JP2023002985A - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP2023002985A
JP2023002985A JP2021103877A JP2021103877A JP2023002985A JP 2023002985 A JP2023002985 A JP 2023002985A JP 2021103877 A JP2021103877 A JP 2021103877A JP 2021103877 A JP2021103877 A JP 2021103877A JP 2023002985 A JP2023002985 A JP 2023002985A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser element
collimating lens
sealing cover
slow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021103877A
Other languages
English (en)
Inventor
英典 松尾
Hidenori Matsuo
雅樹 大森
Masaki Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2021103877A priority Critical patent/JP2023002985A/ja
Priority to US17/844,474 priority patent/US20220416502A1/en
Priority to DE102022115367.3A priority patent/DE102022115367A1/de
Priority to CN202210718966.3A priority patent/CN115513768A/zh
Publication of JP2023002985A publication Critical patent/JP2023002985A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】空間ビーム結合に適したより信頼性の高い半導体レーザ装置を提供する。【解決手段】半導体レーザ装置は、複数の載置面を有する支持基体であって、基準平面からの複数の載置面の高さが第1方向に沿って段階的または連続的に低下している、支持基体と、第1載置面に直接または間接的に固定された第1半導体レーザ素子であって、基準平面の法線方向からの平面視において、第1方向に交差する第2方向に第1レーザ光を出射する、第1半導体レーザ素子と、第2載置面に直接または間接的に固定された第2半導体レーザ素子であって、平面視において、第2方向に第2レーザ光を出射する、第2半導体レーザ素子と、第1半導体レーザ素子および第2半導体レーザ素子を囲む側壁を有する第1封止カバーであって、側壁の下端は支持基体に接合された第1封止カバーと、を備える。【選択図】図1

Description

本開示は、半導体レーザ装置に関する。
近年、半導体レーザ素子(「レーザダイオード」とも称される)の高出力化に伴い、半導体レーザ素子を励起光源としてではなく、材料を直接に照射して加工するレーザビームの光源として用いる技術が開発されつつある。このような技術は、ダイレクトダイオードレーザ(DDL:Direct Diode Laser)技術と称されている。
特許文献1は、複数の半導体レーザ素子からそれぞれ出射された複数のレーザビームを結合(combine)して光出力を増大させるレーザ光源の一例を開示している。複数のレーザビームの結合は「空間ビーム結合」と称され、例えばファイバレーザ装置の励起光源およびDDL装置などの光出力を高めるために利用され得る。
米国特許7733932号明細書
複数の半導体レーザ素子を封止する領域の体積を低減することが可能な半導体レーザ装置が求められている。
本開示の半導体レーザ装置は、実施形態において、第1方向に並んだ複数の載置を有する支持基体であって、前記第1方向に平行な基準平面からの前記複数の載置面の高さが前記第1方向に沿って段階的または連続的に低下している、支持基体と、前記複数の載置面のうちの第1載置面に直接または間接的に固定された第1半導体レーザ素子であって、前記基準平面の法線方向からの平面視において、前記第1方向に交差する第2方向に第1レーザ光を出射する、第1半導体レーザ素子と、前記複数の載置面のうちの第2載置面に直接または間接的に固定された第2半導体レーザ素子であって、前記平面視において、前記第2方向に第2レーザ光を出射する、第2半導体レーザ素子と、前記第1載置面に直接または間接的に固定された第1遅軸コリメートレンズであって、前記第1レーザ光が入射する位置に設けられる、第1遅軸コリメートレンズと、前記第2載置面に直接または間接的に固定された第2遅軸コリメートレンズであって、前記第2レーザ光が入射する位置に設けられた第2遅軸コリメートレンズと、前記第1半導体レーザ素子および前記第2半導体レーザ素子を囲む側壁を有する第1封止カバーであって、前記側壁の下端は前記支持基体に接合され、かつ、前記第1半導体レーザ素子および前記第2半導体レーザ素子を収容する内部を規定し、前記第1レーザ光および前記第2レーザ光を透過させる透光性領域を有する、第1封止カバーと、を備える。前記複数の載置面のそれぞれは、前記第1封止カバーによって覆われた第1領域と、前記第1封止カバーの外部に位置する第2領域とを有している。
本開示の実施形態によれば、複数の半導体レーザ素子を封止する領域の体積を低減することが可能な半導体レーザ装置が提供され得る。
図1は、本開示による実施形態1における半導体レーザ装置の基本的な構成例を示す上面図である。 図2は、図1のII-II線における半導体レーザ装置の模式断面図である。 図3は、図1のIII-III線における半導体レーザ装置の模式断面図である。 図4は、図1のIV-IV線における半導体レーザ装置の模式断面図である。 図5Aは、本開示の実施形態における封止カバー内の光源の構成例を模式的に示す斜視図である。 図5Bは、図5Aの光源を模式的に示す上面図である。 図5Cは、図5Bの光源のYZ平面に平行なVC-VC線断面図である。 図5Dは、図5Aの光源を模式的に示す背面図である。 図6は、本開示の実施形態2における半導体レーザ装置の構成例を模式的に示す上面図である。 図7は、本開示の実施形態3における半導体レーザ装置の斜視図である。 図8は、図7の半導体レーザ装置から第1封止カバーおよび第2封止カバーの上面部を取り除いた状態を示す斜視図である。 図9は、図7の半導体レーザ装置の上面図である。 図10は、図7の半導体レーザ装置のZ軸-方向からみた側面図である。 図11は、図7の半導体レーザ装置のX軸-方向からみた側面図である。 図12は、図7の半導体レーザ装置が備える支持基体の載置面の段差を模式的に示す図である。 図13は、図8の状態にある半導体レーザ装置の上面図である。 図14は、本開示による半導体レーザ装置を備えるダイレクトダイオードレーザ(DDL)装置の構成例を示す図である。 図15は、本開示による半導体レーザ装置を備えるファイバレーザ装置の構成例を示す図である。
<実施形態1>
図1は、本実施形態における半導体レーザ装置100の基本的な構成例を示す図であり、半導体レーザ装置100をXZ面の法線方向からみた模式的な上面図である。ただし、図1は後述する第1封止カバー30の上面部33を取り外した状態を表す上面図である。図2は、図1のII-II線における半導体レーザ装置100の模式断面図である。図3は、図1のIII-III線における半導体レーザ装置100の模式断面図である。図4は、図1のIV-IV線における半導体レーザ装置100の模式断面図である。
図示されている例において、半導体レーザ装置100は、支持基体10と、第1半導体レーザ素子LD1と、第2半導体レーザ素子LD2と、第1遅軸コリメートレンズSAC1と、第2遅軸コリメートレンズSAC2と、第1速軸コリメートレンズFAC1と、第2速軸コリメートレンズFAC2と、第1封止カバー30とを備える。本開示においては、複数の部材、部品または要素を総称するときに用いる参照符号が「Z」の場合、個々の部品または要素を区別するときには「Z1」、「Z2」、・・・のような参照符号を用いる。例えば、複数の半導体レーザ素子を包括するグループの参照符号として「LD」を用いる場合がある。個々の半導体レーザ素子を区別するときは、「LD1」、「LD2」、・・・のような参照符号を用いる。他の部材においても同様である。
半導体レーザ素子LDの端面から出射されるレーザ光のビーム断面形状は、ビーム中心軸に関して非対称な形状を有している。半導体レーザ素子LDの端面から離れた位置におけるビーム断面形状(ファーフィールドパターン)では、半導体レーザ素子LDの半導体積層方向におけるサイズが、これに垂直な方向におけるサイズよりも大きくなる。このため、半導体積層方向を「速軸方向」と呼び、速軸の方向に垂直な方向を「遅軸方向」と呼ぶ。ただし、レーザビームがミラーによって反射されて伝搬方向を変える場合もあるため、本開示における「速軸方向」および「遅軸方向」の用語は、それぞれ、グローバルなXYZ座標系における「Y軸方向」および「X軸方向」に対して平行であるとは限らず、各レーザビームが有するビーム品質の非対称性に依存して決まる。
速軸コリメートレンズFACは、半導体レーザ素子LDの端面から出射されるレーザ光を速軸方向についてコリメートするレンズである。これに対して、遅軸コリメートレンズSACは、半導体レーザ素子LDの端面から出射されるレーザ光を遅軸方向についてコリメートするレンズである。速軸コリメートレンズFACおよび遅軸コリメートレンズSACは、いずれも、シリンドリカルレンズ(例えば円筒面平凸レンズ)である。シリンドリカルレンズは、平行な光線束を直線(焦点)上に収束する曲面を有している。曲面は、円柱の外周表面の一部に相当する形状を有しており、円柱の軸方向における曲率はゼロである。なお、本明細書において、ビーム断面サイズは、ビーム中心の光強度のピークパワーに対して1/e以上の光強度を持つ領域のサイズによって規定される。ここで、eはネイピア数(約2.71)である。
支持基体10は、第1方向(X軸+方向)に並んだ複数の載置面Tを有する。図示されている支持基体10の例において、載置面Tの個数は2であるが、この個数は3個以上であってもよい。本開示では、複数の載置面Tの一つを「第1載置面T1」、他の一つを「第2載置面T2」と称する。図示される支持基体10の例において、複数の載置面Tの高さ、具体的には第1方向に平行な基準平面Ref(図2参照)からの高さは、第1方向に沿って段階的に低下している。言い換えると、隣り合う載置面Tの間に段差が存在している。基準平面Refは、XZ面に平行な仮想的な平面である。図の例において、複数の載置面Tのそれぞれは、基準平面Refに平行である。複数の載置面Tが互いに平行であれば、それぞれが基準平面Refに対して厳密に平行である必要はない。本明細書において、「複数の載置面Tが互いに平行である」とは、一方の載置面に対して、他方の載置面がX軸回りの回転方向に対して±0.1度傾いている場合も含む。なお、一方の載置面に対して、他方の載置面がX軸回りの回転方向に対する傾きとして±0.02度以下であることが好ましい。また、「複数の載置面Tが互いに平行である」とは、一方の載置面に対して、他方の載置面がZ軸回りの回転方向に対して±0.5度傾いている場合も含む。なお、一方の載置面に対して、他方の載置面がZ軸回りの回転方向に対する傾きとして±0.1度以下であることが好ましい。他の実施形態において、複数の載置面Tの高さは、第1方向に沿って連続的に低下していてもよい。その場合、複数の載置面Tの全体は、基準平面Refに対して非平行な斜面によって構成され得る。
第1半導体レーザ素子LD1は、複数の載置面Tのうちの第1載置面T1に直接または間接的に固定されている。第1半導体レーザ素子LD1は、基準平面Refの法線方向(Y軸+方向)からの平面視において、第1方向(X軸+方向)に交差する第2方向(Z軸+方向)に第1レーザ光B1を出射するように配置されている。この例において、第1方向と第2方向とは直交しているが、直交している必要はない。第2半導体レーザ素子LD2は、複数の載置面Tのうちの第2載置面T2に直接または間接的に固定されている。第2半導体レーザ素子LD2は、上記の平面視において、第2方向に第2レーザ光B2を出射するように配置されている。なお、本開示において、「部材X」が「複数の載置面Tのいずれか」に「直接または間接的に固定されている」とは、「部材X」と「複数の載置面Tのいずれか」との間に、「少なくとも1つの他の部材Y」が存在していてもよいし、存在していなくてもよいことを意味している。この平面視において、各載置面Tは、第2方向に平行に延びる長方形の形状を有している。しかし、各載置面Tの形状は、この例に限定されず、1つの内角が90度以外の平行四辺形または台形であってもよい。
支持基体10の載置面Tには、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2を駆動するための電流を外部回路から供給するための配線構造が設けられていてもよい。配線構造は、支持基体10の内部または載置面Tに設けられた配線層、支持基体10によって直接または間接的に支持されるワイヤ、端子電極、および導電体リードなどの配線要素を含み得る。配線構造の一部または全部は、第1封止カバー30に設けられていてもよい。第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、外部の駆動回路に対して直列または並列に接続される。
支持基体10は、例えば、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、炭化ケイ素などのセラミックス、あるいは、セラミックスよりも放熱性に優れた銅、アルミニウムまたは銀などの金属材料から形成され得る。また、支持基体10は、銅、アルミニウムまたは銀などの金属材料中にダイヤモンド粒子が分散した金属マトリクス複合材料から形成されていてもよい。支持基体10は、複数のパーツの組立体であってもよい。それぞれのパーツは異なる材料から形成され得る。また、支持基体10は、好ましくは銅、アルミニウムまたは銀などの金属材料から形成され、かつ、単一の部材からなることが好ましい。金属材料はセラミックスよりも放熱性が高く、また、柔らかいので加工しやすい。支持基体10の内部に水冷のための1または複数の流路が設けられていてよいし、支持基体10の表面に空冷のためのフィン構造が設けられていてもよい。このように本実施形態における支持基体10は、複数の半導体レーザ素子LDが載置される支持台として機能するとともに、複数の半導体レーザ素子LDが発する熱を放熱して半導体レーザ素子LDの過度な温度上昇を抑制するヒートスプレッダ、あるいは、ヒートシンクとしても機能し得る。
第1遅軸コリメートレンズSAC1は、第1載置面T1に直接または間接的に固定され、第1レーザ光B1が入射する位置に設けられている。第2遅軸コリメートレンズSAC2は、第2載置面T2に直接または間接的に固定され、第2レーザ光B2が入射する位置に設けられている。第1遅軸コリメートレンズSAC1は、例えば、第1載置面T1に接着剤を介して固定することができる。第2遅軸コリメートレンズSAC2も同様に、第2載置面T2に接着剤を介して固定することができる。接着剤としては、例えば、Auペースト、Agペースト、Cuペースト、AuSnはんだ、樹脂、Agナノ粒子、はんだ箔などを用いることができる。
第1封止カバー30は、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2を囲む側壁32と上面部33を有している。具体的には、第1封止カバー30の形状は、4面を有する側壁32と、側壁32の上端をつなぐ上面部33とを有し得る。上面部33は、側壁32と同一の材料から加工されて一体的に連結していてもよいし、それぞれが別々のパーツとして製造されて組み立てられていてもよい。上面部33と側壁32とが別々のパーツである場合、上面部33を「蓋」と呼んでもよい。第1封止カバー30は、例えば、セラミックスまたは金属材料から形成され得る。側壁32および上面部33は、同一の材料から形成されていてもよいし、互いに異なる材料から形成されていてもよい。
第1封止カバー30の側壁32の下端は支持基体10に接合されている。第1封止カバー30は、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2を収容する内部を規定し、第1レーザ光B1および第2レーザ光B2を透過させる透光性領域34を有している。透光性領域34は、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2と、第1遅軸コリメートレンズSAC1および第2遅軸コリメートレンズSAC2との間に設けられる。こうして、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、第1封止カバー30によって気密に封止され得る。本開示の実施形態では、第1封止カバー30が支持基体10と接合され、複数の半導体レーザ素子を封止する構成を備えている。ある製造方法によれば、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、それぞれ、載置面Tに実装された後、第1封止カバー30によって覆われる。第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、第1封止カバー30を設ける前に載置面Tに実装してもよいし、第1封止カバー30を設ける途中で載置面Tに実装してもよい。このため、個々の半導体レーザ素子を半導体レーザパッケージ内に封止した後、それぞれの半導体レーザパッケージを支持基体上に実装するよりも、光軸を容易に合わせることできる。また、個々の半導体レーザ素子を1個ずつ別々の半導体レーザパッケージ内に収容する場合に比べて、隣り合う半導体レーザ素子の中心間隔を狭くすることが可能になる。これは、半導体レーザパッケージどうしの物理的な干渉を考慮することなく、多数の半導体レーザ素子を配置することを可能にする。また、個々の半導体レーザ素子の周囲にそれぞれの半導体レーザパッケージが存在しないため、各半導体レーザ素子の周囲に光学部材またはフォトダイオードなどの電子素子を配置することができる十分なスペースを得ることも可能にする。更に、封止の効果は確保できるため、光集塵効果による光出力低下を抑制し、半導体レーザ装置の信頼性を向上させることが可能になる。
なお、第1封止カバー30の側壁32の下端を載置面Tの第1溝16に接合した後、第1封止カバー30の上面部33を側壁32に固定して第1封止カバー30を作製してもよい。その場合、第1封止カバー30の側壁32の下端を載置面Tの第1溝16に接合する工程と、第1封止カバー30の上面部33を側壁32に固定して第1封止カバー30を作製する工程との間に、第1半導体レーザ素子LD1および第2半導体レーザ素子LD2を載置面Tに実装する工程を設けてもよい。これにより、第1半導体レーザ素子LD1が発するレーザ光の光軸と第1遅軸コリメートレンズSAC1の光軸および第2半導体レーザ素子LD2が発するレーザ光の光軸と第2遅軸コリメートレンズの光軸とを合わせたあとで上面部33を側壁32に固定して、封止することができる。すなわち、光軸を容易に合わせ、かつ半導体レーザ素子LDを封止することができる。
図3および図4に示すように、複数の載置面Tのそれぞれは、第1封止カバー30によって覆われた第1領域11と、第1封止カバー30の外部に位置する第2領域12とを有している。本実施形態では、複数の載置面Tのそれぞれにおいて、第1領域11の基準平面Refからの高さは、第2領域12の基準平面Refからの高さに等しい。なお、本明細書において、「複数の載置面Tのそれぞれにおいて、第1領域11の基準平面Refからの高さは、第2領域12の基準平面Refからの高さに等しい」とは、「複数の載置面Tのそれぞれにおける第1領域11の基準平面Refからの高さは、複数の載置面Tのそれぞれにおける第2領域12の基準平面Refからの高さに対して±1%以内」である場合も含む。第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、第1領域11上に存在している。これに対して、第1遅軸コリメートレンズSAC1および第2遅軸コリメートレンズSAC2は、第2領域12上に存在している。例えば第1載置面T1において、第1半導体レーザ素子LD1が固定される第1領域11の高さと、第2領域12の高さとが等しいことにより、第2領域12に固定される光学部材に対する第1半導体レーザ素子LD1の光軸を容易に合わせることができる。このことは、第2載置面T2についても同様である。また、本実施形態では、各載置面Tにおいて、第1領域11および第2領域12は、平行であり、かつ、同一の平面上に位置するように構成されている。その結果、第1領域11および第2領域12のそれぞれに実装される部品間の光軸を容易に合わせることができる。なお、本明細書において「第1領域および第2領域が平行である」とは、第1領域に対して、第2領域が±0.1度以内の角度をなす場合も含む。
第1速軸コリメートレンズFAC1は、第1半導体レーザ素子LD1と第1遅軸コリメートレンズSAC1の間において、第1半導体レーザ素子LD1から出射された第1レーザ光B1が入射する位置に設けられている。また、第2速軸コリメートレンズFAC2は、第2半導体レーザ素子LD2と第2遅軸コリメートレンズSAC2の間において、第2半導体レーザ素子LD2から出射された第2レーザ光B2が入射する位置に設けられている。図3および図4に図示される例において、第1封止カバー30の側壁32は、第1速軸コリメートレンズFAC1および第2速軸コリメートレンズFAC2を囲んでいる。言い換えると、第1封止カバー30は、第1速軸コリメートレンズFAC1および第2速軸コリメートレンズFAC2をも封止している。これにより、第1封止カバー30に干渉されることなく、第1速軸コリメートレンズFAC1を第1半導体レーザ素子LD1の光出射端面に近づけて実装することが可能になる。同様に、第2速軸コリメートレンズFAC2を第2半導体レーザ素子LD2の光出射端面に近づけて実装することが可能になる。速軸コリメートレンズFACと、対応する半導体レーザ素子LDの光出射端面との距離を短くすることにより、速軸コリメートレンズFACの焦点距離およびサイズを小さくして、コリメート光の速軸方向におけるサイズを小さくすることが可能になる。
このように、本実施形態では、第1速軸コリメートレンズFAC1および第2速軸コリメートレンズFAC2は、第1封止カバー30の内部に位置し、かつ、第1遅軸コリメートレンズSAC1および第2遅軸コリメートレンズSAC2は、第1封止カバー30の外部に位置している。これにより、コリメート光の速軸方向におけるサイズを小さくしつつ、各半導体レーザ素子を一括で封止することができる。各遅軸コリメートレンズSACが第1封止カバー30の外側に配置されることで、気密封止する領域の体積を低減することができ、気密封止が容易となる。また、SACレンズが第1封止カバー30の外側に配置されることで、SACレンズを固定する接着剤の選択肢を広げることができる。例えば、接着剤の材料として、樹脂を選択することが可能となる。樹脂は他の接着剤と比べて光軸を容易に合わせることができる。また、樹脂はSACレンズを容易に固定することができる。
本実施形態において、支持基体10は、第1封止カバー30の側壁32の少なくとも一部を受ける第1溝16を有している。第1封止カバー30の側壁32の下端の一部または全部は、第1溝16の底面に接合されている。第1溝16の底面の、基準平面Refからの高さは、第1方向(X軸+方向)に沿って一定であることが好ましい。図3および図4に示されるように、第1溝16の深さは、複数の載置面Tのそれぞれにおいて異なるが、第1溝16の底面の基準平面Refからの高さは等しい。このような第1溝16を支持基体10に設けることにより、第1封止カバー30の側壁32に載置面Tの間の段差に対応する段差を設ける必要がなくなり、側壁32を例えば概略的に長方形のような単純な形状にすることが可能になる。このことは、第1封止カバー30の製造を容易にするとともに、封止部の寸法ずれに起因する封止強度の低下を抑制し、封止の信頼度を高めることが可能になる。また、第1溝16のz方向における幅は、第1封止カバー30の側壁32のz方向における厚さに対して、例えば、2倍以上50倍以下、好ましくは、2倍以上10倍以下にすることができる。これにより、第1封止カバー30の側壁32の厚さに対して第1溝16の幅を十分広くとることができるので、第1封止カバー30を支持基体10へ容易に接合することができる。
図1、図2、図3および図4に示すように、半導体レーザ装置100は、第1半導体レーザ素子LD1を支持する第1サブマウントSB1と、第2半導体レーザ素子LD2を支持する第2サブマウントSB2とを更に備えている。サブマウントSB1、SB2は、それぞれ、例えば直方体の形状で構成され得る。サブマウントSB1、SB2は、例えば、窒化アルミニウム、炭化ケイ素、ダイヤモンド粒子が分散した金属マトリクス複合材料、または、グラファイトから形成され得る。サブマウントSB1、SB2のそれぞれの上面および下面には、半導体レーザ素子LDまたは支持基体10との接合のための金属膜が設けられ得る。サブマウントSB1、SB2と半導体レーザ、もしくは、サブマウントと支持基体10とは、接合材によって接合され得る。接合材は、例えば、AuSnはんだ、Agペースト、Cuペースト、Auペーストなどを用いることができる。
第1サブマウントSB1は、第1速軸コリメートレンズFAC1を支持する第1レンズ支持部材を有しており、第2サブマウントSB2は、第2速軸コリメートレンズFAC2を支持する第2レンズ支持部材を有する。以下、第1半導体レーザ素子LD1を例にとり、このような構成の例を詳細に説明する。
図5Aは、第1封止カバー30によって封止される第1半導体レーザ素子LD1、第1サブマウントSB1、および第1速軸コリメートレンズFAC1の分解斜視図である。この例において、第1半導体レーザ素子LD1は第1サブマウントSB1の上面に接合され、レンズ支持部材52は第1サブマウントSB1の上面に接合され、第1速軸コリメートレンズFAC1は、レンズ支持部材52に固定される。第1速軸コリメートレンズは、接着剤を介してレンズ支持部材52に固定される。接着剤としては、例えば、Auペースト、Agペースト、Cuペースト、AuSnはんだなどを用いることができる。図5Bは、図5Aの構成を模式的に示す上面図である。図5Cは、図5Bの構成のYZ平面に平行なVC-VC線断面図である。図5Dは、図5Aの構成を模式的に示す背面図である。
図5Aに示すように、第1サブマウントSB1は、主平面50T、裏面50B、および前方端面50Fを有する。第1半導体レーザ素子LD1は、第1サブマウントSB1の主平面50Tにフェイスダウン実装されている。第1半導体レーザ素子LD1の出射端面Fは、第1サブマウントSB1に対して突出するように配置される。これにより、出射端面Fから出射されるレーザ光の一部が第1サブマウントにより反射されることを抑制することができる。第1速軸コリメートレンズFAC1を支持するレンズ支持部材52が第1サブマウントSB1の主平面50Tに接合される。レンズ支持部材52は、主平面50Tに接合される一対の固定部52Sと、一対の固定部52Sを連結する連結部52Lを有する。連結部52Lは、第1半導体レーザ素子LD1の出射端面Fから出射されるレーザ光の伝搬を妨げないように第1半導体レーザ素子LD1を跨ぐ形状を有している。
図5Aでは、第1サブマウントSB1、レンズ支持部材52、および第1速軸コリメートレンズFAC1が分離された状態で記載されているが、実際にはこれらは接合されている。
連結部52Lは、図5Bの上面視において、第1半導体レーザ素子LD1の出射端面Fと重なる。図5Dに示すように、レンズ支持部材52は、第1半導体レーザ素子LD1を跨ぐように第1サブマウントSB1の主平面50Tに配置されている。レンズ支持部材52のX方向におけるサイズは、第1サブマウントSB1のX方向におけるサイズよりも大きくてもよいし小さくてもよい。例えば、レンズ支持部材52のX方向におけるサイズは、サブマウントSB1のX方向におけるサイズよりも大きくすることができる。これにより、レンズ支持部材52の端面52Fの面積が広がり、FACレンズ1をレンズ支持部材52へ接合する面積を大きくすることができる。その結果、第1速軸コリメートレンズFAC1をレンズ支持部材52の端面52Fに容易に接合することができる。レンズ支持部材52のY方向におけるサイズは、第1速軸コリメートレンズFAC1のY方向におけるサイズと同程度であり得る。レンズ支持部材52のY方向におけるサイズは、速軸コリメートレンズFAC1のY方向におけるサイズよりも大きくてもよいし、等しくてもよいし、小さくてもよい。レンズ支持部材52のX方向におけるサイズは、例えば1mm以上2mm以下であり、Y方向における最大のサイズは、例えば0.3mm以上2mm以下であり、Z方向におけるサイズは、例えば0.2mm以上1mm以下である。
図示される構成を作製する方法は、例えば、第1サブマウントSB1の主平面50Tに第1半導体レーザ素子LD1を接合する工程と、第1半導体レーザ素子LD1を跨ぐように第1サブマウントSB1の主平面50Tにレンズ支持部材52を接合する工程と、レンズ支持部材52の端面52Fに第1速軸コリメートレンズFAC1を接合する工程とを、含み、これらの工程をこの順で実行してもよい。あるいは、第1半導体レーザ素子LD1が主平面50Tに接合された第1サブマウントSB1に、第1速軸コリメートレンズFAC1が接合されたレンズ支持部材52を接合してもよい。
この例では、第1サブマウントSB1の主平面50Tに第1半導体レーザ素子LD1およびレンズ支持部材52が接合され、レンズ支持部材52の端面52Fに第1速軸コリメートレンズFAC1が接合されている。これにより、第1半導体レーザ素子LD1と第1速軸コリメートレンズFAC1との間隔を狭くすることが可能になる。このため、第1速軸コリメートレンズFAC1を小型化できる。また、第1速軸方向にコリメートされたレーザ光B1の速軸方向におけるサイズを小さくすることが可能になる。
上記の構成は、第2半導体レーザ素子LD2についても同様に実現できる。なお、図5A、図5B、図5C、および図5Dに示される構成は、一例にすぎず、サブマウントSBに速軸コリメートレンズFACを固定する方法は、上記の例に限定されない。
本実施形態によれば、半導体レーザ素子LDおよび速軸コリメートレンズFACの両方を支持するサブマウントSBが支持基体10の第1領域11に固定され、遅軸コリメートレンズSACおよびミラーMが支持基体10の第2領域12に固定される。本実施形態では、第1封止カバー30の側壁32の下端を載置面Tの第1溝16に接合し、次に半導体レーザ素子LDおよび速軸コリメートレンズFACの両方を支持するサブマウントSBを支持基体10に接合する。その後、光軸を合わせたあとで、第1封止カバー30の上面部33を側壁32に固定して、半導体レーザ素子LDを第1封止カバー30が規定する空間内で封止することができる。これにより、光軸を容易に合わせることができる。また、半導体レーザ素子LDを気密封止し、光集塵を低減することができる。
図1に示すように、半導体レーザ装置100は、第1遅軸コリメートレンズSAC1から出射された第1レーザ光B1、および第2遅軸コリメートレンズSAC2から出射された第2レーザ光B2を合波するビーム結合部20をさらに備える。ビーム結合部20は、第1載置面T1の第2領域12に設けられた第1ミラーM1と、第2載置面T2の第2領域12に設けられ第2ミラーM2と、を有する。第1ミラーM1は、第1レーザ光B1を第1方向に反射する。第2ミラーM2は、第2レーザ光B2を第1方向に反射する。ビーム結合部20は、更に、第1方向に反射された第1レーザ光B1および第2レーザ光B2を光ファイバ40に結合する集光レンズ42を有する。図示される例において、集光レンズ42は、速軸集光レンズ42a、および遅軸集光レンズ42bを有している。この例では、速軸集光レンズ42aの焦点距離は、遅軸集光レンズ42bの焦点距離よりも長い。したがって、光ファイバ40の光入射端に対して、遅軸集光レンズ42bの方が速軸集光レンズ42aよりも近くに配置されている。
第1ミラーM1に入射する第1レーザ光B1は、第1速軸コリメートレンズFAC1および第1遅軸コリメートレンズSAC1によってコリメートされている。同様に、第2ミラーM2に入射する第2レーザ光B2は、第2速軸コリメートレンズFAC2および第2遅軸コリメートレンズSAC2によってコリメートされている。図3および図4に示されるように、基準平面Refからの第1ミラーM1の高さおよび第2ミラーM2の高さは互いに異なる。このため、第1ミラーM1によって反射された第1レーザ光B1が速軸集光レンズ42aに入射する位置の高さは、第2ミラーM2によって反射された第2レーザ光B2が速軸集光レンズ42aに入射する位置の高さとは異なる。これらの高さの差異は、載置面T1と載置面T2との間にある段差の大きさにほぼ等しい。「ほぼ等しい」とは、例えば、第1ミラーM1と支持基体10との間に配置される接着剤の厚さと、第2ミラーM2と支持基体10との間に配置される接着材料の厚さとの差は無視できることを意味する。なお、ミラーMは、載置面Tに接着剤を介して固定することができる。接着剤としては、例えば、AuSnはんだ、Agペースト、Cuペースト、Auペースト、樹脂などを用いることができる。また、ミラーMは、それぞれのミラーMの位置および向きを調整することが可能な部品を介して支持基体10の載置面Tに固定されていてもよい。ミラーMの反射面は、入射するレーザ光の波長において選択的に高い反射率を有する多層膜から形成されていることが望ましい。載置面Tには、ミラーM以外の光学部品、例えば波長選択性を有するフィルタが配置されていてもよい。また、遅軸コリメートレンズSACは、それぞれのミラーMの位置および向きを調整することが可能な部品を介して支持基体10の載置面Tに固定されていてもよい。
第1半導体レーザ素子LD1および第2半導体レーザ素子LD2は、例えば、紫色の光を出射する半導体レーザ素子、青色の光を出射する半導体レーザ素子、緑色の光を出射する半導体レーザ素子、赤色の光を出射する半導体レーザ素子であり得る。ここで、紫色の光は、その発振波長が360nm以上420nm以下の範囲にある光である。青色の光は、その発光ピーク波長が420nmより大きく495nm以下の範囲内にある光である。緑色の光は、その発光ピーク波長が495nmより大きく570nm以下の範囲内にある光である。赤色の光は、その発光ピーク波長が605nm以上750nm以下の範囲内にある光である。紫色の光を発する半導体レーザ素子、青色の光を発する半導体レーザ素子、または緑色の光を発する半導体レーザ素子としては、窒化物半導体を含む半導体レーザ素子が挙げられる。窒化物半導体としては、例えば、GaN、InGaN、およびAlGaNを用いることができる。赤色の光を発する半導体レーザ素子としては、InAlGaP系やGaInP系、GaAs系やAlGaAs系の半導体が挙げられる。
本実施形態の半導体レーザ装置100によれば、複数の半導体レーザ素子を封止する領域の体積を低減することが可能になる。
また、本実施形態の半導体レーザ装置100によれば、半導体レーザ素子の光軸と遅軸コリメートレンズの光軸とを合わせることが容易な封止構造によって信頼性を向上させ、複数の半導体レーザ素子から出射されるレーザ光を1つの光ファイバに光学的に結合することが可能になる。
<実施形態2>
次に、本開示の半導体レーザ素子の他の実施形態を説明する。図6は、本実施形態における半導体レーザ装置200の構成例を模式的に示す上面図である。ただし、図6は後述する第2封止カバー60の上面部63を取り外した状態を表す上面図である。
図6の半導体レーザ装置200は、図1に示される構成に加えて、更に、第3半導体レーザ素子LD3と、第4半導体レーザ素子LD4と、第3遅軸コリメートレンズSAC3と、第4遅軸コリメートレンズSAC4と、第2封止カバー60とを備える。また、この例における半導体レーザ装置200は、第3速軸コリメートレンズFAC3と、第4速軸コリメートレンズFAC4とを備える。
第3半導体レーザ素子LD3および第4半導体レーザ素子LD4のそれぞれは、前述した第1半導体レーザ素子LD1および第2半導体レーザ素子LD2の構造および形状と同様の構造および形状を有していてよい。また、第3遅軸コリメートレンズSAC3、第4遅軸コリメートレンズSAC4、第3速軸コリメートレンズFAC3、第4速軸コリメートレンズFAC4、および第2封止カバー60も、それぞれ、半導体レーザ装置100における第1遅軸コリメートレンズSAC1、第2遅軸コリメートレンズSAC2、第1速軸コリメートレンズFAC1、第2速軸コリメートレンズFAC2、および第1封止カバー30と同様の構造および形状を有していてよい。
第3半導体レーザ素子LD3は、複数の載置面Tのうちの第1載置面T1に直接または間接的に固定されている。第3半導体レーザ素子LD3は、基準平面Refの法線方向(Y軸+方向)からの平面視において、第2方向(Z軸+方向)の反対方向(Z軸-方向)に第3レーザ光B3を出射するように配置されている。第4半導体レーザ素子LD4は、複数の載置面Tのうちの第2載置面T2に直接または間接的に固定されている。第4半導体レーザ素子LD4は、上記の平面視において、第2方向(Z軸+方向)の反対方向(Z軸-方向)に第4レーザ光B4を出射するように配置されている。
第3遅軸コリメートレンズSAC3は、第1載置面T1に直接または間接的に固定され、第3レーザ光B3が入射する位置に設けられている。第4遅軸コリメートレンズSAC4は、第2載置面T2に直接または間接的に固定され、第4レーザ光B4が入射する位置に設けられている。
第2封止カバー60は、第3半導体レーザ素子LD3および第4半導体レーザ素子LD4を囲む側壁62を有している。側壁62の下端は支持基体10に接合されている。第2封止カバー60は、第3半導体レーザ素子LD3および第4半導体レーザ素子LD4を収容する内部を規定し、第3レーザ光B3および第4レーザ光B4を透過させる透光性領域64を有している。こうして、第3半導体レーザ素子LD3および第4半導体レーザ素子LD4は、第2封止カバー60によって気密に封止され得る。本開示の実施形態では、第1封止カバー30と第2封止カバー60が、それぞれ支持基体10と接合され、複数の半導体レーザ素子を封止する構成を備えている。ある製造方法によれば、第3半導体レーザ素子LD3および第4半導体レーザ素子LD4は、それぞれ、載置面Tに実装された後、第2封止カバー60によって覆われる。第3半導体レーザ素子LD3および第4半導体レーザ素子LD4は、第2封止カバー60を設ける前に載置面Tに実装してもよいし、第2封止カバー60を設ける途中で載置面Tに実装してもよい。
複数の載置面Tのそれぞれは、第2封止カバー60によって覆われた第3領域13を有しており、第2領域12は、第1領域11と第3領域13との間に位置している。
本実施形態において、複数の載置面Tのそれぞれにおける第3領域13の基準平面Refからの高さは、複数の載置面Tのそれぞれにおける第2領域12の基準平面Refからの高さに等しい。第3半導体レーザ素子LD3および第4半導体レーザ素子LD4は、第3領域13上に存在している。これに対して、第3遅軸コリメートレンズSAC3および第4遅軸コリメートレンズSAC4は、第2領域12上に存在している。
第3速軸コリメートレンズFAC3は、第3半導体レーザ素子LD3と第3遅軸コリメートレンズSAC3の間において、第3半導体レーザ素子LD3から出射された第3レーザ光B3が入射する位置に設けられている。また、第4速軸コリメートレンズFAC4は、第4半導体レーザ素子LD4と第4遅軸コリメートレンズSAC4の間において、第4半導体レーザ素子LD4から出射された第4レーザ光B4が入射する位置に設けられている。図6に図示される例において、第2封止カバー60の側壁62は、第3速軸コリメートレンズFAC3および第4速軸コリメートレンズFAC4を囲んでいる。言い換えると、第2封止カバー60は、第3速軸コリメートレンズFAC3および第4速軸コリメートレンズFAC4をも封止している。これにより、第2封止カバー60に干渉されることなく、第3速軸コリメートレンズFAC3を第3半導体レーザ素子LD3の光出射端面に近づけて実装することが可能になる。同様に、第4速軸コリメートレンズFAC4を第4半導体レーザ素子LD4の光出射端面に近づけて実装することが可能になる。
このように、本実施形態では、第3速軸コリメートレンズFAC3および第4速軸コリメートレンズFAC4は、第2封止カバー60の内部に位置し、かつ、第3遅軸コリメートレンズSAC3および第4遅軸コリメートレンズSAC4は、第2封止カバー60の外部に位置している。これにより、コリメート光の速軸方向におけるサイズを小さくしつつ、各半導体レーザ素子を一括で封止することができる。各遅軸コリメートレンズSACが第2封止カバー60の外側に配置されることで、気密封止する領域の体積を低減することができ、気密封止が容易となる。
本実施形態において、支持基体10は、第2封止カバー60の側壁62の少なくとも一部を受ける第2溝18を有している。第2封止カバー60の側壁62の下端の一部または全部は、第2溝18の底面に接合されている。第2溝18の底面の、基準平面Refからの高さも、第1溝16と同様に、第1方向(X軸+方向)に沿って一定であることが好ましい。
図6に示すように、本実施形態における半導体レーザ装置200は、第3半導体レーザ素子LD3を支持する第3サブマウントSB3と、第4半導体レーザ素子LD4を支持する第4サブマウントSB4とを更に備えている。第3サブマウントSB3、第4サブマウントSB4も、それぞれ、第1サブマウントSB1、第2サブマウントSB2と同様の構成を有し、かつ、同様の材料から形成され得る。
前述したレンズ支持部材を利用することにより、第3サブマウントSB3は、第3速軸コリメートレンズFAC3を支持し、第4サブマウントSB4は、第4速軸コリメートレンズFAC4を支持することができる。
本実施形態におけるビーム結合部20は、第1載置面T1の第2領域12に設けられた第3ミラーM3と、第2載置面T2の第2領域12に設けられ第4ミラーM4と、を有する。第3ミラーM3は、第3レーザ光B3を第1方向に反射する。第4ミラーM4は、第4レーザ光B4を第1方向に反射する。ビーム結合部20は、更に、第3ミラーM3で反射された第3レーザ光B3および第4ミラーM4で反射された第4レーザ光B4を、集光レンズ42(速軸集光レンズ42a、遅軸集光レンズ42b)に導くミラー44、1/2波長板46、およびビーム結合素子48を備えている。1/2波長板46は、ミラー44とビーム結合素子48の間に配置されている。
ミラー44は、第3ミラーM3で反射された第3レーザ光B3と、第4ミラーM4で反射された第4レーザ光B4を受ける形状およびサイズの反射面を有している。ミラー44は、第3ミラーM3で反射された第3レーザ光B3と、第4ミラーM4で反射された第4レーザ光B4をビーム結合素子48に向けて反射する。
1/2波長板46は、第3レーザ光B3および第4レーザ光B4の偏光方向を、1/2波長板46を通過するときに、Z軸に平行な軸回りに90度回転させる。1/2波長板46の光学軸(optic axis)は、ミラー44で反射されたレーザ光の偏光方向に対して45度傾いている。本実施形態において、ミラー44で反射されたレーザ光の偏光方向は、X軸に平行である。1/2波長板46の光学軸は、XY面内に平行であり、かつ、XZ面に対して45度で交差する方向を向いている。このため、ミラー44で反射されたレーザ光の偏光方向は、1/2波長板46を透過するとき、Z軸に平行な軸の周りに90度回転する。その結果、ミラー44で反射されたレーザ光がビーム結合素子48に入射するときの偏光方向は、Y軸に平行である。
ビーム結合素子48は、偏光ビームスプリッタと同様の構成を有している。具体的には、偏光方向がY軸に平行なレーザ光は反射するが、偏光方向がZ軸に平行なレーザ光は透過する。このため、第1封止カバー30によって封止された半導体レーザ素子LDからのレーザ光、および、第2封止カバー60によって封止された半導体レーザ素子LDからのレーザ光は、いずれも、集光レンズ42に入射する。したがって、ビーム結合素子48は、ミラー44で反射された第3レーザ光B3および第4レーザ光B4を第1方向に反射して、集光レンズ42に向け、また、ビーム結合素子48は、第1ミラーM1で反射された第1レーザ光B1、および、第2ミラーM2で反射された第2レーザ光B2を透過させ、集光レンズ42へ向ける。こうして、これらのレーザ光は、集光レンズ42によって光ファイバ40に光学的に結合される。
以上の説明から明らかなように、半導体レーザ装置200の複数の載置面T、並びに、複数の載置面T上に配置される複数の電子部品および光学部品は、図6のXY面に関して概略的に対称な配置関係を有している。
本実施形態において、第1半導体レーザ素子LD1、第2半導体レーザ素子LD2、第3半導体レーザ素子LD3、および第4半導体レーザ素子LD4は、緑色光、青色光、または紫色光のいずれかのレーザ光を発振する。また、各半導体レーザ素子LDは、緑色光、青色光、または紫色光のうち、同じ色のレーザ光を発振することが好ましい。同じ色の光を発振することで、各レンズあるいはビーム結合素子48などの光学設計が容易となり、光ファイバ40に効率よくレーザ光を集光することができる。
本実施形態の半導体レーザ装置200によれば、半導体レーザ装置100について説明した効果に加え、次の効果を得ることが可能になる。
・第1方向(X軸+方向)に並ぶ半導体レーザ素子を2列に増やすことにより、支持基体の第1方向におけるサイズを拡大することなく、支持基体10に搭載される半導体レーザ素子の個数を増加させることができる。半導体レーザ素子の個数の増加により、光ファイバに結合されるレーザ光の強度が高められ得る。
・支持基体上のすべての半導体レーザ素子を1個の封止カバーで覆うのではなく、異なる領域に配置された半導体レーザ素子のグループを異なる2個の封止カバーで覆うことにより、封止空間を相対的に狭い部分に分割することができる。このことは、封止の信頼性を向上させ得る。
・支持基体上のすべての半導体レーザ素子が1つの領域に集積されるのではなく、支持基体の反対側に位置する2つの領域に分かれて配置されるため、半導体レーザ素子が動作時に発する熱が放熱されやすくなる。このことは、半導体レーザ素子の過度な温度上昇を抑制し、動作の信頼性を高めて素子寿命を延ばすことを可能にする。
<実施形態3>
次に、図7から図13を参照して、本開示による半導体レーザ装置の更に他の実施形態を説明する。図7は、本実施形態における半導体レーザ装置300の斜視図である。図8は、半導体レーザ装置300から第1封止カバー30の上面部33および第2封止カバー60の上面部63を取り除いた状態を示す斜視図である。図9は、半導体レーザ装置300の上面図である。図10は、半導体レーザ装置300のZ軸-方向からみた側面図である。図11は、半導体レーザ装置300のX軸-方向からみた側面図である。図12は、支持基体10の載置面Tの段差を模式的に示す図である。図13は、図8の状態にある半導体レーザ装置300の上面図である。
半導体レーザ装置300は、基本的には、半導体レーザ装置200の構成と同様の構成を有している。第1の相違点は、半導体レーザ素子LD、速軸コリメートレンズFAC、遅軸コリメートレンズSAC、およびミラーMのそれぞれの個数にある。例えば、半導体レーザ装置300における半導体レーザ素子LDの個数は11×2=22であり、半導体レーザ装置200における半導体レーザ素子LDの個数よりも多い。半導体レーザ素子LDが出射するレーザ光のピーク波長は、いずれも、ほぼ同一の波長(例えば、約465nm±10nm)を有している。第2の相違点は、支持基体10が、図11に示されるように、第1部分10A、第2部分10B、第3部分10C、および第4部分10Dを有していることである。この点については、後述する。
半導体レーザ装置300において、第1封止カバー30の内部には11個の半導体レーザ素子LDが収容され、封止されている。第1封止カバー30の上面部33は、例えば、短辺の長さが6mm以上12mm以下、長辺の長さが20mm以上40mm以下の長方形の形状を有している。側壁32の高さは、例えば、5mm以上12mm以下である。長辺の長さは、第1封止カバー30によって封止される半導体レーザ素子LDの個数に応じて決定される。したがって、長辺の長さは上述の長さに限られない。本実施形態における第1封止カバー30の側壁32および上面部33は、例えば、コバールなどの金属材や一般的なセラミックス材料から形成される。第1封止カバーの側壁32および上面部33の厚さは、例えば、0.1mm以上1mm以下である。第1封止カバー30の側壁32の一面には、例えば、厚さが0.2mm以上2mm以下の肉厚部36が存在している。図7に示す例において、肉厚部36には、第1方向(X軸+方向)に沿って配列された11個の孔が設けられ、これらの孔を11本の導電体リード35が貫通している。第1方向における孔の中心間距離は、1mm以上4mm以下である。孔の中心間距離は、第1方向における半導体レーザ素子LDの中心間距離に一致してもよい。個々の半導体レーザ素子LDが有するp側電極およびn側電極の一方は、対応する1本の導電体リード35にワイヤを介して電気的に接続され得る。p側電極およびn側電極の他方は、例えば、載置面T上に設けられた共通配線に電気的に接続され得る。このような構成により、第1封止カバー30によって封止された半導体レーザ素子LDのそれぞれを外部の回路によって独立して駆動することが可能になる。第1封止カバー30によって封止される半導体レーザ素子LDは、直列に接続されていてもよい。その場合、導電体リード35の本数は2で足りる。
同様に、第2封止カバー60の内部にも11個の半導体レーザ素子LDが収容されている。第2封止カバー60の内部に収容される半導体レーザ素子LDの個数と第1封止カバー30の内部に収容される半導体レーザ素子LDの個数が異なっていてもよい。第2封止カバーの側壁62の一面には肉厚部66が存在している。肉厚部66は、第1方向(X軸+方向)に沿って配列された11個の孔が設けられ、これらの孔を11本の導電体リード65が貫通している。本実施形態では、第1封止カバー30および第2封止カバー60の形状は、XY面に関して対称な関係にある。第2封止カバー60の材料および寸法は、第1封止カバー30の材料および寸法と同一であってよい。個々の半導体レーザ素子LDが有するp側電極およびn側電極の一方は、対応する1本の導電体リード65にワイヤを介して電気的に接続され得る。p側電極およびn側電極の他方は、例えば、載置面T上に設けられた共通配線に電気的に接続され得る。このような構成により、第2封止カバー60によって封止される半導体レーザ素子LDのそれぞれを外部の回路によって独立して駆動することが可能になる。第2封止カバー60によって封止される半導体レーザ素子LDは、直列に接続されていてもよい。その場合、導電体リード65の本数は2で足りる。
本実施形態における支持基体10は、前述したように、第1部分10A、第2部分10B、第3部分10C、および第4部分10Dを有している(図11参照)。第1部分10Aは、第1封止カバー30によって封止される空間内に位置している。第2部分10Bは、第2封止カバー60によって封止される空間内に位置している。第3部分10Cは、第1部分10Aと第2部分10Bとの間に位置している。第3部分10Cと第1部分10Aの間には、第1溝16が存在する。第3部分10Cと第2部分10Bとの間には、第2溝18が存在する。第1溝16および第2溝18は、それぞれ、載置面Tから第4部分10Dの上面まで達している。第1溝16および第2溝18のそれぞれのz方向における幅は、例えば、0.2mm以上5mm以下の範囲にある。
本実施形態によれば、2つの封止カバーである第1封止カバー30、第2封止カバー60が、支持基体10の第1部分10Aと第2部分10Bを別々に封止しているため、これらを単一の空間に封止するよりも封止する体積を低減することができるので、気密性を維持しやすい。したがって、光集塵効果を抑制することができる。
支持基体10の第4部分10Dは、第1部分10A、第2部分10B、および第3部分10Cを支持するベースプレートである。第4部分10Dは、ヒートシンクとして機能し得る。第4部分10Dは、第1部分10Aおよび第2部分10Bの下方を第1方向(X軸+方向)に沿って延びる一対の流路72を有している。この流路72の内部を冷却水が流れることにより、支持基体10のヒートシンクとしての機能を高めることができる。
図12に示されるように、第1部分10Aは、階段状の上面(載置面Tの第1領域11)を有している。同様に、第2部分10Bは、階段状の上面(載置面Tの第3領域13)を有している。第3部分10Cは、階段状の上面(載置面Tの第2領域12)を有している。第4部分10Dは、第1部分10A、第2部分10B、および第3部分10Cを載せる平坦な上面を有している。第4部分10Dの上面は、第1封止カバー30の側壁32の下端および第2封止カバー60の側壁62の下端に接合されている。載置面Tの段差の大きさ(すなわち、隣り合う載置面Tの高さの差異)は、例えば0.2mm以上1mm以下の範囲にあり得る。
第1部分10A、第2部分10B、第3部分10C、および第4部分10Dは、それぞれ、熱伝導率の高い材料から形成されることが好ましい。これらの部分は、すべて同一材料から形成されていてもよい。また、第4部分10Dだけが他の部分10A、10B、10Cとは異なる材料から形成されていてもよい。第1部分10A、第2部分10B、第3部分10C、および第4部分10Dは、すべて同一材料から形成されている方が好ましい。これにより、熱膨張係数差に起因する各部分どうしの剥がれを低減することができる。
本実施形態では、第1部分10A、第2部分10B、および第3部分10Cが第4部分10Dに接合されている。この接合は、合金などの接合材を介して実現されていてもよいし、溶接によって実現されていてもよい。これらの部分10A、10B、10C、および10Dを含む支持基体10は、ひとつの材料を加工することで作製される一体部品であってもよい。例えば、支持基体10は、ひとつのブロック状の材料を加工することによって作製された一体部品であってもよい。第1部分10A、第2部分10B、第3部分10C、および第4部分10Dは、一体部品である方が好ましい。これにより、各部分を接合する場合と比較して、熱抵抗を低減し、半導体レーザ素子LDの駆動時に発生する熱を効率よく逃がすことができる。
半導体レーザ装置300は、光ファイバ40、集光レンズ42(速軸集光レンズ42aおよび遅軸集光レンズ42b)、ミラー44、1/2波長板46、およびビーム結合素子48が固定される台80を備えている。光ファイバ40は、台80に固定された支持部40Sに固定されている。台80は、支持基体10の第4部分10Dに固定されている。1/2波長板46は、台80の上の、ミラー44とビーム結合素子48との間に配置されている。
<ダイレクトダイオードレーザ装置>
次に、図14を参照して、実施形態3に係る半導体レーザ装置300を備えるダイレクトダイオードレーザ(DDL)装置の構成例を説明する。図14は、DDL装置1000の構成例を示す図である。
図示されているDDL装置1000は、4個の半導体レーザ装置300と、加工ヘッド400と、半導体レーザ装置300を加工ヘッド400に接続する光伝送ファイバ350とを備える。半導体レーザ装置300の個数は、1個または複数個であり、4個に限られない。
各半導体レーザ装置300は、前述した構成と同様の構成を有している。各半導体レーザ装置300に搭載されている半導体レーザ素子の個数は特に限定されず、必要な光出力または放射照度に応じて決定される。各半導体レーザ素子から放射されるレーザ光の波長も、加工対象の材料に応じて選択され得る。例えば、銅、真鍮、アルミニウムなど加工する場合、中心波長が350nm以上550nm以下の範囲に属する半導体レーザ素子が好適に採用され得る。各半導体レーザ素子から放射されるレーザ光の波長は同一である必要はなく、中心波長が異なるレーザ光が重畳されてもよい。また、中心波長が350nm以上550nm以下の範囲外にあるレーザ光を用いる場合にも、本発明による効果を得ることは可能である。
図示されている例において、複数の半導体レーザ装置300のそれぞれから延びる光ファイバ320が光合波器330によって光伝送ファイバ350に結合されている。光合波器330は、例えば、TFB(Tapered Fiber Bundle)であり得る。加工ヘッド400は、光ファイバ320の先端から出射されたレーザビームを対象物500に収束して照射する。1台のDDL装置1000がM個の半導体レーザ装置300を備え、個々の半導体レーザ装置300がN個の半導体レーザ素子を搭載している場合において、1個の半導体レーザ素子の光出力がPワットであれば、最大でP×N×Mワットの光出力を持ったレーザビームを対象物500上に収束させることができる。ここで、Nは2以上の整数、Mは正の整数である。例えばP=10ワット、N=22、M=12であれば、2.5キロワットを超える光出力が実現する。
本実施形態によれば、半導体レーザ装置内の半導体レーザ素子が封止カバーによって封止されているため、光集塵効果などに起因する光出力低下が抑制され、信頼性が向上する。また、ビーム径の小さな多数のコリメートビームを限られた空間内に充填できるため、小型の装置で高い光出力を達成でき、光ファイバにも結合しやすい。
<ファイバレーザ装置>
次に、図15を参照して、実施形態3に係る半導体レーザ装置300を備えるファイバレーザ装置の構成例を説明する。図15は、ファイバレーザ装置2000の構成例を示す図である。
図示されているファイバレーザ装置2000は、励起光源として機能する半導体レーザ装置300と、半導体レーザ装置300から出射された励起光によって励起される希土類添加光ファイバ600とを備える。図示されている例において、複数の半導体レーザ装置300のそれぞれから延びる光ファイバ320が光合波器330によって希土類添加光ファイバ600に結合されている。希土類添加光ファイバ600は、共振器を規定する一対のファイバブラッググレーティングで挟まれている。希土類添加光ファイバ600にイッテルビウム(Yb)イオンがドープされている場合、波長が例えば915nmの励起光を生成する半導体レーザ装置300が使用される。また、例えばプラセオジム(Pr)がドープされたフッ化物ガラスから形成された希土類添加光ファイバ600を使用する場合、青色の励起光による可視光レーザ発振を実現することが可能である。本開示の実施形態による半導体レーザ装置300は、そのような励起光源として有用である。本開示の実施形態による半導体レーザ装置300では、複数の半導体レーザ素子が封止カバーによって気密封止された空間に収容されているため、前述したように、特に青または緑色のレーザ光を出射する半導体レーザ素子を採用するときに、特に優れた効果を発揮し得る。
加工ヘッド400は、希土類添加光ファイバ600の先端から出射されたレーザビームを対象物500に収束して照射する。
本開示の半導体レーザ装置は、特に複数のレーザビームを結合して高出力のレーザビームを実現するために用いられ得る。また、本開示の半導体レーザ装置は、高出力のレーザ光源が必要とされる産業用分野、例えば各種材料の切断、穴あけ、局所的熱処理、表面処理、金属の溶接、3Dプリンティングなどに利用され得る。更に、本開示の半導体レーザ装置は、DDL装置以外の用途、例えばファイバレーザ装置の励起光源としても利用され得る。
10・・・支持基体、16・・・第1溝、18・・・第2溝、20・・・ビーム結合部、30・・・第1封止カバー、40・・・光ファイバ、42・・・集光レンズ、60・・・第2封止カバー、100・・・半導体レーザ装置、200・・・半導体レーザ装置、300・・・半導体レーザ装置、320・・・光ファイバ、330・・・光合波器、350・・・光伝送ファイバ、400・・・加工ヘッド、500・・・対象物、1000・・・ダイレクトダイオードレーザ(DDL)装置、2000・・・ファイバレーザ装置、B・・・レーザ光、M・・・ミラー、FAC・・・速軸コリメートレンズ、SAC・・・遅軸コリメートレンズ

Claims (15)

  1. 第1方向に並んだ複数の載置面を有する支持基体であって、前記第1方向に平行な基準平面からの前記複数の載置面の高さが前記第1方向に沿って段階的または連続的に低下している、支持基体と、
    前記複数の載置面のうちの第1載置面に直接または間接的に固定された第1半導体レーザ素子であって、前記基準平面の法線方向からの平面視において、前記第1方向に交差する第2方向に第1レーザ光を出射する、第1半導体レーザ素子と、
    前記複数の載置面のうちの第2載置面に直接または間接的に固定された第2半導体レーザ素子であって、前記平面視において、前記第2方向に第2レーザ光を出射する、第2半導体レーザ素子と、
    前記第1載置面に直接または間接的に固定された第1遅軸コリメートレンズであって、前記第1レーザ光が入射する位置に設けられる、第1遅軸コリメートレンズと、
    前記第2載置面に直接または間接的に固定された第2遅軸コリメートレンズであって、前記第2レーザ光が入射する位置に設けられた第2遅軸コリメートレンズと、
    前記第1半導体レーザ素子および前記第2半導体レーザ素子を囲む側壁を有する第1封止カバーであって、前記側壁の下端は前記支持基体に接合され、かつ、前記第1半導体レーザ素子および前記第2半導体レーザ素子を収容する内部を規定し、前記第1レーザ光および前記第2レーザ光を透過させる透光性領域を有する、第1封止カバーと、
    を備え、
    前記複数の載置面のそれぞれは、前記第1封止カバーによって覆われた第1領域と、前記第1封止カバーの外部に位置する第2領域とを有している、半導体レーザ装置。
  2. 前記複数の載置面のそれぞれにおいて、前記第1領域の前記基準平面からの高さは、前記第2領域の前記基準平面からの高さに等しい、請求項1に記載の半導体レーザ装置。
  3. 前記第1半導体レーザ素子と前記第1遅軸コリメートレンズの間において、前記第1半導体レーザ素子から出射された前記第1レーザ光が入射する位置に設けられた第1速軸コリメートレンズと、
    前記第2半導体レーザ素子と前記第2遅軸コリメートレンズの間において、前記第2半導体レーザ素子から出射された前記第2レーザ光が入射する位置に設けられた第2速軸コリメートレンズと、
    をさらに備える、請求項1または2に記載の半導体レーザ装置。
  4. 前記第1速軸コリメートレンズおよび前記第2速軸コリメートレンズは、前記第1封止カバーの内部に位置し、かつ、
    前記第1遅軸コリメートレンズおよび前記第2遅軸コリメートレンズは、前記第1封止カバーの外部に位置している、請求項3に記載の半導体レーザ装置。
  5. 前記第1半導体レーザ素子を支持する第1サブマウントと、
    前記第2半導体レーザ素子を支持する第2サブマウントと、
    を備え、
    前記第1サブマウントは、前記第1速軸コリメートレンズを支持する第1レンズ支持部材を有しており、
    前記第2サブマウントは、前記第2速軸コリメートレンズを支持する第2レンズ支持部材を有する、請求項4に記載の半導体レーザ装置。
  6. 前記支持基体は、前記第1封止カバーの前記側壁の少なくとも一部を受ける第1溝を有し、
    前記第1封止カバーの前記側壁の前記下端の一部または全部は、前記第1溝の底面に接合されている、請求項1から5のいずれか1項に記載の半導体レーザ装置。
  7. 前記第1遅軸コリメートレンズから出射された前記第1レーザ光、および前記第2遅軸コリメートレンズから出射された前記第2レーザ光を合波するビーム結合部をさらに備え、
    前記ビーム結合部は、
    前記第1載置面の前記第2領域に設けられ、前記第1レーザ光を前記第1方向に反射する第1ミラーと、
    前記第2載置面の前記第2領域に設けられ、前記第2レーザ光を前記第1方向に反射する第2ミラーと、
    前記第1ミラーで反射された前記第1レーザ光および前記第2ミラーで反射された前記第2レーザ光を光ファイバに結合する集光レンズと、
    を有する、請求項1から6のいずれか1項に記載の半導体レーザ装置。
  8. 前記第1載置面に直接または間接的に固定された第3半導体レーザ素子であって、前記平面視において、前記第2方向の反対方向に第3レーザ光を出射する、第3半導体レーザ素子と、
    前記第2載置面に直接または間接的に固定された第4半導体レーザ素子であって、前記平面視において、前記第2方向の前記反対方向に第4レーザ光を出射する、第4半導体レーザ素子と、
    前記第1載置面に直接または間接的に固定された第3遅軸コリメートレンズであって、前記第3レーザ光が入射する位置に設けられた第3遅軸コリメートレンズと、
    前記第2載置面に直接または間接的に固定された、第4遅軸コリメートレンズであって、前記第4レーザ光が入射する位置に設けられた第4遅軸コリメートレンズと、
    前記第3半導体レーザ素子および前記第4半導体レーザ素子を囲む側壁を有する第2封止カバーであって、前記側壁の下端は前記支持基体に接合され、かつ、前記第3半導体レーザ素子および前記第4半導体レーザ素子を収容する内部を規定し、前記第3レーザ光および前記第4レーザ光を透過させる透光性領域を有する、第2封止カバーと、
    を備え、
    前記複数の載置面のそれぞれは、前記第2封止カバーによって覆われた第3領域を有しており、前記第2領域は、前記第1領域と前記第3領域との間に位置する、請求項7に記載の半導体レーザ装置。
  9. 前記複数の載置面のそれぞれにおいて、前記第3領域の前記基準平面からの高さは、前記第2領域の前記基準平面からの高さに等しい、請求項8に記載の半導体レーザ装置。
  10. 前記ビーム結合部は、前記第1遅軸コリメートレンズから出射された前記第1レーザ光、前記第2遅軸コリメートレンズから出射された前記第2レーザ光、前記第3遅軸コリメートレンズから出射された前記第3レーザ光、および、前記第4遅軸コリメートレンズから出射された前記第4レーザ光を合波し、
    前記ビーム結合部は、
    前記第1載置面の前記第2領域に設けられ、前記第3レーザ光を前記第1方向に反射する第3ミラーと、
    前記第2載置面の前記第2領域に設けられ、前記第4レーザ光を前記第1方向に反射する第4ミラーと、
    を有し、
    前記集光レンズは、前記第3ミラーで反射された前記第3レーザ光および前記第4ミラーで反射された前記第4レーザ光を前記光ファイバに結合する、請求項8または9に記載の半導体レーザ装置。
  11. 前記第3半導体レーザ素子と前記第3遅軸コリメートレンズの間において、前記第3半導体レーザ素子から出射された前記第3レーザ光が入射する位置に設けられた第3速軸コリメートレンズと、
    前記第4半導体レーザ素子と前記第4遅軸コリメートレンズの間において、前記第4半導体レーザ素子から出射された前記第4レーザ光が入射する位置に設けられた第4速軸コリメートレンズと、
    をさらに備える、請求項8から10のいずれか1項に記載の半導体レーザ装置。
  12. 前記第3速軸コリメートレンズおよび前記第4速軸コリメートレンズは、前記第2封止カバーの内部に位置し、かつ、
    前記第3遅軸コリメートレンズおよび前記第4遅軸コリメートレンズは、前記第2封止カバーの外部に位置している、請求項11に記載の半導体レーザ装置。
  13. 前記第3半導体レーザ素子を支持する第3サブマウントと、
    前記第4半導体レーザ素子を支持する第4サブマウントと、
    を備え、
    前記第3サブマウントは、前記第3速軸コリメートレンズを支持する第3レンズ支持部材を有し、
    前記第4サブマウントは、前記第4速軸コリメートレンズを支持する第4レンズ支持部材を有する、
    請求項11または12に記載の半導体レーザ装置。
  14. 前記支持基体は、前記第2封止カバーの前記側壁の少なくとも一部を受ける第2溝を有し、
    前記第2封止カバーの前記側壁の前記下端の一部または全部は、前記第2溝の底面に接合されている、請求項8から13のいずれか1項に記載の半導体レーザ装置。
  15. 前記第1半導体レーザ素子、前記第2半導体レーザ素子、前記第3半導体レーザ素子および前記第4半導体レーザ素子は、緑色光、青色光、または紫色光のいずれかのレーザ光を発振する、請求項8から14いずれか1項に記載の半導体レーザ装置。
JP2021103877A 2021-06-23 2021-06-23 半導体レーザ装置 Pending JP2023002985A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021103877A JP2023002985A (ja) 2021-06-23 2021-06-23 半導体レーザ装置
US17/844,474 US20220416502A1 (en) 2021-06-23 2022-06-20 Semiconductor laser device
DE102022115367.3A DE102022115367A1 (de) 2021-06-23 2022-06-21 Halbleiterlaservorrichtung
CN202210718966.3A CN115513768A (zh) 2021-06-23 2022-06-23 半导体激光器装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021103877A JP2023002985A (ja) 2021-06-23 2021-06-23 半導体レーザ装置

Publications (1)

Publication Number Publication Date
JP2023002985A true JP2023002985A (ja) 2023-01-11

Family

ID=84388481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021103877A Pending JP2023002985A (ja) 2021-06-23 2021-06-23 半導体レーザ装置

Country Status (4)

Country Link
US (1) US20220416502A1 (ja)
JP (1) JP2023002985A (ja)
CN (1) CN115513768A (ja)
DE (1) DE102022115367A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733932B2 (en) 2008-03-28 2010-06-08 Victor Faybishenko Laser diode assemblies
CN111181631A (zh) 2019-12-25 2020-05-19 中国电子科技集团公司第三十四研究所 一种基于时分空分复用的有中继海底光缆扰动监测系统

Also Published As

Publication number Publication date
US20220416502A1 (en) 2022-12-29
DE102022115367A1 (de) 2022-12-29
CN115513768A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US8644357B2 (en) High reliability laser emitter modules
US20220263293A1 (en) Semiconductor laser and material machining method using a semiconductor laser
US20130022069A1 (en) High power surface mount technology package for side emitting laser diode
US12027816B2 (en) Method of manufacturing laser light source
WO2019003546A1 (ja) レーザ光源装置
US20230344194A1 (en) Laser light source and method of manufacturing the same
JP2023002985A (ja) 半導体レーザ装置
WO2021256421A1 (ja) 半導体発光装置およびそれを備える光源装置
US12000567B2 (en) Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode
US11588296B2 (en) Package, light-emitting device, and laser device
JP2023004162A (ja) レーザ光源
JP2019046830A (ja) 光モジュール
EP4312325A1 (en) Light-emitting device
US20240039249A1 (en) Light-emitting module
WO2024024734A1 (ja) 発光モジュール
JP2021089990A (ja) 発光装置
JP7525780B2 (ja) 光源ユニット
WO2023013418A1 (ja) 多波長光源モジュール
WO2021199532A1 (ja) サブマウント、発光装置、および光学モジュール
JP7534654B2 (ja) レーザ光源
JP2024018649A (ja) 発光装置、光学装置、発光モジュール、および発光装置の製造方法
JP2024123275A (ja) 発光装置
JP2018022840A (ja) 光モジュール
WO2020116172A1 (ja) 半導体レーザチップ実装サブマウントおよびその製造方法ならびに半導体レーザモジュール
JP2023015566A (ja) 光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240523