WO2021199532A1 - サブマウント、発光装置、および光学モジュール - Google Patents

サブマウント、発光装置、および光学モジュール Download PDF

Info

Publication number
WO2021199532A1
WO2021199532A1 PCT/JP2020/047769 JP2020047769W WO2021199532A1 WO 2021199532 A1 WO2021199532 A1 WO 2021199532A1 JP 2020047769 W JP2020047769 W JP 2020047769W WO 2021199532 A1 WO2021199532 A1 WO 2021199532A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor laser
width
submount
light emitting
Prior art date
Application number
PCT/JP2020/047769
Other languages
English (en)
French (fr)
Inventor
高弘 冨安
栄作 鍛治
大木 泰
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202080099277.8A priority Critical patent/CN115349207A/zh
Priority to EP20929035.2A priority patent/EP4125166A4/en
Publication of WO2021199532A1 publication Critical patent/WO2021199532A1/ja
Priority to US17/951,291 priority patent/US20230020128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series

Definitions

  • the present invention relates to a submount, a light emitting device, and an optical module.
  • a semiconductor laser module as an optical module including a semiconductor laser chip as a light emitting device and an optical fiber optically coupled to the semiconductor laser chip is known.
  • the assembly is performed by the following procedure. First, the semiconductor laser chip is mounted on the submount. At this time, the semiconductor laser chip is joined and mounted on the submount with solder such as a gold-tin (AuSn) alloy (Patent Document 1). In addition, another bonding agent such as a conductive adhesive may be used instead of the solder.
  • a submount on which such a semiconductor laser chip is mounted is an example of a light emitting device, and is also referred to as a chip-on-submount.
  • the chip-on-sub mount is joined and mounted on a metal housing directly or via a metal base, an electronic cooling element, or the like with solder such as tin-bismuth (SnBi) alloy. Further, other optical components such as a lens are mounted on the housing to perform optical coupling between the semiconductor laser chip and the optical fiber.
  • One of both end faces in the longitudinal direction of the end face emitting type semiconductor laser chip is a rear end face on which an HR (high reflection) coating having high reflectance at the laser oscillation wavelength is formed.
  • the other end face is an exit end face on which an AR (anti-reflection) coating having a low reflectance is formed.
  • a laser resonator is formed by a rear end surface and an emission end surface, and the oscillated laser light is mainly emitted from the emission end surface.
  • a semiconductor laser chip is mounted on a submount by die bonding.
  • die bonding a semiconductor laser chip is vacuum-chucked with a collet, and the semiconductor laser chip is mounted on a submount heated to a temperature equal to or higher than the melting point of a bonding agent such as solder.
  • wiring by a bonding wire is established between the semiconductor laser chip and the electrode on the submount. It is formed.
  • wiring by bonding wires may be formed between the submounts.
  • semiconductor laser chips are becoming more and more optical output. Along with this, it is becoming more and more important to effectively dissipate the heat generated by the semiconductor laser chip to the submount.
  • one of the problems of the present invention is to obtain, for example, a submount, a light emitting device, and an optical module in which wiring can be more easily joined on an electrode and the required heat dissipation can be easily obtained.
  • the submount of the present invention is a submount on which a light emitting device is mounted, and has a base and the first surface having a first surface extending in a first direction and a second surface orthogonal to the first direction.
  • the first which extends above in the first direction and the second direction, has a first end in the second direction and a second end in the opposite direction of the second direction extending in the first direction.
  • An electrode and a third end in the opposite direction of the second direction extending on the first surface in the first direction and the second direction and separated from the first end in the second direction with a gap.
  • a second electrode having a fourth end in the second direction extending in the first direction, and the second electrode between the third end and the fourth end of the second electrode.
  • the second width in the two directions depends on the position in the first direction.
  • the first width of the first electrode between the first end and the second end in the second direction differs depending on the position in the first direction.
  • the light emitting device of the present invention has the sub-mount, the back surface mounted on the first electrode and electrically connected to the first electrode, and the second electrode and the conductor on the side opposite to the back surface.
  • the surface comprises an electrically connected surface, and a light emitting element extending in the first direction closer to the first end than the second end.
  • the light emitting element is a semiconductor laser element having gallium arsenide or indium phosphide.
  • the optical module of the present invention includes a housing having a base and at least one light emitting device as the light emitting device provided on the base.
  • the optical module includes a plurality of light emitting devices arranged in the second direction as the light emitting device.
  • the present invention it is possible to obtain a submount, a light emitting device, and an optical module in which wiring can be more easily joined on an electrode and the required heat dissipation can be easily obtained.
  • FIG. 1 is an exemplary and schematic plan view of the optical module of the first embodiment.
  • FIG. 2 is an exemplary and schematic side view (partial cross-sectional view) of the optical module of the first embodiment.
  • FIG. 3 is an exemplary and schematic plan view of the optical device of the first embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is an exemplary and schematic plan view of the optical module of the second embodiment.
  • FIG. 7 is an exemplary and schematic plan view of the optical module of the third embodiment.
  • FIG. 8 is an exemplary and schematic plan view of the optical module of the fourth embodiment.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X, Y, and Z directions intersect and are orthogonal to each other.
  • the X direction is the emission direction of the laser beam from the light emitting element and the optical device, and the longitudinal direction of the light emitting element (longitudinal direction of the resonator).
  • the Y direction is the width direction of the light emitting element.
  • the Z direction is the thickness direction (height direction) of the submount.
  • FIG. 1 is a plan view of the semiconductor laser module 100
  • FIG. 2 is a side view (partial cross-sectional view) of the semiconductor laser module 100.
  • the semiconductor laser module 100 is an example of an optical module.
  • the semiconductor laser module 100 includes a housing 1 having a lid 1a (see FIG. 2) and a case 1b.
  • Housing 1 can be made of, for example, a metallic material. Note that, in FIG. 1, for convenience of explanation, the illustration of the lid 1a is omitted. In other words, FIG. 1 is a plan view showing an internal configuration in which the lid 1a of the semiconductor laser module 100 is removed.
  • the semiconductor laser module 100 includes a step-shaped module base 2, a plurality of submounts 3, and a plurality of semiconductor laser chips 4.
  • the module base 2 is made of a metal material such as copper, which has high thermal conductivity.
  • the semiconductor laser chip 4 is an example of a light emitting element.
  • the subassembly including the submount 3 mounted on the module base 2 and the semiconductor laser chip 4 is a chip-on-submount 16.
  • the chip-on-submount 16 is an example of a light emitting device.
  • the semiconductor laser module 100 includes two lead pins 5.
  • the two lead pins 5 are electrically connected to each semiconductor laser chip 4 via a submount 3, a bonding wire 18, and a bonding wire 17 (see FIG. 3) to supply electric power to each semiconductor laser chip 4.
  • the semiconductor laser module 100 includes six first lenses 6, six second lenses 7, six mirrors 8, a third lens 9, an optical filter 10, and a fourth lens 11. ..
  • Each of the first lens 6, each second lens 7, each mirror 8, third lens 9, optical filter 10, and fourth lens 11 is along the optical path of the laser light emitted by each semiconductor laser chip 4.
  • the semiconductor laser module 100 includes an optical fiber 12 arranged so as to face the fourth lens 11.
  • One end of the optical fiber 12 on the side where the laser beam is incident is housed inside the housing 1 and supported by the support member 13.
  • the bonding wires 17 and 18 can also be referred to as wiring or a conductor.
  • Each semiconductor laser chip 4 is composed of, for example, gallium arsenide (GaAs) or indium phosphide (InP) as a main material, and outputs laser light having a wavelength corresponding to the material and composition.
  • the thickness of each semiconductor laser chip 4 is, for example, about 0.1 mm.
  • each semiconductor laser chip 4 is mounted on each submount 3, and each submount 3 is mounted on a module base 2 so as to have different heights from each other.
  • each of the first lens 6, each second lens 7, and each mirror 8 is arranged at a height corresponding to the corresponding semiconductor laser chip 4.
  • the subassembly including the submount 3, the semiconductor laser chip 4 mounted on the submount 3, and the bonding wire 17 is a chip-on-submount 16 as a semiconductor laser chip mounting submount.
  • a loose tube 15 is provided at the insertion portion of the optical fiber 12 into the housing 1, and the boot 14 is fitted to a part of the housing 1 so as to cover a part of the loose tube 15 and the insertion portion.
  • Each semiconductor laser chip 4 operates by electric power supplied through the lead pin 5 and outputs laser light.
  • Each laser beam output from each semiconductor laser chip 4 is substantially collimated by each corresponding first lens 6 and each second lens 7, and is reflected toward the third lens 9 by each corresponding mirror 8. Further, each laser beam is focused by the third lens 9 and the fourth lens 11, is incident on the end face of the optical fiber 12, and propagates in the optical fiber 12.
  • the optical filter 10 is a bandpass filter, and when light having a wavelength different from the wavelength of the laser light is input to the semiconductor laser module 100 from the outside via the optical fiber 12, the light is transmitted to each semiconductor. Prevents input to the laser chip 4.
  • Assembling the semiconductor laser module 100 is performed by, for example, the following procedure. First, the submount 3 is heated to a bonding temperature of about 300 ° C., and the semiconductor laser chip 4 is bonded to the submount 3 with AuSn solder having a melting point of about 280 ° C. to form six chip-on-submounts 16. .. Next, the case 1b of the housing 1 on which the module base 2 is mounted is heated to the joining temperature of about 150 ° C., and each chip-on-submount 16 is joined to the module base 2 with SnBi solder having a melting point of about 140 ° C. NS. After that, other components of the semiconductor laser module 100 are attached to the housing 1.
  • Chip-on-submount configuration 3 is a plan view of the chip-on-submount 16
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3
  • FIG. 5 is a sectional view taken along line V-V of FIG.
  • the chip-on-submount 16 includes a semiconductor laser chip 4, a submount 3 on which the semiconductor laser chip 4 is mounted, and a bonding wire 17.
  • the submount 3 includes a substrate 3a and an upper coating layer 3b.
  • the substrate 3a includes, for example, aluminum nitride (AlN), alumina (Al2O3), beliria (BeO), boron nitride (BN), diamond, silicon carbide (SiC), silicon nitride (Si3N4), silicon dioxide (SiO2), and zirconia (SiO2). It may include at least one of ZrO2).
  • the semiconductor laser chip 4 is a single-emitter type, but a multi-emitter type laser bar chip may also be used.
  • the substrate 3a may be a metal such as Cu.
  • the substrate 3a is made of AlN.
  • the thickness of the substrate 3a is, for example, about 0.3 to 1.0 mm.
  • the substrate 3a is an example of a base.
  • the substrate 3a has a flat rectangular parallelepiped shape that is relatively thin in the Z direction, in other words, has a quadrangular and plate-like shape.
  • the substrate 3a has a front surface 3a1, a back surface 3a2, and side surfaces 3a3, 3a4.
  • the surface 3a1 intersects and is orthogonal to the Z direction and extends in the X and Y directions.
  • the back surface 3a2 intersects and is orthogonal to the Z direction at the end in the opposite direction to the Z direction, and extends in the X and Y directions.
  • the front surface 3a1 and the back surface 3a2 are parallel.
  • the side surface 3a3 intersects with the Y direction and is orthogonal to the end portion in the opposite direction to the Y direction, and extends in the X direction and the Z direction.
  • the side surface 3a4 intersects and is orthogonal to the Y direction and extends in the X direction and the Z direction.
  • the surface 3a1 is an example of the first surface.
  • the upper coating layer 3b shown in FIGS. 3 and 4 is formed on the surface 3a1 of the substrate 3a, that is, on the surface 3a1 on the side where the semiconductor laser chip 4 is mounted.
  • the upper coating layer 3b is, for example, a metal multilayer film.
  • the thickness of the upper coating layer 3b is, for example, 1 ⁇ m or more and 80 ⁇ m or less.
  • the upper coating layer 3b is separated into a first electrode 3b1 and a second electrode 3b2 by a gap g.
  • the gap g electrically insulates the first electrode 3b1 and the second electrode 3b2.
  • the surface 3a1 of the substrate 3a is provided between the first electrode 3b1 and the second electrode 3b2 due to the provision of the gap g. Is exposed.
  • the first electrode 3b1 is another chip-on-submount 16, for example, the second electrode 3b2 of the chip-on-submount 16 adjacent in the opposite direction in the Y direction, and the bonding wire 18 (see FIG. 1, not shown in FIG. 3). ), It is electrically connected. Further, the second electrode 3b2 is electrically connected to yet another chip-on-submount 16, for example, the first electrode 3b1 of the chip-on-submount 16 adjacent in the Y direction via a bonding wire 18. Further, the second electrode 3b2 is electrically connected to the surface 4b of the semiconductor laser chip 4 via a bonding wire 17.
  • the bonding wire 17 is omitted in FIG. 4.
  • the plurality of bonding wires 17 are arranged in the X direction at regular intervals in the X direction, and the second electrode 3b2 and the surface 4b of the semiconductor laser chip 4 are electrically connected in parallel.
  • the plurality of bonding wires 17 include a relatively long bonding wire 17 and a relatively short bonding wire 17, which are arranged alternately in the X direction.
  • the illustration of the plurality of bonding wires 17 is omitted in the intermediate portion in the X direction.
  • the semiconductor laser chip 4 is bonded to the first electrode 3b1 via a precoat 3c.
  • the precoat 3c is, for example, AuSn solder, and electrically connects the first electrode 3b1 and the back surface 4a of the semiconductor laser chip 4.
  • a barrier metal layer (not shown) made of, for example, platinum (Pt) may be formed on the surface of the upper coating layer 3b in contact with the precoat 3c. In this case, the barrier metal layer can prevent a chemical reaction between the AuSn solder of the precoat 3c and the metal material below the barrier metal layer of the upper coating layer 3b.
  • Electrodes are formed on the back surface 4a and the front surface 4b of the semiconductor laser chip 4, respectively, and the semiconductor laser chip 4 is supplied with electric power from the lead pin 5 via these electrodes.
  • the n-side electrode is generally formed on the surface 4b side.
  • a p-side electrode is generally formed on the surface 4b side. It should be noted that the heat dissipation to the sub mount 3 is higher when the semiconductor laser chip 4 is mounted at the junction down.
  • the widths d11, d12, and d13 of the first electrode 3b1 in the Y direction are different depending on the position in the X direction.
  • the widths d21, d22, and d23 of the second electrode 3b2 in the Y direction are also different depending on the position in the X direction.
  • the gap g is bent.
  • the width dg of the gap g in the Y direction is constant regardless of the position in the X direction, but is not limited to this.
  • the widths d11, d12, and d13 are examples of the first width
  • the widths d21, d22, and d23 are examples of the second width.
  • the width of the first electrode 3b1 is the width between the first end 3d1 and the second end 3d2 of the first electrode 3b1.
  • the first end 3d1 is the end of the first electrode 3b1 in the Y direction and faces the gap g.
  • the second end 3d2 is an end portion of the first electrode 3b1 in the direction opposite to the Y direction, and extends along the X direction. As shown in FIGS. 4 and 5, the second end 3d2 overlaps the side surface 3a3 in the Z direction, but the present invention is not limited to this, and the second end 3d2 may be positioned so as to deviate from the side surface 3a3 in the Y direction.
  • the width of the second electrode 3b2 is the width between the third end 3d3 and the fourth end 3d4 of the second electrode 3b2.
  • the third end 3d3 is an end portion of the second electrode 3b2 in the opposite direction to the Y direction, and faces the gap g and faces and is separated from the first end 3d1 of the first electrode 3b1 with the gap g interposed therebetween.
  • the fourth end 3d4 is an end portion of the second electrode 3b2 in the Y direction and extends along the X direction. As shown in FIGS. 4 and 5, the fourth end 3d4 overlaps the side surface 3a4 in the Z direction, but is not limited to this, and is positioned so as to be offset from the side surface 3a4 in the opposite direction in the Y direction. May be good.
  • the width d13 is larger (wider) than the width d11, and the width d23 is smaller (narrower) than the width d21. Further, the width d12 gradually increases (widens) from the width d11 to the width d13 toward the X direction, and the width d22 gradually decreases (narrows) from the width d21 to the width d23 toward the X direction. There is.
  • the bonding wire 18 electrically connected to the second electrode 3b2 is mounted in the mounted region A having a width d21 larger than the widths d22 and d23. As shown in FIG. 3, the bonding wire 18 is electrically connected to the second electrode 3b2 via the solder 19. Now, if the gap g extends straight along the X direction and the width of the second electrode 3b2 is constant at a relatively narrow width d23, the mounted area A as a region where the solder 19 can spread is narrow. Therefore, the bonding wire 18 and the solder 19 may interfere with the bonding wire 17 and may be difficult to mount on the second electrode 3b2.
  • the widths d21, d22, and d23 differ depending on the position in the X direction, and the area of the mounted area A extending in the X direction with the width d21 larger than the widths d22 and d23 is relatively large. Since it can be set, the bonding wire 18 can be easily bonded onto the second electrode 3b2 without interfering with the bonding wire 17.
  • the widths d21, d22, and d23 of the second electrode 3b2 With the change in the X direction, the widths d11, d12, and d13 of the first electrode 3b1 also change in the X direction.
  • the widths of the substrate 3a, the upper coating layer 3b, and the submount 3 in the Y direction are substantially constant along the X direction, the larger the width of the first electrode 3b1, the smaller the width of the second electrode 3b2. Therefore, the smaller the width of the first electrode 3b1, the larger the width of the second electrode 3b2.
  • the semiconductor laser chip 4 and the first end 3d1 are at positions where the bonding wire 18 can be easily mounted, as shown in FIG.
  • the distance in the Y direction is relatively short. Therefore, the amount of heat H (thin broken line in the lower right direction in FIG. 4) transferred from the semiconductor laser chip 4 to the opposite directions in the Y direction and the Z direction via the precoat 3c and the first electrode 3b1 is the semiconductor laser chip 4.
  • the amount of heat transferred from the laser to the precoat 3c and the first electrode 3b1 in the opposite direction in the Y direction and in the opposite direction in the Z direction is less than the amount of heat H (thick broken line pointing downward to the left in FIG. 4).
  • the width of the second electrode 3b2 in the Y direction changes along the X direction, and at the cross-sectional position of FIG. 5, the semiconductor laser chip 4 is more than the cross-sectional position of FIG.
  • the distance between the first end 3d1 and the first end 3d1 in the Y direction is relatively long. Therefore, at this position, the amount of heat H (thick broken line pointing downward to the right in FIG.
  • the mounted region A of the bonding wire 18 of the first electrode 3b1 (see FIG. 1, not shown in FIG. 3) is aligned with the mounted region A of the second electrode 3b2 in the Y direction. Not limited.
  • the width of the second electrode 3b2 in the Y direction differs depending on the position in the X direction.
  • a relatively wide mounted area A can be set at a portion having a width d21 larger than the widths d22 and d23.
  • the Y of the semiconductor laser chip 4 and the first end 3d1 is formed at a portion having a width d22 and d23 smaller than the width d21, that is, a portion having a width larger than the width d11 and d12 at the first electrode 3b1.
  • the distance in the direction can be relatively long.
  • the submount 3 and the submount 3 are provided so that the bonding wire 18 can be more easily bonded onto the second electrode 3b2 of the submount 3 and the required heat dissipation can be easily obtained.
  • the chip-on-submount 16 and the semiconductor laser module 100 provided with the chip-on-submount 16 can be obtained.
  • the width of the first electrode 3b1 in the Y direction differs depending on the position in the X direction.
  • FIG. 6 is a plan view of the chip-on-submount 16A of the present embodiment.
  • the gap g is inclined with respect to the X direction and extends straight. Therefore, the width d1 of the first electrode 3b1 gradually becomes larger (wider) toward the X direction, and the width d2 of the second electrode 3b2 gradually becomes smaller (narrower) toward the X direction.
  • a relatively wide mounted area A can be set in a portion of the second electrode 3b2 having a width d2 larger than that of the other portion.
  • the distance between the semiconductor laser chip 4 and the first end 3d1 in the Y direction can be made relatively long in the portion of the first electrode 3b1 whose width d1 is larger than that of the other portions. Therefore, also in this embodiment, the bonding wire 18 can be more easily bonded onto the second electrode 3b2 of the submount 3A, and the required heat dissipation can be easily obtained.
  • An on-submount 16A and a semiconductor laser module 100 having the chip-on-submount 16A can be obtained.
  • FIG. 7 is a plan view of the chip-on-submount 16B of the present embodiment.
  • the width d13 of the end portion of the first electrode 3b1 in the X direction is larger (wider) than the widths d11 and d12, and is the first.
  • the width d23 of the end portion of the two electrodes 3b2 in the X direction was smaller (narrower) than the widths d21 and d22.
  • the present embodiment as shown in FIG.
  • the width d13 of the end portion of the first electrode 3b1 in the X direction is smaller (narrower) than the widths d11 and d12, and the width d13 of the second electrode 3b2.
  • the width d23 of the end portion in the X direction is larger (wider) than the widths d21 and d22.
  • a relatively wide mounted area A can be set in a portion of the second electrode 3b2 having a width d23 larger than the widths d21 and d22.
  • the distance between the semiconductor laser chip 4 and the first end 3d1 in the Y direction can be made relatively long at the positions where the width of the first electrode 3b1 is the widths d11 and d12 larger than the width d13. Therefore, also in this embodiment, the bonding wire 18 can be more easily bonded onto the second electrode 3b2 of the submount 3B, and the required heat dissipation can be easily obtained. Therefore, the submount 3B and the chip having the submount 3B are provided. An on-submount 16B and a semiconductor laser module 100 including the chip-on-submount 16B can be obtained.
  • FIG. 8 is a plan view of the chip-on-submount 16C of the present embodiment.
  • the width d12 of the intermediate portion of the first electrode 3b1 in the X direction is smaller (narrower) than the widths d11 and d13
  • the width d22 of the intermediate portion of the second electrode 3b2 in the X direction is the width d21.
  • the width d11 increases in the direction opposite to the X direction
  • the width d21 decreases in the direction opposite to the X direction.
  • the widths d12 and d22 are constant regardless of the position in the X direction.
  • the width d13 becomes larger in the X direction
  • the width d23 becomes smaller in the X direction.
  • a relatively wide mounted area A can be set in a portion of the second electrode 3b2 having a width d22 larger than the widths d21 and d23. Further, at a position where the width of the first electrode 3b1 is a width d11 larger than the width d12 and a position where the width of the first electrode 3b1 is a width d13 larger than the width d12, the semiconductor laser chip 4 and the first end 3d1 The distance in the Y direction can be made relatively long. Therefore, also in this embodiment, the bonding wire 18 can be more easily bonded onto the second electrode 3b2 of the submount 3C, and the required heat dissipation can be easily obtained. A semiconductor laser module 100 having an on-submount 16C and the chip-on-submount 16C can be obtained.
  • the submount and optical element of the present invention can be applied to an optical device or an optical module different from those disclosed in the above embodiment.
  • the shape of the gap, the first electrode, and the second electrode can take various forms.
  • the present invention can be used for submounts, light emitting devices, and optical modules.
  • Support member 14 ... Boots 15 ... Loose tubes 16, 16A, 16B, 16C ... Chip-on submount 17 ... Bonding wire 18 ... Bonding wire 19 ... Solder 100 ... Semiconductor laser module (optical module) A ... Mounted area d1, d11, d12, d13 ... Width (first width) d2, d21, d22, d23 ... Width (second width) dg ... width g ... gap H ... calorie (heat)

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

発光装置が実装されるサブマウントは、第一方向および当該第一方向と直交した第二方向に延びた第一面を有した、ベースと、第一面上で第一方向および第二方向に延び、当該第二方向の第一端と、第一方向に延びた第二方向の反対方向の第二端と、を有した、第一電極と、第一面上で第一方向および第二方向に延び、第一端から第二方向に隙間をあけて離間した第二方向の反対方向の第三端と、第一方向に延びた第二方向の第四端と、を有した、第二電極と、を備え、第二電極の、第三端と第四端との間の第二方向の第二幅が、第一方向の位置によって異なる。

Description

サブマウント、発光装置、および光学モジュール
 本発明は、サブマウント、発光装置、および光学モジュールに関する。
 発光装置としての半導体レーザチップと、半導体レーザチップと光学結合される光ファイバとを備えている光学モジュールとしての半導体レーザモジュールが知られている。このような半導体レーザモジュールを製造する場合、例えば以下のような手順で組立が行われる。まず、半導体レーザチップをサブマウントに実装する。このとき、半導体レーザチップを、金-スズ(AuSn)合金などのはんだによりサブマウントに接合実装する(特許文献1)。なお、はんだに換えて導電性接着剤などの他の接合剤を用いてもよい。このような半導体レーザチップを実装したサブマウント(半導体レーザチップ実装サブマウント)は、発光装置の一例であって、チップオンサブマウントとも称される。
 次に、チップオンサブマウントを、金属製の筐体に、直接的に、または金属製の基台や電子冷却素子等を介して、スズ-ビスマス(SnBi)合金などのはんだにより接合実装する。さらに、筐体に、レンズなどのその他の光学部品を実装し、半導体レーザチップと光ファイバとの光学結合を行う。
 半導体レーザチップとしては、端面発光型の半導体レーザチップが多く実用されている。端面発光型の半導体レーザチップは、その長手方向における両端面の一方が、レーザ発振波長における反射率が高いHR(high reflection)コーティングが形成された後端面とされている。一方、他の端面は、反射率が低いAR(anti-reflection)コーティングが形成された出射端面とされている。後端面と出射端面とでレーザ共振器を構成しており、発振したレーザ光は主に出射端面から出射される。
特許第5075165号公報
 一般的に、半導体レーザチップはダイボンディングによってサブマウントに実装される。ダイボンディングにおいては、コレットで半導体レーザチップを真空チャックし、はんだなどの接合剤の融点以上の温度に加熱されたサブマウントに半導体レーザチップを実装する。
 その後、半導体レーザチップに対して駆動電流を供給するなどのために、半導体レーザチップに対する電気的接触を確保するために、半導体レーザチップとサブマウント上の電極との間に、ボンディングワイヤによる配線が形成される。なお、半導体レーザチップ実装サブマウントが並列して配置される場合は、サブマウント間にボンディングワイヤによる配線が形成される場合がある。
 一方、近年、半導体レーザチップやサブマウントの小型化が進み、半導体レーザチップの電極上やサブマウントの電極上に、ボンディングワイヤによる配線を接合する領域を確保し難くなっている。
 また、半導体レーザチップはますます高光出力化が進んでいる。それに伴って、半導体レーザチップが発する熱を、サブマウントへ効果的に放熱することがますます重要になってきている。
 そこで、本発明の課題の一つは、例えば、電極上に配線をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント、発光装置、および光学モジュールを得ることである。
 本発明のサブマウントは、発光装置が実装されるサブマウントであって、第一方向および当該第一方向と直交した第二方向に延びた第一面を有した、ベースと、前記第一面上で前記第一方向および前記第二方向に延び、当該第二方向の第一端と、前記第一方向に延びた前記第二方向の反対方向の第二端と、を有した、第一電極と、前記第一面上で前記第一方向および前記第二方向に延び、前記第一端から前記第二方向に隙間をあけて離間した前記第二方向の反対方向の第三端と、前記第一方向に延びた前記第二方向の第四端と、を有した、第二電極と、を備え、前記第二電極の、前記第三端と前記第四端との間の前記第二方向の第二幅が、前記第一方向の位置によって異なる。
 前記サブマウントでは、前記第一電極の、前記第一端と前記第二端との間の前記第二方向の第一幅が、前記第一方向の位置によって異なる。
 本発明の発光装置は、前記サブマウントと、前記第一電極上に載置され当該第一電極と電気的に接続された裏面と、前記裏面とは反対側で前記第二電極と導体を介して電気的に接続された表面と、を有し、前記第二端よりも前記第一端の近くで前記第一方向に延びた発光素子と、を備える。
 前記発光装置では、前記発光素子は、ヒ化ガリウムまたはリン化インジウムを有した半導体レーザ素子である。
 本発明の光学モジュールは、ベースを有したハウジングと、前記ベース上に設けられた前記発光装置としての少なくとも一つの発光装置と、を備える。
 前記光学モジュールは、前記発光装置として、前記第二方向に並んだ複数の発光装置を備える。
 本発明によれば、電極上に配線をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント、発光装置、および光学モジュールを得ることができる。
図1は、第1実施形態の光学モジュールの例示的かつ模式的な平面図である。 図2は、第1実施形態の光学モジュールの例示的かつ模式的な側面図(一部断面図)である。 図3は、第1実施形態の光学装置の例示的かつ模式図な平面図である。 図4は、図3のIV-IV断面図である。 図5は、図3のV-V断面図である。 図6は、第2実施形態の光学モジュールの例示的かつ模式的な平面図である。 図7は、第3実施形態の光学モジュールの例示的かつ模式的な平面図である。 図8は、第4実施形態の光学モジュールの例示的かつ模式的な平面図である。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 以下に示される実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。X方向は、発光素子および光学装置からのレーザ光の出射方向であるとともに、発光素子の長手方向(共振器の長手方向)である。Y方向は、発光素子の幅方向である。また、Z方向は、サブマウントの厚さ方向(高さ方向)である。
[第1実施形態]
[半導体レーザモジュールの構成]
 図1は、半導体レーザモジュール100の平面図であり、図2は、半導体レーザモジュール100の側面図(一部断面図)である。半導体レーザモジュール100は、光学モジュールの一例である。
 半導体レーザモジュール100は、蓋1a(図2参照)とケース1bとを有したハウジング1を備えている。ハウジング1は、例えば、金属材料によって作られうる。なお、図1では、説明の便宜上、蓋1aの図示が省略されている。言い換えると、図1は、半導体レーザモジュール100の蓋1aを取り外した内部構成を示す平面図である。
 また、半導体レーザモジュール100は、階段形状のモジュールベース2と、複数のサブマウント3と、複数の半導体レーザチップ4とを備えている。モジュールベース2は、熱伝導性の高い例えば銅のような金属材料で作られている。半導体レーザチップ4は、発光素子の一例である。また、モジュールベース2上に実装されたサブマウント3と半導体レーザチップ4とを含むサブアセンブリは、チップオンサブマウント16である。チップオンサブマウント16は、発光装置の一例である。
 また、半導体レーザモジュール100は、2つのリードピン5を備えている。2つのリードピン5は、各半導体レーザチップ4に、サブマウント3およびボンディングワイヤ18およびボンディングワイヤ17(図3参照)を介して電気的に接続され、各半導体レーザチップ4に電力を供給する。さらに、半導体レーザモジュール100は、6つの第一レンズ6と、6つの第二レンズ7と、6つのミラー8と、第三レンズ9と、光フィルタ10と、第四レンズ11とを備えている。各第一レンズ6、各第二レンズ7、各ミラー8、第三レンズ9、光フィルタ10、および第四レンズ11は、各半導体レーザチップ4が出射するレーザ光の光路上に、光路に沿って順に配置されている。さらに、半導体レーザモジュール100は、第四レンズ11と対向して配置された光ファイバ12を備えている。光ファイバ12のレーザ光が入射される側の一端は、ハウジング1の内部に収容され、支持部材13により支持されている。ボンディングワイヤ17,18は、配線や、導体とも称されうる。
 各半導体レーザチップ4は、例えばヒ化ガリウム(GaAs)またはリン化インジウム(InP)を主材料として構成されており、その材料や組成に応じた波長のレーザ光を出力する。各半導体レーザチップ4の厚さは例えば0.1mm程度である。各半導体レーザチップ4は、図2に示すように、各サブマウント3に実装され、かつ各サブマウント3は、モジュールベース2に、互いに高さが異なるように実装されている。さらに、各第一レンズ6、各第二レンズ7、各ミラー8は、それぞれ対応する半導体レーザチップ4に対応する高さに配置されている。サブマウント3、当該サブマウント3に実装された半導体レーザチップ4、およびボンディングワイヤ17(図3参照)を備えているサブアセンブリが、半導体レーザチップ実装サブマウントとしてのチップオンサブマウント16である。
 また、光ファイバ12のハウジング1への挿入部には、ルースチューブ15が設けられ、ルースチューブ15の一部と挿入部を覆うように、ハウジング1の一部にブーツ14が嵌められている。
 ここで、半導体レーザモジュール100の作動について説明する。各半導体レーザチップ4は、リードピン5を介して供給された電力によって作動し、レーザ光を出力する。各半導体レーザチップ4から出力された各レーザ光は、対応する各第一レンズ6、各第二レンズ7により略コリメートされ、対応する各ミラー8により第三レンズ9に向けて反射される。さらに各レーザ光は、第三レンズ9、第四レンズ11により集光され、光ファイバ12の端面に入射され、光ファイバ12中を伝搬する。なお、光フィルタ10は、バンドパスフィルタであり、外部から光ファイバ12を介して上記レーザ光の波長とは別の波長の光が半導体レーザモジュール100に入力された場合に、当該光が各半導体レーザチップ4に入力することを防止する。
 半導体レーザモジュール100の組立は、例えば以下の手順で行われる。はじめに、サブマウント3が接合温度である約300℃に加熱され、半導体レーザチップ4が、融点が約280℃のAuSnはんだでサブマウント3に接合され、6つのチップオンサブマウント16が形成される。次に、モジュールベース2が実装されたハウジング1のケース1bが接合温度である約150℃に加熱され、各チップオンサブマウント16が、融点が約140℃のSnBiはんだでモジュールベース2に接合される。その後、半導体レーザモジュール100の他の構成部品がハウジング1に取り付けられる。
[チップオンサブマウントの構成]
 図3は、チップオンサブマウント16の平面図、図4は、図3のIV-IV断面図、また図5は、図3のV-V断面図である。上述したように、チップオンサブマウント16は、半導体レーザチップ4と、半導体レーザチップ4が実装されるサブマウント3と、ボンディングワイヤ17と、を備えている。
 図3,4に示されるように、サブマウント3は、基板3aと、上部被覆層3bを備えている。基板3aは、例えば窒化アルミニウム(AlN)、アルミナ(Al2O3)、べリリア(BeO)、窒化ホウ素(BN)、ダイヤモンド、炭化ケイ素(SiC)、窒化ケイ素(Si3N4)、二酸化ケイ素(SiO2)、ジルコニア(ZrO2)の少なくともいずれか一つを含みうる。本実施形態では半導体レーザチップ4はシングルエミッタ型であるが、マルチエミッタ型のレーザバーチップでもよい。半導体レーザチップ4が、レーザバーチップとなる場合、基板3aは、Cuなどの金属としてもよい。本実施形態では、基板3aはAlNからなるものとする。また、基板3aの厚さは例えば0.3~1.0mm程度である。基板3aは、ベースの一例である。
 図3,4から明らかとなるように、基板3aは、Z方向に比較的薄い扁平な直方体状の形状を有し、言い換えると、四角形状かつ板状の形状を有している。
 図4に示されるように、基板3aは、表面3a1と、裏面3a2と、側面3a3,3a4と、を有している。表面3a1は、Z方向の端部において、Z方向と交差するとともに直交し、X方向およびY方向に広がっている。裏面3a2は、Z方向の反対方向の端部において、Z方向と交差するとともに直交し、X方向およびY方向に広がっている。表面3a1と裏面3a2とは平行である。また、側面3a3は、Y方向の反対方向の端部において、Y方向と交差するとともに直交し、X方向およびZ方向に広がっている。側面3a4は、Y方向の端部において、Y方向と交差するとともに直交し、X方向およびZ方向に広がっている。表面3a1は、第一面の一例である。
 図3,4に示される上部被覆層3bは、基板3aの表面3a1上、すなわち半導体レーザチップ4が実装される側の表面3a1上に、形成されている。上部被覆層3bは、例えば、金属多層膜である。上部被覆層3bの厚さは、例えば、1μm以上かつ80μm以下である。
 上部被覆層3bは、隙間gにより、第一電極3b1および第二電極3b2に分離されている。隙間gは、第一電極3b1および第二電極3b2を電気的に絶縁している。図3のような平面視において、すなわちZ方向の反対方向に見た場合においては、隙間gが設けられていることにより、第一電極3b1と第二電極3b2との間に基板3aの表面3a1が露出している。
 第一電極3b1は、別のチップオンサブマウント16、例えば、Y方向の反対方向に隣接したチップオンサブマウント16の第二電極3b2と、ボンディングワイヤ18(図1参照、図3には不図示)を介して、電気的に接続される。また、第二電極3b2は、さらに別のチップオンサブマウント16、例えば、Y方向に隣接したチップオンサブマウント16の第一電極3b1と、ボンディングワイヤ18を介して、電気的に接続される。また、第二電極3b2は、半導体レーザチップ4の表面4bと、ボンディングワイヤ17を介して、電気的に接続されている。
 説明の便宜上、図3では、ボンディングワイヤ17の一部のみが図示されるとともに、図4では、ボンディングワイヤ17の図示が省略されている。複数のボンディングワイヤ17は、X方向に一定の間隔で、X方向に並べられ、第二電極3b2と半導体レーザチップ4の表面4bとを、並列に電気的に接続している。図3に示されるように、複数のボンディングワイヤ17には、比較的長いボンディングワイヤ17と、比較的短いボンディングワイヤ17とが含まれており、これらがX方向に交互に配置されている。図3では、X方向の中間部分において、複数のボンディングワイヤ17の図示が省略されている。
 半導体レーザチップ4は、第一電極3b1上に、プリコート3cを介して、接合されている。プリコート3cは、例えば、AuSnはんだであり、第一電極3b1と、半導体レーザチップ4の裏面4aとを、電気的に接続している。なお、上部被覆層3bの、プリコート3cと接触する表面には、例えば白金(Pt)からなるバリアメタル層(不図示)が形成されていてもよい。この場合、バリアメタル層により、プリコート3cのAuSnはんだと上部被覆層3bのバリアメタル層よりも下層の金属材料との化学反応を防止することができる。
 半導体レーザチップ4の裏面4aおよび表面4bには、それぞれ電極が形成されており、半導体レーザチップ4はこれら電極を介してリードピン5から電力を供給される。なお、半導体レーザチップ4がジャンクションダウンで実装される場合には、一般的には表面4b側にn側電極が形成されている。また、半導体レーザチップ4がジャンクションアップで実装される場合には、一般的には表面4b側にp側電極が形成されている。なお、半導体レーザチップ4がジャンクションダウンで実装された方がサブマウント3への放熱性は高い。
[第一電極、第二電極、および隙間の形状]
 図3に示されるように、本実施形態では、第一電極3b1のY方向の幅d11,d12,d13が、X方向の位置により、それぞれ異なっている。また、第二電極3b2のY方向の幅d21,d22,d23も、X方向の位置により、それぞれ異なっている。また、これにともなって、隙間gが、折れ曲がっている。なお、隙間gのY方向の幅dgは、X方向の位置によらず一定であるが、これには限定されない。幅d11,d12,d13は、第一幅の一例であり、幅d21,d22,d23は、第二幅の一例である。
 第一電極3b1の幅は、第一電極3b1の第一端3d1と第二端3d2との間の幅である。第一端3d1は、第一電極3b1のY方向の端部であり、隙間gに面している。また、第二端3d2は、第一電極3b1のY方向の反対方向の端部であり、X方向に沿って延びている。なお、図4,5に示されるように、第二端3d2は、側面3a3とZ方向に重なっているが、これには限定されず、側面3a3からY方向にずれて位置されてもよい。
 第二電極3b2の幅は、第二電極3b2の第三端3d3と第四端3d4との間の幅である。第三端3d3は、第二電極3b2のY方向の反対方向の端部であり、隙間gに面するとともに、隙間gを挟んで第一電極3b1の第一端3d1と面しかつ離間している。また、第四端3d4は、第二電極3b2のY方向の端部であり、X方向に沿って延びている。なお、図4,5に示されるように、第四端3d4は、側面3a4とZ方向に重なっているが、これには限定されず、側面3a4からY方向の反対方向にずれて位置されてもよい。
 本実施形態では、幅d11よりも幅d13が大きく(広く)、幅d21よりも幅d23が小さい(狭い)。また、幅d12は、X方向に向かうにつれて、幅d11から幅d13にかけて徐々に大きく(広く)なり、幅d22は、X方向に向かうにつれて、幅d21から幅d23にかけて徐々に小さく(狭く)なっている。
 第二電極3b2と電気的に接続されるボンディングワイヤ18は、幅d22,d23よりも大きい幅d21の被実装領域A、に実装されている。図3に示されるように、ボンディングワイヤ18は、はんだ19を介して第二電極3b2と電気的に接続される。今、仮に、隙間gがX方向に沿って真っすぐに延びるとともに、第二電極3b2の幅が比較的狭い幅d23で一定であった場合、はんだ19が広がりうる領域としての被実装領域Aが狭くなり、ボンディングワイヤ18やはんだ19が、ボンディングワイヤ17と干渉するなどにより、第二電極3b2上に実装され難くなる恐れがある。この点、本実施形態では、幅d21,d22,d23がX方向の位置により異なっており、幅d22,d23よりも大きい幅d21でX方向に延びた被実装領域Aの面積を、比較的大きく設定することができるため、ボンディングワイヤ18を、ボンディングワイヤ17と干渉することなく、第二電極3b2上に接合し易くなる。なお、本実施形態のように隙間gの幅dgがX方向に沿って一定であるか、あるいは幅dgがX方向に沿ってそれほど変化しない場合、第二電極3b2の幅d21,d22,d23のX方向における変化に伴って、第一電極3b1の幅d11,d12,d13もX方向に変化することになる。ここで、基板3a、上部被覆層3b、およびサブマウント3のY方向の幅は、X方向に沿って略一定であるから、第一電極3b1の幅が大きいほど第二電極3b2の幅は小さくなり、第一電極3b1の幅が小さいほど第二電極3b2の幅は大きくなる。
 しかしながら、第二電極3b2の幅d21が、幅d22,d23よりも大きくなることにより、ボンディングワイヤ18を実装しやすい位置では、図4に示されるように、半導体レーザチップ4と第一端3d1とのY方向の距離が比較的短い。このため、半導体レーザチップ4からプリコート3cおよび第一電極3b1を介してY方向かつZ方向の反対方向に向けて伝達される熱量H(図4中右下向きの細い破線)は、半導体レーザチップ4からプリコート3cおよび第一電極3b1を介してY方向の反対方向かつZ方向の反対方向に向けて伝達される熱量H(図4中左下向きの太い破線)よりも、少なくなる。しかしながら、本実施形態では、上述したように、第二電極3b2のY方向の幅がX方向に沿って変化しており、図5の断面位置では、図4の断面位置よりも半導体レーザチップ4と第一端3d1とのY方向の距離が比較的長い。このため、当該位置では、半導体レーザチップ4からプリコート3cおよび第一電極3b1を介してY方向かつZ方向の反対方向に向けて伝達される熱量H(図5中右下向きの太い破線)は、図4の断面位置よりも大きくなる。また、当該熱量Hは、半導体レーザチップ4からプリコート3cおよび第一電極3b1を介してY方向の反対方向かつZ方向の反対方向に向けて伝達される熱量H(図5中左下向きの太い破線)と、略同等にすることもできる。
 なお、第一電極3b1のボンディングワイヤ18(図1参照、図3には不図示)の被実装領域Aは、第二電極3b2の被実装領域AとY方向に並んでいるが、これには限定されない。
 以上、説明したように、本実施形態では、第二電極3b2のY方向の幅が、X方向の位置によって異なっている。
 このような構成によれば、第二電極3b2において、幅d22,d23よりも大きい幅d21の部位に、比較的広い被実装領域Aを設定することができる。また、第二電極3b2において、幅d21よりも小さい幅d22,d23の部位、すなわち第一電極3b1において幅d11,d12よりも大きい幅の部位で、半導体レーザチップ4と第一端3d1とのY方向の距離を比較的長くすることができる。したがって、このような構成によれば、サブマウント3の第二電極3b2上にボンディングワイヤ18をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント3、当該サブマウント3を有したチップオンサブマウント16、および当該チップオンサブマウント16を備えた半導体レーザモジュール100を、得ることができる。
 また、本実施形態では、第一電極3b1のY方向の幅が、X方向の位置によって異なっている。
 このような構成によれば、第一電極3b1において幅d11,d12よりも大きい幅の部位で、半導体レーザチップ4からの放熱性を確保しやすい。
[第2実施形態]
 図6は、本実施形態のチップオンサブマウント16Aの平面図である。図6に示されるように、本実施形態では、隙間gが、X方向に対して傾斜して真っすぐ延びている。このため、第一電極3b1の幅d1は、X方向に向かうにつれて徐々に大きく(広く)なり、第二電極3b2の幅d2は、X方向に向かうにつれて徐々に小さく(狭く)なっている。
 このような実施形態にあっても、第二電極3b2のうち他の部位よりも幅d2が大きい部位に、比較的広い被実装領域Aを設定することができる。また、第一電極3b1のうち他の部位よりも幅d1が大きい部位において、半導体レーザチップ4と第一端3d1とのY方向の距離を比較的長くすることができる。したがって、本実施形態によっても、サブマウント3Aの第二電極3b2上にボンディングワイヤ18をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント3A、当該サブマウント3Aを有したチップオンサブマウント16A、および当該チップオンサブマウント16Aを備えた半導体レーザモジュール100を、得ることができる。
[第3実施形態]
 図7は、本実施形態のチップオンサブマウント16Bの平面図である。第1実施形態では、図3に示されるように、第一電極3b1のX方向(レーザ光の出射方向)の端部の幅d13が、幅d11,d12よりも大きく(広く)、かつ、第二電極3b2のX方向の端部の幅d23が、幅d21,d22よりも小さかった(狭かった)。これに対し、本実施形態では、図7に示されるように、第一電極3b1のX方向の端部の幅d13が、幅d11,d12よりも小さく(狭く)、かつ、第二電極3b2のX方向の端部の幅d23が、幅d21,d22よりも大きい(広い)。
 このような実施形態にあっても、第二電極3b2のうち、幅d21,d22よりも大きい幅d23の部位に、比較的広い被実装領域Aを設定することができる。また、第一電極3b1の幅が、幅d13よりも大きい幅d11,d12である位置において、半導体レーザチップ4と第一端3d1とのY方向の距離を比較的長くすることができる。したがって、本実施形態によっても、サブマウント3Bの第二電極3b2上にボンディングワイヤ18をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント3B、当該サブマウント3Bを有したチップオンサブマウント16B、および当該チップオンサブマウント16Bを備えた半導体レーザモジュール100を、得ることができる。
[第4実施形態]
 図8は、本実施形態のチップオンサブマウント16Cの平面図である。本実施形態では、第一電極3b1のX方向の中間部の幅d12が、幅d11,d13よりも小さく(狭く)、かつ、第二電極3b2のX方向の中間部の幅d22が、幅d21,d23よりも大きい(広い)。なお、幅d11は、X方向の反対方向に向かうにつれて大きくなり、幅d21は、X方向の反対方向に向かうにつれて小さくなる。幅d12,d22は、X方向の位置によらず一定である。また、幅d13は、X方向に向かうにつれて大きくなり、幅d23は、X方向に向かうにつれて小さくなる。
 このような実施形態にあっても、第二電極3b2のうち、幅d21,d23よりも大きい幅d22の部位に、比較的広い被実装領域Aを設定することができる。また、第一電極3b1の幅が幅d12よりも大きい幅d11である位置、ならびに第一電極3b1の幅が幅d12よりも大きい幅d13である位置において、半導体レーザチップ4と第一端3d1とのY方向の距離を比較的長くすることができる。したがって、本実施形態によっても、サブマウント3Cの第二電極3b2上にボンディングワイヤ18をより容易に接合でき、かつ所要の放熱性が得られやすい、サブマウント3C、当該サブマウント3Cを有したチップオンサブマウント16C、および当該チップオンサブマウント16Cを備えた半導体レーザモジュール100を、得ることができる。
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 例えば、本発明のサブマウントおよび光学素子は、上記実施形態に開示されたものとは異なる光学装置や、光モジュールに適用することができる。
 また、隙間や、第一電極、および第二電極の形状は、種々の形態をとり得る。
 本発明は、サブマウント、発光装置、および光学モジュールに利用することができる。
1a…蓋
1b…ケース
1…ハウジング
2…モジュールベース
3,3A,3B,3C…サブマウント
3a…基板(ベース)
3a1…表面(第一面)
3a2…裏面
3a3,3a4…側面
3b…上部被覆層
3b1…第一電極
3b2…第二電極
3c…プリコート
3d1…第一端
3d2…第二端
3d3…第三端
3d4…第四端
4…半導体レーザチップ
4a…裏面
4b…表面
5…リードピン
6…第一レンズ
7…第二レンズ
8…ミラー
9…第三レンズ
10…光フィルタ
11…第四レンズ
12…光ファイバ
13…支持部材
14…ブーツ
15…ルースチューブ
16,16A,16B,16C…チップオンサブマウント
17…ボンディングワイヤ
18…ボンディングワイヤ
19…はんだ
100…半導体レーザモジュール(光学モジュール)
A…被実装領域
d1,d11,d12,d13…幅(第一幅)
d2,d21,d22,d23…幅(第二幅)
dg…幅
g…隙間
H…熱量(熱)

Claims (6)

  1.  発光装置が実装されるサブマウントであって、
     第一方向および当該第一方向と直交した第二方向に延びた第一面を有した、ベースと、
     前記第一面上で前記第一方向および前記第二方向に延び、当該第二方向の第一端と、前記第一方向に延びた前記第二方向の反対方向の第二端と、を有した、第一電極と、
     前記第一面上で前記第一方向および前記第二方向に延び、前記第一端から前記第二方向に隙間をあけて離間した前記第二方向の反対方向の第三端と、前記第一方向に延びた前記第二方向の第四端と、を有した、第二電極と、
     を備え、
     前記第二電極の、前記第三端と前記第四端との間の前記第二方向の第二幅が、前記第一方向の位置によって異なる、サブマウント。
  2.  前記第一電極の、前記第一端と前記第二端との間の前記第二方向の第一幅が、前記第一方向の位置によって異なる、請求項1に記載のサブマウント。
  3.  請求項1または2に記載のサブマウントと、
     前記第一電極上に載置され当該第一電極と電気的に接続された裏面と、前記裏面とは反対側で前記第二電極と導体を介して電気的に接続された表面と、を有し、前記第二端よりも前記第一端の近くで前記第一方向に延びた発光素子と、
     を備えた、発光装置。
  4.  前記発光素子は、ヒ化ガリウムまたはリン化インジウムを有した半導体レーザ素子である、請求項3に記載の発光装置。
  5.  モジュールベースを有したハウジングと、
     前記モジュールベース上に設けられた請求項3または4に記載の発光装置としての少なくとも一つの発光装置と、
     を備えた、光学モジュール。
  6.  前記発光装置として、前記第二方向に並んだ複数の発光装置を備えた、請求項5に記載の光学モジュール。
PCT/JP2020/047769 2020-03-30 2020-12-21 サブマウント、発光装置、および光学モジュール WO2021199532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080099277.8A CN115349207A (zh) 2020-03-30 2020-12-21 子基座、发光装置以及光学模块
EP20929035.2A EP4125166A4 (en) 2020-03-30 2020-12-21 SUB-MOUNT, LIGHT-EMITTING DEVICE AND OPTICAL MODULE
US17/951,291 US20230020128A1 (en) 2020-03-30 2022-09-23 Submount, light emitting device, and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-061331 2020-03-30
JP2020061331A JP7420625B2 (ja) 2020-03-30 2020-03-30 サブマウント、発光装置、および光学モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,291 Continuation US20230020128A1 (en) 2020-03-30 2022-09-23 Submount, light emitting device, and optical module

Publications (1)

Publication Number Publication Date
WO2021199532A1 true WO2021199532A1 (ja) 2021-10-07

Family

ID=77928413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047769 WO2021199532A1 (ja) 2020-03-30 2020-12-21 サブマウント、発光装置、および光学モジュール

Country Status (6)

Country Link
US (1) US20230020128A1 (ja)
EP (1) EP4125166A4 (ja)
JP (1) JP7420625B2 (ja)
CN (1) CN115349207A (ja)
TW (1) TW202137653A (ja)
WO (1) WO2021199532A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878657A (ja) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> 光/電子ハイブリッド実装基板およびその製法、並びに光サブモジュールおよび光/電子ハイブリッド集積回路
JP2007013002A (ja) * 2005-07-01 2007-01-18 Fujifilm Holdings Corp 半導体レーザー装置
WO2011065517A1 (ja) * 2009-11-30 2011-06-03 株式会社日立製作所 表面出射型レーザ
JP5075165B2 (ja) 2009-05-29 2012-11-14 古河電気工業株式会社 半導体装置
US20150372208A1 (en) * 2014-06-23 2015-12-24 Seoul Viosys Co., Ltd. Light emitting device
JP2019029649A (ja) * 2017-08-02 2019-02-21 日本オクラロ株式会社 半導体発光装置
WO2019160039A1 (ja) * 2018-02-16 2019-08-22 古河電気工業株式会社 光半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228560B2 (ja) * 2015-03-23 2017-11-08 日本電信電話株式会社 高周波伝送線路および光回路
JP2018101647A (ja) * 2015-04-21 2018-06-28 三菱電機株式会社 レーザー光源モジュール
CN108008501B (zh) * 2016-11-01 2021-10-29 住友电工光电子器件创新株式会社 光发送器设备
US10541510B2 (en) * 2017-08-02 2020-01-21 Lumentum Japan, Inc. Semiconductor light-emitting device
JP6646644B2 (ja) * 2017-12-22 2020-02-14 株式会社フジクラ レーザシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878657A (ja) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> 光/電子ハイブリッド実装基板およびその製法、並びに光サブモジュールおよび光/電子ハイブリッド集積回路
JP2007013002A (ja) * 2005-07-01 2007-01-18 Fujifilm Holdings Corp 半導体レーザー装置
JP5075165B2 (ja) 2009-05-29 2012-11-14 古河電気工業株式会社 半導体装置
WO2011065517A1 (ja) * 2009-11-30 2011-06-03 株式会社日立製作所 表面出射型レーザ
US20150372208A1 (en) * 2014-06-23 2015-12-24 Seoul Viosys Co., Ltd. Light emitting device
JP2019029649A (ja) * 2017-08-02 2019-02-21 日本オクラロ株式会社 半導体発光装置
WO2019160039A1 (ja) * 2018-02-16 2019-08-22 古河電気工業株式会社 光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4125166A4

Also Published As

Publication number Publication date
US20230020128A1 (en) 2023-01-19
CN115349207A (zh) 2022-11-15
EP4125166A1 (en) 2023-02-01
EP4125166A4 (en) 2024-05-29
TW202137653A (zh) 2021-10-01
JP2021163790A (ja) 2021-10-11
JP7420625B2 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
US8644357B2 (en) High reliability laser emitter modules
US20050196112A1 (en) Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode
EP1830443A1 (en) High Power Diode Laser Having Multiple Emitters and Method for its Production
JP2001168442A (ja) 半導体レーザ素子の製造方法、配設基板および支持基板
JP2004325826A (ja) 光学部材の固定方法および固定構造
KR20240001719A (ko) 다중 kW 급 청색 레이저 시스템
US20210336411A1 (en) Method of manufacturing laser light source
WO2019003546A1 (ja) レーザ光源装置
WO2017138666A1 (ja) サブマウント、半導体素子実装サブマウント、および半導体素子モジュール
WO2021199532A1 (ja) サブマウント、発光装置、および光学モジュール
JP2009260095A (ja) 光モジュール
JP4368563B2 (ja) レーザー装置
JP4974563B2 (ja) 光半導体装置
CN113169514B (zh) 半导体激光芯片安装辅助基板以及其制造方法、和半导体激光模块
JP2010073758A (ja) 半導体レーザモジュール
JP5190027B2 (ja) 半導体レーザモジュール,およびこれを備えたラマン増幅器
JP5180914B2 (ja) 半導体レーザモジュール,およびこれを備えたラマン増幅器
JP2009295772A (ja) 発光モジュール
US20230100183A1 (en) Semiconductor light-emitting device and light source device including the same
WO2023013418A1 (ja) 多波長光源モジュール
JP2023002985A (ja) 半導体レーザ装置
JP2003158330A (ja) 半導体レーザ結合装置
US20220149596A1 (en) Semiconductor laser device
WO2021059752A1 (ja) レーザ発光素子およびレーザ発光装置
JP2019079906A (ja) 半導体レーザアレイ光源および光ファイバ結合モジュール、並びに半導体レーザアレイ光源の製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020929035

Country of ref document: EP

Effective date: 20221031