WO2019159531A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2019159531A1
WO2019159531A1 PCT/JP2018/047079 JP2018047079W WO2019159531A1 WO 2019159531 A1 WO2019159531 A1 WO 2019159531A1 JP 2018047079 W JP2018047079 W JP 2018047079W WO 2019159531 A1 WO2019159531 A1 WO 2019159531A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
steel cord
adhesive layer
cus
Prior art date
Application number
PCT/JP2018/047079
Other languages
English (en)
French (fr)
Inventor
徹也 中島
寛之 藤岡
松岡 映史
山下 健一
伸栄 高村
益任 鈴木
浩二 藤澤
Original Assignee
住友電気工業株式会社
栃木住友電工株式会社
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 栃木住友電工株式会社, 住友ゴム工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP18906353.0A priority Critical patent/EP3753749A4/en
Priority to US16/962,323 priority patent/US20200338928A1/en
Priority to JP2020500308A priority patent/JP7112480B2/ja
Priority to CN201880088978.4A priority patent/CN111699095B/zh
Publication of WO2019159531A1 publication Critical patent/WO2019159531A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0014Surface treatments of steel cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3067Copper (Cu)
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3085Alloys, i.e. non ferrous
    • D07B2205/3089Brass, i.e. copper (Cu) and zinc (Zn) alloys
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to a tire.
  • Patent Document 1 and Patent Document 2 there are elongated steel elements for reinforcing rubber products, and the elongated steel elements are covered with a copper-M-zinc ternary or quaternary alloy coating.
  • a covered, elongated steel element is disclosed.
  • a reinforced rubber article comprising a rubber compound and an elongated steel element is also disclosed.
  • a steel cord having a plating film, and a rubber covering the steel cord contains Cu and Zn, wherein the steel cord, the interface between the rubber and the Cu 2 S on the rubber side, have an adhesive layer containing a CuS, the molar ratio of Cu 2 S and CuS contained in the adhesive layer Cu 2
  • a tire having S / CuS of 1.0 or more is provided.
  • FIG. 1 is a cross-sectional view of a tire according to an aspect of the present disclosure. It is the figure which showed the belt layer typically. It is explanatory drawing of the structural example of the steel cord contained in the tire which concerns on 1 aspect of this indication. It is sectional drawing in a surface perpendicular
  • Patent Document 1 also describes that the durability of the tire has been increased, but the specific degree of durability when the tire is used is not clear.
  • the demand for durability is increasing year by year, and it is required to further increase the durability.
  • an object of the present disclosure is to provide a tire having excellent durability.
  • a tire having excellent durability can be provided.
  • a tire according to an aspect of the present disclosure includes a steel cord having a plating film, and a rubber that covers the steel cord,
  • the plating film contains Cu and Zn, Wherein the steel cord, the interface between the rubber and the Cu 2 S on the rubber side, have an adhesive layer containing a CuS, the molar ratio of Cu 2 S and CuS contained in the adhesive layer Cu 2 S / CuS is 1.0 or more.
  • Cu 2 S in the adhesive layer has a function of increasing the adhesion between the steel cord and the rubber, whereas CuS is brittle and the steel cord and the rubber It is thought that it has the function of reducing the adhesive strength.
  • Cu 2 contained in the adhesive layer Cu 2 contained in the adhesive layer
  • the ratio of S is sufficiently larger than the ratio of CuS, and the adhesion between the steel cord and rubber can be increased, and the durability of the tire can be increased.
  • Cu means copper and Zn means zinc.
  • Cu 2 S means copper (I) sulfide, and CuS means copper (II) sulfide.
  • Cu 2 S / CuS is obtained by dividing the amount of Cu 2 S in the adhesive layer by the amount of CuS in the adhesive layer, that is, the molar ratio (substance ratio) between Cu 2 S and CuS. means.
  • the Cu 2 S / CuS of the adhesive layer after the wet heat test may be 1.0 or more.
  • the average value of the thickness of the adhesive layer after the wet heat test may be 1.5 times or less than the average value of the thickness of the adhesive layer before the wet heat test.
  • the plating film has a zinc oxide layer on the surface,
  • the average thickness of the zinc oxide layer may be 50 nm or more and 120 nm or less.
  • the plating film has the zinc oxide layer on the surface,
  • the average value of the thickness of the zinc oxide layer after the wet heat test may be 1.2 times or less of the average value of the thickness of the zinc oxide layer before the wet heat test.
  • the rubber may contain 0.1 to 5.0 parts by mass of organic acid cobalt with respect to 100 parts by mass of the rubber component.
  • the plating film may further include one or more elements selected from Co and Ni.
  • the above Co means cobalt
  • the above Ni means nickel
  • the inventors of the present invention have intensively studied to make a tire having excellent durability.
  • the tire having excellent durability means a tire that can be used without being damaged for a longer period of time when the tire is mounted on an automobile or the like.
  • the tire according to the present embodiment can have a steel cord having a plating film and a rubber covering the steel cord.
  • the plating film can contain Cu and Zn.
  • the steel cord, the interface between the rubber and the Cu 2 S rubber side has an adhesive layer containing a CuS, the molar ratio of Cu 2 S and CuS contained in the adhesive layer Cu 2 S / CuS can be 1.0 or more.
  • FIG. 1 is a cross-sectional view taken along a plane perpendicular to the circumferential direction of the tire 11 according to this embodiment. Although FIG. 1 shows only the left portion of CL (center line), the same structure is continuously provided on the right side of CL with CL as the axis of symmetry.
  • the tire 11 includes a tread portion 12, a sidewall portion 13, and a bead portion 14.
  • the tread part 12 is a part in contact with the road surface.
  • the bead portion 14 is provided closer to the inner diameter side of the tire 11 than the tread portion 12.
  • the bead part 14 is a part in contact with the rim of the wheel of the vehicle.
  • the sidewall portion 13 connects the tread portion 12 and the bead portion 14. When the tread portion 12 receives an impact from the road surface, the sidewall portion 13 is elastically deformed and absorbs the impact.
  • the tire 11 includes an inner liner 15, a carcass 16, a belt layer 17, and a bead wire 18.
  • the inner liner 15 is made of rubber and seals the space between the tire 11 and the wheel.
  • the carcass 16 forms the skeleton of the tire 11.
  • the carcass 16 is made of, for example, organic fibers such as polyester, nylon, and rayon and rubber.
  • the bead wire 18 is provided in the bead part 14.
  • the bead wire 18 receives a pulling force acting on the carcass.
  • the belt layer 17 tightens the carcass 16 to increase the rigidity of the tread portion 12.
  • the tire 11 has two belt layers 17.
  • the number of layers of the belt layer 17 is not particularly limited and can be arbitrarily selected.
  • FIG. 2 is a diagram schematically showing the two belt layers 17.
  • FIG. 2 shows a cross-sectional view in a plane perpendicular to the longitudinal direction of the belt layer 17, that is, the circumferential direction of the tire 11.
  • each belt layer 17 has a plurality of steel cords 21 and rubber 22.
  • the plurality of steel cords 21 are arranged in a line.
  • the rubber 22 covers the steel cord 21, and the entire circumference of each steel cord is covered with the rubber 22.
  • the steel cord 21 is embedded in the rubber 22.
  • the steel cord disposed in the tire of the present embodiment has one or more steel strands also called filaments.
  • the steel cord When one steel cord has a plurality of filaments, the steel cord preferably has a twisted structure in which a plurality of filaments are twisted along the longitudinal direction.
  • the twist structure in the case where the steel cord has a plurality of filaments is not particularly limited.
  • the steel cord can have a twist structure called a layer twist structure or a single twist structure, for example.
  • a layer twist structure or a single twist structure, for example.
  • the structural example of the twist structure of a steel cord is demonstrated, using a specific example.
  • the layer twist structure has a structure in which a plurality of filaments are wound in layers in order from the center in a cross section perpendicular to the longitudinal direction of the steel cord, and can be expressed as an N + M structure, for example. .
  • the N + M structure is a core in which N filaments are twisted so as to be spiral along the longitudinal direction, and M filaments are arranged along the longitudinal direction of the core so as to cover the outer periphery of the core. It means a structure having an outer sheath twisted spirally.
  • FIG. 3 is a perspective view of a steel cord having a 3 + 8 structure
  • FIG. 4 schematically shows a cross-sectional view in a plane perpendicular to the longitudinal direction corresponding to the Y-axis direction of FIG. 3, that is, an XZ plane.
  • the steel cord 30 shown in FIG. 3 and FIG. 4 forms a core 311 that is a first layer by twisting three filaments 31 together.
  • eight filaments 32 are spirally wound around the core 311 along the longitudinal direction of the core 311 to form a one-layer outer sheath 321.
  • one layer means a structure in which the filaments are arranged in a single layer (one layer) along the circumferential direction of one circle in a cross section perpendicular to the longitudinal direction of the steel cord.
  • the filament 32 constituting the outer sheath 321 is arranged so as to be one layer between the circumscribed circle C ⁇ b> 1 of the core 311 and the circumscribed circle C ⁇ b> 2 of the outer sheath 321. Yes.
  • the layer twist structure an example of a two-layer twist structure having an N + M structure, specifically, a 3 + 8 structure is shown, but the present invention is not limited to such a form.
  • a three-layer twisted structure in which a plurality of filaments are further spirally twisted along the longitudinal direction of the core 311 on the outer periphery of the outer sheath 321 of the steel cord 30 shown in FIGS. You can also.
  • the number of filaments constituting the core 311 and the outer sheath 321 is not particularly limited, and can be arbitrarily selected according to the diameter of the filament, that is, the filament diameter (elementary wire diameter).
  • the single twist structure can be expressed as, for example, a 1 ⁇ N structure.
  • the 1 ⁇ N structure means a structure in which N filaments are twisted so as to form a single layer (one layer).
  • the single layer means a structure in which filaments are arranged in a single layer (one layer) along the circumferential direction of one circle in a cross section perpendicular to the longitudinal direction of the steel cord.
  • FIG. 5 is a perspective view of a steel cord having a 1 ⁇ 4 structure
  • FIG. 6 is a cross-sectional view in a plane perpendicular to the longitudinal direction corresponding to the Y-axis direction of FIG. 5, that is, an XZ plane.
  • the steel cord 50 having a 1 ⁇ 4 structure is formed by twisting four filaments 51 so as to form a single layer. Then, as shown in FIG. 6, the four filaments 51 are arranged in a single layer along the circumferential direction of the circumscribed circle C3.
  • a 1 ⁇ 4 structure is shown as a single twist structure, it is not limited to such a form.
  • a twisted structure in which three or five or more filaments are spirally twisted along the longitudinal direction can be used.
  • the diameter of the filament of the steel cord included in the tire of the present embodiment is not particularly limited, and can be arbitrarily selected according to required characteristics.
  • the diameter of the steel cord filament is preferably 0.15 mm or more and 0.50 mm or less, and more preferably 0.17 mm or more and 0.42 mm or less.
  • the steel cord containing the filament When the steel cord containing the filament is used for a tire by setting the filament diameter to 0.15 mm or more, it is preferable because durability against impact can be sufficiently increased.
  • the filament diameter it is preferable to set the filament diameter to 0.50 mm or less because when a steel cord including the filament is used for a tire, the impact can be sufficiently absorbed and riding comfort during driving can be enhanced.
  • the filament of the steel cord included in the tire of the present embodiment can have a plating film as described in detail below. For this reason, it is preferable that the filament diameter of the filament after forming a plating film exists in the said range.
  • the steel cord included in the tire of the present embodiment has a plating film on the surface thereof.
  • a plating film can be disposed on the surface of each filament.
  • the plating film can contain Cu and Zn. This is because when the plated coating contains Cu and Zn, and the steel cord having the plated coating is coated with rubber to form a tire, the Cu 2 is positioned closer to the rubber side than the interface between the steel cord and rubber. This is because an adhesive layer containing S or CuS or a zinc oxide layer containing zinc oxide can be formed. By forming the predetermined adhesive layer, the adhesion between the steel cord and the rubber can be increased, and a tire having excellent durability can be obtained.
  • the plating film can be a film in which the metal components are composed only of the above Cu and Zn, but can also contain a metal component other than Cu and Zn.
  • the plating film may further include one or more elements selected from Co (cobalt) and Ni (nickel).
  • the composition as the whole plating film is not particularly limited, among the metal components contained in the plating film, for example, the content of Cu is preferably 60% by mass or more and 75% by mass or less. Moreover, when a plating film further contains Co and Ni, it is preferable that content of Co and Ni shall be 0.5 to 7.5 mass% in total. And the remainder can be made into Zn.
  • the plating film is formed by forming a copper layer, a zinc layer, and, if necessary, a cobalt layer or a nickel layer on the filament before wire drawing by plating and then heat-treating the metal of each layer formed on the surface of the filament. It can be formed by diffusing.
  • the order of stacking the copper layer and the like formed on the filament for forming the plating film is not particularly limited, but it is preferable to stack the copper layer and the zinc layer, for example, from the filament side.
  • the cobalt layer and the nickel layer are preferably formed between the copper layer and the zinc layer or on the zinc layer.
  • the heat treatment conditions are not particularly limited, for example, the heat treatment can be performed by heating at 500 ° C. to 650 ° C. for 5 seconds to 25 seconds in an air atmosphere.
  • the filament which has a plating film can be formed by wire-drawing so that it may become a desired filament diameter.
  • the steel cord is composed of one filament, it can be used as it is after the wire drawing.
  • the obtained filament can be made into a steel cord having a plating film by twisting the filament so as to have a desired twisted structure, for example. . (Rubber)
  • the tire of the present embodiment can have rubber covering the steel cord.
  • Rubber can be formed by molding and vulcanizing a rubber composition.
  • the specific composition of the rubber can be selected according to the use of the tire and the characteristics required for the tire, and is not particularly limited.
  • the rubber can contain, for example, a rubber component, sulfur, and a vulcanization accelerator.
  • the rubber component preferably contains 60% by mass or more, preferably 70% by mass or more, of one or more types selected from natural rubber (NR: natural rubber) and isoprene rubber (IR) in the rubber component. Is more preferable, and it is further more preferable to contain 100 mass%.
  • NR natural rubber
  • IR isoprene rubber
  • Examples of rubber components used in combination with natural rubber or isoprene rubber include styrene / butadiene rubber (SBR), butadiene rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), and butyl rubber (IIR). And one or more selected from acrylonitrile-butadiene rubber (NBR).
  • SBR styrene / butadiene rubber
  • BR butadiene rubber
  • EPDM ethylene-propylene-diene rubber
  • IIR butyl rubber
  • NBR acrylonitrile-butadiene rubber
  • sulfur Although it does not specifically limit as sulfur, For example, sulfur generally used as a vulcanizing agent in the rubber industry can be used.
  • the sulfur content of the rubber is not particularly limited, but is preferably 5 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the ratio of sulfur to 100 parts by mass of the rubber component is 5 parts by mass or more, the crosslinking density of the obtained rubber can be increased, and in particular, the adhesive strength between the steel cord and the rubber can be increased. Further, it is preferable that the ratio of sulfur to 100 parts by mass of the rubber component is 8 parts by mass or less because sulfur can be particularly uniformly dispersed in the rubber and blooming can be suppressed. .
  • the vulcanization accelerator is not particularly limited.
  • N, N′-dicyclohexyl-2-benzothiazolylsulfenamide, N-cyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzo Sulfenamide accelerators such as thiazolyl sufenamide and N-oxydiethylene-2-benzothiazolyl sulfenamide are preferably used.
  • thiazole accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, tetrabenzyltyramium disulfide, tetramethyltyramium disulfide, tetraethyltyradium disulfide, tetrakis (2-ethylhexyl) ) Tyrium accelerators such as tiraum disulfide and tetramethyltyrium monosulfide may be used.
  • the rubber composition used for the tire according to the present embodiment can be produced by kneading these components by a conventional method, followed by hot pressing and extrusion.
  • gum of the tire of this embodiment contains 1 or more types selected from the cobalt simple substance and the compound containing cobalt.
  • cobalt-containing compound examples include organic acid cobalt and inorganic acid cobalt.
  • organic acid cobalt for example, one or more selected from cobalt naphthenate, cobalt stearate, cobalt neodecanoate, cobalt rosinate, cobalt versatate, cobalt tall oilate and the like can be preferably used.
  • the organic acid cobalt may be a complex salt in which a part of the organic acid is replaced with boric acid.
  • inorganic acid cobalt for example, one or more selected from cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt phosphate, and cobalt chromate can be preferably used.
  • the rubber of the tire of this embodiment contains organic acid cobalt. This is because the initial adhesion performance between the steel cord and the rubber can be particularly improved by containing the organic acid cobalt.
  • the initial adhesion performance means the adhesion performance between the steel cord immediately after vulcanization and the rubber during the manufacture of the tire.
  • the proportion of Cu 2 S in the adhesive layer can be increased, and the adhesive strength between the steel cord and rubber can be increased. it can.
  • organic acid cobalt is used as cobalt to add, the tendency becomes remarkable.
  • gum of the tire of this embodiment contains cobalt, especially organic acid cobalt, and it can be set as the tire excellent in durability especially by it.
  • gum can contain arbitrary components other than the said rubber component, sulfur, a vulcanization accelerator, cobalt, etc.
  • the rubber may also contain known rubber additives such as reinforcing agents (carbon black, silica, etc.), waxes, anti-aging agents and the like. (About the structure near the interface between the steel cord and rubber) Here, the structure in the vicinity of the interface between the steel cord included in the tire and the rubber is shown in FIG.
  • FIG. 7 corresponds to a cross-sectional view showing, for example, a region A of FIG.
  • the steel cord 71 can have a steel filament 711 on which a plating film 712 is disposed.
  • the plating film 712 contains Cu and Zn as described above.
  • the steel cord 71 may be configured such that a zinc oxide layer 713 is further disposed on the surface of the plating film 712.
  • the steel cord 71 has a plating film 712 containing Cu and Zn. For this reason, at the time of vulcanization, S (sulfur) blended in the rubber 72 reacts with Cu (copper) in the plating film 712 of the steel cord 71 to form an adhesive layer 74 containing Cu 2 S or CuS. It is thought that it is formed.
  • the adhesive layer 74 is formed closer to the rubber 72 than the interface 73 between the steel cord 71 and the rubber 72.
  • the molar ratio (substance ratio) of Cu 2 S and CuS in the adhesive layer 74 has an influence on the adhesive strength between the steel cord and the rubber. This is because Cu 2 S has a function of increasing the adhesive force between the steel cord and rubber, whereas CuS is brittle and is thought to have a function of reducing the adhesive force between the steel cord and rubber. It is.
  • Cu 2 S / CuS which is the molar ratio of Cu 2 S and CuS contained in the adhesive layer, is preferably 1.0 or more, and 1.1 More preferably.
  • the higher the ratio of Cu 2 S to CuS contained in the adhesive layer the higher the upper limit of Cu 2 S / CuS, which is the molar ratio of Cu 2 S and CuS contained in the adhesive layer.
  • the upper limit of Cu 2 S / CuS which is the molar ratio of Cu 2 S and CuS contained in the adhesive layer.
  • the tire Since the tire is mounted on a car or the like and is rotated and used at a high speed in a grounded state, it takes a long time to be placed in a high-temperature and high-humidity environment. Thus, when the tire is placed in a high-temperature and high-humidity environment, it is considered that moisture and oxygen pass through the tire rubber and reach the vicinity of the interface between the steel cord and the rubber. When moisture and oxygen reach the vicinity of the interface between the steel cord and the rubber, the specific mechanism is not clear, but the ratio of Cu 2 S in the adhesive layer decreases while the ratio of CuS It may increase and the value of Cu 2 S / CuS may decrease.
  • the tire according to the present embodiment is, for example, after the wet heat test when the wet heat test is held for 150 hours in a constant temperature and humidity furnace set in an air atmosphere at a temperature of 80 ° C. and a relative humidity of 95%.
  • the Cu 2 S / CuS of the adhesive layer is preferably 1.0 or more, and more preferably 1.1 or more.
  • the wet heat test is a test for accelerating the deterioration of the tire by placing the tire in a high-temperature and high-humidity environment for a certain period of time as in the tire usage environment.
  • the Cu 2 S / CuS of the adhesive layer after the wet heat test is 1.0 or more, Cu 2 S contained in the adhesive layer even after the wet heat test that is continuously placed in a high temperature and high humidity environment for a long time.
  • the ratio is sufficiently high, which means that the steel cord and rubber have a particularly high adhesive force. That is, when the Cu 2 S / CuS of the adhesive layer after the wet heat test is 1.0 or more, the wet heat test is carried out under severe conditions in which the adhesive strength between the steel cord and the rubber tends to be reduced. Even when the deterioration is promoted, it can be said that a high adhesive force is maintained between the two members. Therefore, when Cu 2 S / CuS adhesive layer after wet heat test of 1.0 or more is preferable because it is possible to obtain particularly high durability tire.
  • the upper limit of is not specifically limited, For example, it can be 10.0 or less.
  • Cu 2 S / CuS which is the molar ratio of Cu 2 S and CuS contained in the adhesive layer, can be evaluated by the following procedure, for example.
  • the tire to be measured is sliced so as to include a plane perpendicular to the longitudinal direction of the steel cord, and a sample for evaluation which is a thin piece including an interface between the steel cord and rubber on its surface is produced.
  • FIB Fluorused Ion Beam
  • evaluation using the sample cut out from the actual tire is preferable because the state of adhesion or deterioration can be observed and evaluated more accurately.
  • the sample for evaluation measures by the XAFS (X-ray absorption fine structure: X-ray absorption fine structure) about the field of the adhesion layer of the rubber side rather than the interface of a steel cord and rubber.
  • XAFS X-ray absorption fine structure: X-ray absorption fine structure
  • the X-ray light source is not particularly limited, but it is preferable to use radiated light because the wavelength is continuous and the intensity is high.
  • Cu 2 S / CuS which is the molar ratio of Cu 2 S and CuS contained in the adhesive layer, can be calculated from the results of XAFS measured for Cu 2 S and CuS in advance as standard samples.
  • the change in the thickness of the adhesive layer is small before and after the wet heat test.
  • the moisture and oxygen that permeate the rubber reach the adhesive layer and react to decrease the ratio of Cu 2 S in the adhesive layer and increase the ratio of CuS.
  • a change occurs in the adhesive layer.
  • the thickness of the adhesive layer increases when the wet heat test is performed and the adhesive strength between the steel cord and the rubber decreases. The phenomenon to be seen is seen. For this reason, as described above, it is preferable that the change in the thickness of the adhesive layer is small before and after the wet heat test.
  • the average thickness is preferably 1.5 times or less of the average thickness of the adhesive layer before the wet heat test.
  • the average value of the thickness of the adhesive layer after the wet heat test is more preferably 1.4 times or less than the average value of the thickness of the adhesive layer before the wet heat test.
  • the average value of the thickness of the adhesive layer after the wet heat test is the average value of the thickness of the adhesive layer before the wet heat test. It is preferable that it is 0.8 times or more.
  • the average value of the thickness of the adhesive layer can be evaluated by the following procedure, for example.
  • the tire to be measured is sliced so as to include a plane perpendicular to the longitudinal direction of the steel cord, and a sample for evaluation which is a thin piece including an interface between the steel cord and rubber on its surface is produced.
  • a sample for evaluation it is preferable to use FIB so as not to damage a minute region in the bonding interface between the steel cord and the rubber.
  • evaluation using the sample cut out from the actual tire is preferable because the state of adhesion or deterioration can be observed and evaluated more accurately.
  • element mapping is performed on the interface between the steel cord and the rubber of the sample for evaluation, and the region where Cu and S are distributed can be used as the region of the adhesive layer, and the thickness of the adhesive layer can be obtained.
  • Element mapping can be performed, for example, by line analysis along the diameter direction of the steel cord.
  • the thickness of the adhesive layer can be obtained at a plurality of locations, and the average value can be used as the average value of the thickness of the adhesive layer.
  • the number of locations where the thickness of the adhesive layer is measured is not particularly limited, but it is preferable to perform measurement at 3 or more locations so that more accurate evaluation is possible. It is more preferable to perform measurement at more than one location. However, since it takes a lot of time to measure if there are too many locations to be measured, for example, it is preferable to measure at 10 locations or less.
  • the means used for elemental mapping is not particularly limited, but preferably, for example, STEM / EDX (Scanning Transmission Electron Microscope: Scanning Transmission Electron Microscope / Energy Dispersive X-ray Spectrometry: Energy Dispersive X-ray Analysis) is suitable. Can be used.
  • the adhesive layer means a region where both Cu and S are distributed when element mapping is performed, and is a layer containing Cu and S.
  • the tire of this embodiment can also have a zinc oxide layer 713 on the surface of the plating film 712 included in the steel cord 71. This is considered to be derived from zinc contained in the plating film.
  • the zinc oxide layer formed on the surface of the steel cord plating film included in the tire of the present embodiment has an average thickness of 50 nm to 120 nm. It is preferable that it is 50 nm or more and 115 nm or less.
  • the zinc oxide layer 713 controls the movement of Cu contained in the plating film 712 of the steel cord 71 toward the rubber 72 and suppresses an increase in the proportion of CuS in the adhesive layer 74. Therefore, the average value of the thickness of the zinc oxide layer by the above 50 nm, is believed to be able to increase the proportion of Cu 2 S in the adhesive layer 74, preferably.
  • the zinc oxide layer is relatively brittle, if the zinc oxide layer becomes excessively thick, the adhesive strength between the steel cord and the rubber may be reduced. Moreover, when the zinc oxide layer is excessively thick, the formation of the adhesive layer may be hindered. And according to the examination of the inventors of the present invention, by suppressing the average value of the thickness of the zinc oxide layer to 120 nm or less, Cu contained in the plating film 712 is prevented from excessively moving to the rubber 72 side. However, the formation of the adhesive layer can be promoted. For this reason, since the adhesive force of a steel cord and rubber can be kept high enough, it is preferable.
  • the average value of the thickness of the zinc oxide layer can also be measured in the same manner as in the case of the adhesive layer described above. That is, the tire to be measured is sliced so as to include a plane perpendicular to the longitudinal direction of the steel cord, and a sample for evaluation which is a thin piece including an interface between the steel cord and rubber on its surface is produced. When producing a sample for evaluation, it is preferable to use FIB so as not to damage a minute region in the bonding interface between the steel cord and the rubber. Thus, evaluation using the sample cut out from the actual tire is preferable because the state of adhesion or deterioration can be observed and evaluated more accurately.
  • element mapping is performed on the interface between the steel cord and the rubber for the sample for evaluation, and the region where Zn and O are distributed can be used as the region of the zinc oxide layer, and the thickness of the zinc oxide layer can be obtained.
  • Element mapping can be performed, for example, by line analysis along the diameter direction of the steel cord, and the thickness of the zinc oxide layer is obtained at a plurality of locations, and the average value is taken as the average value of the thickness of the zinc oxide layer. it can.
  • the number of locations at which the thickness of the zinc oxide layer is measured is not particularly limited, but it is preferable to perform measurement at three or more locations so that more accurate evaluation can be performed. It is more preferable to perform measurement at four or more locations. However, since it takes a lot of time to measure if there are too many locations to be measured, for example, it is preferable to measure at 10 locations or less.
  • the zinc oxide layer means a region where both Zn and O are distributed when element mapping is performed, and is a layer containing Zn and O.
  • the tire according to the present embodiment has a post-wet heat test when the wet heat test is performed for 150 hours in a constant temperature and humidity furnace in which the temperature is set to 80 ° C. and the relative humidity is set to 95% in an air atmosphere.
  • the average value of the thickness of the zinc oxide layer is preferably 1.2 times or less of the average value of the thickness of the zinc oxide layer before the wet heat test.
  • the change in the thickness of the zinc oxide layer is small before and after the wet heat test.
  • the moisture and oxygen that permeate the rubber reach the zinc oxide layer by performing the wet heat test, the zinc contained in the plating film reacts with oxygen and the thickness of the zinc oxide layer increases.
  • the change in the thickness of the zinc oxide layer before and after the wet heat test is preferably small.
  • the average value of the thickness of the zinc oxide layer after the wet heat test is The average value of the thickness of the zinc oxide layer before the wet heat test is preferably 1.2 times or less.
  • the thickness of the zinc oxide layer even after the wet heat test is performed. This is because the adhesiveness between the steel cord and the rubber is kept sufficiently high. And it is because it can be set as a highly durable tire by fully raising the adhesive force of a steel cord and rubber
  • the average value of the thickness of the zinc oxide layer after the wet heat test is more preferably 1.1 times or less of the average value of the thickness of the zinc oxide layer before the wet heat test.
  • the lower limit value of the ratio of the average value of the thickness of the zinc oxide layer after the wet heat test to the average value of the thickness of the zinc oxide layer before the wet heat test is not particularly limited. It is preferable.
  • the rubber of the tire of the present embodiment preferably contains one or more types selected from cobalt alone and a compound containing cobalt.
  • the rubber of the tire of this embodiment contains organic acid cobalt. This is because the initial adhesion performance between the steel cord and the rubber can be particularly improved by containing the organic acid cobalt.
  • the tire according to the present embodiment can have an adhesive layer containing Cu 2 S or CuS at the interface between the steel cord and rubber, and the steel cord can be made to have a predetermined composition.
  • the tire can be made to have a high durability by increasing the adhesive strength with rubber.
  • Cu 2 in the adhesive layer can be added to the rubber by adding cobalt, which was conventionally considered to reduce the durability of the tire.
  • the ratio of S can be increased, and the adhesive strength between the steel cord and rubber can be increased.
  • organic acid cobalt is used as cobalt to add, the tendency becomes remarkable.
  • gum of the tire of this embodiment contains cobalt, especially organic acid cobalt, and it can be set as the tire excellent in durability especially by it.
  • the content of cobalt contained in the tire rubber of the present embodiment and the compound containing cobalt is not particularly limited.
  • the content of one or more substances selected from cobalt and a compound containing cobalt is from 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferable that it is 0.5 to 4 parts by mass.
  • the content of one or more kinds of substances selected from these cobalt and cobalt-containing compounds 0.1 parts by mass or more, the effect of increasing the adhesive strength between the steel cord and rubber can be sufficiently exerted, This is because the durability of the rubber can be particularly enhanced by setting it to 5 parts by mass or less.
  • the rubber of the tire according to the present embodiment preferably contains organic acid cobalt. And also in this case, it is preferable that this rubber
  • the plating film formed on the surface of the steel cord contained in the tire of the present embodiment can be a film composed of only Cu and Zn as metal components. It is also possible to contain other metal components.
  • the plating film may further include one or more elements selected from Co (cobalt) and Ni (nickel).
  • the plating film when the plating film further contains one or more elements selected from Co and Ni, when the wet heat test is performed, the Cu 2 S in the adhesive layer A decrease in the ratio and an increase in the ratio of CuS can be suppressed. Moreover, when the plating film further contains one or more elements selected from Co and Ni, an increase in the thickness of the zinc oxide layer can be suppressed when the wet heat test is performed.
  • the mechanism of the above effect when the plating film further contains one or more elements selected from Co and Ni is not clear, but the plating film is made noble due to the high corrosion potential of Co or Ni, or Co This is considered to be due to the sacrificial oxidation effect of Ni.
  • the plated coating of the steel cord further includes one or more elements selected from Co and Ni, it is preferable because the durability of the tire can be particularly improved.
  • the manufacturing method of the tire according to the present embodiment is not particularly limited. For example, a preliminary test is performed before manufacturing, and Cu 2 S / CuS which is a molar ratio of Cu 2 S and CuS contained in the adhesive layer is determined. Manufacturing conditions can be selected to be 1.0 or more.
  • the current density during galvanization and the treatment time can be selected to adjust the surface roughness of the resulting plating film.
  • the current density at the time of galvanizing for example 18A / dm 2 or more 24A / dm less than 2.
  • the processing time at the time of zinc plating shall be 4.0 second or more and 15.0 seconds or less, and it is further more preferable to set it as 6.0 second or more and less than 10.0 second. This is suitable because the ratio of Cu 2 S in the adhesive layer becomes particularly high when the surface of the plating film to be obtained forms an adhesive layer by setting the conditions for galvanizing to the above conditions. This is thought to be due to the surface roughness.
  • Vulcanization conditions can be represented by the product of ECU (Equivalent Cure Unit: equivalent vulcanization amount) and time.
  • the ECU can be calculated by the following equation (1).
  • ECU exp (( ⁇ E / R) ⁇ (1 / T ⁇ 1 / T0)) (1)
  • E the activation energy
  • R the general gas constant
  • T0 the reference temperature
  • T the vulcanization temperature.
  • the vulcanization conditions are preferably selected so that the ECU ⁇ time is 50 or more and 65 or less, and more preferably 55 or more and 60 or less. This is because it is possible to sufficiently vulcanize by setting the ECU ⁇ time to 50 or more and 65 or less, and the Cu 2 S / CuS in the adhesive layer can be more reliably set to 1.0 or more, which is preferable. It is.
  • the time for calculating ECU ⁇ time means vulcanization time, and the unit is minutes.
  • Cu 2 S and CuS contained in the adhesive layer depending on other conditions other than those described above, such as addition of one or more kinds of substances selected from the above-described cobalt and cobalt-containing compounds to the tire rubber
  • the molar ratio Cu 2 S / CuS can also be adjusted.
  • the sample for evaluation which is a thin piece which contains the interface of a steel cord and rubber on the surface was produced.
  • a sample for evaluation was cut out from a tire with a cutter or the like and then processed using FIB (Hitachi High-Technologies Corporation model: FB-2100).
  • the region of the adhesive layer formed on the rubber side from the interface between the steel cord and rubber was measured by XAFS installed in BL08B2 of Spring-8.
  • High energy X-ray energy was scanned in the range of 9000 eV to 10500 eV, and the K-shell absorption edge of copper atoms and a broad vibration component spectrum were measured. This is an area called XANES (X-ray Absorption Near Edge Structure: X-ray absorption edge vicinity structure) 9600 eV or more and 9700 eV or less, and EXAFS (Extended X-ray Absorption Structure Stroke Structure X-ray Structure Structure X It was separated into a range of 9700 eV to 10500 eV.
  • XANES X-ray Absorption Near Edge Structure: X-ray absorption edge vicinity structure
  • EXAFS Extended X-ray Absorption Structure Stroke Structure X-ray Structure Structure X It was separated into a range of 9700 eV to 10500 eV.
  • elemental mapping was performed on the interface between the steel cord and the rubber for the sample for evaluation, and the region where Cu and S were distributed was defined as the region of the adhesive layer, and the thickness of the adhesive layer. Elemental mapping was performed by line analysis along the diameter direction of the steel cord, evaluation was performed at five locations, and the average value of the adhesive layer thickness measured at five locations was defined as the average value of the thickness of the adhesive layer.
  • Elemental mapping was performed using STEM / EDX (Model: JEM-2100F manufactured by JEOL Ltd.).
  • (4) Average thickness of zinc oxide layer First, the tire to be measured before or after the wet heat test was sliced to include a plane perpendicular to the longitudinal direction of the steel cord, and the steel An evaluation sample, which is a thin piece including an interface between a cord and rubber on its surface, was prepared. A sample for evaluation was cut out from a tire with a cutter or the like and then processed using FIB (Hitachi High-Technologies Corporation model: FB-2100).
  • FIB Hitachi High-Technologies Corporation model: FB-2100
  • elemental mapping was performed on the interface between the steel cord and the rubber for the sample for evaluation, and the region where Zn and O were distributed was defined as the region of the zinc oxide layer and the thickness of the zinc oxide layer. Elemental mapping is performed by line analysis along the diameter direction of the steel cord, evaluated at five locations, and the average value of the thickness of the zinc oxide layer measured at five locations is the average value of the thickness of the zinc oxide layer. did.
  • Elemental mapping was performed using STEM / EDX (Model: JEM-2100F manufactured by JEOL Ltd.).
  • Durability test The tires produced in each experimental example were run at an internal pressure (200 kPa), a load load (7.0 kN), and a speed (80 km / h) using a drum running tester. Then, the interface between the steel cord and the rubber was destroyed, and the time until the tread portion, which is the ground contact surface of the tire, was peeled off or swelled and was damaged was measured as the endurance time. In measuring the endurance time, the time less than 1 hour is rounded down.
  • the tire evaluated as A has the highest durability, and the durability decreases in the order of A> B> C> D> E.
  • the tires having evaluations of A, B, C, and D have sufficiently high durability.
  • Experimental Examples 1 to 10 are Examples, and Experimental Examples 11 and 12 are Comparative Examples.
  • Experimental Examples 1 to 10 are Examples, and Experimental Examples 11 and 12 are Comparative Examples.
  • Experimental Example 1 First, a steel cord used for a tire was manufactured by the following procedure.
  • a copper layer and a zinc layer were formed on the surface of the steel filament by plating.
  • the copper layer was formed using copper pyrophosphate as a plating solution, a current density of 22 A / dm 2 , and a treatment time of 14 seconds.
  • the zinc layer was formed using zinc sulfate as a plating solution, with a current density of 20 A / dm 2 and a treatment time of 7 seconds.
  • heat treatment was performed by heating at 600 ° C. for 9 seconds in an air atmosphere to diffuse the metal component and form a plating film.
  • the filament on which the obtained plated coating was formed was drawn to obtain a filament having a plated coating with a filament diameter of 0.21 mm.
  • the composition of the plating film was analyzed, it was confirmed that Cu was 64% by mass and Zn was 36% by mass.
  • the rubber composition contains 100 parts by mass of natural rubber as a rubber component.
  • the rubber composition as an additive is 60 parts by mass of carbon black, 6 parts by mass of sulfur, 1 part by mass as a vulcanization accelerator, 10 parts by mass of zinc oxide, and organic acid cobalt with respect to 100 parts by mass of the rubber component.
  • cobalt stearate in a proportion of 0.1 parts by weight.
  • a pneumatic tire having the structure shown in FIGS. 1 and 2 and having a size of 225 / 40R18 was produced using the steel cord and the rubber composition.
  • the molar ratio of Cu 2 S and CuS in the adhesive layer formed near the interface between the steel cord and rubber, the average value of the thickness of the adhesive layer, the thickness of the zinc oxide layer was evaluated.
  • the evaluation results are shown in the column of “Evaluation results of products not subjected to wet heat test” in Table 1.
  • the average value of the thickness of the adhesive layer and the average value of the thickness of the zinc oxide layer are the average thickness (A1 ), The average thickness (A2).
  • one tire was subjected to a wet heat test in which the tire was held in a constant temperature and humidity furnace set at 80 ° C. and a relative humidity of 95% in an air atmosphere for 150 hours.
  • the molar ratio of Cu 2 S and CuS in the adhesive layer formed in the vicinity of the interface between the steel cord and the rubber, the average value of the thickness of the adhesive layer, the thickness of the zinc oxide layer was evaluated.
  • the evaluation results are shown in the column of “Evaluation results of wet heat test product” in Table 1, and the average value of the thickness of the adhesive layer and the average value of the thickness of the zinc oxide layer are the average thickness (B1). , Shown as average thickness (B2).
  • Example 2 to Experimental Example 6 A tire was produced and evaluated in the same manner as in Experimental Example 1 except that the amount of cobalt stearate, which is an organic acid cobalt added to the rubber composition, was changed to the value shown in Table 1. The amount of cobalt stearate added is shown in the column of organic acid Co in Table 1. The results are shown in Table 1.
  • Example 7 to Experimental Example 9 When manufacturing the filament used for the steel cord, a cobalt layer or a nickel layer was further formed on the zinc layer. In addition, after forming a cobalt layer or a nickel layer, heat treatment and wire drawing are performed in the same manner as in Experimental Example 1.
  • the tires of Experimental Examples 1 to 10 in which the Cu 2 S / CuS in the adhesive layer is 1.0 or more have a durability time of 200 hours or more, and the durability evaluation A to D, and it was confirmed that the tire has high durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Ropes Or Cables (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

めっき被膜を有するスチールコードと、前記スチールコードを被覆するゴムとを有し、 前記めっき被膜は、Cuと、Znとを含有し、 前記スチールコードと、前記ゴムとの界面よりも、前記ゴム側にCu2Sと、CuSとを含む接着層を有し、前記接着層に含まれるCu2SとCuSとのモル比であるCu2S/CuSが1.0以上であるタイヤ。

Description

タイヤ
 本発明は、タイヤに関するものである。
 本出願は、2018年2月14日出願の日本出願第2018-024372号に基く優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1や、特許文献2には、ゴム製品の補強用の細長い鋼製エレメントであって、前記細長い鋼製エレメントが、銅―M-亜鉛の三元または四元合金被覆物の被覆物で覆われた、細長い鋼製エレメントが開示されている。また、ゴム化合物と細長い鋼製エレメントとを含む補強されたゴム物品も開示されている。
特表2015-511998号公報 特表2015-510554号公報
 本開示の一観点によれば、めっき被膜を有するスチールコードと、前記スチールコードを被覆するゴムとを有し、
 前記めっき被膜は、Cuと、Znとを含有し、
 前記スチールコードと、前記ゴムとの界面よりも、前記ゴム側にCuSと、CuSとを含む接着層を有し、前記接着層に含まれるCuSとCuSとのモル比であるCuS/CuSが1.0以上であるタイヤを提供する。
本開示の一態様に係るタイヤの断面図である。 ベルト層を模式的に示した図である。 本開示の一態様に係るタイヤに含まれるスチールコードの一構成例の説明図である。 図3のスチールコードの長手方向と垂直な面での断面図である。 本開示の一態様に係るタイヤに含まれるスチールコードの一構成例の説明図である。 図5のスチールコードの長手方向と垂直な面での断面図である。 図2の領域Aを拡大して示した、タイヤに含まれるスチールコードと、ゴムとの界面近傍の構造の模式図である。
[本開示が解決しようとする課題]
 ところで、タイヤの交換頻度を抑制し、より長期間に渡って使用できるように耐久性に優れたタイヤとすることが求められている。
 例えば特許文献1においてもタイヤの耐久性が増大した旨の記載があるが、タイヤとした場合の具体的な耐久性の程度は明らかではない。また、タイヤの高性能化に伴って、耐久性についての要求は年々高くなっており、さらに耐久性を高めることが求められている。
 このため、本開示の目的は、耐久性に優れたタイヤを提供することである。
[本開示の効果]
 本開示によれば、耐久性に優れたタイヤを提供できる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1)本開示の一態様に係るタイヤは、めっき被膜を有するスチールコードと、前記スチールコードを被覆するゴムとを有し、
 前記めっき被膜は、Cuと、Znとを含有し、
 前記スチールコードと、前記ゴムとの界面よりも、前記ゴム側にCuSと、CuSとを含む接着層を有し、前記接着層に含まれるCuSとCuSとのモル比であるCuS/CuSが1.0以上である。
 タイヤを自動車等に装着して使用していると、タイヤに含まれるスチールコードとゴムとの接着力の低下が認められる場合がある。そして、係る接着力の変化が耐久性に影響すると考えられるため、本発明の発明者らは、タイヤに含まれるスチールコードと、ゴムとの界面近傍の構造に着目して検討を行った。その結果、スチールコードとゴムとの界面近傍に生じるCuSとCuSとを含む接着層の組成がタイヤの耐久性に影響を有することを見出した。さらに、従来は検討されていなかった該接着層内のCuSとCuSとのモル比を所定の範囲とすることで、スチールコードとゴムとの接着力を高め、耐久性に優れたタイヤとすることができることを見出し、本発明を完成させた。
 本発明の発明者らの検討によると、接着層中のCuSはスチールコードとゴムとの接着力を高める働きを有しているのに対して、CuSは脆く、スチールコードとゴムとの接着力を低下させる働きがあると考えられる。
 そして、本発明の発明者らの検討によれば、接着層に含まれるCuSとCuSとのモル比であるCuS/CuSが1.0以上の場合、接着層に含まれるCuSの割合が、CuSの割合に対して十分に多く、スチールコードと、ゴムとの接着力を高め、タイヤの耐久性を高めることができる。
 なお、Cuは銅を、Znは亜鉛をそれぞれ意味する。また、CuSは硫化銅(I)を、CuSは硫化銅(II)をそれぞれ意味する。
 そして、CuS/CuSは、接着層内のCuSの物質量を、接着層内のCuSの物質量で割った値、すなわちCuSとCuSとのモル比(物質量比)を意味する。
 (2) 大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
 前記湿熱試験の後の、前記接着層の前記CuS/CuSが1.0以上であってもよい。
 (3) 大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
 前記湿熱試験の後の前記接着層の厚さの平均値が、前記湿熱試験の前の前記接着層の厚さの平均値の1.5倍以下であってもよい。
 (4) 前記めっき被膜は、表面に酸化亜鉛層を有し、
 前記酸化亜鉛層の厚さの平均値が50nm以上120nm以下であってもよい。
 (5) 前記めっき被膜は、表面に前記酸化亜鉛層を有し、
 大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
 前記湿熱試験の後の、前記酸化亜鉛層の厚さの平均値が、前記湿熱試験の前の前記酸化亜鉛層の厚さの平均値の1.2倍以下であってもよい。
 (6) 前記ゴムは、ゴム成分100質量部に対して有機酸コバルトを0.1質量部以上5.0質量部以下含んでいてもよい。
 (7) 前記めっき被膜は、Co、及びNiから選択された1種類以上の元素をさらに含んでいてもよい。
 なお、上記Coはコバルトを、上記Niはニッケルをそれぞれ意味する。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係るタイヤの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 〔タイヤ〕
 以下、本実施形態に係るタイヤについて図1~図7に基づき説明する。
 本発明の発明者らは、耐久性に優れたタイヤとするために鋭意検討を行った。
 なお、耐久性に優れたタイヤとは、タイヤを自動車等に装着して走行させた場合に、より長い期間、破損等が無く使用できるタイヤを意味する。
 タイヤを自動車等に装着して使用していると、タイヤに含まれるスチールコードとゴムとの接着力の低下が認められる場合がある。そして、係る接着力の変化が耐久性に影響すると考えられるため、本発明の発明者らは、タイヤに含まれるスチールコードと、ゴムとの界面近傍の構造に着目して検討を行った。その結果、スチールコードとゴムとの界面近傍に生じるCuSとCuSとを含む接着層の組成がタイヤの耐久性に影響を有することを見出した。さらに、従来は検討されていなかった該接着層内のCuSとCuSとのモル比を所定の範囲とすることで、スチールコードとゴムとの接着力を高め、耐久性に優れたタイヤとすることができることを見出し、本発明を完成させた。
 本実施形態に係るタイヤは、めっき被膜を有するスチールコードと、スチールコードを被覆するゴムとを有することができる。
 そして、めっき被膜は、Cuと、Znとを含有することができる。
 また、スチールコードと、ゴムとの界面よりも、ゴム側にCuSと、CuSとを含む接着層を有し、接着層に含まれるCuSとCuSとのモル比であるCuS/CuSを1.0以上とすることができる。
 以下、本実施形態のタイヤについて、具体的に説明する。
(タイヤの構造について)
 ここでまず、本実施形態のタイヤの構造の構成例について、図1、図2を用いて説明する。
 図1は、本実施形態に係るタイヤ11の周方向と垂直な面での断面図を示している。図1ではCL(センターライン)よりも左側部分のみを示しているが、CLを対称軸として、CLの右側にも連続して同様の構造を有している。
 図1に示すように、タイヤ11は、トレッド部12と、サイドウォール部13と、ビード部14とを備えている。
 トレッド部12は、路面と接する部位である。ビード部14は、トレッド部12よりタイヤ11の内径側に設けられている。ビード部14は、車両のホイールのリムに接する部位である。サイドウォール部13は、トレッド部12とビード部14とを接続している。トレッド部12が路面から衝撃を受けると、サイドウォール部13が弾性変形し、衝撃を吸収する。
 タイヤ11は、インナーライナー15と、カーカス16と、ベルト層17と、ビードワイヤー18とを備えている。
 インナーライナー15は、ゴムで構成されており、タイヤ11とホイールとの間の空間を密閉する。
 カーカス16は、タイヤ11の骨格を形成している。カーカス16は、例えばポリエステル、ナイロン、レーヨンなどの有機繊維とゴムとにより構成されている。
 ビードワイヤー18は、ビード部14に設けられている。ビードワイヤー18は、カーカスに作用する引っ張り力を受け止める。
 ベルト層17は、カーカス16を締め付けて、トレッド部12の剛性を高めている。図1に示した例では、タイヤ11は2層のベルト層17を有している。なお、ベルト層17の層数は特に限定されるものではなく、任意に選択することができる。
 図2は、2層のベルト層17を模式的に示した図である。図2は、ベルト層17の長手方向、すなわちタイヤ11の周方向と垂直な面での断面図を示している。
 図2に示したように、2層のベルト層17は、タイヤ11の径方向に重ねあわされている。各ベルト層17は、複数本のスチールコード21と、ゴム22とを有している。複数本のスチールコード21は、一列に並列されている。また、ゴム22は、スチールコード21を被覆しており、個々のスチールコードの全周はそれぞれゴム22で覆われている。スチールコード21はゴム22の中に埋め込まれている。
(スチールコード)
 次に本実施形態のタイヤ内に配置されたスチールコードの構成例について説明する。
 本実施形態のタイヤ内に配置するスチールコードは、フィラメントとも呼ばれる1本以上の鋼製の素線を有している。
 1本のスチールコードが複数本のフィラメントを有する場合には、該スチールコードは、複数のフィラメントをその長手方向に沿って撚り合わせた撚り構造を有することが好ましい。
 スチールコードが複数本のフィラメントを有する場合における撚り構造は特に限定されない。スチールコードは、例えば層撚り構造や、単撚り構造と呼ばれる撚り構造を有することができる。以下に、スチールコードの撚り構造の構成例を具体的な例を用いながら説明する。
 層撚り構造は、スチールコードの長手方向と垂直な断面において、複数本のフィラメントを、中心部から順番に層状に複数層巻きつけた構造を有し、例えばN+M構造のように表記することができる。
 N+M構造とは、N本のフィラメントを、その長手方向に沿って螺旋状になるように撚り合わせたコアと、該コアの外周を覆うように、コアの長手方向に沿ってM本のフィラメントを螺旋状に撚り合せたアウターシースとを有する構造を意味する。
 図3、図4を用いて、層撚り構造を有するスチールコードの構成例を説明する。
 図3は、3+8構造を有するスチールコードの斜視図であり、図4は、図3のY軸方向に当たる長手方向と垂直な面、すなわちXZ平面での断面図をそれぞれ模式的に示している。
 図3、図4に示したスチールコード30は、3本のフィラメント31が撚り合わされて1層目となるコア311を形成している。また、コア311の周りに、コア311の長手方向に沿って、8本のフィラメント32が螺旋状に撚り合わされ、1層のアウターシース321が形成されている。
 なお、ここで1層とは、スチールコードの長手方向と垂直な断面において、フィラメントが1つの円の円周方向に沿って単層(1層)となるように配列されている構造を意味する。具体的には、図4に示したように、コア311の外接円C1とアウターシース321の外接円C2との間に1層となるように、アウターシース321を構成するフィラメント32が配置されている。
 層撚り構造として、N+M構造、具体的には3+8構造の、2層の撚り構造の例を示したが、係る形態に限定されない。例えば、図3、図4に示したスチールコード30のアウターシース321の外周にさらに複数本のフィラメントを、コア311の長手方向に沿って螺旋状に撚り合せた3層の撚り構造等とすることもできる。また、コア311や、アウターシース321を構成するフィラメントの本数も特に限定されず、フィラメントの径、すなわちフィラメント径(素線径)等に応じて任意に選択することができる。
 単撚り構造は、例えば1×N構造のように表記することができる。
 そして、1×N構造とは、N本のフィラメントを単層(1層)となるように撚り合わせた構造を意味する。単層とは、スチールコードの長手方向と垂直な断面において、フィラメントが1つの円の円周方向に沿って単層(1層)となるように配列されている構造を意味する。
 図5、図6を用いて、単撚り構造を有するスチールコードの構成例を説明する。
 図5は、1×4構造を有するスチールコードの斜視図であり、図6は、図5のY軸方向に当たる長手方向と垂直な面、すなわちXZ平面での断面図である。
 図5、図6に示したように、1×4構造を有するスチールコード50は、4本のフィラメント51を単層となるように撚り合わせている。そして、図6に示すように、4本のフィラメント51が外接円C3の円周方向に沿って、単層となるように配列されている。
 単撚り構造として、1×4構造の例を示したが、係る形態に限定されない。例えば、3本、または5本以上のフィラメントを、長手方向に沿って螺旋状に撚り合せた撚り構造等とすることもできる。
 本実施形態のタイヤに含まれるスチールコードのフィラメントの直径、すなわちフィラメント径は、特に限定されず、要求される特性等に応じて任意に選択することができる。
 スチールコードのフィラメントの直径は、例えば0.15mm以上0.50mm以下が好ましく、0.17mm以上0.42mm以下がより好ましい。
 フィラメント径を0.15mm以上とすることで該フィラメントを含むスチールコードをタイヤに用いた場合に、衝撃に対する耐久性を十分に高めることができ好ましい。
 また、フィラメント径を0.50mm以下とすることで、該フィラメントを含むスチールコードをタイヤに用いた場合に、衝撃を十分に吸収し、走行時の乗り心地を高めることができるため好ましい。
 本実施形態のタイヤに含まれるスチールコードのフィラメントは以下に詳述するように、めっき被膜を有することができる。このため、めっき被膜を形成した後のフィラメントのフィラメント径が、上記範囲にあることが好ましい。
 本実施形態のタイヤに含まれるスチールコードは、その表面にめっき被膜を有している。なお、1本のスチールコードが上述のように複数のフィラメントを有する場合には、各フィラメントについて、その表面にめっき被膜を配置することができる。
 めっき被膜はCuと、Znとを含有することができる。これは、めっき被膜がCuと、Znとを含有することで、該めっき被膜を有するスチールコードをゴムにより被覆してタイヤとした場合に、スチールコードとゴムとの界面よりもゴム側にCuSやCuSを含有する接着層や、酸化亜鉛を含む酸化亜鉛層を形成できるからである。所定の接着層が形成されることで、スチールコードとゴムとの接着力を高め、耐久性に優れたタイヤとすることができる。
 めっき被膜は、金属成分が上記Cuと、Znとのみからなる被膜とすることもできるが、Cuと、Zn以外の金属成分を含有することもできる。めっき被膜は例えば、Co(コバルト)、及びNi(ニッケル)から選択された1種類以上の元素をさらに含むこともできる。
 めっき被膜全体としての組成は特に限定されないが、めっき被膜に含まれる金属成分のうち、例えばCuの含有量は60質量%以上75質量%以下であることが好ましい。また、めっき被膜がさらにCoやNiを含む場合、Co及びNiの含有量は合計で0.5質量%以上7.5質量%以下とすることが好ましい。そして、残部をZnとすることができる。
 めっき被膜は、伸線加工前のフィラメントに、銅層、亜鉛層、必要に応じてさらにコバルト層や、ニッケル層をめっきにより形成した後、熱処理することによりフィラメントの表面に形成した各層の金属を拡散することで形成することができる。なお、めっき被膜を形成するためにフィラメントに形成する銅層等の積層順は特に限定されないが、例えばフィラメント側から銅層、亜鉛層の順になるように積層することが好ましい。また、コバルト層や、ニッケル層は、銅層と亜鉛層との間、もしくは亜鉛層上に形成することが好ましい。
 熱処理の条件は特に限定されないが、例えば大気雰囲気下、500℃以上650℃以下で、5秒以上25秒以下加熱することにより実施できる。
 そして、めっき被膜を形成した後、所望のフィラメント径となるように伸線加工することで、めっき被膜を有するフィラメントを形成できる。スチールコードが1本のフィラメントから構成される場合には、伸線加工後、そのまま用いることができる。また、スチールコードが複数本のフィラメントを有する場合には、伸線加工後、得られたフィラメントを、例えば所望の撚り構造となるように撚り合せることでめっき被膜を有するスチールコードとすることができる。
(ゴム)
 本実施形態のタイヤは、スチールコードを被覆するゴムを有することができる。
 ゴムは、ゴムの組成物を成形し、加硫することで形成することができる。
 ゴムの具体的な組成はタイヤの用途や、タイヤに要求される特性等に応じて選択することができ、特に限定されない。ゴムは、例えばゴム成分と、硫黄と、加硫促進剤とを含むことができる。
 ゴム成分は、ゴム成分中、例えば天然ゴム(NR:natural rubber)、及びイソプレンゴム(IR:isoprene rubber)から選択された1種類以上を60質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、100質量%含むことさらに好ましい。
 これは、ゴム成分中の天然ゴム、及びイソプレンゴムから選択された1種類以上のゴムの割合を、60質量%以上とすることで、タイヤの破断強度を高めることができ、好ましいからである。
 天然ゴムや、イソプレンゴムと混用して用いるゴム成分としては、例えばスチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)から選択された1種類以上を挙げることができる。
 硫黄としては特に限定されないが、例えばゴム工業において加硫剤として一般的に用いられる硫黄を用いることができる。
 ゴムの硫黄の含有量は特に限定されないが、ゴム成分100質量部に対して例えば5質量部以上8質量部以下とするのが好ましい。
 これは、ゴム成分100質量部に対する、硫黄の割合を5質量部以上とすることで、得られるゴムの架橋密度を高め、特にスチールコードとゴムとの接着力を高めることができるからである。また、ゴム成分100質量部に対する、硫黄の割合を8質量部以下とすることで、硫黄をゴム内に特に均一に分散させることができ、またブルーミングが生じることを抑制できるため、好ましいからである。
 加硫促進剤についても特に限定されないが、例えばN,N′-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド等のスルフェンアミド系促進剤が好適に用いられる。また、所望により、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾール系促進剤や、テトラベンジルチラウムジスルフィド、テトラメチルチラウムジスルフィド、テトラエチルチラウムジスルフィド、テトラキス(2-エチルヘキシル)チラウムジスルフィド、テトラメチルチラウムモノスルフィド等のチラウム系促進剤を用いてもよい。
 本実施形態のタイヤに用いるゴム組成物は、これら各成分を、常法により混練りし、熱入れ及び押し出しすることにより製造することができる。
 また、本実施形態のタイヤのゴムは、コバルト単体、及びコバルトを含有する化合物から選択された1種類以上を含有することが好ましい。
 コバルトを含有する化合物としては、有機酸コバルトや、無機酸コバルトを挙げることができる。
 有機酸コバルトとしては例えば、ナフテン酸コバルト、ステアリン酸コバルト、ネオデカン酸コバルト、ロジン酸コバルト、バーサチック酸コバルト、トール油酸コバルト等から選択された1種類以上を好ましく用いることができる。なお、有機酸コバルトは有機酸の一部をホウ酸で置き換えた複合塩でもよい。
 無機酸コバルトとしては例えば、塩化コバルト、硫酸コバルト、硝酸コバルト、リン酸コバルト、クロム酸コバルトから選択された1種類以上を好ましく用いることができる。
 特に、本実施形態のタイヤのゴムは、有機酸コバルトを含有することがより好ましい。これは、有機酸コバルトを含有することで、スチールコードと、ゴムとの初期接着性能を特に向上させることができるからである。なお、初期接着性能とは、タイヤの製造時、加硫を行った直後のスチールコードと、ゴムとの接着性能を意味する。
 また、本発明の発明者らの検討によれば、コバルトをゴムに添加することで、接着層中のCuSの割合を高めることができ、スチールコードとゴムとの接着力を高めることができる。そして、添加するコバルトとして、有機酸コバルトを用いた場合、その傾向が顕著なものとなる。このため、本実施形態のタイヤのゴムは、コバルト、特に有機酸コバルトを含有することが好ましく、それにより特に耐久性に優れたタイヤとすることができる。
 また、ゴムは上記ゴム成分や、硫黄、加硫促進剤、コバルト等以外に任意の成分を含むことができる。ゴムは、例えば補強剤(カーボンブラック、シリカ等)、ワックス、老化防止剤などの周知のゴム用の添加剤を含有することもできる。
(スチールコードと、ゴムとの界面近傍の構造について)
 ここで、タイヤに含まれるスチールコードと、ゴムとの界面近傍の構造を図7に示す。
 図7は、例えばタイヤのベルト層について説明した図2の領域Aを拡大して示した断面図に相当する。
 図7に示したようにスチールコード71は、めっき被膜712が表面に配置された、鋼製のフィラメント711を有することができる。めっき被膜712は、既述の様にCuと、Znとを含有する。スチールコード71は、めっき被膜712の表面に、さらに酸化亜鉛層713が配置された構成とすることもできる。
 スチールコード71は、Cuと、Znとを含有するめっき被膜712を有している。このため、加硫時、ゴム72中に配合されたS(硫黄)と、スチールコード71のめっき被膜712中のCu(銅)とが反応してCuSや、CuSを含む接着層74が形成されると考えられる。そして、接着層74は、スチールコード71と、ゴム72との界面73よりもゴム72側に形成されている。
 本発明の発明者らの検討によると、接着層74中の、CuSと、CuSとのモル比(物質量比)がスチールコードと、ゴムとの接着力に影響を与えている。これは、CuSはスチールコードとゴムとの接着力を高める働きを有しているのに対して、CuSは脆く、スチールコードとゴムとの接着力を低下させる働きがあると考えられるからである。
 そして、本発明の発明者らの検討によれば、接着層に含まれるCuSとCuSとのモル比であるCuS/CuSは、1.0以上であることが好ましく、1.1以上であることがより好ましい。
 これは、接着層のCuS/CuSが1.0以上の場合、接着層に含まれるCuSの割合が、CuSの割合に対して十分に多く、スチールコードと、ゴムとの接着力を高め、タイヤの耐久性を高めることができるからである。
 既述の様に接着層に含まれるCuSに対するCuSの割合は高いほど好ましいと考えられるから、接着層に含まれるCuSとCuSとのモル比であるCuS/CuSの上限値は特に限定されないが、例えば10.0以下とすることができる。
 タイヤは、車等に装着され、接地した状態で高速で回転して使用されるため、高温高湿の環境下に置かれる時間が長くなる。このように、タイヤが高温高湿の環境下に置かれた場合、タイヤのゴムを透過して水分や酸素が、スチールコードと、ゴムとの界面近傍にまで到達すると考えられる。そして、スチールコードと、ゴムとの界面近傍にまで水分や酸素が達すると、具体的なメカニズムは明らかではないが、接着層中のCuSの割合が低下するのに対してCuSの割合が増加し、CuS/CuSの値が低下する場合がある。このような接着層中のCuS/CuSの値の低下は、スチールコードと、ゴムとの接着力に大きな影響を及ぼす。このため、本実施形態のタイヤは、例えば大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、湿熱試験の後の、接着層のCuS/CuSが1.0以上であることが好ましく、1.1以上であることがより好ましい。
 湿熱試験は、タイヤの使用環境と同様に高温高湿の環境下にタイヤを一定時間置き、タイヤの劣化を促進させる試験である。
 そして、湿熱試験後の接着層のCuS/CuSが1.0以上の場合、連続して長時間、高温高湿の環境下に置く湿熱試験後においても、接着層に含まれるCuSの割合が十分に高く、スチールコードと、ゴムとが特に高い接着力を有することを意味する。すなわち、湿熱試験後の接着層のCuS/CuSが1.0以上の場合、湿熱試験を実施することでスチールコードとゴムとの接着力が低下し易い過酷な状況下におき、タイヤの劣化を促進させた場合でも、両部材間で高い接着力を維持しているといえる。このため、湿熱試験後の接着層のCuS/CuSが1.0以上の場合、特に耐久性の高いタイヤとすることができるため好ましい。
 湿熱試験後の接着層に含まれるCuSに対するCuSの割合は高いほど好ましいと考えられるから、湿熱試験後の接着層に含まれるCuSとCuSとのモル比であるCuS/CuSの上限値は特に限定されないが、例えば10.0以下とすることができる。
 接着層に含まれるCuSとCuSとのモル比であるCuS/CuSは例えば以下の手順により評価することができる。測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製する。なお、評価用試料を作製する際には、スチールコードとゴムとの接着界面における微小な領域にダメージを与えないようにFIB(Focused Ion Beam:集束イオンビーム)を用いることが好ましい。このように実タイヤから切り出した試料を用いて評価することで、接着、あるいは劣化の状態をより正確に観察、評価でき、好ましい。
 そして、評価用試料について、スチールコードとゴムとの界面よりもゴム側の接着層の領域について、XAFS(X-ray absorption fine structure:X線吸収微細構造)により測定を行う。XAFSにより測定を行う際、X線の光源は特に限定されないが、波長が連続的であり、強度が高いことから放射光を用いることが好ましい。
 次いで、予め標準試料として、CuS、CuSについて測定していたXAFSの結果から、接着層に含まれるCuSと、CuSとのモル比であるCuS/CuSを算出できる。
 また、既述の湿熱試験を実施した場合、湿熱試験の前後で、接着層の厚さの変化が小さいことが好ましい。既述の様に湿熱試験を実施することで、ゴムを透過した水分や酸素が、接着層にまで到達し、反応すると、接着層中のCuSの割合が低下し、CuSの割合が増加する等、接着層に変化が生じる。そして、本発明の発明者らの検討によると、具体的なメカニズムは明らかではないものの、湿熱試験を実施し、スチールコードとゴムとの接着力が低下する場合に、接着層の厚さが増大する現象がみられる。このため、既述の様に、湿熱試験の前後で、接着層の厚さの変化が小さいことが好ましい。
 具体的には、大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合に、湿熱試験の後の接着層の厚さの平均値が、湿熱試験の前の接着層の厚さの平均値の1.5倍以下であることが好ましい。特に、湿熱試験の後の接着層の厚さの平均値が、湿熱試験の前の接着層の厚さの平均値の1.4倍以下であることがより好ましい。
 これは、湿熱試験後の接着層の厚さの平均値が、湿熱試験前の接着層の厚さの平均値の1.5倍以下の場合、湿熱試験による、接着層の変化が十分に抑制できており、スチールコードとゴムとの接着力が十分に高く維持できるからである。そして、耐久性に優れたタイヤとすることができるからである。
 なお、湿熱試験の前後で接着層の厚さにほとんど変化がないことが好ましいことから、湿熱試験後の接着層の厚さの平均値は、湿熱試験の前の接着層の厚さの平均値の0.8倍以上であることが好ましい。
 接着層の厚さの平均値は、例えば以下の手順により評価することができる。測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製する。なお、評価用試料を作製する際には、スチールコードとゴムとの接着界面における微小な領域にダメージを与えないようにFIBを用いることが好ましい。このように実タイヤから切り出した試料を用いて評価することで、接着、あるいは劣化の状態をより正確に観察、評価でき、好ましい。
 そして、評価用試料のスチールコードとゴムとの界面について、元素マッピングを行い、Cuと、Sとが分布している領域を接着層の領域とし、接着層の厚さとすることができる。元素マッピングは例えばスチールコードの直径方向に沿ってライン分析により行うことができ、複数の箇所で接着層の厚さを求め、その平均値を接着層の厚さの平均値とすることができる。接着層の厚さの平均値を算出する際に、接着層の厚さを測定する箇所の数は特に限定されないが、より正確に評価できるように3箇所以上で測定を行うことが好ましく、4箇所以上で測定を行うことがより好ましい。ただし、測定する箇所を多くしすぎると、測定に多くの時間を要することになるため、例えば10箇所以下で測定を行うことが好ましい。
 なお、元素マッピングを行う際に用いる手段は特に限定されないが、例えばSTEM/EDX(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡/Energy dispersive X―ray spectrometry:エネルギー分散型X線分析)等を好適に用いることができる。
 上述のように、接着層は、元素マッピングを行った場合に、Cu、及びSが共に分布している領域を意味し、Cu及びSを含む層となる。
 また、図7に示したように、本実施形態のタイヤは、スチールコード71が有するめっき被膜712の表面に酸化亜鉛層713を有することもできる。これはめっき被膜に含まれる亜鉛に由来して形成されているものと考えられる。
 そして、本発明の発明者らの検討によれば、本実施形態のタイヤに含まれるスチールコードのめっき被膜の表面に形成された酸化亜鉛層は、その厚さの平均値が50nm以上120nm以下であることが好ましく、50nm以上115nm以下であることがより好ましい。
 酸化亜鉛層713は、スチールコード71のめっき被膜712に含まれるCuのゴム72側への移動を制御し、接着層74内のCuSの割合が高くなることを抑制しているものと考えられる。このため、酸化亜鉛層の厚さの平均値を50nm以上とすることで、接着層74内のCuSの割合を高めることができると考えられ、好ましい。
 ただし、酸化亜鉛層は比較的脆いため、酸化亜鉛層が過度に厚くなるとスチールコードと、ゴムとの接着力が低下する恐れもある。また、酸化亜鉛層が過度に厚いと接着層の生成を阻害する恐れもある。そして、本発明の発明者らの検討によれば、酸化亜鉛層の厚さの平均値を120nm以下とすることで、めっき被膜712に含まれるCuがゴム72側に過度に移動することを抑制しつつも、接着層の生成を促進できる。このため、スチールコードと、ゴムとの接着力を十分に高く保つことができるため好ましい。
 酸化亜鉛層の厚さの平均値についても既述の接着層の場合と同様にして測定することができる。すなわち、測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製する。なお、評価用試料を作製する際には、スチールコードとゴムとの接着界面における微小な領域にダメージを与えないようにFIBを用いることが好ましい。このように実タイヤから切り出した試料を用いて評価することで、接着、あるいは劣化の状態をより正確に観察、評価でき、好ましい。
 そして、評価用試料について、スチールコードとゴムとの界面について、元素マッピングを行い、Znと、Oとが分布している領域を酸化亜鉛層の領域とし、酸化亜鉛層の厚さとすることができる。元素マッピングは例えばスチールコードの直径方向に沿ってライン分析により行うことができ、複数の箇所で酸化亜鉛層の厚さを求め、その平均値を酸化亜鉛層の厚さの平均値とすることができる。酸化亜鉛層の厚さの平均値を算出する際に、酸化亜鉛層の厚さを測定する箇所の数は特に限定されないが、より正確に評価できるように3箇所以上で測定を行うことが好ましく、4箇所以上で測定を行うことがより好ましい。ただし、測定する箇所を多くしすぎると、測定に多くの時間を要することになるため、例えば10箇所以下で測定を行うことが好ましい。
 なお、元素マッピングを行う際に用いる手段は特に限定されないが、例えばSTEM/EDX等を好適に用いることができる。
 上述のように、酸化亜鉛層は、元素マッピングを行った場合に、Zn、及びOが共に分布している領域を意味し、Zn、及びOを含む層となる。
 さらに、本実施形態のタイヤは、大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合に、湿熱試験の後の、酸化亜鉛層の厚さの平均値が、湿熱試験の前の酸化亜鉛層の厚さの平均値の1.2倍以下であることが好ましい。
 本発明の発明者らの検討によれば、既述の湿熱試験を実施した場合、湿熱試験の前後で、酸化亜鉛層の厚さの変化が小さいことが好ましい。湿熱試験を実施することで、ゴムを透過した水分や酸素が、酸化亜鉛層にまで到達すると、めっき被膜に含まれている亜鉛と、酸素等が反応し、酸化亜鉛層の厚さが増大する場合がある。しかしながら、既述の様に酸化亜鉛層は比較的脆いため、酸化亜鉛層が過度に厚くなるとスチールコードと、ゴムとの接着力が低下する恐れがある。そこで、上述のように湿熱試験前後での酸化亜鉛層の厚さの変化は小さいことが好ましく、具体的には、上述のように湿熱試験の後の酸化亜鉛層の厚さの平均値が、湿熱試験の前の酸化亜鉛層の厚さの平均値の1.2倍以下であることが好ましい。
 湿熱試験後の酸化亜鉛層の厚さの平均値が、湿熱試験の前の酸化亜鉛層の厚さの平均値の1.2倍以下の場合、湿熱試験を実施した後でも酸化亜鉛層の厚さが十分に抑制されており、スチールコードと、ゴムとの接着力を十分に高く保っているためである。そして、スチールコードと、ゴムとの接着力を十分に高めることで、耐久性の高いタイヤとすることができ、好ましいからである。
 湿熱試験後の酸化亜鉛層の厚さの平均値は、湿熱試験の前の酸化亜鉛層の厚さの平均値の1.1倍以下であることがより好ましい。
 また、湿熱試験後の酸化亜鉛層の厚さの平均値の、湿熱試験の前の酸化亜鉛層の厚さの平均値に対する割合の下限値は特に限定されないが、例えば0.8倍以上とすることが好ましい。
 既述の様に、本実施形態のタイヤのゴムは、コバルト単体、及びコバルトを含有する化合物から選択された1種類以上を含有することが好ましい。
 特に、本実施形態のタイヤのゴムは、有機酸コバルトを含有することがより好ましい。これは、有機酸コバルトを含有することで、スチールコードと、ゴムとの初期接着性能を特に向上させることができるからである。
 既述の様に本実施形態のタイヤは、スチールコードと、ゴムとの界面にCuSや、CuSを含む接着層を有することができ、該接着層を所定の組成とすることによりスチールコードと、ゴムとの接着力を高め、耐久性の高いタイヤとすることができると考えられる。そして、本発明の発明者らの検討によれば、メカニズムは明らかではないが、従来はタイヤの耐久性を低下させるとも考えられていたコバルトをゴムに添加することで、接着層中のCuSの割合を高めることができ、スチールコードとゴムとの接着力を高められる。そして、添加するコバルトとして、有機酸コバルトを用いた場合、その傾向が顕著なものとなる。このため、本実施形態のタイヤのゴムは、コバルト、特に有機酸コバルトを含有することが好ましく、それにより特に耐久性に優れたタイヤとすることができる。
 本実施形態のタイヤのゴムが含有するコバルト及びコバルトを含有する化合物の含有量は特に限定されない。本実施形態のタイヤのゴムは、ゴム成分100質量部に対する、コバルト及びコバルトを含有する化合物から選択された1種類以上の物質の含有量が、0.1質量部以上5質量部以下であることが好ましく、0.5質量部以上4質量部以下であることがより好ましい。
 これらのコバルト及びコバルトを含有する化合物から選択された1種類以上の物質の含有量を0.1質量部以上とすることで、スチールコードとゴムとの接着力を高める効果を十分に発揮でき、5質量部以下とすることで、ゴムの耐久性を特に高めることができるからである。
 なお、上述のように本実施形態のタイヤのゴムは有機酸コバルトを含有することが好ましい。そして、この場合も該ゴムは、ゴム成分100質量部に対して、有機酸コバルトを0.1質量部以上5質量部以下含有することが好ましく、0.5質量部以上4質量部以下であることがより好ましい。
 また、既述の様に本実施形態のタイヤが含有するスチールコードの表面に形成されためっき被膜は、金属成分がCuと、Znとのみからなる被膜とすることもできるが、Cuと、Zn以外の金属成分を含有することもできる。めっき被膜は例えば、Co(コバルト)、及びNi(ニッケル)から選択された1種類以上の元素をさらに含むこともできる。
 本発明の発明者らの検討によれば、めっき被膜がCo、及びNiから選択された1種類以上の元素をさらに含有する場合、湿熱試験を実施した際に、接着層中のCuSの割合の低下や、CuSの割合の増加を抑制できる。また、めっき被膜がCo、及びNiから選択された1種類以上の元素をさらに含有する場合、湿熱試験を実施した際に、酸化亜鉛層の厚さが増加することも抑制できる。
 めっき被膜がCo、及びNiから選択された1種類以上の元素をさらに含有する際の上記効果のメカニズムは明らかではないが、CoやNiがもつ高い腐食電位によるめっき被膜の貴電位化、あるいはCo、Niの犠牲酸化効果によるものと考えられる。
 このため、スチールコードのめっき被膜がCo、及びNiから選択された1種類以上の元素をさらに含む場合、タイヤの耐久性を特に高めることができるため、好ましい。
 本実施形態のタイヤの製造方法は特に限定されるものではなく、製造前に、例えば予備試験等を行い、接着層に含まれるCuSとCuSとのモル比であるCuS/CuSが1.0以上となるように、製造条件を選択することができる。
 例えば、既述の様に、めっき被膜を形成する際、亜鉛めっき時の電流密度や、処理時間を選択し、得られるめっき被膜の表面粗さを調整することができる。本発明の発明者らの検討によれば、亜鉛めっき時の電流密度を、例えば18A/dm以上24A/dm未満とすることが好ましい。また、亜鉛めっき時の処理時間を4.0秒以上15.0秒以下とすることが好ましく、6.0秒以上10.0秒未満とすることがさらに好ましい。これは、亜鉛めっきを行う際の条件を上記条件とすることで、得られるめっき被膜の表面が、接着層を形成した際に、接着層内のCuSの割合が特に高くなるために適した表面粗さとなるためと考えられる。
 また、加硫条件を選択することで、接着層を形成する際に、接着層中のCuSの割合を高めることもできる。加硫条件は、ECU(Equivalent Cure Unit:等価加硫量)と時間との積で表すことができる。ECUは、以下の式(1)により算出することができる。 
 ECU=exp((-E/R)×(1/T-1/T0))・・・(1)
 なお、式(1)中のEは活性化エネルギー、Rは一般ガス定数、T0は基準温度、Tは加硫温度となり、それぞれE=20kcal/mol、R=1.987×0.001kcal/mol・deg、T0=141.7℃となる。
 そして、加硫条件は、ECU×時間が50以上65以下となるように選択することが好ましく、55以上60以下となるように選択することがより好ましい。これは、ECU×時間を50以上65以下とすることで十分に加硫を行うことができ、接着層内のCuS/CuSをより確実に1.0以上とすることができ、好ましいからである。
 ECU×時間を算出する際の時間は、加硫時間を意味しており、単位は分となる。
 なお、タイヤのゴムへの既述のコバルト及びコバルトを含有する化合物から選択された1種類以上の物質の添加等、上述した以外の他の条件によって接着層に含まれるCuSとCuSとのモル比であるCuS/CuSを調整することもできる。
 その他の点については、タイヤを製造する際の常法に従って実施することができるため、ここでは説明を省略する。
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、以下の実験例において作製したスチールコードの評価方法について説明する。
(1)めっき被膜の組成
 めっき被膜を形成し、伸線加工を行ったフィラメントの一部を切り出し、ストリップ溶液に浸漬してめっき被膜を溶解させた。そして、得られた溶解液を原子吸光分析装置(日立ハイテクノロジーズ社製 型式:Z-2300)を用いて分析して、めっき被膜の組成を算出した。
(2)接着層中のCuSと、CuSとのモル比
 まず、湿熱試験を実施する前、または実施した後の測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製した。評価用試料は、タイヤからカッター等で切り出した後、FIB(株式会社日立ハイテクノロジーズ社製 型式:FB-2100)を用いて加工し、作製した。
 そして、評価用試料について、スチールコードとゴムとの界面よりもゴム側に形成された接着層の領域について、Spring-8のBL08B2に設置のXAFSにより測定を行った。
 高輝度X線のエネルギーを9000eV以上10500eV以下の範囲で走査し、銅原子のK殻吸収端および広域の振動成分スペクトルを測定した。これをXANES(X-ray Absorption Near Edge Structure:X線吸収端近傍構造)と呼ばれる領域である9600eV以上9700eV以下と、EXAFS(Extended X-ray Absorption Fine Structure:  広域X線吸収微細構造)と呼ばれる、9700eV以上10500eV以下の範囲とに分離した。
 そして、XANESについて、CuS、CuSの標準試料スペクトルを用いることで、接着層中に含まれるCuSと、CuSとのモル比であるCuS/CuSを算出した。
(3)接着層の厚さの平均値
 まず、湿熱試験を実施する前、または実施した後の測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製した。評価用試料は、タイヤからカッター等で切り出した後、FIB(株式会社日立ハイテクノロジーズ社製 型式:FB-2100)を用いて加工し、作製した。
 そして、評価用試料について、スチールコードとゴムとの界面について、元素マッピングを行い、Cuと、Sとが分布している領域を接着層の領域とし、接着層の厚さとした。元素マッピングはスチールコードの直径方向に沿ってライン分析により行い、5箇所で評価を行い、5箇所で測定した接着層の厚さの平均値を、該接着層の厚さの平均値とした。
 元素マッピングは、STEM/EDX(日本電子株式会社製 型式:JEM-2100F)を用いて行った。
(4)酸化亜鉛層の厚さの平均値
 まず、湿熱試験を実施する前、または実施した後の測定対象となるタイヤについて、スチールコードの長手方向と垂直な面を含むようにスライスし、スチールコードとゴムとの界面をその表面に含む薄片である評価用試料を作製した。評価用試料は、タイヤからカッター等で切り出した後、FIB(株式会社日立ハイテクノロジーズ社製 型式:FB-2100)を用いて加工し、作製した。
 そして、評価用試料について、スチールコードとゴムとの界面について、元素マッピングを行い、Znと、Oとが分布している領域を酸化亜鉛層の領域とし、酸化亜鉛層の厚さとした。元素マッピングはスチールコードの直径方向に沿ってライン分析により行い、5箇所で評価を行い、5箇所で測定した酸化亜鉛層の厚さの平均値を、該酸化亜鉛層の厚さの平均値とした。
 元素マッピングは、STEM/EDX(日本電子株式会社製 型式:JEM-2100F)を用いて行った。
(5)耐久性試験
 各実験例で作製したタイヤについて、ドラム走行試験機を用いて、内圧(200kPa)、負荷荷重(7.0kN)、速度(80km/h)にて走行させた。そして、スチールコードとゴムとの界面が破壊され、その部分を起点としてタイヤの接地面であるトレッド部に剥離が生じたり、膨れが生じるなど破損するまでの時間を測定し、耐久時間とした。なお、耐久時間を測定する際、1時間に満たない時間は切り捨てとしている。
 耐久時間が416時間以上の場合にはA、316時間以上415時間以下の場合にはB、216時間以上315時間以下の場合にはC、200時間以上215時間以下の場合にはD、199時間以下の場合にはEと評価した。
 耐久時間から明らかなように、Aと評価されたタイヤが最も耐久性に優れ、A>B>C>D>Eの順に耐久性が低くなる。評価がA、B、C、Dのタイヤについては十分に高い耐久性を有していることになる。
 以下、実験条件について説明する。実験例1~実験例10が実施例、実験例11、実験例12が比較例となる。
[実験例1]
 まず、以下の手順により、タイヤに用いるスチールコードを製造した。
 鋼製のフィラメントの表面に銅層、及び亜鉛層をめっきにより形成した。なお、銅層は、めっき液としてピロリン酸銅を用い、電流密度を22A/dm、処理時間を14秒として成膜した。また、亜鉛層は、めっき液として硫酸亜鉛を用い、電流密度を20A/dm、処理時間を7秒として成膜した。
 その後、大気雰囲気下で、600℃で、9秒間加熱することで熱処理を行い、金属成分を拡散させ、めっき被膜を形成した。
 得られためっき被膜を形成したフィラメントについて伸線加工を行うことで、フィラメント径が0.21mmの、めっき被膜を有するフィラメントを得た。めっき被膜の組成を分析したところ、Cuが64質量%、Znが36質量%であることが確認できた。
 そして、得られためっき被膜を有するフィラメントについて撚線機で撚り合せ、図3、図4に示した3+8構造のスチールコードを製造した。なお、3+8構造については既に説明したため、ここでは説明を省略する。
 また、ゴム成分と、添加剤とを含むゴム組成物を用意した。ゴム組成物は、ゴム成分として天然ゴムを100質量部含む。そして、ゴム組成物は添加剤として、ゴム成分100質量部に対して、カーボンブラックを60質量部、硫黄を6質量部、加硫促進剤として1質量部、酸化亜鉛10質量部、有機酸コバルトとしてステアリン酸コバルトを0.1質量部の割合で含有する。
 上記スチールコード、及びゴム組成物を用いて、図1、図2を用いた構造を有し、サイズが225/40R18である空気入りタイヤを作製した。
 なお、上記タイヤを作製する際、加硫は、温度が160℃、圧力が25kgf/cm、ECU×時間が58となるようにして実施した。
 上記空気入りタイヤを同じ条件で3本作製した。
 そして、1本のタイヤについては、スチールコードとゴムとの界面近傍に形成された接着層中のCuSとCuSとのモル比や、接着層の厚さの平均値、酸化亜鉛層の厚さの平均値を評価した。係る評価結果は表1中、「湿熱試験未実施品評価結果」の欄に示しており、接着層の厚さの平均値、酸化亜鉛層の厚さの平均値は、それぞれ平均厚さ(A1)、平均厚さ(A2)として示している。
 また、1本のタイヤは、大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験に供した。そして、湿熱試験後のタイヤについて、スチールコードとゴムとの界面近傍に形成された接着層中のCuSとCuSとのモル比や、接着層の厚さの平均値、酸化亜鉛層の厚さの平均値を評価した。係る評価結果は表1中、「湿熱試験実施品評価結果」の欄に示しており、接着層の厚さの平均値、酸化亜鉛層の厚さの平均値は、それぞれ平均厚さ(B1)、平均厚さ(B2)として示している。
 残りの1本のタイヤについては耐久性試験に供した。係る評価結果は表1中、「耐久性試験評価結果」の欄に示している。
 結果を表1に示す。
[実験例2~実験例6]
 ゴム組成物に添加した有機酸コバルトであるステアリン酸コバルトの添加量を表1に示した値に変更した点以外は、実験例1と同様にしてタイヤを作製し、評価を行った。なお、ステアリン酸コバルトの添加量は、表1中、有機酸Coの欄に示している。結果を表1に示す。
[実験例7~実験例9]
 スチールコードに用いるフィラメントを製造する際、亜鉛層の上にさらにコバルト層、またはニッケル層を形成した。なお、コバルト層、またはニッケル層を形成後実験例1の場合と同様に熱処理、及び伸線加工を行っている。また、ゴム組成物に添加した有機酸コバルトであるステアリン酸コバルトの添加量を表1に示した値に変更した。以上の点以外は、実験例1と同様にしてタイヤを作製し、評価を行った。結果を表1に示す。
 なお、実験例7、8で作製したフィラメントのめっき被膜について、Cu、Zn、Coの割合を測定した。その結果、Cuが68質量%、Znが28質量%、Coが4質量%であることが確認できた。
 また、実験例9で作製したフィラメントのめっき被膜について、Cu、Zn、Niの割合を測定した。その結果、Cuが68質量%、Znが28質量%、Niが4質量%であることが確認できた。
[実験例10]
 加硫条件のうち、ECU×時間を表1に示した値に変更した点以外は、実験例2と同様にしてタイヤを作製し、評価を行った。結果を表1に示す。
[実験例11、12]
 ゴム組成物に添加した有機酸コバルトであるステアリン酸コバルトの添加量を表1に示した値に変更した点以外は、実験例1と同様にしてタイヤを作製し、評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果によると、接着層中のCuS/CuSが1.0以上である実験例1~実験例10のタイヤについては、耐久時間が200時間以上であり、耐久性の評価がA~Dとなり高い耐久性を有するタイヤであることを確認できた。
 これに対して、接着層中のCuS/CuSが1.0未満である実験例11、実験例12のタイヤについては、耐久時間が199時間以下であり、耐久性の評価がEとなった。これは、接着層中のCuSの割合が低く、タイヤ内のスチールコードと、ゴムとの接着力が低いため、耐久性が低くなったものと考えられる。
11           タイヤ
12           トレッド部
13           サイドウォール部
14           ビード部
15           インナーライナー
16           カーカス
17           ベルト層
18           ビードワイヤー
21、30、50、71  スチールコード
22、72        ゴム
31、32、51、711 フィラメント
311          コア
321          アウターシース
712          めっき被膜
713          酸化亜鉛層
73           界面
74           接着層

Claims (7)

  1.  めっき被膜を有するスチールコードと、前記スチールコードを被覆するゴムとを有し、
     前記めっき被膜は、Cuと、Znとを含有し、
     前記スチールコードと、前記ゴムとの界面よりも、前記ゴム側にCuSと、CuSとを含む接着層を有し、前記接着層に含まれるCuSとCuSとのモル比であるCuS/CuSが1.0以上であるタイヤ。
  2.  大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
     前記湿熱試験の後の、前記接着層の前記CuS/CuSが1.0以上である請求項1に記載のタイヤ。
  3.  大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
     前記湿熱試験の後の前記接着層の厚さの平均値が、前記湿熱試験の前の前記接着層の厚さの平均値の1.5倍以下である請求項1または請求項2に記載のタイヤ。
  4.  前記めっき被膜は、表面に酸化亜鉛層を有し、
     前記酸化亜鉛層の厚さの平均値が50nm以上120nm以下である請求項1~請求項3のいずれか1項に記載のタイヤ。
  5.  前記めっき被膜は、表面に前記酸化亜鉛層を有し、
     大気雰囲気下、温度が80℃、相対湿度が95%に設定された恒温恒湿炉内に150時間保持する湿熱試験を実施した場合、
     前記湿熱試験の後の、前記酸化亜鉛層の厚さの平均値が、前記湿熱試験の前の前記酸化亜鉛層の厚さの平均値の1.2倍以下である請求項4に記載のタイヤ。
  6.  前記ゴムは、ゴム成分100質量部に対して有機酸コバルトを0.1質量部以上5.0質量部以下含む請求項1~請求項5のいずれか1項に記載のタイヤ。
  7.  前記めっき被膜は、Co、及びNiから選択された1種類以上の元素をさらに含む請求項1~請求項6のいずれか1項に記載のタイヤ。
PCT/JP2018/047079 2018-02-14 2018-12-20 タイヤ WO2019159531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18906353.0A EP3753749A4 (en) 2018-02-14 2018-12-20 TIRES
US16/962,323 US20200338928A1 (en) 2018-02-14 2018-12-20 Tire
JP2020500308A JP7112480B2 (ja) 2018-02-14 2018-12-20 タイヤ
CN201880088978.4A CN111699095B (zh) 2018-02-14 2018-12-20 轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-024372 2018-02-14
JP2018024372 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159531A1 true WO2019159531A1 (ja) 2019-08-22

Family

ID=67619294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047079 WO2019159531A1 (ja) 2018-02-14 2018-12-20 タイヤ

Country Status (5)

Country Link
US (1) US20200338928A1 (ja)
EP (1) EP3753749A4 (ja)
JP (1) JP7112480B2 (ja)
CN (1) CN111699095B (ja)
WO (1) WO2019159531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181821A1 (ja) * 2020-03-13 2021-09-16 住友電気工業株式会社 ゴム複合体、タイヤ、スチールコード

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490777B (zh) * 2019-04-25 2023-11-17 高丽钢线株式会社 橡胶增强用钢丝帘线及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201454A (ja) * 1987-10-14 1989-08-14 Sumitomo Rubber Ind Ltd 複合材料
JPH01259040A (ja) * 1987-11-07 1989-10-16 Sumitomo Rubber Ind Ltd 複合材料
JP2011179147A (ja) * 2010-03-02 2011-09-15 Bridgestone Corp ゴム−スチールコード複合体
JP2011219837A (ja) * 2010-04-13 2011-11-04 Nippon Steel Corp ゴムとの接着性に優れた極細めっき鋼線
JP2015510554A (ja) 2012-02-06 2015-04-09 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 蒸気経年変化および硬化後湿潤接着のための三元または四元合金被覆物、三元または四元黄銅合金被覆物を備えた細長い鋼製エレメント、ならびに対応する方法
JP2015511998A (ja) 2012-02-06 2015-04-23 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 三元または四元黄銅合金被覆物を備えた細長い鋼製エレメントおよび対応する方法
JP2016044370A (ja) * 2014-08-22 2016-04-04 新日鐵住金株式会社 ゴムとの接着性に優れた極細めっき鋼線およびそれを用いたゴム複合体
JP2017202706A (ja) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 ゴム・コード複合体及びそれを備えた空気入りタイヤ
JP2018024372A (ja) 2016-08-12 2018-02-15 いすゞ自動車株式会社 乗降用ステップ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110885A (en) * 1974-07-04 1976-01-28 Bridgestone Tire Co Ltd Gomusoseibutsuto kinzokuzairyotokaranarufukugotai oyobi sonoseizohoho
GB8500323D0 (en) * 1985-01-07 1985-02-13 Bekaert Sa Nv Steel reinforcing elements
US4594381A (en) * 1985-06-05 1986-06-10 The Firestone Tire & Rubber Company Method for improved metal adhesion and metal adhesion retention
DE3850246T2 (de) * 1987-10-26 1995-01-26 Sumitomo Electric Industries Metall und komposit des metalls mit kautschuk.
DE3867044D1 (de) * 1987-11-07 1992-01-30 Sumitomo Rubber Ind Verbundstoff.
JPH08209386A (ja) * 1995-02-07 1996-08-13 Nippon Steel Corp ゴムとの接着性に優れたブラスめっき鋼線
CA2354284C (en) * 2001-07-27 2008-07-15 R.F.P. S.R.L. - Ricostruzione Fascia Prestampata Technique for the partial substitution of damaged metal cords in the sidewalls of medium and large radial tires and the means to permit their substitution
JP4014959B2 (ja) * 2002-07-31 2007-11-28 金井 宏彰 タイヤ補強用スチールコード
JP4393172B2 (ja) * 2003-12-08 2010-01-06 株式会社ブリヂストン スチールコード用接着性ゴム組成物及び空気入りタイヤ
EP1852463B1 (en) * 2006-03-31 2009-01-14 Sumitomo Rubber Industries, Ltd. Rubber composition for coating cord
US20090151839A1 (en) * 2007-05-11 2009-06-18 Toyo Tire & Rubber Co., Ltd. Rubber Composition For Adhering Steel Cord
JP2010053495A (ja) * 2008-08-29 2010-03-11 Yokohama Rubber Co Ltd:The タイヤ補強用スチールコード及びこれを使用した空気入りタイヤ
JP5713696B2 (ja) * 2011-01-18 2015-05-07 株式会社ブリヂストン スチールコード・ゴム複合体
US20160122944A1 (en) * 2013-05-30 2016-05-05 Bridgestone Corporation Steel cord-rubber composite
JP6572783B2 (ja) * 2016-01-19 2019-09-11 日本製鉄株式会社 めっき鋼線及びそれを用いたゴム複合体並びにめっき鋼線の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201454A (ja) * 1987-10-14 1989-08-14 Sumitomo Rubber Ind Ltd 複合材料
JPH01259040A (ja) * 1987-11-07 1989-10-16 Sumitomo Rubber Ind Ltd 複合材料
JP2011179147A (ja) * 2010-03-02 2011-09-15 Bridgestone Corp ゴム−スチールコード複合体
JP2011219837A (ja) * 2010-04-13 2011-11-04 Nippon Steel Corp ゴムとの接着性に優れた極細めっき鋼線
JP2015510554A (ja) 2012-02-06 2015-04-09 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 蒸気経年変化および硬化後湿潤接着のための三元または四元合金被覆物、三元または四元黄銅合金被覆物を備えた細長い鋼製エレメント、ならびに対応する方法
JP2015511998A (ja) 2012-02-06 2015-04-23 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 三元または四元黄銅合金被覆物を備えた細長い鋼製エレメントおよび対応する方法
JP2016044370A (ja) * 2014-08-22 2016-04-04 新日鐵住金株式会社 ゴムとの接着性に優れた極細めっき鋼線およびそれを用いたゴム複合体
JP2017202706A (ja) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 ゴム・コード複合体及びそれを備えた空気入りタイヤ
JP2018024372A (ja) 2016-08-12 2018-02-15 いすゞ自動車株式会社 乗降用ステップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753749A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181821A1 (ja) * 2020-03-13 2021-09-16 住友電気工業株式会社 ゴム複合体、タイヤ、スチールコード

Also Published As

Publication number Publication date
US20200338928A1 (en) 2020-10-29
EP3753749A1 (en) 2020-12-23
CN111699095A (zh) 2020-09-22
JPWO2019159531A1 (ja) 2021-03-11
JP7112480B2 (ja) 2022-08-03
EP3753749A4 (en) 2021-11-10
CN111699095B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5940399B2 (ja) ゴム・コード複合体、及びそれを用いた空気入りタイヤ
US7162902B2 (en) Method for drawing brass-plated steel wire
JP5513002B2 (ja) ゴム−スチールコード複合体および空気入りラジアルタイヤ
KR101331387B1 (ko) 금속 코드, 고무 코드 복합체 및 이들을 이용한 공기주입타이어
US20060180258A1 (en) Composite of steel cord and rubber composition and tire using the same
WO2019159531A1 (ja) タイヤ
JP5876781B2 (ja) タイヤの製造方法
JP7358465B2 (ja) スチールコード-ゴム複合体及び空気入りタイヤ
JP4602314B2 (ja) 金属コード、ゴム・コード複合体、及びそれを用いた空気入りタイヤ
JP4602315B2 (ja) 金属コード、ゴム・コード複合体、及びそれを用いた空気入りタイヤ
JP7485510B2 (ja) スチールコード-ゴム複合体及びそれを用いたタイヤ、ホース、クローラ又はコンベア
JP4393172B2 (ja) スチールコード用接着性ゴム組成物及び空気入りタイヤ
JP2002338749A (ja) スチールコードとゴム組成物の複合体およびそれを用いたタイヤ
JP4744672B2 (ja) ゴム−スチールコード複合体
JP7006069B2 (ja) 重荷重用空気入りタイヤ
JP4222800B2 (ja) ゴム−スチールコード複合体およびそれを用いたタイヤ
JP6957963B2 (ja) 接着状態の判定方法、及び空気入りタイヤの製造方法
JP2017202706A (ja) ゴム・コード複合体及びそれを備えた空気入りタイヤ
JP2009001924A (ja) ゴム物品補強用スチールコードおよび空気入りタイヤ
CN115244246B (zh) 橡胶复合体、轮胎、钢帘线
WO2021206092A1 (ja) フィラメント、スチールコード、タイヤ
JP2009137541A (ja) 重荷重用タイヤ
JP2014019303A (ja) 自動二輪車用タイヤ
JP7196446B2 (ja) 添加剤の評価方法、ゴム組成物、金属-ゴム複合体、空気入りタイヤ、及び空気入りタイヤの製造方法
JP2010248671A (ja) ゴム−スチールコード複合体および空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906353

Country of ref document: EP

Effective date: 20200914