WO2019003546A1 - レーザ光源装置 - Google Patents
レーザ光源装置 Download PDFInfo
- Publication number
- WO2019003546A1 WO2019003546A1 PCT/JP2018/014322 JP2018014322W WO2019003546A1 WO 2019003546 A1 WO2019003546 A1 WO 2019003546A1 JP 2018014322 W JP2018014322 W JP 2018014322W WO 2019003546 A1 WO2019003546 A1 WO 2019003546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- laser
- main surface
- chip
- light
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
Definitions
- the present invention relates to a laser light source device.
- wearable terminals such as robots incorporating smart projectors, smart glasses, and head-up displays have become widespread.
- Pico projectors mainly used for wearable terminals are used along with the spread of wearable terminals. What is required of such a wearable terminal is miniaturization. Furthermore, in the future, it is required to realize a compact and high-brightness light source.
- the RGB laser system mainly comprises a combination of an RGB laser module which is a light source device combining an optical component and a laser chip, and a MEMS mirror system for transferring light emitted from the RGB laser module as a video to a screen.
- the conventional laser light source device has a structure in which the submount is adhered by a conductive adhesive on the holding portion, and the laser chip is disposed on the submount via the conductive adhesive.
- Patent Document 1 discloses a laser light source device including two substrates, and two holding parts each having a mounting surface on which a light source for emitting a laser beam along a direction perpendicular to the main surface of the substrate is mounted.
- Patent Document 2 discloses a composite optical device having a structure in which two laser chips are provided on two submounts, and two submounts are provided in two blocks.
- the package which is the casing part of the RGB laser module is also small, so the heat radiation from the casing is not sufficient.
- the laser chips which are heat sources approach each other, thermal interference occurs.
- the laser chip is affected by heat to reduce the luminous efficiency.
- the red laser chip uses materials based on GaAs and similar Ga and As, and is affected by heat compared to blue laser chips and green laser chips using GaN materials. Therefore, the luminous efficiency tends to decrease.
- One aspect of the present invention is to make the first light source less susceptible to the effects of heat from the second light source and the third light source, and to prevent the luminous efficiency of the first light source from decreasing.
- a laser light source device comprises a first light source for emitting a first laser beam from a first light emitting point, and a second laser beam from a second light emitting point A second light source emitting a third light source emitting a third laser beam from a third light emitting point, a first holding unit having a first main surface provided with the first light source, the second light source And a second holding unit facing the first main surface and having a parallel second main surface provided with the third light source.
- a laser light source device includes a first light source emitting a first laser beam from a first light emitting point, and a second light source emitting a second laser beam from a second light emitting point.
- a first holding unit having a first main surface provided with the first light source, and a second main surface provided with the second light source and having a second main surface facing and parallel to the first main surface And a holder.
- the first light source less susceptible to the heat from the second light source and the third light source, and to prevent the decrease in the luminous efficiency of the first light source.
- FIG. 1 It is sectional drawing which shows arrangement
- A is a cross-sectional view showing the arrangement of a light source having a red LD chip
- (b) is a cross-sectional view showing the arrangement of a light source having a green LD chip and a light source having a blue LD chip
- (c) is a laser
- (A) is a figure which shows the case where several light sources do not overlap in planar view with respect to a plane perpendicular
- (b) is multiple light source in planar view with respect to a plane perpendicular
- (c) is a figure which shows the case where at least 2 of the positions of a several light emission point is located in a line substantially parallel with the direction perpendicular
- (A) is a view seen from the direction opposite to the Z direction
- (b) is a view seen from the direction opposite to the X direction
- (c) is a view seen from the Y direction.
- a laser light source device it is a mimetic diagram showing movement of heat.
- (A) is a figure which shows the case of the laser light source device of this invention
- (b) is a figure which shows the case of the conventional laser light source device.
- It is a structural view which shows the structure of the laser light source device which concerns on Embodiment 2 of this invention.
- (A) is a view seen from the direction opposite to the Z direction
- (b) is a view seen from the direction opposite to the X direction
- (c) is a view seen from the Y direction.
- FIG. 3 It is a structural view which shows the structure of the laser light source device which concerns on Embodiment 3 of this invention.
- (A) is a view seen from the direction opposite to the Z direction
- (b) is a view seen from the direction opposite to the X direction
- (c) is a view seen from the Y direction.
- (A) is a view seen from the direction opposite to the Z direction
- (b) is a view seen from the direction opposite to the X direction
- (c) is a view seen from the Y direction.
- the laser light source device concerning the embodiment 5 of the present invention, it is a sectional view showing the structure where the heat sink is attached to the 1st attaching part.
- (A) is sectional drawing which shows the structure in which one light source is provided in one recessed part
- (b) is sectional drawing which shows the structure in which several light sources are provided in one recessed part.
- the laser light source device which concerns on Embodiment 7 of this invention WHEREIN It is sectional drawing which shows the structure where a 1st holding part and a 2nd holding part have a convex part.
- the laser light source device concerning the embodiment 8 of the present invention it is a figure showing the structure where a joined part has a convex part and the 1st attaching part has a crevice.
- (A) And (b) is a figure which shows the structure where a 1st holding part has a recessed part
- (c) and (d) is a figure which shows the structure where the junction part attached to the 2nd holding part has a convex part. It is.
- FIG. 1 is a cross-sectional view showing the arrangement of light sources of a laser light source device 1 according to Embodiment 1 of the present invention.
- FIG. 1A is a cross-sectional view showing the arrangement of a light source having a red LD (Laser Diode) chip.
- FIG. 1B is a cross-sectional view showing the arrangement of a light source having a green LD chip and a light source having a blue LD chip.
- FIG. 1C is a cross-sectional view showing the arrangement of the light sources 115/135/215/235/255 of the laser light source device 1.
- the laser light source device 1 includes a light source 115, 135, 215, 235, 255, a lens 305, 310, 315, 320, 325, and a combining unit 330 in a housing 360. Is equipped. In FIG. 1, the direction from the second holding unit 20 to the first holding unit 10 is upward, and the direction from the first holding unit 10 to the second holding unit 20 is downward. Moreover, although the laser light source device 1 is provided with five light sources 115, 135, 215, 235, 255, it may be provided with six or more light sources. The first holding unit 10 and the second holding unit 20 are not in contact with each other.
- the submounts 110 and 130 are adhered to the first major surface 145 of the first holding unit 10 by an adhesive A1.
- the adhesive A1 is a conductive paste (conductive adhesive) such as solder.
- a red LD (Laser Diode) chip 105 (first laser diode) is provided on the submount 110 (first submount), and the red LD chip 105 and the submount 110 have conductivity such as solder, for example. It is glued with paste.
- the LD chip and the submount are similarly bonded with a conductive paste such as solder for the LD chip and the submount described below.
- a red LD chip 125 is provided on the submount 130.
- the height of the submount is often different depending on the type of LD chip.
- there is a junction down method in which the chip surface is mounted on the submount side depending on the LD chip.
- the chip surface is the surface closer to the light emitting point in the chip.
- the junction down method is adopted in the AlGaInP based laser used for the red LD chip. Therefore, usually, when a plurality of light sources are provided in one holding unit, the height of the light emitting point of the light source from the main surface of the holding unit is different for each light source, and the height is previously changed to adjust the height. You need to prepare a submount.
- these problems can be solved by providing light sources in separate upper and lower holders. This is because it is possible to adjust the positions of the light emitting points to coincide in the direction parallel to the main surface of the holding portion.
- the semiconductor laser device when the LD chip is provided in the submount, the chip surface or the surface opposite to the chip surface is mounted in contact with the surface of the submount. Specifically, the case where the chip surface is placed on the submount is called a junction down method, and the case where the surface opposite to the chip surface is placed on the submount is called a junction up method.
- the light source 115 (first light source) has a structure in which a red LD chip 105 (for example, a laser diode having an emission wavelength of 638 nm) is provided on the submount 110.
- the light source 115 emits laser light L1 (first laser light) from the light emitting point 120 (first light emitting point) of the red LD chip 105.
- a red laser diode is used for the red LD chip 105.
- the light source 135 has a structure in which a red LD chip 125 (for example, a laser diode having an emission wavelength of 638 nm) is provided on the submount 130.
- the light source 135 emits the laser light L4 from the light emitting point 140 of the red LD chip 125.
- a red laser diode is used for the red LD chip 125.
- the submounts 210, 230, and 250 are adhered to the second main surface 265 of the second holding unit 20 by an adhesive A1.
- a green LD chip 205 (second laser diode) is provided on the submount 210 (second submount), and a blue LD chip 225 (third laser) is provided on the submount 230 (third submount).
- a diode) is provided on the submount 250.
- a green LD chip 245 is provided on the submount 250.
- the light source 215 (second light source) has a structure in which a green LD chip 205 (for example, a laser diode with an emission wavelength of 520 nm) is provided on the submount 210.
- the light source 215 emits laser light L2 (second laser light) from the light emitting point 220 (second light emitting point) of the green LD chip 205.
- a green laser diode is used for the green LD chip 205.
- the light source 235 (third light source) has a structure in which a blue LD chip 225 (for example, a laser diode with an emission wavelength of 450 nm) is provided on the submount 230.
- the light source 235 emits laser light L3 (third laser light) from the light emitting point 240 (third light emitting point) of the blue LD chip 225.
- a blue laser diode is used for the blue LD chip 225.
- the light source 255 has a structure in which a green LD chip 245 (for example, a laser diode with an emission wavelength of 520 nm) is provided on the submount 250.
- the light source 255 emits the laser light L5 from the light emitting point 260 of the green LD chip 245.
- a green laser diode is used for the green LD chip 245.
- the submounts 110, 130, 210, 230, and 250 are responsible for the electrical insulation function, and are formed of a flat electrical insulator.
- the material of each submount may be the same, but it is better to select for each LD chip, and it is preferable that the thermal expansion coefficient of each submount be close to the thermal expansion coefficient of the material of each LD chip. That is, it is preferable that the submount and the material of the LD chip provided on the submount have a close thermal expansion coefficient.
- a material having high thermal conductivity is preferable, for example, a material having high thermal conductivity such as diamond, copper, a mixed material of diamond and copper, and a ceramic material such as AlN and SiC You may use.
- Each LD chip has a p-type electrode in the p-layer and an n-type electrode in the n-layer.
- Each LD chip is connected to a bonding wire made of metal such as gold (Au) or silver (Ag) whose resistance is low in order to flow electricity from each electrode.
- the height of the submount provided with each LD chip is optimum for each emission wavelength of the laser light emitted from each LD chip. Therefore, it is not necessary to always use a fixed height for the submount, and the height of the submount may be changed for each LD chip having different emission wavelengths of laser light. Since the heights of the submounts are different for each LD chip, in order to align the positions of the light emitting points on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145, It is necessary to adjust the heights of the first holding unit 10 and the second holding unit 20. Very high precision processing is required to adjust the height of the holder. By adjusting the positions of the first holding unit 10 and the second holding unit 20, even after the light sources are installed in the first holding unit 10 and the second holding unit 20, positional deviation of each light emitting point can be corrected. .
- the height of the submount should be low. By reducing the height of the submount, the heat transferred from each LD chip to the submount is further transferred to the housing 360 and dissipated to the outside of the housing 360. The height of the submount may be changed, and the position of the light emitting point may be adjusted by changing the height of the submount.
- the red LD chips 105 and 125 are mounted by a junction down method in which the light emitting unit (heat generating unit) of the LD chip is mounted to face the submount. Since the thermal conductivity of the submount provided with the red LD chip is lower than that of the submount provided with the blue LD chip, the junction down method is often used.
- the LD chips have different shapes if the emission wavelengths of the emitted laser beams are different. In addition, even if the emission wavelength of the emitted laser light is the same, the size or the shape is different when comparing the high output LD chip and the low output LD chip.
- the first main surface 145 of the first holding unit 10 and the second main surface 265 of the second holding unit 20 face each other and are parallel to each other.
- the holding portion 10 and the second holding portion 20 are joined by the joining portions 405 and 410. That is, the bonding portions 405 and 410 bond the first holding portion 10 and the second holding portion 20.
- the light sources 115, 135, 215, 235, 255 do not overlap each other in a plan view with respect to the first major surface 145.
- the light emitting point 120 can be made closer to the second main surface 265.
- the laser light source device 1 can be further miniaturized.
- the light sources 115, 135, 215, 235, 255 are separated from each other, and the thermal conductivity of the bonding portions 405, 410 is lower than the thermal conductivity of the first holding portion 10 or the thermal conductivity of the second holding portion 20.
- the materials of the first holding unit 10, the second holding unit 20, and the bonding units 405 and 410 will be specifically described below.
- the first holding unit 10 or the second holding unit 20 may be made of ceramic such as aluminum nitride (AlN), copper, copper tungsten (CuW), copper-molybdenum alloy (CuMo), Cu-diamond, diamond, or a mixture of diamonds, etc. Use materials with high thermal conductivity.
- the joint portions 405 and 410 are Kovar, 42 alloy (NSI), 50 alloy (TNF), Ni-Fe, glass, resin, which has a thermal conductivity lower than that of the material used for the first holding portion 10 or the second holding portion 20. And materials such as rubber. It is desirable that the thermal expansion coefficients of the first holding unit 10, the second holding unit 20, and the bonding units 405 and 410 be as close to one another as possible. If the thermal expansion coefficients of the first holding unit 10, the second holding unit 20, and the bonding units 405 and 410 are largely different from each other, heat is generated in each of the first holding unit 10, the second holding unit 20, and the bonding units 405 and 410. The degree of expansion due to Therefore, at the time of manufacture of the laser light source device 1, the reliability of the housing 360 may be concerned due to the heat history.
- the thermal expansion coefficient is different, the degree of thermal expansion is different. For this reason, for example, if the thermal expansion coefficients of the second holding unit 20 and the light source 215 are different, there is a concern that the green LD chip 205 is likely to be peeled off from the submount 210 due to positional displacement and heat history due to their expansion. Ru. That is, the reliability (deterioration) of the laser light source device 1 may be reduced. Note that if the thermal expansion coefficients of the red LD chip 105 and the submount 110 are different, the heat history (temperature cycle) is applied to the red LD chip 105 to cause stress in the red LD chip 105. It is feared that the characteristics and the life may be reduced.
- the first holding unit 10 can be used.
- the structure for fixing the relative position between the second holding unit 20 and the second holding unit 20 is not limited.
- the first holding unit 10 and the second holding unit 20 may be provided inside a housing having the same thermal conductivity as the bonding units 405 and 410.
- the second holding unit 20 may be provided on the bottom surface of the housing, and the first holding unit 10 may be provided on the top surface of the housing facing the bottom surface.
- the same heat conduction as the bonding units 405 and 410 is performed between the first holding unit 10 and the second holding unit 20. It may be via a member having a rate.
- the first LD 10 is provided with red LD chips 105 and 125 having characteristics that the light emission efficiency tends to decrease due to high heat, and the green LD chips 205 and 245 and the blue LD chips 225 have characteristics that the light emission efficiency does not easily decrease even under high heat. 2 Provided in the holding unit 20. Thus, even in the case of using a plurality of LD chips having different emission wavelengths, the LD chips having different characteristics can be divided into upper and lower.
- the laser light source device 1 is provided with five LD chips, this is an example and the number of LD chips should just be plural.
- the laser light source device 1 is provided with three types of LD chips of red, green and blue, this is an example, and some of the LD chips may be the same type of LD chips. It may be a chip, and may not be three types of LD chips.
- light emitting points 120, 140, 220, 240, 260 exist on the line P1 parallel to the first major surface 145, and the light emitting points 120, 140,.
- the positions of 220, 240, and 260 are arranged on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the positions of the first holding unit 10 and the second holding unit 20 should be adjusted.
- the positions of the light emitting points 120, 140, 220, 240, 260 can be adjusted.
- the positions of the light emitting points 120, 140, 220, 240, 260 are not arranged on the substantially same plane orthogonal to the direction perpendicular to the first main surface 145, and are not shown in FIG. ) To (c) may be employed.
- the light emitting points 120 and 140 exist on the line P2 parallel to the first major surface 145, and on the line P3 parallel to the first major surface 145, Light emitting points 220, 240 and 260 are present.
- the distance between the line P2 and the line P3 along the direction perpendicular to the first major surface 145 is 300 ⁇ m or less.
- the positions of the light emitting points 120 and 140 are higher than the positions of the light emitting points 220, 240 and 260, the positions of the light emitting points 120 and 140 and the light emitting point 220 along the direction perpendicular to the first major surface 145.
- the distance between the positions 240 and 260 may be 300 ⁇ m or less.
- light emitting points 220, 240, and 260 exist on a line P4 parallel to the first main surface 145, and a line P5 parallel to the first main surface 145 Above the light emitting points 120 and 140 are present.
- the distance between line P4 and line P5 along the direction perpendicular to first major surface 145 is 300 ⁇ m or less.
- the positions of the light emitting points 120 and 140 are lower than the positions of the light emitting points 220, 240 and 260, the positions of the light emitting points 120 and 140 and the light emitting point 220 along the direction perpendicular to the first major surface 145.
- the distance between the positions 240 and 260 may be 300 ⁇ m or less.
- the red LD chips 105 and 125 do not contact the second main surface 265, and the green LD chips 205 and 245 and the blue LD chip 225 have first main surfaces 145. It does not touch.
- Adjustment of the distance between the light emitting points 120 and 140 and the light emitting points 220, 240 and 260 may be previously performed by a production machine at the time of manufacturing the laser light source device 1. After the distance is adjusted, the first holding unit 10 and the second holding unit 20 may be fixed to the housing 360 of the laser light source device 1. Further, the positions of the first holding unit 10 and the second holding unit 20 are determined with high accuracy with respect to the outer wall of the housing 360, and the first holding unit 10 and the second holding unit 20 are fitted into the housing 360. May be.
- the fixing method of the first holding unit 10 and the second holding unit 20 is not particularly limited, as long as the first holding unit 10 and the second holding unit 20 are fixed.
- the positions of at least two light emitting points among the light emitting points 120, 140, 220, 240, and 260 may be arranged on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the configuration shown in (c) of FIG. 2 may be used.
- light emitting points 120, 220, 240, and 260 exist on a line P6 parallel to the first major surface 145. That is, among the light emitting points 120, 140, 220, 240, 260, the positions of the light emitting points 120, 220, 240, 260 other than the light emitting point 140 are substantially on the same plane orthogonal to the direction perpendicular to the first main surface 145. It may be lined with.
- the first major surface 145 and the second major surface 265 face each other, and the thermal conductivity of the bonding portions 405 and 410 is the thermal conductivity or the second conductivity of the first holding portion 10.
- the thermal conductivity of the holding portion 20 is lower.
- the heat transfer distance between the light source 115/135 and the light source 215/235/255 becomes longer, and the heat transmitted from the light source 215/235/255 to the second holding unit 20 is transmitted to the first holding unit 10 It becomes difficult. Therefore, since the light sources 115 and 135 can be made less susceptible to the influence of heat from the light sources 215, 235, and 255, it is possible to prevent a decrease in luminous efficiency of the light sources 115 and 135.
- the laser light source device 1 uses, as the light sources 115 and 135, a red laser diode whose light emission efficiency tends to decrease when it is affected by heat.
- the red laser diode is unlikely to be affected by the heat from the light sources 215, 235, 255, so that the decrease in the luminous efficiency of the red laser diode can be prevented.
- the first major surface 145 provided with the light sources 115 and 135 and the second major surface 265 provided with the light sources 215, 235 and 255 are opposed to each other.
- the area of the main surface of the holding portion can be reduced compared to the case where the light sources 115, 135, 215, 235, 255 are provided on the same main surface. It can be miniaturized.
- the positions of the light emitting points 120, 140, 220, 240, 260 are arranged on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the laser beams L1 to L5 are combined. The number of optical components to be waved can be reduced. The details will be described below.
- the laser beams L1 to L5 are combined, it is assumed that the positions of the light emitting points 120, 140, 220, 240 and 260 are not aligned on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145. In this case, the laser beams L1 to L5 are emitted from light emitting points at different positions in the direction perpendicular to the first major surface 145. In order to combine the laser beams L1 to L5, a member for matching the laser beams L1 to L5 in the direction perpendicular to the first major surface 145 is required. On the other hand, when the laser beams L1 to L5 are emitted from the light emitting point at the same position in the direction perpendicular to the first major surface 145, this member is unnecessary. Therefore, the number of optical components can be reduced.
- the X direction is a direction from the light source 215 toward the light source 255
- the Y direction is the same as the light emission direction of the light source
- the Z direction is a direction from the second major surface 265 to the first major surface 145 is there.
- the laser light source device 1 includes a light source 115, 135, 215, 235, 255, lenses 305, 310, 315, 320, 325, and a combining unit 330 in a housing 360. Is equipped.
- a collimating lens is used for the lenses 305, 310, 315, 320, 325.
- the right direction is the X direction
- the upper direction is the Y direction
- the near direction is the Z direction.
- the multiplexing unit 330 includes dichroic mirrors 335, 340, 345, 350, and 355.
- the combining unit 330 combines laser beams using a dichroic mirror, but may combine laser beams using a polarizing plate.
- the dichroic mirror 335 reflects the laser light L2 emitted by the green LD chip 205.
- the dichroic mirror 340 reflects the laser beam L1 emitted by the red LD chip 105.
- the dichroic mirror 345 reflects the laser light L3 emitted from the blue LD chip 225.
- the dichroic mirror 350 reflects the laser beam L4 emitted by the red LD chip 125.
- the dichroic mirror 355 reflects the laser light L5 emitted from the green LD chip 245.
- the laser light L 2 emitted from the green LD chip 205 of the light source 215 passes through the lens 305 and enters the dichroic mirror 335.
- the dichroic mirror 335 reflects the laser light L2 and emits the laser light L2 in the direction opposite to the X direction.
- the laser beam L1 emitted from the red LD chip 105 of the light source 115 passes through the lens 310 and enters the dichroic mirror 340.
- the dichroic mirror 340 reflects the laser beam L1 and emits the laser beam L1 in the direction opposite to the X direction.
- the laser beam L1 reflected by the die clock mirror 340 passes through the die clock mirror 335 and goes straight.
- the laser beam L3 emitted from the blue LD chip 225 of the light source 235 passes through the lens 315 and enters the dichroic mirror 345.
- the dichroic mirror 345 reflects the laser light L3 and emits the laser light L3 in the direction opposite to the X direction.
- the laser beam L3 reflected by the dichroic mirror 345 passes through the dichroic mirrors 335 and 340 and goes straight.
- the laser beam L4 emitted by the red LD chip 125 of the light source 135 passes through the lens 320 and enters the dichroic mirror 350.
- the die clock mirror 350 reflects the laser light L4 and emits the laser light L4 in the direction opposite to the X direction.
- the laser beam L4 reflected by the die clock mirror 350 passes through the die clock mirrors 335, 340, 345, and goes straight.
- the laser light L5 emitted from the green LD chip 245 of the light source 255 passes through the lens 325 and enters the dichroic mirror 355.
- the dichroic mirror 355 reflects the laser beam L5 and emits the laser beam L5 in the direction opposite to the X direction.
- the laser beam L5 reflected by the dichroic mirror 355 passes through the dichroic mirrors 335, 340, 345, 350, and goes straight.
- the laser beams L1 to L5 are emitted in the direction opposite to the X direction, they may be emitted in the X direction, and the emission direction of the laser beams L1 to L5 is not particularly limited. However, the emission directions of the laser beams L1 to L5 are the same.
- the laser light emitted from the light source is collimated by an optical component such as a lens, and then combined by using a dichroic mirror or a polarizing plate, so that the laser light source device 1 emits the combined laser light.
- a half wave plate may be further used to combine laser beams emitted from the light source. For example, laser light emitted from the red LD chips 105 and 125 provided in the first holding unit 10, and laser light emitted from the green LD chips 205 and 245 and the blue LD chip 225 provided in the second holding unit 20.
- the white light source can be realized by combining the In the case of the present embodiment, it is preferable to dispose half-wave plates between the lens 305 and the dichroic mirror 335 and between the lens 310 and the dichroic mirror 340, respectively.
- a half wave plate may be installed between the dichroic mirror 340 and the dichroic mirror 345.
- the reason for installing these half-wave plates is that there are TE (Transverse Electric Wave) light and TM (Transverse Magnetic Wave) light as the characteristics of the laser, and generally the amount of TE light is larger than the amount of TM light. It is.
- TE light becomes p-wave (p-polarization)
- TM light becomes s-wave (s-polarization).
- the die clock mirror 335 and the die clock mirror 340 have a function of transmitting the p wave and reflecting the s wave.
- the first holding unit 10 and the second holding unit 20 are provided in the housing 360.
- the right direction is the Y direction
- the upper direction is the Z direction
- the near direction is the X direction.
- the height of the submount is set such that the laser beam does not hit the first holding unit 10 and the second holding unit 20. It is necessary to change the height of the submount for each emission wavelength of the laser beam emitted by the LD chip depending on which of the junction-up method and the junction-down method, and the radiation angle of the laser beam. Change.
- FIG. 3B shows the configuration in which the lens 325 is held by the lens holder 420, the lenses 305, 310, 315, and 320 are also held by the lens holder 420.
- the configuration shown in (c) of FIG. 3 is the same as the configuration shown in (c) of FIG. In (c) of FIG. 3, the right direction is the X direction, the upper direction is the Z direction, and the back direction is the Y direction.
- the amount of heat transferred from each of the light sources 115 and 135 to the first holding unit 10 is 1 J.
- the amount of heat transferred from each of the light sources 215 and 255 to the second holding unit 20 is 4 J.
- the amount of heat transferred from the light source 235 to the second holding unit 20 is 2J.
- the total amount of heat received by the first holding unit 10 from the light sources 115 and 135 is 2J.
- the heat received by the first holding unit 10 moves to the upper portion 361 of the housing 360.
- the total amount of heat received by the second holding unit 20 from the light sources 215, 235, 255 is 10 J.
- the heat received by the second holding unit 20 moves to the lower portion 362 of the housing 360.
- the amount of heat received by each of the red LD chip 105 of the light source 115 and the red LD chip 125 of the light source 135 is approximately 1 J by thermal equilibrium.
- the light source 115, 135, 215, 235, 255 is provided in the second holding unit 20.
- the heat of each light source is summed up by the second holding unit 20.
- the total amount of heat received by the second holding unit 20 from the light sources 115, 135, 215, 235, 255 is 12 J.
- the amount of heat received by each of the red LD chip 105 of the light source 115 and the red LD chip 125 of the light source 135 is about 1 J or more and about 2.4 J or less by thermal equilibrium.
- the value 2.4J is a value obtained by dividing the total 12 of the amount of heat received by the second holding unit 20 by the number of light sources.
- the light source 115, 135, 215, 235, 255 is provided in a small case.
- the second holding unit 20 is provided with light sources 115, 135, 215, 235, 255.
- the red LD chips 105 and 125 are susceptible to heat from the green LD chips 205 and 245 and the blue LD chip 225 because each light source is at a very close distance.
- the second holding unit 20 is elongated in the lateral direction, and the laser light source device becomes large.
- the problem here is that the amount of heat generation of each LD chip is different, and if there is heat depending on the type of laser, there is an LD chip whose luminous efficiency tends to decrease.
- the calorific value of the green LD chip is 1.2 J and the calorific value of the red LD chip is 0.3 J
- the calorific value of the green LD chip is four times the calorific value of the red LD chip. Therefore, the calorific value differs greatly in each LD chip.
- the temperature is 80 ° C.
- the light emitting efficiency is likely to be reduced by heat in the order of the red LD chip, the green LD chip, and the blue LD chip.
- the temperature is 80 ° C.
- the light emission efficiency of the red LD chip is most likely to be reduced by heat
- the light emission efficiency of the blue LD chip is most unlikely to be reduced by heat.
- the laser light source device 1 can reduce the amount of heat received by the red LD chip 105 of the light source 115 and the red LD chip 125 of the light source 135 as compared with the conventional laser light source device. Therefore, the fall of the luminous efficiency of red LD chip 105 * 125 can be prevented.
- the heat radiation performance of the laser light source device 1 can be improved.
- the effect of heat on 105 and 125 is reduced. It is effective in eliminating heat dissipation from the red LD chips 105 and 125.
- the problem that the conventional laser light source device is miniaturized and the red LD chip is affected by the heat of other LD chips and the light emission efficiency is reduced is solved by the following description. . Specifically, since the heat radiation is separately performed by the first holding unit 10 and the second holding unit 20, it is possible to realize a laser light source device that is miniaturized and has a high output.
- the laser light source device 2 includes a light source 160 as compared with the laser light source device 1 as shown in FIG. 5A, a point that the light source 135/255 is not provided, and the combining unit 330 combines The difference is that the part is changed to the part 330a and the point that the case 360 is changed to the case 360a.
- the combining unit 330a is different from the combining unit 330 in that the combining unit 330a includes the lens 365 and the die clock mirror 370 and does not include the lenses 320 and 325 and the die clock mirror 350 and 355.
- the laser light source device 2 has a smaller number of light sources than the laser light source device 1, so the size of the housing 360 a is smaller than the size of the housing 360.
- the light source 160 has a structure in which the infrared LD chip 150 is provided on the submount 155.
- the light source 160 emits the laser beam L6 from the light emitting point 165 of the infrared LD chip 150.
- An infrared laser diode is used for the infrared LD chip 150.
- the dichroic mirror 370 reflects the laser light L6 emitted from the infrared LD chip 150.
- the laser beam L6 emitted from the infrared LD chip 150 of the light source 160 passes through the lens 365 and enters the dichroic mirror 370.
- the dichroic mirror 370 reflects the laser beam L6 and emits the laser beam L6 in the direction opposite to the X direction.
- the laser beam L6 reflected by the dichroic mirror 370 passes through the dichroic mirrors 335, 340, 345 and goes straight.
- the first holding unit 10 and the second holding unit 20 are provided in the housing 360 a.
- the right direction is the Y direction
- the upper direction is the Z direction
- the near direction is the X direction.
- FIG. 5B shows the configuration in which the lens 365 is held by the lens holder 420, the lenses 305, 310, and 315 are also held by the lens holder 420.
- the light sources 115 and 165 are provided on the first main surface 145 of the first holding unit 10, and the light source is provided on the second main surface 265 of the second holding unit 20. 215 and 235 are provided.
- the right direction is the X direction
- the upper direction is the Z direction
- the back direction is the Y direction.
- light emitting points 120, 165, 220, 240 are present on a line P7 parallel to the first major surface 145. Therefore, the positions of the light emitting points 120, 165, 220 and 240 are arranged on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- a lighting device having a motion sensor function can be realized by providing the red LD chip 105 and the infrared LD chip 150 in the first holding unit 10 and providing the green LD chip 205 and the blue LD chip 225 in the second holding unit 20. it can.
- the laser light source device 3 includes a light source 280 as compared with the laser light source device 1 as shown in FIG. 6A, a point that does not include the light sources 135, 215, 235, 255, and a combining unit The difference is that 330 is changed to the multiplexing unit 330 b and that the case 360 is changed to the case 360 b.
- the combining unit 330 b includes a lens 375 and a dichroic mirror 380 as compared to the combining unit 330, and includes lenses 305, 315, 320, 325 and dichroic mirrors 335, 345, 350, 355. There is no difference.
- the laser light source device 3 has a smaller number of light sources than the laser light source device 1, so the size of the housing 360 b is smaller than the size of the housing 360.
- the light source 280 (second light source) has a structure in which a light blue LD chip 270 (second laser diode) is provided on the submount 275 (second submount).
- the light source 280 emits a laser beam L7 (second laser beam) from the light emitting point 285 (second light emitting point) of the light blue LD chip 270.
- a blue laser diode is used for the blue LD chip 270.
- the red laser diode of the light source 115 emits laser light L1 having an emission wavelength of 610 nm or more and 780 nm or less
- the water blue laser diode of the light source 280 emits laser light L7 having an emission wavelength of 482 nm or more and 499 nm or less.
- the dichroic mirror 380 reflects the laser light L7 emitted from the light blue LD chip 270.
- the laser light L7 emitted from the light blue LD chip 270 of the light source 280 passes through the lens 375 and is incident on the dichroic mirror 380.
- the dichroic mirror 380 reflects the laser beam L7 and emits the laser beam L7 in the X direction.
- the laser beams L1 and L7 are emitted in the X direction, but may be emitted in the direction opposite to the X direction, and the emission direction of the laser beams L1 and L7 is not particularly limited.
- the first holding unit 10 and the second holding unit 20 are provided in the housing 360 b.
- the right direction is the Y direction
- the upper direction is the Z direction
- the near direction is the X direction.
- FIG. 6B shows the configuration in which the lens 375 is held by the lens holder 420, the lens 310 is also held by the lens holder 420.
- the light source 115 is provided on the first main surface 145 of the first holding unit 10, and the light source 280 is provided on the second main surface 265 of the second holding unit 20. It is provided.
- the right direction is the X direction
- the upper direction is the Z direction
- the back direction is the Y direction.
- light emitting points 120 and 285 are present on the line P8 parallel to the first major surface 145. Therefore, the positions of the light emitting points 120 and 285 are arranged on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the first main surface 145 and the second main surface 265 face each other, and the thermal conductivity of the bonding portions 405 and 410 is equal to the thermal conductivity of the first holding portion 10 or the second The thermal conductivity of the holding portion 20 is lower.
- the heat transfer distance between the light source 115 and the light source 280 becomes long, and the heat transmitted from the light source 280 to the second holding unit 20 becomes difficult to be transmitted to the first holding unit 10. Therefore, the light source 115 can be made less susceptible to the influence of the heat from the light source 280, so that the light emission efficiency of the light source 115 can be prevented from being lowered.
- the red laser diode when using a red laser diode whose light emission efficiency is likely to decrease when it is affected by heat as the light source 115, the red laser diode is less susceptible to the heat from the light source 280, so the light emission efficiency of the red laser diode is decreased. It can prevent.
- the first major surface 145 provided with the light source 115 and the second major surface 265 provided with the light source 280 are opposed to each other.
- the area of the main surface of the holding portion can be reduced compared to the case where the light source 115 and the light source 280 are provided on the same main surface, so the laser light source device 3 can be further miniaturized. it can.
- the red laser diode emits a laser beam L1 having an emission wavelength of 610 nm or more and 780 nm or less
- the water blue laser diode emits a laser beam L7 having an emission wavelength of 482 nm or more and 499 nm or less.
- the laser light source device 3 can emit a white laser, for example, by multiplexing the laser beams L1 and L7.
- Embodiment 4 Another embodiment of the present invention will be described below with reference to FIG. In addition, about the member which has the same function as the member demonstrated in the said embodiment for convenience of explanation, the same code
- the laser light source device 4 is different from the laser light source device 1 in the emission direction of the laser beams L1 to L5 in the light sources 115, 135, 215, 235, and 255. Portions overlap each other in plan view with respect to a plane perpendicular to the surface.
- the light sources 115, 135, 215, 235, and 255 are arranged to be shifted from each other in the emission direction of the laser beams L1 to L5.
- the laser light source device 1 can be further miniaturized by the amount of overlapping.
- the LD chip of the light source is considerably smaller than the lens. Although the lateral width of the LD chip is about 0.1 to 0.2 mm, the diameter of the lens is about 1 to 2 mm even in the case of a small lens.
- the diameter of the lens is about 10 times larger than the lateral width of the LD chip. Therefore, when the plurality of lenses are arranged in the direction perpendicular to the emission direction of the laser light, the size of the housing 360c is increased.
- the lens has an effective diameter at 20 to 30% inside of the outer periphery of the lens, and light passing inside the effective diameter is used. Therefore, the unused portion of the lens causes the width of the housing 360c along the direction perpendicular to the emission direction of the laser light to be increased.
- the plurality of lenses are arranged to be offset from each other in the laser beam emission direction, and the light sources are arranged to be offset from each other in the laser beam emission direction.
- the width of the housing 360c in the direction perpendicular to the laser light emission direction can be reduced.
- the radiation angle ( ⁇ ) in the vertical direction of the LD chip of the light source is a radiation angle of about 10 to 25 °
- the radiation angle ( ⁇ //) in the horizontal direction is about several degrees.
- the horizontal radiation angle is about 1 ⁇ 4 of the vertical radiation angle.
- the lenses 305, 310, 315, 320, 325 partially overlap each other in plan view with respect to a plane perpendicular to the emission direction of the laser beams L1 to L5.
- the distance between each of 345 350 355 is reduced.
- the size of the housing 360c can be reduced as compared with the case of (a) of FIG.
- a heat sink 415 is provided on the upper surface (the surface opposite to the first main surface 145) of the first holding unit 10.
- the heat sink 415 has a function of radiating heat generated by the light sources 115 and 135.
- the heat generated by the light sources 115 and 135 can be easily dissipated, so the influence of the heat applied to the red LD chips 105 and 125 can be reduced. Therefore, the fall of the luminous efficiency of red LD chip 105 * 125 can be prevented.
- the heat sink 415 may be provided on the lower surface (the surface opposite to the second main surface 265) of the second holding unit 20, and both the upper surface of the first holding unit 10 and the lower surface of the second holding unit 20. May be provided. As a result, since the heat is dissipated by the heat sink 415 before the heat is applied to the red LD chips 105 and 125, the influence of the heat on the red LD chips 105 and 125 can be reduced. Further, assuming that the first holding unit 10 and the second holding unit 20 are installed in the housing 360 and the heat is dissipated, the heat may be released from both the first holding unit 10 and the second holding unit 20. As it can, heat dissipation can be further improved.
- the distance between the upper surface (the surface opposite to the first main surface 145a) of the first holding part 10a and the lower surface (the surface opposite to the second main surface 265a) of the second holding part 20a is As shown at 9, it is shown by the distance between the line P9 and the line P11.
- the distance between the upper surface (the surface opposite to the first main surface 145b) of the first holding part 10b and the lower surface (the surface opposite to the second main surface 265b) of the second holding part 20b is As shown at 9, it is shown by the distance between the line P10 and the line P11.
- the recessed part 505 * 510 is provided in 1st main surface 145a of the 1st holding part 10a.
- Recesses 515, 520, and 525 are provided on the second main surface 265a of the second holding unit 20a.
- a light source 115 is provided on the bottom of the recess 505, and a light source 135 is provided on the bottom of the recess 510.
- a light source 215 is provided on the bottom of the recess 515, a light source 235 is provided on the bottom of the recess 520, and a light source 255 is provided on the bottom of the recess 525.
- a recess may be provided in at least one of the first main surface 145a and the second main surface 265a.
- the recess is provided on the first major surface 145a
- at least one of the light sources 115 and 135 is provided on the bottom surface of the recess on the first major surface 145a.
- the second main surface 265a is provided with a recess
- at least one of the light sources 215, 235, and 255 is provided on the bottom surface of the recess of the second main surface 265a.
- the recessed part 530 is provided in 1st main surface 145b of the 1st holding part 10b.
- a recess 535 is provided on the second main surface 265 b of the second holding unit 20 b.
- Light sources 115 and 135 are provided on the bottom surface of the recess 530, and light sources 215, 235 and 255 are provided on the bottom surface of the recess 535.
- one light source is provided in one recess
- a plurality of light sources are provided in one recess.
- a larger recess is provided on the first main surface 145 b as compared with the configuration shown in (a) of FIG. 9.
- the distance between the upper surface of the first holding portion 10b and the lower surface of the second holding portion 20b is smaller by the distance between the line P9 and the line P10 as compared with the case of (a) of FIG.
- wire bonding is performed to connect the metal wiring to the electrode of the LD chip (see FIG. 10). Therefore, the main surface and the convex surface of the LD chip facing the main surface need to be separated. In the case of (a) of FIG.
- the recess of the first main surface 145a and the recess of the second main surface 265b do not face each other, and the upper surface of the first holding portion 10a and the lower surface of the second holding portion 20a. The distance between them is only reduced by the depth of one recess.
- large recesses (recesses 530 and 535) are provided on both the first main surface 145b and the second main surface 265b, and the upper surface of the first holding portion 10b and the second holding portion The distance between the lower surface of 20b and the depth of the two recesses can be reduced. Therefore, in the case of (b) of FIG. 9, the distance between the first main surface and the second main surface can be further reduced compared to the case of (a) of FIG.
- first holding portions 10a and 10b and the second holding portions 20a and 20b having the recessed portions their shapes may be formed with a mold, or those shapes may be formed by cutting.
- the forming method of the holding portion is not particularly limited as long as the concave portion is formed in the holding portion.
- the red LD chips 105 and 125 are configured in a junction-down system, and the light emitting points 120 and 140 of the red LD chips 105 and 125 are on the side of the submounts 110 and 130.
- the light emitting points 120 and 140 of the red LD chips 105 and 125 being on the side of the submount 110 and 130, by providing a recess in the holding portion, for example, the first main surface 145a and the second main surface 265a Can be brought closer.
- the light sources 115 and 135 are provided on the bottom surfaces of the concave portions 505 and 510 provided on a part of the first main surface 145, respectively.
- the heights of the light sources 115 and 135 protruding from the first major surface 145 can be reduced by the depth of the concave portions 505 and 510, so that the laser light source device can be further miniaturized.
- convex portions 605 and 610 are provided on the first main surface 145 of the first holding portion 10c.
- Convex parts 615, 620, 625 are provided on the second main surface 265 of the second holding part 20c.
- the red LD chip 105 is provided on the front end surface of the convex portion 605, and the red LD chip 125 is provided on the front end surface of the convex portion 610.
- the green LD chip 205 is provided on the tip end surface of the convex portion 615, the blue LD chip 225 is provided on the tip end surface of the convex portion 620, and the green LD chip 245 is provided on the tip end surface of the convex portion 625.
- bonding wires W1 and W2 are provided between the upper surface of the red LD chip 105 and the tip surface of the convex portion 605, and the bonding wire W3 is provided between the upper surface of the red LD chip 125 and the tip surface of the convex portion 610.
- ⁇ W4 is provided.
- Bonding wires W5 and W6 are provided between the upper surface of the green LD chip 205 and the tip surface of the convex portion 615, and bonding wires W7 and W8 are provided between the upper surface of the blue LD chip 225 and the tip surface of the convex portion 620. Is provided. Bonding wires W 9 and W 10 are provided between the top surface of the green LD chip 245 and the tip end surface of the convex portion 625.
- a convex part may be provided in a part of at least one of the first main surface 145 and the second main surface 265.
- the first holding portion 10c is provided with a recess at a position facing the convex portion 620
- the second holding portion 20c is provided with a recess at a position facing the convex portions 605 and 610, respectively.
- the convex portion of the first main surface 145 and the concave portion of the second main surface 265 are arranged to overlap each other in plan view with respect to the first main surface 145, and the concave portion of the first main surface 145 and the second main surface
- the projections 265 are arranged to overlap each other.
- the position of each light emitting point is substantially on the same plane orthogonal to the direction perpendicular to the first main surface 145 Try to line up with
- a bonding wire for supplying electricity to the LD chip is considered to be in contact with the main surface of the holder, and the position of the light emitting point can not be sufficiently adjusted.
- providing the convex portions on the first main surface 145 and the second main surface 265 makes it easy to adjust the position of the light emitting point.
- the submount is not interposed between the LD chip and the holding portion, the heat dissipation is improved.
- the red LD chip 105 is provided on the tip end surface of the convex portion 605 provided on a part of the first main surface 145, whereby a portion other than the convex portion on the first main surface 145 and the light emitting point 120 The distance between and becomes larger.
- the bonding wires W1 and W2 are provided between the upper surface of the red LD chip 105 and the tip surface of the convex portion 605.
- the bonding wire W1,. W2 is less likely to contact the portion of the second major surface 265 other than the convex portion. Therefore, the laser light source device 1 can be easily manufactured so that the positions of the light emitting points 120, 140, 220, 240 and 260 are aligned on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the red LD chips 105 and 125 have a junction down method and a junction up method. In the configuration shown in FIG. 10, it is desirable that the red LD chips 105 and 125 have a junction down system. For example, since the bonding wires W1 and W2 are provided in the convex portion 605, as shown in FIG. 10, when the facing of the convex portion 605 is a recess, the second holding of the bonding wires W1 and W2 is performed. It becomes difficult to contact the part 20c. Therefore, the reliability and the yield of the laser light source device can be improved.
- the bonding wires W1 and W2 hit the facing holding portions and the yield is lowered. I am concerned.
- a recess 146 is provided on one of both end portions of the first main surface 145 of the first holding portion 10 d, and is provided on the other of both end portions of the first main surface 145.
- a recess 147 is provided.
- a convex portion 406 is provided at the tip of the joint portion 405 provided in the second holding unit 20, and a joint portion 410 provided in the second holding unit 20.
- the convex part 411 is provided at the tip of.
- the convex portion 406 is fitted into the concave portion 146 and the convex portion 411 is fitted into the concave portion 147 .
- the positions of the first holding portion 10d and the second holding portion 20 are determined in the left and right direction. That's it. Therefore, the production machine for adjusting the positions of the first holding unit 10d and the second holding unit 20 does not require the function of adjusting the position in the horizontal direction, and has a function of adjusting the position in the vertical direction. Just do it.
- a bonding wire W11 is provided between the tip surface of the submount 110 and the second main surface 265, and a bonding wire W12 is provided between the upper surface of the red LD chip 105 and the second main surface 265. It is provided.
- a bonding wire W 13 is provided between the top end surface of the submount 130 and the second main surface 265, and a bonding wire W 14 is provided between the upper surface of the red LD chip 125 and the second main surface 265.
- a bonding wire W15 is provided between the front end surface of the submount 210 and the first major surface 145, and a bonding wire W16 is provided between the upper surface of the green LD chip 205 and the first major surface 145.
- a bonding wire W17 is provided between the front end surface of the submount 230 and the first main surface 145, and a bonding wire W18 is provided between the upper surface of the blue LD chip 225 and the first main surface 145.
- a bonding wire W19 is provided between the front end surface of the submount 250 and the first main surface 145, and a bonding wire W20 is provided between the upper surface of the green LD chip 245 and the first main surface 145.
- the bonding wire W11 can be prevented from contacting the green LD chip 205 and the submount 210. Therefore, the bonding wires W11 to W20 can be prevented from shorting by being in contact with portions not electrically connected to the bonding wires W11 to W20.
- the laser light source devices 1, 2, 3 and 4 have a first light source (light source 115) for emitting the first laser light (laser light L1) from the first light emitting point (light emitting point 120) And a second light source (light source 215) for emitting a second laser beam (laser beam L2) from the second light emitting point (light emitting point 220), and a third laser beam (laser light from the third light emitting point (light emitting point 240)
- a third holding unit 20, 20a, 20b, 20c is provided with a second main surface 265 opposite to the first main surface and provided with three light sources.
- the laser light source device includes the first holding portion having the first main surface, and the second holding portion facing the first main surface and having the parallel second main surface.
- the red laser diode when using a red laser diode whose light emission efficiency is likely to decrease when it is affected by heat as the first light source, the red laser diode is less susceptible to the heat from the second light source and the third light source. It is possible to prevent the light emission efficiency of
- the 1st main surface in which the 1st light source was provided, and the 2nd main surface in which the 2nd light source and the 3rd light source were provided have opposed.
- the area of the main surface of the holding portion can be reduced compared to the case where the first light source, the second light source, and the third light source are provided on the same main surface. It can be miniaturized more.
- the first light source (light source 115) is a first laser diode (red LD chip 105) which is a red laser diode.
- the second light source (light source 215) includes a second laser diode (green LD chip 205) that is a green laser diode, and the third light source (light source 235) is a blue laser diode (a third laser diode A blue LD chip 225) may be included.
- the red laser diode whose light emission efficiency tends to decrease when it is affected by heat is used as the first laser diode, and the green laser diode and the blue laser diode are used as the second laser diode and the third laser diode, respectively.
- the first light source, the second light source, and the third light source are separated from each other.
- the heat transfer distance between the red laser diode and the green laser diode, and the red laser diode as compared with the case where the first light source, the second light source, and the third light source are provided on the same main surface.
- the heat transfer distance between the blue laser diode is long. Therefore, the red laser diode can be made less susceptible to the influence of the heat from the green laser diode and the blue laser diode, so that the decrease in the luminous efficiency of the red laser diode can be prevented.
- the laser light source devices 1, 2, 3 and 4 according to aspect 3 of the present invention are the positions of the first light emitting point (light emitting point 120) and the positions of the second light emitting point (light emitting point 220) in the above aspect 2.
- the positions of the third light emitting point (light emitting point 240) may be aligned on substantially the same plane orthogonal to the direction perpendicular to the first major surface 145.
- the position of the first light emitting point, the position of the second light emitting point, and the position of the third light emitting point are arranged on substantially the same plane orthogonal to the direction perpendicular to the first main surface.
- the position of the first light emitting point, the position of the second light emitting point, and the position of the third light emitting point are perpendicular to the first main surface
- the first laser light, the second laser light, and the third laser light are emitted from light emitting points at different positions in the direction perpendicular to the first main surface.
- the first laser light, the second laser light, and the third laser light are made to coincide in the direction perpendicular to the first main surface. A member is required.
- the first laser light, the second laser light, and the third laser light are emitted from the light emitting point at the same position in the direction perpendicular to the first main surface, this member is unnecessary. Therefore, the number of optical components can be reduced.
- the position of the first light emitting point (light emitting point 120) along the direction perpendicular to the first main surface 145 in the above aspect 2 The distance between the light emitting point and the position of the second light emitting point (light emitting point 220) is 300 ⁇ m or less, or the position of the first light emitting point and the third light emitting point along a direction perpendicular to the first main surface
- the distance between the light emitting point 240 and the position may be 300 ⁇ m or less.
- the first light source (light source 115), the second light source (light source 215), and the second light source may not overlap each other in a plan view with respect to the first main surface 145.
- the first light source, the second light source, and the third light source do not overlap each other in plan view with respect to the first main surface.
- the first light emitting point can be closer to the second main surface Therefore, the laser light source device can be further miniaturized.
- the laser light source device 4 is the light emission direction of the first laser light, the emission direction of the second laser light, and the emission direction of the third laser light in any one of the above aspects 2 to 5.
- the first light source (light source 115), the second light source (light source 215), and the third light source (light source 235) have an emission direction of the first laser light
- the second laser A part may mutually overlap in the planar view perpendicular
- the first light source, the second light source, and the third light source are planes perpendicular to the emission direction of the first laser beam, the emission direction of the second laser beam, and the emission direction of the third laser beam. Partially overlap each other in plan view with respect to
- the laser light source device can be further miniaturized by the amount of overlapping.
- the emission direction of the first laser light, the emission direction of the second laser light, and the emission direction of the third laser light are mutually offset in the emission direction of the first laser light. Good.
- the first light source, the second light source, and the third light source are arranged to be offset from each other in the emission direction of the first laser light.
- the laser light source device can be further miniaturized by the amount of overlapping.
- the first holding portions 10, 10a, 10b and 10c and the second holding portions 20 and 20a. 20b and 20c may not be in contact with each other.
- the first light source, the second light source, and the third light source are not in contact with each other.
- the heat transfer distance between the red laser diode and the green laser diode and the heat transfer distance between the red laser diode and the blue laser diode become long. Therefore, the red laser diode can be made less susceptible to the influence of the heat from the green laser diode and the blue laser diode, so that the decrease in the luminous efficiency of the red laser diode can be prevented.
- the first holding portions 10, 10a, 10b and 10c and the second holding portions 20 and 20a. 20b and 20c may be provided with bonding portions 405 and 410 for bonding, and the thermal conductivity of the bonding portion may be lower than the thermal conductivity of the first holding portion or the thermal conductivity of the second holding portion.
- the thermal conductivity of the bonding portion is lower than the thermal conductivity of the first holding portion or the thermal conductivity of the second holding portion.
- a recess is provided in a part of the first main surface 145 according to either aspect 2 or 9, and the first light source (light source 115) It may be provided on the bottom surface of the recess 505 provided on one main surface.
- the first light source is provided on the bottom surface of the recess provided in a part of the first main surface.
- the height of the first light source protruding from the first main surface can be reduced by the depth of the recess, so that the laser light source device can be further miniaturized.
- a recess is provided in a part of the second main surface 265 according to either aspect 2 or 10, and the second light source (light source 215) and the third light source At least one of the light sources (light source 235) may be provided on the bottom surface of the recess provided on the second main surface.
- the second light source is provided on the bottom surface of the recess provided in a part of the second main surface.
- the height of the second light source protruding from the second main surface can be reduced by the depth of the recess, so that the laser light source device can be further miniaturized.
- the first main surface 145 partially has a convex portion
- the second main surface 265 partially
- the first laser diode (red LD chip 105) is disposed on the convex portion of the first main surface, and has a convex portion of the first main surface in plan view with respect to the first main surface;
- the concave portions of the second main surface may be arranged to overlap with each other.
- the first main surface partially has a convex portion
- the second main surface partially has a concave portion
- the first laser diode has a convex portion on the first main surface.
- the convex part of 1st main surface and the recessed part of 2nd main surface are arrange
- a bonding wire is provided between the top surface of the first laser diode and the tip end surface of the convex portion.
- the bonding wire It becomes difficult to contact with the second main surface.
- the facing of the convex portion of the first main surface is a recess
- the bonding wire is less likely to contact the facing second holding portion. Therefore, the laser light source device can be easily manufactured so that the position of the first light emitting point and the position of the second light emitting point are aligned on substantially the same plane orthogonal to the direction perpendicular to the first main surface.
- the first main surface 145 partially has a recess
- the second main surface 265 is partially convex
- the second laser diode (green LD chip 205) or the third laser diode (blue LD chip 225) is disposed on the convex portion of the second main surface, and is a plane relative to the first main surface.
- the concave portion of the first main surface and the convex portion of the second main surface may be arranged so as to overlap each other in a visual manner.
- the first main surface partially has a recess
- the second main surface 265 partially has a protrusion
- the second laser diode or the third laser diode is a second main It is arranged on the convex part of the surface.
- the concave portion of the first main surface and the convex portion of the second main surface are arranged to overlap each other in a plan view with respect to the first main surface. For example, the distance between the second light emitting point and a portion other than the convex portion on the second main surface is increased.
- a bonding wire is provided between the top surface of the second laser diode and the tip end surface of the convex portion.
- the bonding wire It becomes difficult to make contact with the first main surface.
- the facing of the convex portion of the second main surface is a recess
- the bonding wire is less likely to contact the facing first holding portion. Therefore, the laser light source device can be easily manufactured so that the position of the first light emitting point and the position of the second light emitting point are aligned on substantially the same plane orthogonal to the direction perpendicular to the first main surface.
- the laser light source device 3 comprises a first light source (light source 115) for emitting a first laser beam (laser light L1) from a first light emitting point (light emitting point 120) and a second light emitting point (light source 115).
- a second holding unit 20 provided with a second light source and having a second main surface 265 opposite to and parallel to the first main surface.
- the laser light source device includes the first holding portion having the first main surface, and the second holding portion facing the first main surface and having the parallel second main surface.
- the red laser diode when using a red laser diode whose light emission efficiency is likely to be reduced when it is affected by heat as the first light source, the red laser diode is unlikely to be affected by the heat from the second light source. It can prevent the decline.
- the 1st main surface in which the 1st light source was provided, and the 2nd main surface in which the 2nd light source was provided have opposed.
- the area of the main surface of the holding portion can be reduced as compared with the case where the first light source and the second light source are provided on the same main surface, so the laser light source device can be further miniaturized.
- the first light source includes a first laser diode (red LD chip 105) which is a red laser diode.
- the second light source (light source 280) may include a second laser diode (light blue LD chip 270) which is a light blue laser diode.
- the red laser diode whose light emission efficiency is likely to decrease when it is affected by heat is used as the first laser diode, and the water blue laser diode is used as the second laser diode. Further, the first main surface and the second main surface are opposed to each other. As a result, the heat transfer distance between the red laser diode and the blue laser diode becomes longer compared to the case where the first light source and the second light source are provided on the same main surface. Therefore, the red laser diode can be made less susceptible to the influence of the heat from the light blue laser diode, so that the decrease in the luminous efficiency of the red laser diode can be prevented.
- red LD chip (first laser diode) 110 submount (first submount) 115 light source (first light source) 120 light emitting point (first light emitting point) 125 red LD chip 130, 155, 250 submount 135, 160, 255 light source 140, 165, 260 light emitting point 145, 145a, 145b first main surface 146, 147 recess 150 infrared LD chip 205 green LD chip (second laser diode) 210, 275 submount (second submount) 215, 280 light source (second light source) 220, 285 light emitting point (second light emitting point) 225 Blue LD chip (third laser diode) 230 submount (third submount) 235 light source (third light source) 240 light emitting point (third light emitting point) 245 green LD chip 265, 265a, 265b second main surface 270
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Projection Apparatus (AREA)
Abstract
レーザ光源装置は、第1レーザ光を出射する光源(115)と、第2レーザ光を出射する光源(215)と、第3レーザ光を出射する光源(235)と、光源(115)が設けられた第1主面(145)を有する第1保持部(10)と、光源(215)及び光源(235)が設けられた、第1主面(145)に対向し、且つ、平行な第2主面(265)を有する第2保持部(20)とを備える。
Description
本発明は、レーザ光源装置に関する。
近年、小型プロジェクターを内蔵したロボット、スマートグラス、及びヘッドアップディスプレイのようなウェアラブル端末が普及している。ウェアラブル端末に主に用いられるピコプロジェクターが、ウェアラブル端末の普及に伴って用いられる。このようなウェアラブル端末に要求されていることは小型化である。さらに、今後、小型であり、かつ、高輝度な光源を実現することが要求される。
ピコプロジェクターとして有望な方式は、赤色、緑色、及び青色の3色のレーザ光を合波させることで白色光源が実現され、その白色光源により画像または映像をスクリーンに映すことが可能なRGBレーザ方式である。RGBレーザ方式は、主に光学部品及びレーザチップを組み合わせた光源装置であるRGBレーザモジュールと、そのRGBレーザモジュールが出射する光を映像としてスクリーンに移すためのMEMSミラー方式との組み合わせから成る。
従来のレーザ光源装置は、保持部の上に、導電性接着剤によってサブマウントが接着され、サブマウントの上に導電性接着剤を介してレーザチップが設置されている構造を有する。
特許文献1には、基板と、基板の主面と垂直な方向に沿ってレーザ光を出射する光源が搭載された搭載面を有する保持部を2つ備えるレーザ光源装置が開示されている。
特許文献2には、2つのレーザチップがそれぞれ2つのサブマウントの上に設けられ、2つのサブマウントはそれぞれ、2つのブロックに設けられている構造を有する複合光デバイスが開示されている。
小型のRGBレーザモジュールでは、RGBレーザモジュールの筐体部分であるパッケージも小さくなるので、筐体からの放熱は十分とはいえない。また、熱源であるレーザチップ同士が互いに近づくので熱干渉が起こる。レーザチップは熱の影響を受けて発光効率が下がる。特に赤色レーザチップは、GaAs系及びそれに準じたGaとAsとを主体とした構成の材料を用いており、GaN系の材料を用いた青色レーザチップ及び緑色レーザチップに比べて、熱の影響を受けて発光効率が下がりやすい。
特許文献1及び2に開示されている技術では、一方のレーザチップによる熱によって他方のレーザチップに影響が及ぶ。このため、例えば、一方のレーザチップに赤色レーザダイオードを用いると、他方のレーザチップによる熱によって赤色レーザダイオードの発光効率が低下するという問題がある。
本発明の一態様は、第1光源に、第2光源及び第3光源からの熱の影響を受けにくくさせ、第1光源の発光効率が低下することを防ぐことを目的とする。
上記の課題を解決するために、本発明の一態様に係るレーザ光源装置は、第1発光点から、第1レーザ光を出射する第1光源と、第2発光点から、第2レーザ光を出射する第2光源と、第3発光点から、第3レーザ光を出射する第3光源と、前記第1光源が設けられた第1主面を有する第1保持部と、前記第2光源及び前記第3光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備える。
また、本発明の一態様に係るレーザ光源装置は、第1発光点から、第1レーザ光を出射する第1光源と、第2発光点から、第2レーザ光を出射する第2光源と、前記第1光源が設けられた第1主面を有する第1保持部と、前記第2光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備える。
本発明の一態様によれば、第1光源に、第2光源及び第3光源からの熱の影響を受けにくくさせ、第1光源の発光効率が低下することを防ぐことができるという効果を奏する。
〔実施形態1〕
以下、本発明の実施形態について、図1から図4に基づいて説明する。図1は、本発明の実施形態1に係るレーザ光源装置1の光源の配置を示す断面図である。図1の(a)は赤色LD(Laser Diode)チップを有する光源の配置を示す断面図である。図1の(b)は緑色LDチップを有する光源及び青色LDチップを有する光源の配置を示す断面図である。図1の(c)はレーザ光源装置1の光源115・135・215・235・255の配置を示す断面図である。
以下、本発明の実施形態について、図1から図4に基づいて説明する。図1は、本発明の実施形態1に係るレーザ光源装置1の光源の配置を示す断面図である。図1の(a)は赤色LD(Laser Diode)チップを有する光源の配置を示す断面図である。図1の(b)は緑色LDチップを有する光源及び青色LDチップを有する光源の配置を示す断面図である。図1の(c)はレーザ光源装置1の光源115・135・215・235・255の配置を示す断面図である。
(レーザ光源装置1の構成)
レーザ光源装置1は、図3の(a)に示すように、筐体360内に、光源115・135・215・235・255、レンズ305・310・315・320・325、及び合波部330を備えている。なお、図1において、第2保持部20から第1保持部10に向かう方向を上方向、第1保持部10から第2保持部20に向かう方向を下方向とする。また、レーザ光源装置1は、5つの光源115・135・215・235・255を備えているが、6つ以上の光源を備えていてもよい。なお、第1保持部10と第2保持部20とは互いに接触していない。
レーザ光源装置1は、図3の(a)に示すように、筐体360内に、光源115・135・215・235・255、レンズ305・310・315・320・325、及び合波部330を備えている。なお、図1において、第2保持部20から第1保持部10に向かう方向を上方向、第1保持部10から第2保持部20に向かう方向を下方向とする。また、レーザ光源装置1は、5つの光源115・135・215・235・255を備えているが、6つ以上の光源を備えていてもよい。なお、第1保持部10と第2保持部20とは互いに接触していない。
図1の(a)に示すように、第1保持部10が有する第1主面145には接着剤A1によってサブマウント110・130が接着されている。接着剤A1は、半田等の導電性ペースト(導電性接着剤)である。サブマウント110(第1サブマウント)の上には赤色LD(Laser Diode)チップ105(第1レーザダイオード)が設けられており、赤色LDチップ105とサブマウント110とは、例えば半田等の導電性ペーストで接着されている。以降に記載するLDチップ及びサブマウントについても同様に、LDチップとサブマウントとは半田等の導電性ペーストで接着されている。サブマウント130の上には赤色LDチップ125が設けられている。
なお、LDチップの種類によってサブマウントの高さは異なっていることが多い。例えば、LDチップによってはチップ表面をサブマウント側に搭載するジャンクションダウン方式がある。チップ表面とは、チップにおいて発光点が近い方の面である。赤色LDチップに用いられるAlGaInP系レーザではジャンクションダウン方式が採用されている。よって、通常、1つの保持部に複数の光源を設ける場合、保持部の主面からの、光源の発光点の高さが光源ごとに異なり、その高さを調節するために予め高さが異なるサブマウントを用意する必要がある。
本発明ではこれらの問題点を上下別の保持部に光源を設けることで解決することができる。保持部の主面と平行な方向において、発光点の位置を一致させるように調節することが可能であるからである。半導体レーザ素子において、LDチップをサブマウントに設ける場合、チップ表面または、チップ表面とは反対側の面がサブマウントの表面に接するように実装される。具体的には、チップ表面がサブマウントに載置される場合をジャンクションダウン方式と呼び、チップ表面とは反対側の面がサブマウントに載置される場合をジャンクションアップ方式と呼ぶ。
光源115(第1光源)は、サブマウント110上に赤色LDチップ105(例えば発光波長が638nmであるレーザダイオード)が設けられた構造を有する。光源115は、赤色LDチップ105の発光点120(第1発光点)から、レーザ光L1(第1レーザ光)を出射する。赤色LDチップ105には赤色レーザダイオードを用いる。
光源135は、サブマウント130上に赤色LDチップ125(例えば発光波長が638nmであるレーザダイオード)が設けられた構造を有する。光源135は、赤色LDチップ125の発光点140から、レーザ光L4を出射する。赤色LDチップ125には赤色レーザダイオードを用いる。
図1の(b)に示すように、第2保持部20が有する第2主面265には接着剤A1によってサブマウント210・230・250が接着されている。サブマウント210(第2サブマウント)の上には緑色LDチップ205(第2レーザダイオード)が設けられており、サブマウント230(第3サブマウント)の上には青色LDチップ225(第3レーザダイオード)が設けられている。また、サブマウント250の上には、緑色LDチップ245が設けられている。
光源215(第2光源)は、サブマウント210上に緑色LDチップ205(例えば発光波長が520nmであるレーザダイオード)が設けられた構造を有する。光源215は、緑色LDチップ205の発光点220(第2発光点)から、レーザ光L2(第2レーザ光)を出射する。緑色LDチップ205には緑色レーザダイオードを用いる。
光源235(第3光源)は、サブマウント230上に青色LDチップ225(例えば発光波長が450nmであるレーザダイオード)が設けられた構造を有する。光源235は、青色LDチップ225の発光点240(第3発光点)から、レーザ光L3(第3レーザ光)を出射する。青色LDチップ225には青色レーザダイオードを用いる。
光源255は、サブマウント250上に緑色LDチップ245(例えば発光波長が520nmであるレーザダイオード)が設けられた構造を有する。光源255は、緑色LDチップ245の発光点260から、レーザ光L5を出射する。緑色LDチップ245には緑色レーザダイオードを用いる。
(LDチップ及びサブマウントについて)
なお、サブマウント110・130・210・230・250は、電気絶縁機能を担うものであり、平板状の電気絶縁体で構成される。各サブマウントの材料は全て同一でもよいが、LDチップごとに選定した方がよく、各サブマウントの熱膨張係数と各LDチップの材料の熱膨張係数と近い方が好ましい。つまり、サブマウントと、そのサブマウント上に設けられたLDチップの材料とは、熱膨張係数が近いことが好ましい。また、サブマウントの材料には、熱伝導率が高い材料が好ましく、例えば、ダイヤモンド系、銅、ダイヤモンドと銅との混合材料などの熱伝導率が高い材料、並びにAlN及びSiCなどのセラミック材料を用いてもよい。
なお、サブマウント110・130・210・230・250は、電気絶縁機能を担うものであり、平板状の電気絶縁体で構成される。各サブマウントの材料は全て同一でもよいが、LDチップごとに選定した方がよく、各サブマウントの熱膨張係数と各LDチップの材料の熱膨張係数と近い方が好ましい。つまり、サブマウントと、そのサブマウント上に設けられたLDチップの材料とは、熱膨張係数が近いことが好ましい。また、サブマウントの材料には、熱伝導率が高い材料が好ましく、例えば、ダイヤモンド系、銅、ダイヤモンドと銅との混合材料などの熱伝導率が高い材料、並びにAlN及びSiCなどのセラミック材料を用いてもよい。
また、各LDチップはp層にp型電極があり、n層にn型電極がある。各LDチップには、各電極から電気を流すために抵抗が低い金(Au)や銀(Ag)などの金属から成るボンディングワイヤが接続されている。
各LDチップが設けられたサブマウントの高さについては、各LDチップが出射するレーザ光の発光波長ごとに最適な高さがある。このため、サブマウントについては、常に一定の高さのものを用いる必要はなく、レーザ光の発光波長が異なるLDチップごとに、サブマウントの高さを変更してもよい。LDチップごとにサブマウントの高さが異なるので、発光点の位置が、第1主面145と垂直な方向と直交する略同一平面上に並ぶようにするためには、サブマウントを設置する第1保持部10及び第2保持部20の高さを調整する必要がある。保持部の高さの調整には非常に高い精度の加工が要求される。第1保持部10及び第2保持部20の位置を調節することで、第1保持部10及び第2保持部20に光源を設置した後でも、各発光点の位置ズレを補正することができる。
また、サブマウントの高さは低い方がよい。サブマウントの高さを低くすることで、各LDチップからサブマウントに移動した熱が、さらに筐体360に移動して、筐体360の外部に放熱されるからである。なお、サブマウントの高さは変更してもよく、サブマウントの高さを変更することで、発光点の位置が合うように調節してもよい。
赤色LDチップ105・125では熱によって発光効率が非常に下がりやすいので、赤色LDチップ105・125で発生する熱を効率よく放熱する必要がある。このため、赤色LDチップ105・125は、LDチップの発光部(発熱部)をサブマウント側に対向させるように実装するジャンクションダウン方式で実装される。赤色LDチップが設けられたサブマウントは青色LDチップが設けられたサブマウントに比べると、熱伝導率が低いので、ジャンクションダウン方式が多く用いられている。
各LDチップは、出射するレーザ光の発光波長が異なると、異なった形状である。また、出射するレーザ光の発光波長が同一であっても高出力のLDチップと低出力のLDチップとを比べると、サイズまたは形状が異なる。
図1の(c)に示すように、第1保持部10の第1主面145と、第2保持部20の第2主面265とが対向し、かつ、平行になるように、第1保持部10と第2保持部20とを接合部405・410により接合する。つまり、接合部405・410は、第1保持部10と第2保持部20とを接合する。
また、光源115・135・215・235・255は、第1主面145に対する平面視において互いに重ならない。これにより、例えば、光源115・135・215・235・255が、第1主面145に対する平面視において互いに重なる場合と比較して、発光点120を、第2主面265により近づけることができるので、レーザ光源装置1をより小型化することができる。
光源115・135・215・235・255は互いに離れており、接合部405・410の熱伝導率は、第1保持部10の熱伝導率または第2保持部20の熱伝導率より低い。第1保持部10、第2保持部20、及び接合部405・410の材料については具体的に以下に説明する。
第1保持部10または第2保持部20には、窒化アルミニウム(AlN)のようなセラミック、銅、銅タングステン(CuW)、銅-モリブデン合金(CuMo)、Cu-ダイヤモンド、ダイヤモンド、またはダイヤモンド混合物等の熱伝導率が高い材料を用いる。
接合部405・410には、第1保持部10または第2保持部20に用いる材料より熱伝導率が低いコバール、42アロイ(NSI)、50アロイ(TNF)、Ni-Fe、ガラス、樹脂、及びゴム等の材料を用いる。第1保持部10、第2保持部20、及び接合部405・410の熱膨張係数は互いに、できる限り近い値であることが望ましい。第1保持部10、第2保持部20、及び接合部405・410の熱膨張係数が互いに大きく異なると、第1保持部10、第2保持部20、及び接合部405・410それぞれにおいて、熱による膨張の度合いが異なる。よって、レーザ光源装置1の製造時において、熱履歴により筐体360の信頼性が懸念される。
また、熱膨張係数が異なると熱による膨張の度合いが異なる。このため、例えば、第2保持部20と、光源215との熱膨張係数が異なると、それらの膨張による位置ズレと熱履歴とによって緑色LDチップ205がサブマウント210から剥がれやすくなることが懸念される。つまり、レーザ光源装置1の信頼性低下(劣化)が懸念される。なお、赤色LDチップ105と、サブマウント110との熱膨張係数が異なると、熱履歴(温度サイクル)が赤色LDチップ105にかかることによって赤色LDチップ105内に応力がかかり、赤色LDチップ105の特性及び寿命が低下することが懸念される。
なお、第1保持部10と第2保持部20との間の相対位置、例えば、第1主面145と第2主面265との間の距離を固定することができれば、第1保持部10と第2保持部20との間の相対位置を固定する構造は限定されない。例えば、接合部405・410と同一の熱伝導率を有する筐体の内部に第1保持部10及び第2保持部20を設けてもよい。具体的には、その筐体の底面に第2保持部20を設け、その底面に対向する筐体の天面に第1保持部10を設けてもよい。つまり、第1保持部10と第2保持部20との間の相対位置を固定しつつ、第1保持部10と第2保持部20との間に、接合部405・410と同一の熱伝導率を有する部材を介していればよい。
高熱で発光効率が低下しやすい特性を有する赤色LDチップ105・125を第1保持部10に設け、高熱でも発光効率が低下しにくい特性を有する緑色LDチップ205・245及び青色LDチップ225を第2保持部20に設けている。このように、発光波長が異なる複数のLDチップを用いる場合でも特性が異なるLDチップを上下に分けることができる。
なお、レーザ光源装置1は5つのLDチップを備えているが、これは一例であり、LDチップの数は複数であればよい。また、レーザ光源装置1は、赤色、緑色、及び青色の3種類のLDチップを備えているが、これは一例であり、一部が同じ種類のLDチップであってもよく、互いに全て異なるLDチップであってもよく、3種類のLDチップでなくてもよい。
また、図1の(c)に示すように、第1主面145と平行な線P1上には、発光点120・140・220・240・260が存在しており、発光点120・140・220・240・260の位置は、第1主面145と垂直な方向と直交する略同一平面上に並んでいる。
光源115・135が第1保持部10に設けられ、光源215・235・255が第2保持部20に設けられているので、第1保持部10及び第2保持部20の位置を調節することで発光点120・140・220・240・260の位置を調節することができる。
なお、発光点120・140・220・240・260の位置は、第1主面145と垂直な方向と直交する略同一平面上に並んでいる構成ではなく、以下に説明する図2の(a)~(c)に示す構成であってもよい。図2の(a)に示すように、第1主面145と平行な線P2上には、発光点120・140が存在しており、第1主面145と平行な線P3上には、発光点220・240・260が存在している。第1主面145と垂直な方向に沿った、線P2と線P3との間の距離は、300μm以下である。発光点120・140の位置が、発光点220・240・260の位置より高い位置である場合、第1主面145と垂直な方向に沿った、発光点120・140の位置と発光点220・240・260の位置との間の距離が300μm以下であってもよい。
また、図2の(b)に示すように、第1主面145と平行な線P4上には、発光点220・240・260が存在しており、第1主面145と平行な線P5上には、発光点120・140が存在している。第1主面145と垂直な方向に沿った、線P4と線P5との間の距離は、300μm以下である。発光点120・140の位置が、発光点220・240・260の位置より低い位置である場合、第1主面145と垂直な方向に沿った、発光点120・140の位置と発光点220・240・260の位置との間の距離が300μm以下であってもよい。なお、図2の(b)に示す構成において、赤色LDチップ105・125は、第2主面265とは接触せず、緑色LDチップ205・245及び青色LDチップ225は、第1主面145とは接触しない。
発光点120・140と、発光点220・240・260との間の距離の調整は、レーザ光源装置1の製造時において、生産機械によって予め行われてもよい。その距離が調整された後は、第1保持部10及び第2保持部20を、レーザ光源装置1の筐体360に固定してもよい。また、第1保持部10及び第2保持部20の位置を、筐体360の外壁に対して高精度で決定し、第1保持部10及び第2保持部20を筐体360内に嵌め込んでもよい。第1保持部10及び第2保持部20の固定方法は特に限定されず、第1保持部10及び第2保持部20が固定されればよい。
さらに、発光点120・140・220・240・260のうち、少なくとも2つの発光点の位置が、第1主面145と垂直な方向と直交する略同一平面上に並んでいてもよい。例えば、図2の(c)に示す構成であってもよい。図2の(c)に示すように、第1主面145と平行な線P6上には、発光点120・220・240・260が存在している。つまり、発光点120・140・220・240・260のうち、発光点140以外の発光点120・220・240・260の位置が、第1主面145と垂直な方向と直交する略同一平面上に並んでいてもよい。
以上により、レーザ光源装置1では、第1主面145と第2主面265とが対向しており、接合部405・410の熱伝導率は、第1保持部10の熱伝導率または第2保持部20の熱伝導率より低い。これにより、光源115・135と光源215・235・255との間の伝熱距離は長くなり、光源215・235・255から第2保持部20に伝わった熱は、第1保持部10に伝わりにくくなる。よって、光源115・135に、光源215・235・255からの熱の影響を受けにくくさせることができるので、光源115・135の発光効率の低下を防ぐことができる。
レーザ光源装置1では、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを光源115・135に用いている。赤色レーザダイオードは、光源215・235・255からの熱の影響を受けにくいので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
光源115・135が設けられた第1主面145と、光源215・235・255が設けられた第2主面265とは対向している。これにより、光源115・135・215・235・255が同一の主面に設けられた場合と比較して、保持部が有する主面の面積を小さくすることができるので、レーザ光源装置1をより小型化することができる。
レーザ光源装置1では、発光点120・140・220・240・260の位置は、第1主面145と垂直な方向と直交する略同一平面上に並んでいる。これにより、発光点120・140・220・240・260の位置が、第1主面145と垂直な方向と直交する略同一平面上に並んでいない場合と比較すると、レーザ光L1~L5を合波させるための光学部品の数を少なくすることができる。具体的に以下に説明する。
レーザ光L1~L5を合波させるとき、発光点120・140・220・240・260位置が、第1主面145と垂直な方向と直交する略同一平面上に並んでいない場合を考える。この場合、レーザ光L1~L5は、第1主面145と垂直な方向において異なる位置の発光点から出射される。レーザ光L1~L5を合波させるためには、第1主面145と垂直な方向においてレーザ光L1~L5を一致させる部材が必要になる。一方、レーザ光L1~L5が、第1主面145と垂直な方向において同一の位置の発光点から出射される場合は、この部材が不要になる。よって、光学部品の数を少なくすることができる。
(レーザを合波するための構造)
次にレーザを合波するための構造について図3に基づいて説明する。なお、図3において、X方向は光源215から光源255に向かう方向であり、Y方向は光源の出射方向と同一であり、Z方向は第2主面265から第1主面145に向かう方向である。図3の(a)に示すように、レーザ光源装置1は、筐体360内に、光源115・135・215・235・255、レンズ305・310・315・320・325、及び合波部330を備えている。レンズ305・310・315・320・325には、例えば、コリメートレンズを用いる。図3の(a)において、右方向がX方向であり、上方向がY方向であり、手前方向がZ方向である。
次にレーザを合波するための構造について図3に基づいて説明する。なお、図3において、X方向は光源215から光源255に向かう方向であり、Y方向は光源の出射方向と同一であり、Z方向は第2主面265から第1主面145に向かう方向である。図3の(a)に示すように、レーザ光源装置1は、筐体360内に、光源115・135・215・235・255、レンズ305・310・315・320・325、及び合波部330を備えている。レンズ305・310・315・320・325には、例えば、コリメートレンズを用いる。図3の(a)において、右方向がX方向であり、上方向がY方向であり、手前方向がZ方向である。
合波部330は、ダイクロックミラー335・340・345・350・355を備えている。合波部330は、ダイクロックミラーを用いてレーザ光を合波させているが、偏光板を用いてレーザ光を合波させてもよい。ダイクロックミラー335は、緑色LDチップ205が出射するレーザ光L2を反射する。
ダイクロックミラー340は、赤色LDチップ105が出射するレーザ光L1を反射する。ダイクロックミラー345は、青色LDチップ225が出射するレーザ光L3を反射する。ダイクロックミラー350は、赤色LDチップ125が出射するレーザ光L4を反射する。ダイクロックミラー355は、緑色LDチップ245が出射するレーザ光L5を反射する。
光源215の緑色LDチップ205が出射するレーザ光L2は、レンズ305を通過してダイクロックミラー335に入射する。ダイクロックミラー335は、レーザ光L2を反射し、X方向とは反対方向にレーザ光L2を出射する。
光源115の赤色LDチップ105が出射するレーザ光L1は、レンズ310を通過してダイクロックミラー340に入射する。ダイクロックミラー340は、レーザ光L1を反射し、X方向とは反対方向にレーザ光L1を出射する。ダイクロックミラー340が反射したレーザ光L1は、ダイクロックミラー335を通過し、直進する。
光源235の青色LDチップ225が出射するレーザ光L3は、レンズ315を通過してダイクロックミラー345に入射する。ダイクロックミラー345は、レーザ光L3を反射し、X方向とは反対方向にレーザ光L3を出射する。ダイクロックミラー345が反射したレーザ光L3は、ダイクロックミラー335・340を通過し、直進する。
光源135の赤色LDチップ125が出射するレーザ光L4は、レンズ320を通過してダイクロックミラー350に入射する。ダイクロックミラー350は、レーザ光L4を反射し、X方向とは反対方向にレーザ光L4を出射する。ダイクロックミラー350が反射したレーザ光L4は、ダイクロックミラー335・340・345を通過し、直進する。
光源255の緑色LDチップ245が出射するレーザ光L5は、レンズ325を通過してダイクロックミラー355に入射する。ダイクロックミラー355は、レーザ光L5を反射し、X方向とは反対方向にレーザ光L5を出射する。ダイクロックミラー355が反射したレーザ光L5は、ダイクロックミラー335・340・345・350を通過し、直進する。
なお、レーザ光L1~L5は、X方向とは反対方向に出射されているが、X方向に出射されてもよく、レーザ光L1~L5の出射方向については特に限定されない。ただし、レーザ光L1~L5それぞれの出射方向は互いに同一方向である。
光源から出射されたレーザ光はレンズなどの光学部品で平行光になり、その後ダイクロックミラーまたは偏光板を用いて合波させることで、レーザ光源装置1は、合波したレーザ光を出射することができる。また、1/2波長板をさらに用いて、光源から出射されたレーザ光を合波させてもよい。例えば、第1保持部10に設けられた赤色LDチップ105・125が出射するレーザ光と、第2保持部20に設けられた緑色LDチップ205・245及び青色LDチップ225が出射するレーザ光とを合波することで白色光源を実現することができる。本実施例の場合、レンズ305とダイクロックミラー335との間、及びレンズ310とダイクロックミラー340との間にそれぞれ、1/2波長板を設置することが好ましい。また、ダイクロックミラー340とダイクロックミラー345との間に1/2波長板を設置してもよい。これら1/2波長板を設置する理由は、レーザの特性としてTE(Transverse Electric Wave)光及びTM(Transverse Magnetic Wave)光があり、一般的にTE光の光量は、TM光の光量より多いからである。ダイクロックミラーにレーザ光が入射したとき、TE光がp波(p偏光)になり、TM光がs波(s偏光)になる。ダイクロックミラー335及びダイクロックミラー340は、p波を透過させて、s波を反射する機能を有する。
図3の(b)に示すように、筐体360内には、第1保持部10及び第2保持部20が設けられている。図3の(b)において、右方向がY方向であり、上方向がZ方向であり、手前方向がX方向である。
各LDチップにおいて出射されるレーザ光の発光波長が異なると、各LDチップから出射されるレーザ光の放射角度も異なる。このため、図3の(b)に示すように、サブマウントの高さを、レーザ光が第1保持部10及び第2保持部20に当たらないような高さにする。ジャンクションアップ方式及びジャンクションダウン方式のうちどちらであるか、並びにレーザ光の放射角度により、サブマウントの高さをLDチップが出射するレーザ光の発光波長ごとに変更する必要があり、サブマウントの高さが変わってくる。
図3の(b)には、レンズ325がレンズ保持部420に保持されている構成が示されているが、レンズ305・310・315・320もレンズ保持部420に保持されている。
図3の(c)に示されている構成は、図1の(c)に示されている構成と同一である。図3の(c)において、右方向がX方向であり、上方向がZ方向であり、奥方向がY方向である。
(レーザ光源装置1における熱の移動について)
次に、レーザ光源装置1における熱の移動について図4に基づいて説明する。図4の(a)に示すように、光源115・135それぞれから第1保持部10に移動する熱量はそれぞれ1Jである。光源215・255それぞれから第2保持部20に移動する熱量はそれぞれ4Jである。光源235から第2保持部20に移動する熱量は2Jである。
次に、レーザ光源装置1における熱の移動について図4に基づいて説明する。図4の(a)に示すように、光源115・135それぞれから第1保持部10に移動する熱量はそれぞれ1Jである。光源215・255それぞれから第2保持部20に移動する熱量はそれぞれ4Jである。光源235から第2保持部20に移動する熱量は2Jである。
よって、第1保持部10が光源115・135から受け取る熱量の合計は2Jである。第1保持部10が受け取った熱は、筐体360の上部361に移動する。また、第2保持部20が光源215・235・255から受け取る熱量の合計は10Jである。第2保持部20が受け取った熱は、筐体360の下部362に移動する。光源115の赤色LDチップ105及び光源135の赤色LDチップ125それぞれが受け取る熱量は、熱平衡により、約1Jになる。
一方、従来のレーザ光源装置では、例えば、図4の(b)に示すように、第2保持部20に光源115・135・215・235・255が設けられている。これにより、各光源の熱は第2保持部20で合計される。第2保持部20が光源115・135・215・235・255から受け取る熱量の合計は12Jである。光源115の赤色LDチップ105及び光源135の赤色LDチップ125それぞれが受け取る熱量は、熱平衡により、約1J以上約2.4J以下になる。この2.4Jは、第2保持部20が受け取る熱量の合計12を光源の数で割った値である。
従来のレーザ光源装置において、例えば、小型の筐体に光源115・135・215・235・255を設ける場合を考える。この場合、図4の(b)に示すように、第2保持部20に光源115・135・215・235・255が設けられる。各光源が非常に近い距離にあるので、赤色LDチップ105・125は、緑色LDチップ205・245及び青色LDチップ225から熱の影響を受けやすい。また、第2保持部20に全ての光源を設けているので、第2保持部20が横方向に長くなり、レーザ光源装置が大きくなる。
ここで問題となるのは各LDチップの発熱量が異なり、レーザの種類によって熱を受けると発光効率が下がりやすいLDチップがあることである。例えば、緑色LDチップの発熱量が1.2Jであり、赤色LDチップの発熱量が0.3Jであるとすると、緑色LDチップの発熱量は、赤色LDチップの発熱量の4倍である。よって、各LDチップにおいて発熱量が大きく異なる。例えば温度が80℃である場合、赤色LDチップ、緑色LDチップ、及び青色LDチップの順番で、熱によって発光効率が低下しやすくなる。また、例えば温度が80℃である場合、赤色LDチップが熱によって発光効率が最も低下しやすく、青色LDチップが熱によって発光効率が最も低下しにくい。
したがって、レーザ光源装置1は、従来のレーザ光源装置と比べて、光源115の赤色LDチップ105及び光源135の赤色LDチップ125が受ける熱量を減らすことができる。よって、赤色LDチップ105・125の発光効率の低下を防ぐことができる。
また、第1保持部10からの熱及び第2保持部20からの熱が筐体360を介して外部に放熱されるので、レーザ光源装置1の放熱性を向上させることができ、赤色LDチップ105・125に及ぶ熱の影響が小さくなる。赤色LDチップ105・125の熱だれの解消に効果がある。
従来の課題であった、レーザ光源装置を小型化すると、赤色LDチップが他のLDチップの熱の影響を受けて発光効率が低下するという問題は以下に説明するようにすることで解決される。具体的には、第1保持部10と第2保持部20とで放熱が別々になされることで小型化、かつ、高出力なレーザ光源装置を実現することができる。
〔実施形態2〕
本発明の他の実施形態について、図5に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図5に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
レーザ光源装置2は、図5の(a)に示すように、レーザ光源装置1と比べて、光源160を備えている点、光源135・255を備えていない点、合波部330が合波部330aに変更されている点、及び筐体360が筐体360aに変更されている点が異なる。合波部330aは、合波部330と比べて、レンズ365及びダイクロックミラー370を備えている点、並びにレンズ320・325及びダイクロックミラー350・355を備えていない点が異なる。なお、レーザ光源装置2は、レーザ光源装置1と比べて、光源の数が少ないため、筐体360aのサイズは筐体360のサイズより小さくなる。
光源160は、サブマウント155上に赤外LDチップ150が設けられた構造を有する。光源160は、赤外LDチップ150の発光点165から、レーザ光L6を出射する。赤外LDチップ150には赤外レーザダイオードを用いる。
ダイクロックミラー370は、赤外LDチップ150が出射するレーザ光L6を反射する。光源160の赤外LDチップ150が出射するレーザ光L6は、レンズ365を通過してダイクロックミラー370に入射する。ダイクロックミラー370は、レーザ光L6を反射し、X方向とは反対方向にレーザ光L6を出射する。ダイクロックミラー370が反射したレーザ光L6は、ダイクロックミラー335・340・345を通過し、直進する。
図5の(b)に示すように、筐体360a内には、第1保持部10及び第2保持部20が設けられている。図5の(b)において、右方向がY方向であり、上方向がZ方向であり、手前方向がX方向である。
図5の(b)には、レンズ365がレンズ保持部420に保持されている構成が示されているが、レンズ305・310・315もレンズ保持部420に保持されている。
図5の(c)に示すように、第1保持部10の第1主面145には、光源115・165が設けられており、第2保持部20の第2主面265には、光源215・235が設けられている。図5の(c)において、右方向がX方向であり、上方向がZ方向であり、奥方向がY方向である。第1主面145と平行な線P7上には、発光点120・165・220・240が存在している。よって、発光点120・165・220・240の位置は、第1主面145と垂直な方向と直交する略同一平面上に並んでいる。
第1保持部10に赤色LDチップ105及び赤外LDチップ150を設け、第2保持部20に緑色LDチップ205及び青色LDチップ225を設けることでモーションセンサ機能を有する照明装置を実現することができる。
〔実施形態3〕
本発明の他の実施形態について、図6に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図6に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
レーザ光源装置3は、図6の(a)に示すように、レーザ光源装置1と比べて、光源280を備えている点、光源135・215・235・255を備えていない点、合波部330が合波部330bに変更されている点、及び筐体360が筐体360bに変更されている点が異なる。合波部330bは、合波部330と比べて、レンズ375及びダイクロックミラー380を備えている点、並びにレンズ305・315・320・325及びダイクロックミラー335・345・350・355を備えていない点が異なる。なお、レーザ光源装置3は、レーザ光源装置1と比べて、光源の数が少ないため、筐体360bのサイズは筐体360のサイズより小さくなる。
光源280(第2光源)は、サブマウント275(第2サブマウント)上に水色LDチップ270(第2レーザダイオード)が設けられた構造を有する。光源280は、水色LDチップ270の発光点285(第2発光点)から、レーザ光L7(第2レーザ光)を出射する。水色LDチップ270には水色レーザダイオードを用いる。なお、光源115の赤色レーザダイオードは、610nm以上780nm以下の発光波長を有するレーザ光L1を出射し、光源280の水色レーザダイオードは、482nm以上499nm以下の発光波長を有するレーザ光L7を出射する。
ダイクロックミラー380は、水色LDチップ270が出射するレーザ光L7を反射する。光源280の水色LDチップ270が出射するレーザ光L7は、レンズ375を通過してダイクロックミラー380に入射する。ダイクロックミラー380は、レーザ光L7を反射し、X方向にレーザ光L7を出射する。なお、レーザ光L1・L7は、X方向に出射されているが、X方向とは反対方向に出射されてもよく、レーザ光L1・L7の出射方向については特に限定されない。
図6の(b)に示すように、筐体360b内には、第1保持部10及び第2保持部20が設けられている。図6の(b)において、右方向がY方向であり、上方向がZ方向であり、手前方向がX方向である。
図6の(b)には、レンズ375がレンズ保持部420に保持されている構成が示されているが、レンズ310もレンズ保持部420に保持されている。
図6の(c)に示すように、第1保持部10の第1主面145には、光源115が設けられており、第2保持部20の第2主面265には、光源280が設けられている。図6の(c)において、右方向がX方向であり、上方向がZ方向であり、奥方向がY方向である。第1主面145と平行な線P8上には、発光点120・285が存在している。よって、発光点120・285の位置は、第1主面145と垂直な方向と直交する略同一平面上に並んでいる。
以上により、レーザ光源装置3では、第1主面145と第2主面265とが対向しており、接合部405・410の熱伝導率は、第1保持部10の熱伝導率または第2保持部20の熱伝導率より低い。これにより、光源115と光源280との間の伝熱距離は長くなり、光源280から第2保持部20に伝わった熱は、第1保持部10に伝わりにくくなる。よって、光源115に、光源280からの熱の影響を受けにくくさせることができるので、光源115の発光効率の低下を防ぐことができる。
例えば、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを光源115として用いるとき、赤色レーザダイオードは、光源280からの熱の影響を受けにくいので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
また、光源115が設けられた第1主面145と、光源280が設けられた第2主面265とは対向している。これにより、光源115及び光源280が同一の主面に設けられた場合と比較して、保持部が有する主面の面積を小さくすることができるので、レーザ光源装置3をより小型化することができる。
レーザ光源装置3では、赤色レーザダイオードは、610nm以上780nm以下の発光波長を有するレーザ光L1を出射し、水色レーザダイオードは、482nm以上499nm以下の発光波長を有するレーザ光L7を出射する。これにより、レーザ光源装置3は、例えば、レーザ光L1・L7を合波させることで、白色レーザを出射することができる。
〔実施形態4〕
本発明の他の実施形態について、図7に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図7に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
レーザ光源装置4は、図7の(a)~(c)に示すように、レーザ光源装置1と比べて、光源115・135・215・235・255は、レーザ光L1~L5の出射方向に対して垂直な平面に対する平面視において互いに一部が重なる。また、光源115・135・215・235・255は、レーザ光L1~L5の出射方向に互いにずれて配置される。
したがって、光源115・135・215・235・255それぞれを一部が重なるように設けることで、重なった分だけレーザ光源装置1をより小型化することができる。光源とレンズとの間にはコリメートするための最適な距離がある。同じレンズを用いても各光源の波長によって、光源とレンズとの間の距離は異なる。また、レンズの形状が変われば、光源とレンズとの間の距離も変わる。レンズに比べて光源のLDチップはかなり小さい。LDチップの横幅は約0.1~0.2mm程度であるが、レンズの直径は、小型レンズの場合でも約1~2mm程度である。レンズの直径は、LDチップの横幅より約10倍大きい。このため、複数のレンズを、レーザ光の出射方向と垂直な方向に並ぶようにすると、筐体360cのサイズが大きくなる。また、レンズにはレンズの外周より2~3割内側に有効径があり、この有効径より内側を通った光が使用されることになる。よって、レンズの使用されない部分が、筐体360cの、レーザ光の出射方向と垂直な方向に沿った幅を大きくする要因になる。
そこで、複数のレンズを、レーザ光の出射方向に互いにずらして配置し、また、光源を、レーザ光の出射方向に互いにずらして配置する。これにより、筐体360cの、レーザ光の出射方向と垂直な方向に沿った幅を小さくすることができる。
また、光源のLDチップの垂直方向の放射角(θ⊥)は10~25°程度の放射角であるのに対し、水平方向の放射角(θ//)は数°程度である。よって、水平方向の放射角は、垂直方向の放射角の約1/4倍である。
また、合波部330cでは、レンズ305・310・315・320・325は、レーザ光L1~L5の出射方向に対して垂直な平面に対する平面視において互いに一部が重なり、ダイクロックミラー335・340・345・350・355それぞれの間の距離が小さくなる。これにより、図3の(a)の場合と比べて、筐体360cのサイズを小さくすることができる。
〔実施形態5〕
本発明の他の実施形態について、図8に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図8に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図8に示すように、第1保持部10の上面(第1主面145とは反対側の面)にヒートシンク415が設けられている。ヒートシンク415は、光源115・135で発生した熱を放熱する機能を有する。第1保持部10の上面にヒートシンク415を設けることで、光源115・135で発生した熱が放熱されやすくなるので、赤色LDチップ105・125に及ぶ熱の影響を低減させることができる。よって、赤色LDチップ105・125の発光効率の低下を防ぐことができる。
なお、ヒートシンク415は、第2保持部20の下面(第2主面265とは反対側の面)に設けられてもよく、第1保持部10の上面及び第2保持部20の下面の両方に設けられてもよい。これにより、赤色LDチップ105・125に熱が及ぶ前に、ヒートシンク415によって熱が放熱されるので、赤色LDチップ105・125に及ぶ熱の影響を低減させることができる。また、第1保持部10及び第2保持部20を筐体360に設置して熱を放熱させることを想定すると、第1保持部10及び第2保持部20の両方から熱を放熱させることができるので、さらに放熱性を向上させることができる。
〔実施形態6〕
本発明の他の実施形態について、図9に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図9に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
第1保持部10aの上面(第1主面145aとは反対側の面)と、第2保持部20aの下面(第2主面265aとは反対側の面)との間の距離は、図9に示すように、線P9と線P11との間の距離で示される。
第1保持部10bの上面(第1主面145bとは反対側の面)と、第2保持部20bの下面(第2主面265bとは反対側の面)との間の距離は、図9に示すように、線P10と線P11との間の距離で示される。
図9の(a)に示すように、第1保持部10aの第1主面145aには、凹部505・510が設けられている。第2保持部20aの第2主面265aには、凹部515・520・525が設けられている。
凹部505の底面には光源115が設けられ、凹部510の底面には光源135が設けられている。凹部515の底面には光源215が設けられ、凹部520の底面には光源235が設けられ、凹部525の底面には光源255が設けられている。これにより、第1保持部10aの上面と第2保持部20aの上面との間の距離は、図1の(c)の場合と比べて小さくなる。
なお、第1主面145a及び第2主面265aのうち少なくとも1つの一部に凹部が設けられていてもよい。第1主面145aに凹部が設けられている場合、光源115・135のうち少なくとも1つが、第1主面145aの凹部の底面に設けられる。第2主面265aに凹部が設けられている場合、光源215・235・255のうち少なくとも1つが、第2主面265aの凹部の底面に設けられる。
図9の(b)に示すように、第1保持部10bの第1主面145bには、凹部530が設けられている。第2保持部20bの第2主面265bには、凹部535が設けられている。凹部530の底面には、光源115・135が設けられ、凹部535の底面には、光源215・235・255が設けられている。図9の(a)に示す構成では、1つの凹部に1つの光源を設けているのに対し、図9の(b)に示す構成では、1つの凹部に複数の光源を設けている。図9の(b)に示す構成のように、図9の(a)に示す構成と比べて、第1主面145bに、より大きな凹部が設けられる。第1保持部10bの上面と第2保持部20bの下面との間の距離は、図9の(a)の場合と比べて、線P9と線P10との間の距離の分だけ小さくなる。ここでは、金属配線をLDチップの電極に接続するために、ワイヤーボンディングを行う(図10を参照)。よって、主面と、主面に対向するLDチップの凸面との間は離れている必要がある。図9の(a)の場合では、第1主面145aの凹部と、第2主面265bの凹部とが対向しておらず、第1保持部10aの上面と第2保持部20aの下面との間の距離を、1つの凹部の深さ分のみ小さくするだけである。図9の(b)の場合では、第1主面145b及び第2主面265bの両方に大きな凹部(凹部530・535)が設けられており、第1保持部10bの上面と第2保持部20bの下面との間の距離を、2つの凹部の深さ分小さくすることができる。よって、図9の(b)の場合では、図9の(a)の場合と比べて、第1主面と第2主面との間の距離をさらに小さくすることができる。
凹部を有する第1保持部10a・10b及び第2保持部20a・20bにおいて、金型でそれらの形状が成形されてもよく、切削加工でそれらの形状が成形されてもよい。保持部に凹部が形成されれば、保持部の加工方法は特に限定されない。
また、放熱性を向上させるため、赤色LDチップ105・125は、ジャンクションダウン方式で構成されており、赤色LDチップ105・125それぞれの発光点120・140がサブマウント110・130側にある。赤色LDチップ105・125それぞれの発光点120・140がサブマウント110・130側にあることに加え、保持部に凹部が設けられることで、例えば、第1主面145aと第2主面265aとをより近づけることができる。
以上により、例えば、第1主面145の一部に設けられた凹部505・510の底面それぞれに、光源115・135が設けられる。これにより、凹部505・510の深さの分だけ、第1主面145から突出する光源115・135の高さを小さくすることができるので、レーザ光源装置をより小型化することができる。
〔実施形態7〕
本発明の他の実施形態について、図10に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図10に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
ここでは、第1保持部10c及び第2保持部20cに、サブマウントを介さずにLDチップを直接設ける場合について説明する。
図10に示すように、第1保持部10cの第1主面145には、凸部605・610が設けられている。第2保持部20cの第2主面265には、凸部615・620・625が設けられている。凸部605の先端面には赤色LDチップ105が設けられ、凸部610の先端面には赤色LDチップ125が設けられている。凸部615の先端面には緑色LDチップ205が設けられ、凸部620の先端面には青色LDチップ225が設けられ、凸部625の先端面には緑色LDチップ245が設けられている。
また、赤色LDチップ105の上面と凸部605の先端面との間にボンディングワイヤW1・W2が設けられており、赤色LDチップ125の上面と凸部610の先端面との間にボンディングワイヤW3・W4が設けられている。
緑色LDチップ205の上面と凸部615の先端面との間にボンディングワイヤW5・W6が設けられており、青色LDチップ225の上面と凸部620の先端面との間にボンディングワイヤW7・W8が設けられている。緑色LDチップ245の上面と凸部625の先端面との間にボンディングワイヤW9・W10が設けられている。
なお、第1主面145及び第2主面265のうち少なくとも1つの一部には凸部が設けられていてもよい。また、第1保持部10cには、凸部620と対向する位置に凹部が設けられており、第2保持部20cには、凸部605・610それぞれに対向する位置に凹部が設けられている。つまり、第1主面145に対する平面視において第1主面145の凸部と、第2主面265の凹部とは互いに重なるように配置され、第1主面145の凹部と、第2主面265の凸部とは互いに重なるように配置される。
サブマウントを用いずに、第1保持部10c及び第2保持部20cにLDチップを直接設ける場合において、各発光点の位置を、第1主面145と垂直な方向と直交する略同一平面上に並ぶようにする。この場合、LDチップに電気を供給するためのボンディングワイヤが保持部の主面と接触することが考えられ、十分に発光点の位置を調節することができない。図10に示す構成のように、第1主面145及び第2主面265に凸部を設けることで発光点の位置を調節しやすくなる。また、LDチップと保持部との間にサブマウントを介していないので、放熱性が向上する。
以上により、例えば、第1主面145の一部に設けられた凸部605の先端面に赤色LDチップ105が設けられることで、第1主面145における凸部以外の部分と、発光点120との間の距離が大きくなる。
例えば、赤色LDチップ105の上面と凸部605の先端面との間にボンディングワイヤW1・W2を設ける場合を考える。この場合、発光点120・140・220・240・260の位置が、第1主面145と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置を製造するとき、ボンディングワイヤW1・W2が、第2主面265における凸部以外の部分と接触しにくくなる。よって、発光点120・140・220・240・260の位置が、第1主面145と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置1を容易に製造することができる。
なお、赤色LDチップ105・125には、ジャンクションダウン方式とジャンクションアップ方式とがある。図10に示す構成では、赤色LDチップ105・125がジャンクションダウン方式であることが望ましい。例えば、凸部605にはボンディングワイヤW1・W2が設けられているので、図10に示すように、凸部605の対面が凹部になっている場合、ボンディングワイヤW1・W2が対面の第2保持部20cに接触しにくくなる。このため、レーザ光源装置の信頼性及び歩留まりを向上させることができる。
一方、凹部が設けられていない保持部(フラットな保持部)同士において、ジャンクションダウンの赤色LDチップ105・125を用いた場合、ボンディングワイヤW1・W2が対面の保持部に当たり歩留りが低下することが懸念される。
〔実施形態8〕
本発明の他の実施形態について、図11に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図11に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図11の(a)及び(b)に示すように、第1保持部10dの第1主面145の両端部分の一方には凹部146が設けられ、第1主面145の両端部分の他方には凹部147が設けられている。
図11の(c)及び(d)に示すように、第2保持部20に設けられた接合部405の先端には凸部406が設けられ、第2保持部20に設けられた接合部410の先端には凸部411が設けられている。
レーザ光源装置の製造時において、第1保持部10dと第2保持部20とを接合部405・410により接合するとき、凸部406が凹部146に嵌め込まれ、凸部411が凹部147に嵌め込まれる。これにより、凸部406・411がそれぞれ、凹部146・147に嵌め込まれたとき、第1保持部10d及び第2保持部20において左右方向の位置が決定するため、上下方向の位置を調節するだけで済む。よって、第1保持部10d及び第2保持部20の位置を調節するための生産機械には、左右方向の位置を調節する機能は不要であり、上下方向の位置を調節する機能を備えていればよい。
〔実施形態9〕
本発明の他の実施形態について、図12に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図12に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図12に示すように、サブマウント110の先端面と第2主面265との間にボンディングワイヤW11が設けられ、赤色LDチップ105の上面と第2主面265との間にボンディングワイヤW12が設けられている。サブマウント130の先端面と第2主面265との間にボンディングワイヤW13が設けられ、赤色LDチップ125の上面と第2主面265との間にボンディングワイヤW14が設けられている。
サブマウント210の先端面と第1主面145との間にボンディングワイヤW15が設けられ、緑色LDチップ205の上面と第1主面145との間にボンディングワイヤW16が設けられている。サブマウント230の先端面と第1主面145との間にボンディングワイヤW17が設けられ、青色LDチップ225の上面と第1主面145との間にボンディングワイヤW18が設けられている。サブマウント250の先端面と第1主面145との間にボンディングワイヤW19が設けられ、緑色LDチップ245の上面と第1主面145との間にボンディングワイヤW20が設けられている。
これにより、例えば、ボンディングワイヤW11が、緑色LDチップ205、サブマウント210と接触することを防ぐことができる。よって、ボンディングワイヤW11~W20それぞれが、ボンディングワイヤW11~W20と電気的に接続されていない箇所と接触することで、ショートすることを防ぐことができる。
〔まとめ〕
本発明の態様1に係るレーザ光源装置1・2・3・4は、第1発光点(発光点120)から、第1レーザ光(レーザ光L1)を出射する第1光源(光源115)と、第2発光点(発光点220)から、第2レーザ光(レーザ光L2)を出射する第2光源(光源215)と、第3発光点(発光点240)から、第3レーザ光(レーザ光L3)を出射する第3光源(光源235)と、前記第1光源が設けられた第1主面145を有する第1保持部10・10a・10b・10cと、前記第2光源及び前記第3光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面265を有する第2保持部20・20a・20b・20cとを備える。
本発明の態様1に係るレーザ光源装置1・2・3・4は、第1発光点(発光点120)から、第1レーザ光(レーザ光L1)を出射する第1光源(光源115)と、第2発光点(発光点220)から、第2レーザ光(レーザ光L2)を出射する第2光源(光源215)と、第3発光点(発光点240)から、第3レーザ光(レーザ光L3)を出射する第3光源(光源235)と、前記第1光源が設けられた第1主面145を有する第1保持部10・10a・10b・10cと、前記第2光源及び前記第3光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面265を有する第2保持部20・20a・20b・20cとを備える。
上記構成によれば、レーザ光源装置は、第1主面を有する第1保持部と、第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備える。これにより、第1光源と第2光源との間の伝熱距離、及び第1光源と第3光源との間の伝熱距離は長くなり、第2光源及び第3光源から第2保持部に伝わった熱は、第1保持部に伝わりにくくなる。よって、第1光源に、第2光源及び第3光源からの熱の影響を受けにくくさせることができるので、第1光源の発光効率の低下を防ぐことができる。
例えば、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを第1光源として用いるとき、赤色レーザダイオードは、第2光源及び第3光源からの熱の影響を受けにくいので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
また、第1光源が設けられた第1主面と、第2光源及び第3光源が設けられた第2主面とは対向している。これにより、第1光源、第2光源、及び第3光源が同一の主面に設けられた場合と比較して、保持部が有する主面の面積を小さくすることができるので、レーザ光源装置をより小型化することができる。
本発明の態様2に係るレーザ光源装置1・2・3・4は、上記態様1において、前記第1光源(光源115)は、赤色レーザダイオードである第1レーザダイオード(赤色LDチップ105)を含み、前記第2光源(光源215)は、緑色レーザダイオードである第2レーザダイオード(緑色LDチップ205)を含み、前記第3光源(光源235)は、青色レーザダイオードである第3レーザダイオード(青色LDチップ225)を含んでもよい。
上記構成によれば、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを第1レーザダイオードとして用い、緑色レーザダイオード及び青色レーザダイオードをそれぞれ第2レーザダイオード及び第3レーザダイオードとして用いる。また、第1主面と第2主面とが対向していることに加え、第1光源、第2光源、及び第3光源は互いに離れている。これにより、第1光源、第2光源、及び第3光源が同一の主面に設けられた場合と比較して、赤色レーザダイオードと緑色レーザダイオードとの間の伝熱距離、及び赤色レーザダイオードと青色レーザダイオードとの間の伝熱距離は長くなる。よって、赤色レーザダイオードに、緑色レーザダイオード及び青色レーザダイオードからの熱の影響を受けにくくさせることができるので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
本発明の態様3に係るレーザ光源装置1・2・3・4は、上記態様2において、前記第1発光点(発光点120)の位置、前記第2発光点(発光点220)の位置、及び前記第3発光点(発光点240)の位置は、前記第1主面145と垂直な方向と直交する略同一平面上に並んでいてもよい。
上記構成によれば、第1発光点の位置、第2発光点の位置、及び第3発光点の位置は、第1主面と垂直な方向と直交する略同一平面上に並んでいる。これにより、第1発光点の位置、第2発光点の位置、及び第3発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並んでいない場合と比較すると、第1レーザ光、第2レーザ光、及び第3レーザ光を合波させるための光学部品の数を少なくすることができる。具体的に以下に説明する。
第1レーザ光、第2レーザ光、及び第3レーザ光を合波させるとき、第1発光点の位置、第2発光点の位置、及び第3発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並んでいない場合を考える。この場合、第1レーザ光、第2レーザ光、及び第3レーザ光は、第1主面と垂直な方向において異なる位置の発光点から出射される。第1レーザ光、第2レーザ光、及び第3レーザ光を合波させるためには、第1主面と垂直な方向において第1レーザ光、第2レーザ光、及び第3レーザ光を一致させる部材が必要になる。一方、第1レーザ光、第2レーザ光、及び第3レーザ光が、第1主面と垂直な方向において同一の位置の発光点から出射される場合は、この部材が不要になる。よって、光学部品の数を少なくすることができる。
本発明の態様4に係るレーザ光源装置1・2・3・4は、上記態様2において、前記第1主面145と垂直な方向に沿った、前記第1発光点(発光点120)の位置と前記第2発光点(発光点220)の位置との間の距離は、300μm以下または、前記第1主面と垂直な方向に沿った、前記第1発光点の位置と前記第3発光点(発光点240)の位置との間の距離は、300μm以下であってもよい。
本発明の態様5に係るレーザ光源装置1・2・3・4は、上記態様2または4のいずれかにおいて、前記第1光源(光源115)、前記第2光源(光源215)、及び前記第3光源(光源235)は、前記第1主面145に対する平面視において互いに重ならなくてもよい。
上記構成によれば、第1光源、第2光源、及び第3光源は、第1主面に対する平面視において互いに重ならない。これにより、例えば、第1光源、第2光源、及び第3光源が、第1主面に対する平面視において互いに重なる場合と比較して、第1発光点を、第2主面により近づけることができるので、レーザ光源装置をより小型化することができる。
本発明の態様6に係るレーザ光源装置4は、上記態様2から5のいずれかにおいて、前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向は、互いに同一方向であり、前記第1光源(光源115)、前記第2光源(光源215)、及び前記第3光源(光源235)は、前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向に対して垂直な平面に対する平面視において互いに一部が重なってもよい。
上記構成によれば、第1光源、第2光源、及び第3光源は、第1レーザ光の出射方向、第2レーザ光の出射方向、及び第3レーザ光の出射方向に対して垂直な平面に対する平面視において互いに一部が重なる。第1光源、第2光源、及び第3光源それぞれを一部が重なるように設けることで、重なった分だけレーザ光源装置をより小型化することができる。
本発明の態様7に係るレーザ光源装置4は、上記態様2から6のいずれかにおいて、前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向は、互いに同一方向であり、前記第1光源(光源115)、前記第2光源(光源215)、及び前記第3光源(光源235)は、前記第1レーザ光の出射方向に互いにずれてもよい。
上記構成によれば、第1光源、第2光源、及び第3光源は、第1レーザ光の出射方向に互いにずれて配置される。これにより、例えば、第1光源、第2光源、及び第3光源それぞれを一部が重なるように設けることで、重なった分だけレーザ光源装置をより小型化することができる。
本発明の態様8に係るレーザ光源装置1・2・3・4は、上記態様2から7のいずれかにおいて、前記第1保持部10・10a・10b・10cと前記第2保持部20・20a・20b・20cとは互いに接触していなくてもよい。
上記構成によれば、第1光源、第2光源、及び第3光源は互いに接触していない。これにより、赤色レーザダイオードと緑色レーザダイオードとの間の伝熱距離、及び赤色レーザダイオードと青色レーザダイオードとの間の伝熱距離は長くなる。よって、赤色レーザダイオードに、緑色レーザダイオード及び青色レーザダイオードからの熱の影響を受けにくくさせることができるので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
本発明の態様9に係るレーザ光源装置1・2・3・4は、上記態様2から8のいずれかにおいて、前記第1保持部10・10a・10b・10cと前記第2保持部20・20a・20b・20cとを接合する接合部405・410を備え、前記接合部の熱伝導率は、前記第1保持部の熱伝導率または前記第2保持部の熱伝導率より低くてもよい。
上記構成によれば、接合部の熱伝導率は、第1保持部の熱伝導率または第2保持部の熱伝導率より低い。これにより、第1光源と第2光源との間の伝熱距離、及び第1光源と第3光源との間の伝熱距離は長くなり、第2光源及び第3光源から第2保持部に伝わった熱は、第1保持部に伝わりにくくなる。よって、第1光源に、第2光源及び第3光源からの熱の影響を受けにくくさせることができるので、第1光源の発光効率の低下を防ぐことができる。
本発明の態様10に係るレーザ光源装置は、上記態様2または9のいずれかにおいて、前記第1主面145の一部には凹部が設けられ、前記第1光源(光源115)は、前記第1主面に設けられた凹部505の底面に設けられてもよい。
上記構成によれば、第1主面の一部に設けられた凹部の底面に、第1光源が設けられる。これにより、凹部の深さの分だけ、第1主面から突出する第1光源の高さを小さくすることができるので、レーザ光源装置をより小型化することができる。
本発明の態様11に係るレーザ光源装置は、上記態様2または10のいずれかにおいて、前記第2主面265の一部には凹部が設けられ、前記第2光源(光源215)及び前記第3光源(光源235)のうち少なくとも1つは、前記第2主面に設けられた凹部の底面に設けられてもよい。
上記構成によれば、例えば、第2主面の一部に設けられた凹部の底面に、第2光源が設けられる。これにより、凹部の深さの分だけ、第2主面から突出する第2光源の高さを小さくすることができるので、レーザ光源装置をより小型化することができる。
本発明の態様12に係るレーザ光源装置は、上記態様2または11のいずれかにおいて、前記第1主面145は、一部に凸部を有し、前記第2主面265は、一部に凹部を有し、前記第1レーザダイオード(赤色LDチップ105)は、前記第1主面の凸部上に配置され、前記第1主面に対する平面視において前記第1主面の凸部と、前記第2主面の凹部とは互いに重なるように配置されてもよい。
上記構成によれば、第1主面は、一部に凸部を有し、第2主面は、一部に凹部を有し、第1レーザダイオードは、前記第1主面の凸部上に配置される。また、第1主面に対する平面視において第1主面の凸部と、第2主面の凹部とは互いに重なるように配置される。これにより、第1主面における凸部以外の部分と、第1発光点との間の距離が大きくなる。
例えば、第1レーザダイオードの上面と凸部の先端面との間にボンディングワイヤを設ける場合を考える。この場合、第1発光点の位置及び第2発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置を製造するとき、そのボンディングワイヤが、第2主面と接触しにくくなる。具体的には、第1主面の凸部の対面が凹部になっている場合、ボンディングワイヤが対面の第2保持部に接触しにくくなる。よって、第1発光点の位置及び第2発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置を容易に製造することができる。
本発明の態様13に係るレーザ光源装置は、上記態様2から12のいずれかにおいて、前記第1主面145は、一部に凹部を有し、前記第2主面265は、一部に凸部を有し、前記第2レーザダイオード(緑色LDチップ205)または前記第3レーザダイオード(青色LDチップ225)は、前記第2主面の凸部上に配置され、前記第1主面に対する平面視において前記第1主面の凹部と、前記第2主面の凸部とは互いに重なるように配置されてもよい。
上記構成によれば、第1主面は、一部に凹部を有し、第2主面265は、一部に凸部を有し、第2レーザダイオードまたは第3レーザダイオードは、第2主面の凸部上に配置される。また、第1主面に対する平面視において第1主面の凹部と、第2主面の凸部とは互いに重なるように配置される。例えば、第2主面における凸部以外の部分と、第2発光点との間の距離が大きくなる。
例えば、第2レーザダイオードの上面と凸部の先端面との間にボンディングワイヤを設ける場合を考える。この場合、第1発光点の位置及び第2発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置を製造するとき、そのボンディングワイヤが、第1主面と接触しにくくなる。具体的には、第2主面の凸部の対面が凹部になっている場合、ボンディングワイヤが対面の第1保持部に接触しにくくなる。よって、第1発光点の位置及び第2発光点の位置が、第1主面と垂直な方向と直交する略同一平面上に並ぶようにレーザ光源装置を容易に製造することができる。
本発明の態様14に係るレーザ光源装置3は、第1発光点(発光点120)から、第1レーザ光(レーザ光L1)を出射する第1光源(光源115)と、第2発光点(発光点285)から、第2レーザ光(レーザ光L7)を出射する第2光源(光源280)と、前記第1光源が設けられた第1主面145を有する第1保持部10と、前記第2光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面265を有する第2保持部20とを備える。
上記構成によれば、レーザ光源装置は、第1主面を有する第1保持部と、第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備える。これにより、第1光源と第2光源との間の伝熱距離は長くなり、第2光源から第2保持部に伝わった熱は、第1保持部に伝わりにくくなる。よって、第1光源に、第2光源からの熱の影響を受けにくくさせることができるので、第1光源の発光効率の低下を防ぐことができる。
例えば、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを第1光源として用いるとき、赤色レーザダイオードは、第2光源からの熱の影響を受けにくいので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
また、第1光源が設けられた第1主面と、第2光源が設けられた第2主面とは対向している。これにより、第1光源及び第2光源が同一の主面に設けられた場合と比較して、保持部が有する主面の面積を小さくすることができるので、レーザ光源装置をより小型化することができる。
本発明の態様15に係るレーザ光源装置3は、上記態様14において、前記第1光源(光源115)は、赤色レーザダイオードである第1レーザダイオード(赤色LDチップ105)を含み、
前記第2光源(光源280)は、水色レーザダイオードである第2レーザダイオード(水色LDチップ270)を含んでもよい。
前記第2光源(光源280)は、水色レーザダイオードである第2レーザダイオード(水色LDチップ270)を含んでもよい。
上記構成によれば、熱の影響を受けると発光効率が低下しやすい赤色レーザダイオードを第1レーザダイオードとして用い、水色レーザダイオードを第2レーザダイオードとして用いる。また、第1主面と第2主面とが対向している。これにより、第1光源及び第2光源が同一の主面に設けられた場合と比較して、赤色レーザダイオードと水色レーザダイオードとの間の伝熱距離は長くなる。よって、赤色レーザダイオードに、水色レーザダイオードからの熱の影響を受けにくくさせることができるので、赤色レーザダイオードの発光効率の低下を防ぐことができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1、2、3、4 レーザ光源装置
10、10a、10b、10c、10d 第1保持部
20、20a、20b、20c 第2保持部
105 赤色LDチップ(第1レーザダイオード)
110 サブマウント(第1サブマウント)
115 光源(第1光源)
120 発光点(第1発光点)
125 赤色LDチップ
130、155、250 サブマウント
135、160、255 光源
140、165、260 発光点
145、145a、145b 第1主面
146、147 凹部
150 赤外LDチップ
205 緑色LDチップ(第2レーザダイオード)
210、275 サブマウント(第2サブマウント)
215、280 光源(第2光源)
220、285 発光点(第2発光点)
225 青色LDチップ(第3レーザダイオード)
230 サブマウント(第3サブマウント)
235 光源(第3光源)
240 発光点(第3発光点)
245 緑色LDチップ
265、265a、265b 第2主面
270 水色LDチップ(第2レーザダイオード)
305、310、315、320、325、365、375 レンズ
330、330a、330b、330c 合波部
335、340、345、350、355、370、380 ダイクロックミラー
360、360a、360b、360c 筐体
361 上部
362 下部
405、410 接合部
406、411 凸部
415 ヒートシンク
420 レンズ保持部
505、510、515、520、525、530、535 凹部
605、610、615、620、625 凸部
W1~W20 ボンディングワイヤ
A1 接着剤
L1 レーザ光(第1レーザ光)
L2、L7 レーザ光(第2レーザ光)
L3 レーザ光(第3レーザ光)
L4~L6 レーザ光
10、10a、10b、10c、10d 第1保持部
20、20a、20b、20c 第2保持部
105 赤色LDチップ(第1レーザダイオード)
110 サブマウント(第1サブマウント)
115 光源(第1光源)
120 発光点(第1発光点)
125 赤色LDチップ
130、155、250 サブマウント
135、160、255 光源
140、165、260 発光点
145、145a、145b 第1主面
146、147 凹部
150 赤外LDチップ
205 緑色LDチップ(第2レーザダイオード)
210、275 サブマウント(第2サブマウント)
215、280 光源(第2光源)
220、285 発光点(第2発光点)
225 青色LDチップ(第3レーザダイオード)
230 サブマウント(第3サブマウント)
235 光源(第3光源)
240 発光点(第3発光点)
245 緑色LDチップ
265、265a、265b 第2主面
270 水色LDチップ(第2レーザダイオード)
305、310、315、320、325、365、375 レンズ
330、330a、330b、330c 合波部
335、340、345、350、355、370、380 ダイクロックミラー
360、360a、360b、360c 筐体
361 上部
362 下部
405、410 接合部
406、411 凸部
415 ヒートシンク
420 レンズ保持部
505、510、515、520、525、530、535 凹部
605、610、615、620、625 凸部
W1~W20 ボンディングワイヤ
A1 接着剤
L1 レーザ光(第1レーザ光)
L2、L7 レーザ光(第2レーザ光)
L3 レーザ光(第3レーザ光)
L4~L6 レーザ光
Claims (15)
- 第1発光点から、第1レーザ光を出射する第1光源と、
第2発光点から、第2レーザ光を出射する第2光源と、
第3発光点から、第3レーザ光を出射する第3光源と、
前記第1光源が設けられた第1主面を有する第1保持部と、
前記第2光源及び前記第3光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備えることを特徴とするレーザ光源装置。 - 前記第1光源は、赤色レーザダイオードである第1レーザダイオードを含み、
前記第2光源は、緑色レーザダイオードである第2レーザダイオードを含み、
前記第3光源は、青色レーザダイオードである第3レーザダイオードを含むことを特徴とする請求項1に記載のレーザ光源装置。 - 前記第1発光点の位置、前記第2発光点の位置、及び前記第3発光点の位置は、前記第1主面と垂直な方向と直交する略同一平面上に並んでいることを特徴とする請求項2に記載のレーザ光源装置。
- 前記第1主面と垂直な方向に沿った、前記第1発光点の位置と前記第2発光点の位置との間の距離は、300μm以下または、
前記第1主面と垂直な方向に沿った、前記第1発光点の位置と前記第3発光点の位置との間の距離は、300μm以下であることを特徴とする請求項2に記載のレーザ光源装置。 - 前記第1光源、前記第2光源、及び前記第3光源は、前記第1主面に対する平面視において互いに重ならないことを特徴とする請求項2から4のいずれか1項に記載のレーザ光源装置。
- 前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向は、互いに同一方向であり、
前記第1光源、前記第2光源、及び前記第3光源は、前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向に対して垂直な平面に対する平面視において互いに一部が重なることを特徴とする請求項2から5のいずれか1項に記載のレーザ光源装置。 - 前記第1レーザ光の出射方向、前記第2レーザ光の出射方向、及び前記第3レーザ光の出射方向は、互いに同一方向であり、
前記第1光源、前記第2光源、及び前記第3光源は、前記第1レーザ光の出射方向に互いにずれることを特徴とする請求項2から6のいずれか1項に記載のレーザ光源装置。 - 前記第1保持部と前記第2保持部とは互いに接触していないことを特徴とする請求項2から7のいずれか1項に記載のレーザ光源装置。
- 前記第1保持部と前記第2保持部とを接合する接合部を備え、
前記接合部の熱伝導率は、前記第1保持部の熱伝導率または前記第2保持部の熱伝導率より低いことを特徴とする請求項2から8のいずれか1項に記載のレーザ光源装置。 - 前記第1主面の一部には凹部が設けられ、
前記第1光源は、前記第1主面に設けられた凹部の底面に設けられることを特徴とする請求項2から9のいずれか1項に記載のレーザ光源装置。 - 前記第2主面の一部には凹部が設けられ、
前記第2光源及び前記第3光源のうち少なくとも1つは、前記第2主面に設けられた凹部の底面に設けられることを特徴とする請求項2から10のいずれか1項に記載のレーザ光源装置。 - 前記第1主面は、一部に凸部を有し、
前記第2主面は、一部に凹部を有し、
前記第1レーザダイオードは、前記第1主面の凸部上に配置され、
前記第1主面に対する平面視において前記第1主面の凸部と、前記第2主面の凹部とは互いに重なるように配置されることを特徴とする請求項2から11のいずれか1項に記載のレーザ光源装置。 - 前記第1主面は、一部に凹部を有し、
前記第2主面は、一部に凸部を有し、
前記第2レーザダイオードまたは前記第3レーザダイオードは、前記第2主面の凸部上に配置され、
前記第1主面に対する平面視において前記第1主面の凹部と、前記第2主面の凸部とは互いに重なるように配置されることを特徴とする請求項2から12のいずれか1項に記載のレーザ光源装置。 - 第1発光点から、第1レーザ光を出射する第1光源と、
第2発光点から、第2レーザ光を出射する第2光源と、
前記第1光源が設けられた第1主面を有する第1保持部と、
前記第2光源が設けられた、前記第1主面に対向し、且つ、平行な第2主面を有する第2保持部とを備えることを特徴とするレーザ光源装置。 - 前記第1光源は、赤色レーザダイオードである第1レーザダイオードを含み、
前記第2光源は、水色レーザダイオードである第2レーザダイオードを含むことを特徴とする請求項14に記載のレーザ光源装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017129742 | 2017-06-30 | ||
JP2017-129742 | 2017-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003546A1 true WO2019003546A1 (ja) | 2019-01-03 |
Family
ID=64741309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014322 WO2019003546A1 (ja) | 2017-06-30 | 2018-04-03 | レーザ光源装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019003546A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020205303A1 (en) * | 2019-03-29 | 2020-10-08 | Facebook Technologies, Llc | Compact array light source for scanning display |
JP2021034389A (ja) * | 2019-08-13 | 2021-03-01 | 日本ルメンタム株式会社 | 光サブアッセンブリ |
JP2021068794A (ja) * | 2019-10-23 | 2021-04-30 | 日亜化学工業株式会社 | 光源装置 |
US11366309B2 (en) | 2019-03-29 | 2022-06-21 | Facebook Technologies, Llc | Scanning projector display with multiple light engines |
DE102022106943A1 (de) | 2022-03-24 | 2023-09-28 | Ams-Osram International Gmbh | Optoelektronisches modul |
US12000567B2 (en) | 2020-04-15 | 2024-06-04 | Nichia Corporation | Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237490A (ja) * | 1987-03-26 | 1988-10-03 | Hitachi Ltd | 半導体レ−ザ装置 |
JPH07211991A (ja) * | 1993-12-29 | 1995-08-11 | Xerox Corp | 多重ビーム型ダイオードレーザアレイ |
JP2005353614A (ja) * | 2004-05-28 | 2005-12-22 | Ricoh Co Ltd | 半導体レーザーアレイ、半導体レーザーアレイヘッド、印刷用版材製版装置、光走査装置、画像記録装置 |
JP2007201285A (ja) * | 2006-01-27 | 2007-08-09 | Sony Corp | 光源装置 |
JP2009044066A (ja) * | 2007-08-10 | 2009-02-26 | Sanyo Electric Co Ltd | レーザモジュール、照明装置および投写型映像表示装置 |
JP2010103487A (ja) * | 2008-09-26 | 2010-05-06 | Sanyo Electric Co Ltd | 半導体レーザ装置および表示装置 |
JP2010199274A (ja) * | 2009-02-25 | 2010-09-09 | Nichia Corp | 半導体レーザ装置 |
US20120033290A1 (en) * | 2009-04-13 | 2012-02-09 | Photodigm, Inc. | Light Generating System and Method |
JP2012044015A (ja) * | 2010-08-20 | 2012-03-01 | Sanyo Electric Co Ltd | 半導体レーザ装置および光装置 |
JP2016051802A (ja) * | 2014-08-29 | 2016-04-11 | 日亜化学工業株式会社 | 光源装置及びこの光源装置を備えたプロジェクタ |
-
2018
- 2018-04-03 WO PCT/JP2018/014322 patent/WO2019003546A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237490A (ja) * | 1987-03-26 | 1988-10-03 | Hitachi Ltd | 半導体レ−ザ装置 |
JPH07211991A (ja) * | 1993-12-29 | 1995-08-11 | Xerox Corp | 多重ビーム型ダイオードレーザアレイ |
JP2005353614A (ja) * | 2004-05-28 | 2005-12-22 | Ricoh Co Ltd | 半導体レーザーアレイ、半導体レーザーアレイヘッド、印刷用版材製版装置、光走査装置、画像記録装置 |
JP2007201285A (ja) * | 2006-01-27 | 2007-08-09 | Sony Corp | 光源装置 |
JP2009044066A (ja) * | 2007-08-10 | 2009-02-26 | Sanyo Electric Co Ltd | レーザモジュール、照明装置および投写型映像表示装置 |
JP2010103487A (ja) * | 2008-09-26 | 2010-05-06 | Sanyo Electric Co Ltd | 半導体レーザ装置および表示装置 |
JP2010199274A (ja) * | 2009-02-25 | 2010-09-09 | Nichia Corp | 半導体レーザ装置 |
US20120033290A1 (en) * | 2009-04-13 | 2012-02-09 | Photodigm, Inc. | Light Generating System and Method |
JP2012044015A (ja) * | 2010-08-20 | 2012-03-01 | Sanyo Electric Co Ltd | 半導体レーザ装置および光装置 |
JP2016051802A (ja) * | 2014-08-29 | 2016-04-11 | 日亜化学工業株式会社 | 光源装置及びこの光源装置を備えたプロジェクタ |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020205303A1 (en) * | 2019-03-29 | 2020-10-08 | Facebook Technologies, Llc | Compact array light source for scanning display |
CN113631988A (zh) * | 2019-03-29 | 2021-11-09 | 脸谱科技有限责任公司 | 用于扫描显示器的紧凑型阵列光源 |
US11366309B2 (en) | 2019-03-29 | 2022-06-21 | Facebook Technologies, Llc | Scanning projector display with multiple light engines |
US11714282B2 (en) | 2019-03-29 | 2023-08-01 | Meta Platforms Technologies, Llc | Compact array light source for scanning display |
JP2021034389A (ja) * | 2019-08-13 | 2021-03-01 | 日本ルメンタム株式会社 | 光サブアッセンブリ |
JP7330810B2 (ja) | 2019-08-13 | 2023-08-22 | 日本ルメンタム株式会社 | 光サブアッセンブリ |
JP2021068794A (ja) * | 2019-10-23 | 2021-04-30 | 日亜化学工業株式会社 | 光源装置 |
JP7417045B2 (ja) | 2019-10-23 | 2024-01-18 | 日亜化学工業株式会社 | 光源装置 |
JP7525811B2 (ja) | 2019-10-23 | 2024-07-31 | 日亜化学工業株式会社 | 光源装置 |
US12000567B2 (en) | 2020-04-15 | 2024-06-04 | Nichia Corporation | Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode |
DE102022106943A1 (de) | 2022-03-24 | 2023-09-28 | Ams-Osram International Gmbh | Optoelektronisches modul |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019003546A1 (ja) | レーザ光源装置 | |
US10824060B2 (en) | Light source module, method of manufacturing light source module, and projection-type display unit | |
JP6361293B2 (ja) | 半導体レーザ装置 | |
KR20180011024A (ko) | 레이저 컴포넌트 | |
US20130022069A1 (en) | High power surface mount technology package for side emitting laser diode | |
WO2018003156A1 (ja) | 光モジュール | |
US11817679B2 (en) | Light emitting device | |
US10707643B2 (en) | Laser light source module | |
US12000567B2 (en) | Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode | |
US20210083451A1 (en) | Light emission device | |
CN112636160B (zh) | 激光器 | |
TW527759B (en) | Powerpack laser diode assemblies | |
JP6552710B2 (ja) | レーザー光源装置およびレーザー光源装置の製造方法 | |
US10680405B2 (en) | Semiconductor light-emitting device | |
US20220416502A1 (en) | Semiconductor laser device | |
US11588296B2 (en) | Package, light-emitting device, and laser device | |
JP2023004162A (ja) | レーザ光源 | |
WO2020036053A1 (ja) | 発光装置および投射型表示装置 | |
JP7534654B2 (ja) | レーザ光源 | |
JP2004040021A (ja) | 半導体レーザ装置 | |
WO2017010026A1 (ja) | レーザ光源モジュール | |
JP2015213109A (ja) | レーザ光源モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18824187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |