用いられる。
 一般に、半導体レーザ素子をサブマウントに接合する方法は、以下の2つの方法がある。一つの方法は、第二電極層を介して半導体レーザ素子をサブマウントに接合する方法で、ジャンクションアップ接合(junction-side-up  mount)と呼ばれる。ジャンクションアップ接合では、半導体レーザ素子の第一電極層に、活性領域に電流を注入するための電気的接続部として、たとえばAuなどのボンディングワイヤなどが接続される。ボンディングワイヤの直径は、たとえば15~50μmである。
 もう一つの方法は、第一電極層を介して半導体レーザ素子をサブマウントに接合する方法で、ジャンクションダウン接合(junction-side-down  mount)と呼ばれる。ジャンクションダウン接合では、半導体レーザ素子の第二電極層に、活性領域に電流を注入するための電気的接続部として、たとえばAuなどのボンディングワイヤなどが接続される。高出力の半導体レーザ素子、特に80~500μm程度の導波路幅をもつマルチモードレーザ素子では、ジャンクションダウン接合が用いられることが多い。
 以下では、半導体レーザ素子1の活性領域11に電流を注入するための電気的接続部の設計に関して、好ましい実施形態について説明する。具体的な例として、高出力な半導体レーザ素子1を、ジャンクションダウン接合でサブマウント6に接合した半導体レーザ装置において、半導体レーザ素子1の第二電極層13に接続される電気的接続部の構成について説明する。ただし、それぞれの実施形態を示すそれぞれの図では、サブマウント6及びボンディングワイヤ2のワイヤ部が省略されている。
(実施形態1)
 本実施形態では、図8に示すような構成で、電気的接続部としてボンディングワイヤ2を第二電極層13に接続した。
 上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとする。このとき、α>βの関係を満たすように、ボンディングワイヤ2が接続されている。ここで、ボンディングワイヤ2の1本あたりの接触面積24は、たとえば図9に示されように、第二電極層13上にボンディングワイヤ2の端部が接する面積として定められ得る。従って、1本のボンディングワイヤ2の1本あたりの接触面積24と、半導体レーザ素子1の上部面積における第一端面E1側の1/2の領域にあるボンディングワイヤ2の本数を乗じた値がα、同様に第二端面E2側の1/2の領域にあるボンディングワイヤ2の本数を乗じた値がβとなる。
 さらに、図8に示すように、半導体レーザ素子1の上部面積の第二端面E2側には少なくとも1本(ここでは2本)のボンディングワイヤ2が接続されており、β>0となっている。
(実施形態2)
 本実施形態では、図10に示すような構成で、電気的接続部としてボンディングワイヤ2を第二電極層13に配置、接続した。すなわち、上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たすとともに、半導体レーザ素子1の上部面積の第二端面E2側には少なくとも1本のボンディングワイヤ2が接続されており、β>0となっている。さらに、ボンディングワイヤ2は、半導体レーザ素子1の活性領域11内における第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるように配置されている。
 具体的には、以下の式により、半導体レーザ素子1の活性領域11内における光強度分布を求めた。
 活性領域11内の第二端面E2からの距離zにおける光強度P(z)は、以下の式により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、Aは比例定数、Rfは第一端面E1に形成した低反射率膜9の反射率、Rbは第二端面E2に形成した高反射率膜10の反射率、Lは第一端面E1と第二端面E2の距離で決まる素子長さである。計算では、Rf=0.5%、Rb=95%、L=4.5mmとした。その結果を図11に示す。
 活性領域11内では、光子密度が高い部分、すなわち光強度の大きいところほど、キャリアの消費速度が速いことが知られている。従って、図11に示す光強度分布に応じた分布で電気的接続部を配置することで、活性領域11内に効率よくキャリアを供給することができ、性能の良い半導体レーザ装置が得られると考えた。その結果、図10に示すように、光強度が最大となる第一端面E1側でボンディングワイヤ2が最密となるよう配置し、第二端面E2側に行くに従い、光強度の低下に比例させてボンディングワイヤ2の密度も下げるように、ボンディングワイヤ2を第二電極層13上に配置、接続した。
(結果)
 実施形態1及び実施形態2と、第一端面E1側に多数のボンディングワイヤ2を寄せて配置した従来構成2(図3の構成)との光出力及び駆動電圧を比較した。その結果を図12A、12Bに示す。その結果、電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積の第一端面E1側の1/2に含まれる接触面積をα、第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たし、かつβ>0となる、実施形態1のボンディングワイヤ2の配置では、従来構成2よりも駆動電圧が低下した。さらに、電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積の第一端面E1側の1/2に含まれる接触面積をα、第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たし、かつβ>0であるとともに、活性領域11内の第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるようにボンディングワイヤ2を配置した、実施形態2の構成では、さらに駆動電圧が低下した。一方で、実施形態1及び実施形態2の光出力は、従来構成2の光出力と比較してほとんど低下していない。
 従来構成1、従来構成2、実施形態1、及び実施形態2の、以上4つの構成における、光出力、駆動電圧、及び電気-光変換効率を比較した結果を、図13A、13B、13Cに示す。
 その結果、多数のボンディングワイヤを均等に配置した従来構成1は、最も電気-光変換効率(WPE)が低く、第一端面側に多数のボンディングワイヤを寄せて配置した従来構成2では、光出力は大きくなるが、駆動電圧も大きく、WPEが悪い結果となった。一方、本実施形態1及び実施形態2の構成によれば、光出力は従来構成2にやや劣るものの、駆動電圧が顕著に下がるので、WPEが高い。特に電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積の第一端面E1側の1/2に含まれる接触面積をα、第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たし、かつβ>0であるととともに、活性領域内の第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるようにボンディングワイヤが配置された実施形態2では、最もWPEが高く、最も好ましいボンディングワイヤの配置であることが示された。
 このように、ボンディングワイヤなどの電気的接続部の配置を変化させることで、半導体レーザ装置の光出力、駆動電圧、WPEなどの性能を変化させるためには、ボンディングワイヤなどの電気的接続部が接続される、電極層の電気抵抗は、ボンディングワイヤなどの電気的接続部よりも十分に大きい必要がある。
 そのためには、たとえば半導体レーザ素子1の第一電極層23に、ボンディングワイヤ2などの電気的接続部が接続される場合、たとえばTi/Pt/Auの金属多層膜又はAu、Znを主成分とする合金膜などで形成される、第一電極層23の厚さは、たとえば2μm以下、さらには0.5~0.1μmが好ましい。
 同様に、たとえば半導体レーザ素子1の第二電極層13に、ボンディングワイヤ2などの電気的接続部が接続される場合、たとえばAu、Ge、Niからなる合金膜などで形成される、第二電極層13の厚さは、たとえば2μm以下、さらには0.5~0.1μmが好ましい。
(実施形態3)
 本実施形態は、実施形態1の応用例である。図14に示すような構成で、第一端面E1側に、実施形態1においてボンディングワイヤ2を多数接続する代わりに、Au箔などをリボン状にしたボンディングリボン32を、電気的接続部として第二電極層13に接続した。さらに、第二端面E2側には少なくとも1本(ここでは2本)のボンディングワイヤ2が接続されている。
 本実施形態においても、上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たす。ここで、第二電極層13と電気的接続部としてのボンディングリボン32の接触面積は、ボンディングリボン32の接続部33の面積である。このボンディングリボン32の接続部33の面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる面積がαに相当する。さらに、半導体レーザ素子1の上部面積の第二端面E2側には少なくとも1本(ここでは2本)のボンディングワイヤ2が接続されており、β>0となっていることから、実施形態1と同様に、WPEの増大を実現した、性能の良い半導体レーザ装置を得ることができる。
(実施形態4)
 本実施形態は、実施形態2の応用例である。すなわち、図15に示すような構成で、半導体レーザ素子1の第二電極層13の上部にパッド56が形成されており、さらに、このパッド56上にボンディングワイヤ2が接続されている。パッド56は電気抵抗の小さいAuメッキなどで形成されており、その厚さはたとえば3μm~10μmである。パッド56と、このパッド56上に接続されたボンディングワイヤ2は、等電位とみなすことができる。よって、本実施形態では、パッド56が、半導体レーザ素子1の第二電極層13に接続された電気的接続部に相当する。
 本実施形態においても、上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たす。ここで、電気的接続部と第二電極層13との接触面積は、パッド56の面積が相当する。パッド56の面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる面積の合計がαに、同様に第二端面E2側の1/2に含まれる面積の合計がβに相当する。また、半導体レーザ素子1の上部面積の第二端面E2側には少なくとも1つのパッド56があり、β>0となっている。
 さらに、本実施形態では、パッド56は、半導体レーザ素子1の第二電極層13上に、半導体レーザ素子1の活性領域11内における第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるように形成されている。よって、本実施形態は、実施形態2と同様に、最も好ましい電気的接続部の配置の一例であり、WPEの増大を実現した、性能の良い半導体レーザ装置を得ることができる。
(実施形態5)
 本実施形態は、実施形態2の応用例である。すなわち、図16に示すような構成で、半導体レーザ素子1の第二電極層13の上部に、半導体レーザ素子1の第一端面E1側が底辺となり、第二端面E2側が頂点となるような、略三角形状のパッド56が形成されている。さらに、このパッド56上にボンディングワイヤ2が接続されている。パッド56は電気抵抗の小さいAuメッキなどで形成されており、その厚さはたとえば3μm~10μmである。パッド56と、このパッド56上に接続されたボンディングワイヤ2は、等電位とみなすことができる。よって、本実施形態では、実施形態4と同様に、パッド56が、半導体レーザ素子1の第二電極層13に接続された電気的接続部に相当する。
 本実施形態においても、上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たす。ここで、電気的接続部と第二電極層13との接触面積は、パッド56の面積が相当する。本実施形態では、パッド56が一体となっているが、パッド56の面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる部分の面積がαに、同様に第二端面E2側の1/2に含まれる部分の面積がβに相当する。また、パッド56は、半導体レーザ素子1の上部面積の第二端面E2側が頂点となるような略三角形状であり、β>0となっている。
 さらに、本実施形態では、パッド56は、半導体レーザ素子1の第二電極層13上に、半導体レーザ素子1の活性領域11内における第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるように形成されている。すなわち、半導体レーザ素子1の第一端面E1側でパッド56の幅(第一端面E1と第二端面E2を結ぶ方向に垂直な幅)が最大であり、図11に示す光強度分布に従うように、第二端面E2側に向かって幅が小さくなるよう形成されている。このように、半導体レーザ素子1の第二電極層13に接続された電気的接続部として、パッド56の形状を設計することで、活性領域11内に効率よくキャリアを供給することができる。よって、本実施形態は、実施形態2と同様に、最も好ましい電気的接続部の構成の一例であり、WPEの増大を実現した、性能の良い半導体レーザ装置を得ることができる。
 実施形態4及び実施形態5では、半導体レーザ素子1はサブマウント6に第一電極層23を介して(ジャンクションダウン接合で)接合されており、半導体レーザ素子1の第二電極層13上に電気的接続部としてパッド56を形成する場合について説明したが、半導体レーザ素子1の第一電極層23上に、実施形態4又は実施形態5のようなパッド56を電気的接続部として形成したのち、この第一電極層23上に形成されたパッド56を介して、半導体レーザ素子1をサブマウント6に接合しても同様の効果が得られる。
(実施形態6)
 本実施形態は、実施形態2の変形例である。すなわち、図17に示すような構成で、半導体レーザ素子1の第二電極層13上に、電気的接続部としてボンディングワイヤ2を、2列の構成ではなく、1列の構成で配置し、接続した。
 半導体レーザ装置として、たとえば10mA~3A程度の電流を注入する、たとえば10mW~2W程度の出力の半導体レーザ装置の場合、必ずしもボンディングワイヤを2列の構成とする必要はない。必要以上に多くのボンディングワイヤを、半導体レーザ素子の電極層に接続することは、Auなどの材料コストアップ、工程タクト時間の増加などのデメリットを招き、好ましくない。
 本実施形態は、上記電気的接続部と第二電極層13との接触面積のうち、半導体レーザ素子1の上部面積における第一端面E1側の1/2に含まれる接触面積をα、上部面積の第二端面E2側の1/2に含まれる接触面積をβとしたとき、α>βの関係を満たすとともに、半導体レーザ素子1の上部面積の第二端面E2側には少なくとも1本のボンディングワイヤ2が接続されており、β>0となっている。さらに、ボンディングワイヤ2は、半導体レーザ素子1の活性領域11内における第一端面E1と第二端面E2を結ぶ方向の電流密度分布を、同方向の光子密度分布に近似させるようにボンディングワイヤ2が1列の構成で配置されている。よって、本実施形態は、たとえば10mW~2W程度の出力の半導体レーザ装置において、最も好ましい電気的接続部の構成の一例であり、WPEの増大を実現した、性能の良い半導体レーザ装置を得ることができる。
 上記実施形態では、半導体レーザ素子をジャンクションダウン接合でサブマウントに接合し、第二電極層に電気的接続部を接続又は形成する場合について説明したが、半導体レーザ素子をジャンクションアップ接合でサブマウントに接合し、第一電極層に電気的接続部を接続又は形成してもよい。
 上記実施形態では、光半導体素子が半導体レーザ素子である場合について説明したが、光半導体素子の種類は特に限定されない。たとえば、光半導体素子は、第二端面からレーザ光を入力し、第一端面から10mW以上のレーザ光を出力するような、半導体光増幅器でもよい。また、光半導体素子は、半導体レーザ素子と光半導体増幅器を集積した集積型半導体素子であってもよい。
 この出願は2018年2月16日に出願された日本国特許出願第2018-025526号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
 1   半導体レーザ素子
 2   ボンディングワイヤ
 4   金属膜
 5   基板
 6   サブマウント
 7   はんだ
 8   半導体積層部
 E1  第一端面
 E2  第二端面
 L   素子長さ
 9   低反射率膜
 10  高反射率膜
 11  活性領域
 12  導波路幅
 13  第二電極層
 14  基板
 15  n型バッファ層
 16  n型クラッド層
 17  n型ガイド層
 18  活性層
 18a 下部バリア層
 18b 量子井戸層
 18c 上部バリア層
 19  p型ガイド層
 20  p型クラッド層
 21  p型コンタクト層
 22  パッシベーション膜
 22a 開口部
 23  第一電極層
 24  ボンディングワイヤの接続部面積
 32  ボンディングリボン
 33  ボンディングリボンの接続部
 56  パッド

Claims (7)

  1.  半導体積層部と、
     光出力側の第一端面及び前記第一端面と対向する第二端面にはさまれた活性領域と、
     前記半導体積層部の上部に設けられた第一電極層及び下部に設けられた第二電極層と、を備えた光半導体素子と、
     前記光半導体素子の前記第一電極層又は前記第二電極層の少なくとも一方に、前記活性領域に電流を注入するための電気的接続部が接続された光半導体装置であって、
     前記電気的接続部と、前記光半導体素子との接触面積のうち、前記光半導体素子の上部面積の前記第一端面側の1/2に含まれる前記接触面積をα、前記第二端面側の1/2に含まれる前記接触面積をβとしたとき、α>βを満たし、かつ、β>0であることを特徴とする光半導体装置。
  2.  前記光半導体素子の上部面積の前記第二端面側の1/2に接続された前記電気的接続部の一部は、前記第二端面近傍にあることを特徴とする、請求項1に記載の光半導体装置。
  3.  前記光半導体素子の上部面積の前記第二端面側の1/2に接続された前記電気的接続部の一部は、前記第二端面側から1/4の領域にあることを特徴とする、請求項1に記載の光半導体装置。
  4.  前記電気的接続部は、前記活性領域内の前記第一端面と前記第二端面を結ぶ方向の電流密度分布を、前記活性領域内における同方向の光子密度分布に近似させるように配置し、接続されていることを特徴とする、請求項1から請求項3のいずれか1項に記載の光半導体装置。
  5.  前記光半導体素子は、前記第一端面から出力される光の出力が100mW以上であるような半導体レーザ素子であることを特徴とする、請求項1から請求項4のいずれか1項に記載の光半導体装置。
  6.  前記光半導体素子は、前記第一端面から出力される光が出力1W以上のレーザ光であり、前記レーザ光をマルチモード発振するような半導体レーザ素子であることを特徴とする、請求項1から請求項4のいずれか1項に記載の光半導体装置。
  7.  前記光半導体素子は、前記第二端面からレーザ光を入力し、前記第一端面から10mW以上のレーザ光を出力するような、半導体光増幅素子であることを特徴とする、請求項1から請求項4のいずれか1項に記載の光半導体装置。
PCT/JP2019/005350 2018-02-16 2019-02-14 光半導体装置 WO2019160039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020500556A JP7288425B2 (ja) 2018-02-16 2019-02-14 光半導体装置
CN201980013122.5A CN111712979B (zh) 2018-02-16 2019-02-14 光半导体装置
EP19753933.1A EP3754799B1 (en) 2018-02-16 2019-02-14 Optical semiconductor device
US16/929,254 US11451008B2 (en) 2018-02-16 2020-07-15 Optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025526 2018-02-16
JP2018025526 2018-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/929,254 Continuation US11451008B2 (en) 2018-02-16 2020-07-15 Optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2019160039A1 true WO2019160039A1 (ja) 2019-08-22

Family

ID=67618664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005350 WO2019160039A1 (ja) 2018-02-16 2019-02-14 光半導体装置

Country Status (5)

Country Link
US (1) US11451008B2 (ja)
EP (1) EP3754799B1 (ja)
JP (1) JP7288425B2 (ja)
CN (1) CN111712979B (ja)
WO (1) WO2019160039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199532A1 (ja) * 2020-03-30 2021-10-07 古河電気工業株式会社 サブマウント、発光装置、および光学モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237909B2 (ja) * 1981-09-19 1987-08-14 Mitsubishi Electric Corp
US6307873B1 (en) * 1996-05-20 2001-10-23 Jds Uniphase Corporation Visible wavelength, semiconductor optoelectronic device with a high power broad, significantly laterally uniform, diffraction limited output beam
US6731427B1 (en) * 2001-09-06 2004-05-04 Onetta, Inc. Semiconductor optical amplifier systems
WO2005062433A1 (ja) * 2003-12-22 2005-07-07 Matsushita Electric Industrial Co., Ltd. 半導体レーザ装置およびレーザ投射装置
JP3672272B2 (ja) 1995-04-07 2005-07-20 三菱電機株式会社 光半導体デバイス
JP2018025526A (ja) 2016-08-02 2018-02-15 村角工業株式会社 検体収容容器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572082B2 (ja) * 1987-10-28 1997-01-16 富士写真フイルム株式会社 光半導体デバイス
DE69115624T2 (de) * 1990-09-28 1996-05-15 Nippon Electric Co Schaltung und Elektrodenanordnung zur Erzeugung einer breitbandigen Frequenzmodulationscharakteristik in Halbleiterlasern
US5793521A (en) * 1992-09-21 1998-08-11 Sdl Inc. Differentially patterned pumped optical semiconductor gain media
TW289175B (ja) 1995-04-07 1996-10-21 Mitsubishi Electric Corp
US5757832A (en) * 1995-04-27 1998-05-26 Canon Kabushiki Kaisha Optical semiconductor device, driving method therefor and light source and opitcal communication system using the same
JPH10200200A (ja) * 1997-01-06 1998-07-31 Canon Inc 面発光型半導体レーザ
CN100357770C (zh) * 2001-07-30 2007-12-26 古河电气工业株式会社 单模光纤、单模光纤的制造方法和用于制造单模光纤的设备
JP4570353B2 (ja) * 2003-12-26 2010-10-27 古河電気工業株式会社 半導体レーザ素子
US7079310B2 (en) * 2004-01-08 2006-07-18 Chih-Hsiao Chen Gain-clamped optical amplifier
US7359113B2 (en) * 2005-02-02 2008-04-15 Covega Corp. Semiconductor optical amplifier having a non-uniform injection current density
GB2427752A (en) * 2005-06-28 2007-01-03 Bookham Technology Plc High power semiconductor laser diode
JP5092241B2 (ja) * 2006-01-18 2012-12-05 株式会社日立製作所 ネットワークシステム
CN102742099B (zh) * 2011-12-20 2013-12-18 华为技术有限公司 激光器、无源光网络系统、装置以及波长控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237909B2 (ja) * 1981-09-19 1987-08-14 Mitsubishi Electric Corp
JP3672272B2 (ja) 1995-04-07 2005-07-20 三菱電機株式会社 光半導体デバイス
US6307873B1 (en) * 1996-05-20 2001-10-23 Jds Uniphase Corporation Visible wavelength, semiconductor optoelectronic device with a high power broad, significantly laterally uniform, diffraction limited output beam
US6731427B1 (en) * 2001-09-06 2004-05-04 Onetta, Inc. Semiconductor optical amplifier systems
WO2005062433A1 (ja) * 2003-12-22 2005-07-07 Matsushita Electric Industrial Co., Ltd. 半導体レーザ装置およびレーザ投射装置
JP2018025526A (ja) 2016-08-02 2018-02-15 村角工業株式会社 検体収容容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199532A1 (ja) * 2020-03-30 2021-10-07 古河電気工業株式会社 サブマウント、発光装置、および光学モジュール
JP7420625B2 (ja) 2020-03-30 2024-01-23 古河電気工業株式会社 サブマウント、発光装置、および光学モジュール

Also Published As

Publication number Publication date
EP3754799A1 (en) 2020-12-23
US20200366060A1 (en) 2020-11-19
US11451008B2 (en) 2022-09-20
CN111712979B (zh) 2023-08-22
JP7288425B2 (ja) 2023-06-07
EP3754799A4 (en) 2021-12-22
JPWO2019160039A1 (ja) 2021-02-04
CN111712979A (zh) 2020-09-25
EP3754799B1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
US8520712B2 (en) Laser diode and method of manufacturing the same
CN109417276B (zh) 半导体激光器装置、半导体激光器模块及焊接用激光器光源系统
JP5005300B2 (ja) 半導体レーザ装置
US7466736B2 (en) Semiconductor laser diode, semiconductor optical amplifier, and optical communication device
US10971897B2 (en) Semiconductor laser device, semiconductor laser module, and laser light source system for welding
JP2009295680A (ja) 半導体レーザ装置
JPWO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
JPWO2013151145A1 (ja) 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
JPWO2018212195A1 (ja) 半導体光素子
JP2002111135A (ja) 半導体レーザ素子、それを用いた光ファイバ増幅器用励起光源
JP5505226B2 (ja) 半導体光増幅器
WO2019160039A1 (ja) 光半導体装置
US20040086017A1 (en) Semiconductor laser device and semiconductor laser module
US7843984B2 (en) Semiconductor laser device
JP2007049088A (ja) 高出力赤色半導体レーザ
KR102103515B1 (ko) 레이저 다이오드 구조 및 제조 방법
JP7295739B2 (ja) 半導体レーザ素子およびチップオンサブマウント
JP2005302843A (ja) 半導体レーザ
WO2021112191A1 (ja) 半導体レーザ素子
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
JPH10290052A (ja) 半導体レーザ装置
JPH11307856A (ja) 分布帰還型レーザ及びその製造方法
JP3408247B2 (ja) 半導体レーザ素子
JP2002368341A (ja) 半導体レーザ素子、それを用いた励起用光源
JP2001257417A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753933

Country of ref document: EP

Effective date: 20200916