WO2019155922A1 - アジルサルタンa型結晶の製造方法 - Google Patents

アジルサルタンa型結晶の製造方法 Download PDF

Info

Publication number
WO2019155922A1
WO2019155922A1 PCT/JP2019/002595 JP2019002595W WO2019155922A1 WO 2019155922 A1 WO2019155922 A1 WO 2019155922A1 JP 2019002595 W JP2019002595 W JP 2019002595W WO 2019155922 A1 WO2019155922 A1 WO 2019155922A1
Authority
WO
WIPO (PCT)
Prior art keywords
azilsartan
solvent
type crystal
crystal
crystals
Prior art date
Application number
PCT/JP2019/002595
Other languages
English (en)
French (fr)
Inventor
森 博志
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201980012161.3A priority Critical patent/CN111699183A/zh
Priority to JP2019570681A priority patent/JP7177796B2/ja
Publication of WO2019155922A1 publication Critical patent/WO2019155922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to high-purity azilsartan (chemical name: 1-[[2 '-(4,5-dihydro-5-oxo-1,2,4-oxadiazol-3-yl) [1,1' -Biphenyl-4-yl] methyl] -2-ethoxy-1H-benzimidazole-7-carboxylic acid) relates to a method for producing A-type crystals.
  • Azilsartan is usually represented by the following formula (2)
  • Azilsartan methyl ester represented by the formula (chemical name: methyl-1-[[2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl) biphenyl-4-yl [Methyl] -2-ethoxy-1H-benzimidazole-7-carboxylate) is hydrolyzed in an alkaline aqueous solution (see Patent Document 1, Non-Patent Documents 1 and 2).
  • Such azilsartan useful as a therapeutic agent is desired to have a very high purity and needs to be stable.
  • Azilsartan is known to have various crystal forms (see Patent Documents 1 to 3 and Non-Patent Document 1). These documents (specifically, Patent Document 2) describe crystals having a melting point of 200 ° C. or higher and 214 ° C. or lower as A-type crystals. And this type A crystal azilsartan has the highest melting point and is known to be a stable form. Usually, the type A crystal is used as a drug substance.
  • Patent Document 1 (see Example 5) and Non-Patent Document 1 describe a method for producing A-type crystals of azilsartan by neutralizing the reaction solution after hydrolysis and converting the resulting crystals to ethanol.
  • a method for synthesizing A-type crystals of azilsartan by washing with A is described.
  • the present inventors tried recrystallization using ethanol as a solvent although a high purification effect was obtained, a large amount of solvent was required, and further, when azilsartan was heated in alcohol, hydrolysis progressed over time.
  • Desethyl compound represented by the formula (chemical name: 1-[[2 '-(4,5-dihydro-5-oxo-1,2,4-oxadiazol-3-yl) [1,1'-biphenyl-4 -Yl] methyl] -2-hydroxy-1H-benzimidazole-7-carboxylic acid) was found to increase as an impurity. Therefore, in this method, although the A-type crystal can be synthesized stably, there is a problem that it is decomposed during heating and it is difficult to achieve high purity.
  • Non-Patent Document 2 describes a method of synthesizing A-type crystal azilsartan by stirring azilsartan suspended in acetone for 1 hour under reflux conditions.
  • this method sufficient purification effect cannot be obtained, and in order to obtain high-purity azilsartan, it is necessary to repeat the purification operation, and there is room for improvement in that the process becomes complicated. It was.
  • the present inventors tried recrystallization using acetone as a solvent, it was found that a certain purification effect was obtained, but the obtained azilsartan was an H-type crystal.
  • azilsartan has low solubility in acetone, a large amount of solvent is required for recrystallization operation. That is, in this method, although a certain purification effect can be obtained, there is a problem that A-form crystal azilsartan cannot be stably obtained.
  • Patent Document 2 discloses a method for producing crystal forms AK of azilsartan having superior physicochemical properties, and particularly having relatively high solubility, bioavailability and / or effectiveness. Have been described. However, when the present inventor synthesized a part of the crystal form of azilsartan by the method described in Patent Document 2, the solubility in an organic solvent remains low, and a purification operation using an organic solvent having a high purification effect is performed. In some cases, a large amount of solvent is required in the same manner as conventional crystals of azilsartan. Therefore, there is a big problem when industrially purifying azilsartan.
  • an object of the present invention is to provide a method capable of easily producing stable and highly pure and stable azilsartan crystals.
  • an object of the present invention is to provide a method for stably and efficiently producing an azilsartan A-type crystal in which the content of a desethyl compound that is a decomposition product of azilsartan is reduced.
  • the inventors of the present invention have intensively studied the above problems.
  • An azilsartan crystal having a characteristic peak at 0 ° (hereinafter also referred to as “Azilsartan M-type crystal”) has been found, and it has already been proposed that desethyl bodies can be efficiently reduced in the crystal form (WO2017 / 131218). ). Therefore, a method for converting this azilsartan M-type crystal into an A-type crystal was examined.
  • azilsartan M-type crystal is mixed and stirred in at least one solvent selected from a protic solvent, esters, and acetonitrile, a solvent-mediated transition occurs and precipitates as a stable azilsartan A-type crystal. It was. Furthermore, the obtained azilsartan A type crystal was found to be a high-purity azilsartan with a reduced desethyl body, and the present invention was completed.
  • the protic solvent is preferably an alcohol.
  • a high-purity azilsartan A-type crystal with a reduced content of desethyl compound as an impurity is produced by a stable and simple method without repeating purification operations. Therefore, its industrial utility value is high.
  • Example 6 is an X-ray diffraction chart of the azilsartan M-type crystal of the present invention produced in Production Example 3.
  • 1 is an X-ray diffraction chart of an azilsartan A-type crystal of the present invention produced in Example 1.
  • the X-ray diffraction measurement result of this azilsartan M-type crystal is shown in FIG.
  • the azilsartan M-type crystal in the present invention is an alcohol such as methanol and ethanol, and an ester such as ethyl acetate. And azilsartan crystals with improved solubility in organic solvents such as ketones such as acetone.
  • the azilsartan M-type crystal has the lowest melting point compared to known azilsartan crystals, and the melting point determined by differential scanning calorimetry (DSC) is 115 ° C. or more and 135 ° C. or less.
  • the melting point determined by differential scanning calorimetry (DSC) measurement refers to the peak top temperature of the endothermic peak obtained by the measurement.
  • the azilsartan M-type crystals are precipitated by adding ketones or esters to a solution obtained by dissolving crude azilsartan in dimethylformamide. You can get it.
  • the crude azilsartan used in the production of the azilsartan M-type crystal is not particularly limited, and those produced by a known method can be used.
  • the crystal form thereof is not particularly limited.
  • the crystal forms, amorphous, organic amine salts described in Non-Patent Documents 1 and 2, and Patent Documents 1 and 2, or a mixed form thereof may be used, and a powder, a lump, or a mixed form thereof may be used. It may be an anhydride, hydrate, solvate, or a mixed form thereof.
  • a solvent of dimethylformamide and ketones or esters is used in the production of azilsartan M-type crystals, it may be a wet body containing the organic solvent, and other solvents may be used during crystallization. It may remain in a range that does not affect, specifically, 50% by mass or less of the azilsartan, but most preferably contains no solvent other than the organic solvent.
  • the purity of the crude azilsartan to be used is not particularly limited, and those obtained by the above production method can be used as they are. However, in order to increase the purity of the finally obtained azilsartan crystal, it is purified one or more times as necessary by a general purification method such as recrystallization, reslurry, column chromatography, etc.
  • the crude azilsartan in the present invention may be azilsartan having a purity of 95.0% or more and 99.9% or less by high performance liquid chromatography (HPLC) analysis (hereinafter, in the present invention, the purity, the ratio of impurities ( %) Is the value of area% as measured by HPLC.) Further, by using the method according to the present invention, an azilsartan A-type crystal can be stably produced. Therefore, for the purpose of obtaining A-type crystal azilsartan, 100% pure azilsartan having a crystal form other than A-type crystals can be used as crude azilsartan.
  • HPLC high performance liquid chromatography
  • crude azilsartan has the following formula (4)
  • the azilsartan dimer represented by the above may be contained as an impurity. Therefore, as described in WO2017 / 131218 for the purpose of removing the impurities, it is more preferable to use azilsartan subjected to activated carbon treatment as crude azilsartan. By carrying out the activated carbon treatment, the amount of impurities in the azilsartan dimer can be reduced, and a higher purity azilsartan M-type crystal can be obtained. Can be acquired.
  • the method for producing an azilsartan A-type crystal of the present invention is characterized in that the azilsartan M-type crystal described above is brought into contact with at least one solvent selected from protic solvents, esters, and acetonitrile. .
  • the azilsartan M-type crystal is changed to the azilsartan A-type crystal by solvent-mediated transition.
  • the solvent-mediated transition phenomenon is a phenomenon in which a solute is transferred in a solution based on a difference in solubility, and a metastable crystal (referred to as an azilsartan M-type crystal in the present invention) is dissolved and a stable crystal. This is a phenomenon in which the transition proceeds by the generation and growth of crystal nuclei (in the present invention, an azilsartan A-type crystal).
  • an azilsartan M-type crystal that is easily dissolved in an organic solvent is contacted with at least one solvent selected from a protic solvent, an ester, and acetonitrile, the azilsartan M-type crystal is After dissolving once in the solvent, it is presumed that azisartan A-type crystals having low solubility in the solvent and stable in the solvent will precipitate. Therefore, sufficient purification treatment is performed to obtain the azilsartan M-type crystal to obtain a high-purity azilsartan M-type crystal, and then the M-type crystal is converted to an azilsartan A-type crystal, thereby obtaining a high-purity aziltan Sultan A-type crystals can be obtained efficiently.
  • the solvent used in the present invention is selected from protic solvents, esters, and acetonitrile. By selecting the solvent, it becomes possible to cause stable transition to the A-type crystal. Specifically, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 3-methyl-1- Butanol, 1-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 2-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-ethyl-3- Protic solvents including alcohols such as pentanol, organic acid solutions such as acetic acid and formic acid, and water; esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl a
  • a protic solvent from the viewpoint of the yield and purity of the obtained azilsartan A-type crystal and the effect of removing the desethyl compound
  • methanol, ethanol, 1-propanol, isopropanol and water are preferable, and methanol, ethanol and 1-propanol are particularly preferable.
  • the solvents exemplified above can be used singly or in a mixture of two or more. When used as a mixture, the standard of the amount used may be the total amount of the mixture.
  • the solvent used in the present invention is selected from protic solvents, esters, and acetonitrile, and does not substantially contain other solvents. “Substantially free” means not containing 10% by volume or more based on the total amount of solvent.
  • the amount of the solvent used in the present invention may be appropriately determined depending on the type of solvent to be selected, the method for adding the azilsartan M-type crystal, and the like, and is usually 1 mL to 50 mL for 1 g of the azilsartan M-type crystal. In view of yield and operability, it is preferably 5 mL or more and 30 mL or less. Although depending on the type of solvent to be used, when the amount of the solvent to be normally used increases, the solubility of the azilsartan A-type crystal increases, so the yield decreases.
  • the transition rate from the azisartan M-type crystal to the azilsartan A-type crystal increases, so that the solvent can be easily taken into the crystal of the precipitated azilsartan A-type crystal.
  • the method for bringing the azilsartan M-type crystal into contact with the solvent is not particularly limited, and the addition order and the addition method are not limited.
  • the temperature at which the azilsartan M-type crystal in the present invention is brought into contact with the solvent may be appropriately determined according to the type and amount of the selected solvent, and the conditions under which the azilsartan M-type crystal is sufficiently converted to the A-type crystal. Just do it.
  • the time for contact is also the same. Usually, when the contact temperature is low, the transition speed from the azilsartan M-type crystal to the azilsartan A-type crystal becomes slow, and the contact time becomes long.
  • the contact temperature when the contact temperature is high, the transition speed becomes faster. However, when the contact temperature is too high, the content of the desethyl body, which is a hydrolyzate, increases. Therefore, it is preferably performed at 0 ° C. or higher and 45 ° C. or lower, and particularly preferably performed at 5 ° C. or higher and 35 ° C. or lower.
  • the contact time is usually 1 hour or longer.
  • the present invention is a method for purifying azisartan using the solubility difference between crystal forms. That is, it is presumed that after azilsartan M-type crystals having high solubility in the solvent are dissolved in the solvent, azisartan A-type crystals having low solubility in the solvent and stable in the solvent are precipitated by solvent-mediated transfer. At this time, when the transition rate to the azilsartan A-type crystal is high, the solvent is easily taken into the crystal of the azilsartan A-type crystal to be precipitated.
  • a method of transferring the azilsartan M-type crystals into the azilsartan A-type crystals by dividing them into contact with the solvent several times and contacting them. It is more preferable to adopt.
  • the method for dividing and contacting the azisartan M-type crystal is not particularly limited, but is preferably within 6 divisions in consideration of operability.
  • the contact interval is 10 minutes or longer, more preferably 30 minutes or longer, and considering the efficiency, it is appropriate to make it within 3 hours.
  • the time interval may be the same every time, or may be a different time each time. The same applies to the amount of azilsartan M-type crystals to be contacted in a divided manner. By dividing and contacting the azilsartan M-type crystal, it is possible to obtain an azilsartan A-type crystal in which the amount of solvent used is reduced and the residual solvent amount is further reduced.
  • the azisartan M-type crystal is kept in contact with a solvent and then held at a lower temperature for a certain time.
  • the yield can be further increased by maintaining the temperature under low temperature conditions.
  • the temperature maintained at this time may be ⁇ 5 ° C. or higher and 30 ° C. or lower.
  • it is preferably maintained at 0 ° C. or higher and 10 ° C. or lower.
  • the holding time may be appropriately determined depending on the holding temperature, but is usually preferably 3 hours or longer.
  • the azilsartan A-type crystals thus precipitated can be isolated by solid-liquid separation by filtration, centrifugation, or the like, and then drying by a method such as natural drying, blast drying, or vacuum drying.
  • This compound has a typical peak.
  • the measurement error of the X-ray diffraction angle is allowed up to ⁇ 0.2 °.
  • the X-ray diffraction measurement result of this azilsartan A type crystal is shown in FIG.
  • the azilsartan A-type crystal in the present invention has the highest melting point among the crystal forms of azilsartan.
  • the melting point determined by differential scanning calorimetry (DSC) measurement is 200 ° C. or higher and 214 ° C. or lower.
  • the melting point determined by differential scanning calorimetry (DSC) measurement refers to the peak top temperature of the endothermic peak obtained by the measurement.
  • the azilsartan obtained by the method of the present invention is a high-purity azilsartan with a reduced desethyl body. Furthermore, the obtained azilsartan becomes a stable A-type crystal. By using the method of the present invention, a highly pure azilsartan A-type crystal can be obtained stably.
  • Mobile phase A acetonitrile
  • Transfer of mobile phase The concentration gradient is controlled by changing the mixing ratio of mobile phases A and B as shown in Table 1 below.
  • Flow rate 1.0 mL / min Measurement time: 40 minutes
  • azilsartan has a peak at about 7.3 minutes
  • the desethyl body as an impurity has a peak at about 3.3 minutes.
  • the purity of azilsartan and the content of the desethyl compound are all the values of each compound relative to the sum of the area values of all peaks (excluding the peak derived from the solvent) measured under the above conditions. It is the ratio of the peak area value.
  • the residual solvent amount of each solvent contained in the sample was calculated by a calibration curve method from the peak area value of each solvent obtained by measurement by gas chromatography (GC) under the following conditions.
  • the residual solvent amount of each solvent indicates the ratio of the mass of each solvent to the mass of the sample.
  • the purified white glaze was removed by filtration under reduced pressure, and the obtained filtrate was heated to 40 ° C., and then 1250 mL of acetone, 850 mL of acetic acid, and 850 mL of water were added at the same temperature to precipitate crude azilsartan crystals.
  • the reaction solution was cooled to 20 ° C. at a rate of ⁇ 20 ° C./hour and then stirred at the same temperature for 6 hours.
  • the obtained slurry was filtered under reduced pressure, and the precipitated crystals were collected and dried at 40 ° C. to obtain 231 g of crude azilsartan crystals (yield: 95.4%).
  • This crude azilsartan had azilsartan purity: 99.89%, azilsartan desethyl compound: 0.04%, and azilsartan dimer: undetected.
  • this crude azilsartan was used as a sample and XRD was measured, I found out.
  • Production Example 3 (Production of azilsartan M-type crystal) 70 g of the crude azilsartan obtained in Production Example 2 was weighed into a 1000 mL three-necked flask equipped with two stirring blades having a diameter of 7.5 cm, 140 mL of dimethylformamide was added, and the mixture was heated and dissolved at 35 ° C. After cooling the obtained azilsartan solution to 30 ° C. or lower, 700 mL of ethyl acetate was added, further cooled, and stirred at 5 ° C. overnight. Subsequently, the crystals precipitated by filtration under reduced pressure were collected and dried at 50 ° C.
  • azilsartan crystals (azylsultan purity: 99.92%, desethyl compound: 0.03%).
  • XRD X-ray diffraction chart
  • the melting point by DSC measurement was 128 degreeC.
  • Example 1 (Production of Azilsartan Type A Crystal) In a 100 mL three-necked flask equipped with two stirring blades with a diameter of 2.5 cm, 4 g of the azilsartan M-type crystal obtained in Production Example 3 was weighed, and 40 mL of methanol was added and dissolved while stirring at 35 ° C. When kept at 35 ° C. for 1 hour, crystals of azilsartan precipitated. Then, it cooled to 5 degreeC and stirred all night. Subsequently, the deposited crystals were collected by filtration under reduced pressure and dried at 50 ° C. to obtain 3.2 g of azilsartan crystals (yield: 80%).
  • Example 2 (Preparation of azilsartan type A crystal; divided addition) 30 mL of methanol was added to a 100 mL three-necked flask equipped with two stirring blades having a diameter of 2.5 cm, and the mixture was heated to 35 ° C. and stirred. 3 g of azilsartan M-type crystals obtained in Production Example 3 were added in 3 portions and stirred every hour. After adding the entire amount of azilsartan M-type crystals, the mixture was held at 35 ° C. for 1 hour. Then, it cooled to 5 degreeC and stirred all night. Then, the crystals precipitated by filtration under reduced pressure were collected and dried at 50 ° C.
  • azilsartan crystals Yield: 80%.
  • the obtained azilsartan had azilsartan purity: 99.96% and a desethyl compound: 0.01%.
  • the residual solvent was measured, 257 ppm of methanol was detected.
  • fusing point by DSC measurement was 203 degreeC.
  • Example 3 (Production of azilsartan A-type crystals)
  • Example 1 the same operation was performed except that the type and amount of the organic solvent to be used were changed, and the obtained azilsartan was subjected to HPLC purity measurement and confirmation of the crystal form by XRD. The results are shown in Table 2.
  • Example 1 (dimethylformamide)
  • the same operation was performed except that the organic solvent used was changed to dimethylformamide, and the obtained azilsartan was subjected to HPLC purity measurement and confirmation of the crystal form by XRD.
  • fusing point by DSC measurement was 126 degreeC. The results are shown in Table 2.
  • Example 2 Comparative Example 3 (acetone)
  • the same operation was performed except that the organic solvent used was changed to acetone, and the obtained azilsartan was subjected to HPLC purity measurement and confirmation of the crystal form by XRD.
  • fusing point by DSC measurement was 177 degreeC. The results are shown in Table 2.
  • Example 10 6 g of the crude azilsartan obtained in Production Example 2 was weighed into a 100 mL three-necked flask equipped with two stirring blades having a diameter of 5.5 cm, 12 mL of dimethylformamide was added, and the mixture was heated and dissolved at 35 ° C. After cooling the obtained azilsartan solution to 30 ° C. or lower, 60 mL of ethyl acetate was added, further cooled, and stirred at 5 ° C. overnight. Subsequently, the azilsartan M-type crystal which precipitated by filtering under reduced pressure was obtained as a wet body.
  • the wet form of the azilsartan M type crystal was divided into 6 parts and added every hour. After the total amount was added, it was kept at 20 ° C. for an additional hour. Then, it cooled to 5 degreeC and stirred for 6 hours. Subsequently, the deposited crystals were collected by filtration under reduced pressure and dried at 50 ° C. to obtain 4.8 g of azilsartan crystals (yield: 80%).
  • the obtained azilsartan had azilsartan purity: 99.97% and a desethyl compound: 0.01%.
  • Example 11 6 g of the crude azilsartan obtained in Production Example 2 was weighed into a 100 mL three-necked flask equipped with two stirring blades having a diameter of 5.5 cm, 12 mL of dimethylformamide was added, and the mixture was heated and dissolved at 35 ° C. After cooling the obtained azilsartan solution to 30 ° C. or lower, 60 mL of ethyl acetate was added, further cooled, and stirred at 5 ° C. overnight. Subsequently, the azilsartan M-type crystal which precipitated by filtering under reduced pressure was obtained as a wet body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明により、 Cu-Kα線を用いるX線回折により、少なくとも2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを有するアジルサルタンA型結晶の製造方法であって、 少なくとも2θ=9.4°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有するアジルサルタン結晶をプロトン性溶媒、エステル類、アセトニトリルの中から選択される少なくとも一つの溶媒と接触させることを特徴とする方法が提供される。

Description

アジルサルタンA型結晶の製造方法
 本発明は、高純度のアジルサルタン(化学名称:1-[[2′-(4,5-ジヒドロ-5-オキソ-1,2,4-オキサジアゾール-3-イル)[1,1′-ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボン酸)A型結晶の製造方法に関する。
 下記式(1)
Figure JPOXMLDOC01-appb-C000001
 
で示されるアジルサルタン(化学名称:1-[[2′-(4,5-ジヒドロ-5-オキソ-1,2,4-オキサジアゾール-3-イル)[1,1′-ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボン酸)は、アンジオテンシンII受容体拮抗薬として優れた効果を示す治療薬として非常に有用な化合物である(特許文献1)。以下、単に、「アジルサルタン」と称する場合もある。
 アジルサルタンは、通常、下記式(2)
Figure JPOXMLDOC01-appb-C000002
 
で示されるアジルサルタンメチルエステル(化学名称:メチル-1-[[2′-(5-オキソ-4,5-ジヒドロ-1,2,4-オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボキシレート)をアルカリ性水溶液中で加水分解することによって合成される(特許文献1、非特許文献1、2参照)。
 このような治療薬として有用なアジルサルタンは、非常に高純度のものが望まれており、かつ安定である必要がある。アジルサルタンには、種々の結晶形が存在することが知られている(特許文献1~3、非特許文献1参照)。これら文献(具体的には、特許文献2)には、A型結晶として融点が200℃以上214℃以下である結晶が記載されている。そして、このA型結晶のアジルサルタンが、最も融点が高く、安定形であることが知られており、通常はA型結晶が原薬として使用されている。
 このA型結晶のアジルサルタンの製造方法として、例えば、特許文献1(実施例5参照)、および非特許文献1には、加水分解後の反応溶液を中和処理し、得られた結晶をエタノールで洗浄することで、A型結晶のアジルサルタンを合成する方法が記載されている。しかしながら、本発明者がエタノールを溶媒として再結晶を試みたところ、高い精製効果が得られるものの、多量の溶媒が必要であり、さらにアルコール中でアジルサルタンを加熱すると経時的に加水分解が進行し、下記式(3)
Figure JPOXMLDOC01-appb-C000003
 
で示されるデスエチル体(化学名称:1-[[2′-(4,5-ジヒドロ-5-オキソ-1,2,4-オキサジアゾール-3-イル)[1,1′-ビフェニル-4-イル]メチル]-2-ヒドロキシ-1H-ベンゾイミダゾール-7-カルボン酸)が不純物として増加してしまうことが分かった。従って、当該方法においては、安定してA型結晶が合成できるものの、加熱中に分解されてしまい、高純度化が困難であるという問題があった。
 また、非特許文献2には、アセトンに懸濁させたアジルサルタンを還流条件下で1時間撹拌することで、A型結晶のアジルサルタンを合成する方法が記載されている。しかしながら、当該方法においては十分な精製効果が得られず、高純度のアジルサルタンを取得する為には、該精製操作を繰り返して行う必要があり、工程が煩雑になる点で改善の余地があった。さらに、本発明者がアセトンを溶媒として再結晶を試みたところ、一定の精製効果が認められたが、得られるアジルサルタンはH型結晶となることが分かった。また、アジルサルタンはアセトンに対しても溶解度が低いため、再結晶操作を行う場合には多量の溶媒が必要であった。つまり、当該方法においては一定の精製効果が得られるものの、安定的にA型結晶のアジルサルタンを取得できないという問題があった。
 以上のように、精製効果が高く、さらにA型結晶を安定的に合成できる簡便な方法は確立されておらず、操作性の面で大きな課題があった。アジルサルタンは、上記のように多くの有機溶媒に対して溶解性が低いことから、溶解性を改善した結晶形の検討も行われている(特許文献2、3)。
 具体的には、特許文献2では、より優れた物理化学的性質を有し、特に相対的に高い溶解度、バイオアベイラビリティー及び/又は有効性を有するアジルサルタンの結晶形A~Kの製造方法が記載されている。しかしながら、本発明者が特許文献2に記載の方法でアジルサルタンの結晶形の一部を合成したところ、有機溶媒に対する溶解度は低いままであり、精製効果の高い有機溶媒を用いた精製操作を行う場合には、従来のアジルサルタンの結晶と同様に多量の溶媒が必要となる。そのため、アジルサルタンの精製を工業的に行う場合には大きな問題がある。
特許2645962号公報 特表2014-530805号公報 特開2017-132719号公報
ジャーナル オブ メディシナル ケミストリー、(米国)、19 96年、vol.39、p.5228-5235 オーガニック プロセス リサーチ アンド ディベロップメント、(米国)2013年、Vol.17、p.77-86
 したがって、本発明の目的は、安定して高純度、かつ安定なアジルサルタンの結晶を簡便に製造できる方法を提供することにある。特にアジルサルタンの分解物であるデスエチル体の含有量が低減されたアジルサルタンA型結晶を安定的、且つ効率的に製造する方法を提供することにある。
 本発明者らは、上記課題に対して鋭意検討を行った。本発明者らは、アジルサルタンの他結晶形として、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有するアジルサルタン結晶(以下、「アジルサルタンM型結晶」とも言う)を見出し、該結晶形でデスエチル体が効率的に低減できることを既に提案している(WO2017/131218)。そこで、このアジルサルタンM型結晶をA型結晶に転換する方法について検討を行った。その結果、上記アジルサルタンM型結晶をプロトン性溶媒、エステル類、アセトニトリルから選択される少なくとも一つの溶媒中で混合撹拌すると溶媒媒介転移を起こし、安定なアジルサルタンA型結晶として析出することを見出した。さらに、得られるアジルサルタンA型結晶はデスエチル体が低減された高純度のアジルサルタンとなることを見出し、本発明を完成するに至った。
 即ち、本発明は、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを有するアジルサルタンA型結晶の製造方法であって、少なくとも2θ=9.4°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有するアジルサルタンM型結晶をプロトン性溶媒、エステル類、アセトニトリルの中から選択される少なくとも一つの溶媒と接触させることを特徴とする方法である。
 なお、本発明においては、前記プロトン性溶媒がアルコール類であることが好ましい。
また、本発明においては、前記アジルサルタンM型結晶を溶媒に対して分割して接触させることがより好ましい。
 本発明の方法によれば、特に、不純物であるデスエチル体の含有量が低減された、高純度のアジルサルタンA型結晶を、精製操作を繰り返すことなく、安定的かつ簡便な方法によって製造することができるため、その工業的利用価値は高い。
製造例3において製造された本発明のアジルサルタンM型結晶のX線回折チャートである。 実施例1において製造された本発明のアジルサルタンA型結晶のX線回折チャートである。
 以下、本発明のアジルサルタンA型結晶の製造方法について、順を追って説明する。
 (アジルサルタンM型結晶)
 本発明の製造方法において、原料となるアジルサルタンM型結晶は、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有する化合物である。この場合、X線回折角の測定誤差は、±0.2°まで許容される。このアジルサルタンM型結晶のX線回折測定結果を図1に示した。
 本発明におけるアジルサルタンM型結晶は、特許文献1、2、非特許文献1、2に記載されている既知のアジルサルタン結晶と比較して、メタノールやエタノールなどのアルコール類、酢酸エチルなどのエステル類、アセトンなどのケトン類などの有機溶媒に対する溶解性が改善されたアジルサルタン結晶である。また、アジルサルタンM型結晶は既知のアジルサルタン結晶と比較して最も低い融点を示し、示差走査熱量(DSC)測定で決定される融点が115℃以上135℃以下である。なお、本発明において、示差走査熱量(DSC)測定で決定される融点は、測定により得られた吸熱ピークのピークトップ温度を指す。
 上記アジルサルタンM型結晶は、WO2017/131218に記載のとおり、粗アジルサルタンをジメチルホルムアミドに溶解することで得た溶液に、ケトン類、或いはエステル類の溶媒を加えてアジルサルタンM型結晶を析出させることで取得することが出来る。
 (粗アジルサルタン)
 前記アジルサルタンM型結晶の製造において使用される粗アジルサルタンは、特に制限されず、公知の方法で製造されたものを使用することができる。例えば、特許文献1に記載の方法、すなわち、アジルサルタンメチルエステル(化学名称:メチル-1-[[2′-(5-オキソ-4,5-ジヒドロ-1,2,4- オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボキシレート)をメタノールと水酸化リチウム水溶液の混合溶液中で3時間、加熱還流しながら反応させることによって製造することができる(特許文献1、実施例1eを参照)。
 前記アジルサルタンM型結晶の製造において使用される粗アジルサルタンは、一旦溶液状態とするため、その結晶形などは特に限定されない。例えば、非特許文献1、2および特許文献1、2に記載の結晶形、アモルファス、有機アミン塩またはこれらが混合した形態であってもよく、粉末、塊状物、またはこれらが混合した形状であってもよく、無水物、水和物、溶媒和物またはこれらが混合した形態であってもよい。水和物または溶媒和物であるときの水または溶媒の分子数は特に制限されない。また、アジルサルタンM型結晶の製造時にジメチルホルムアミドとケトン類、或いはエステル類の溶媒を用いることから、当該有機溶媒を含む湿体であってもよく、その他の溶媒についても、結晶化の際に影響を及ぼさない範囲、具体的には、当該アジルサルタンの50質量%以下の量で残留していてもよいが、当該有機溶媒以外の溶媒を含まないことが最も好ましい。また、使用する粗アジルサルタンの純度は特に制限されず、上記製造方法によって得られたものをそのまま使用することができる。ただし、最終的に得られるアジルサルタンの結晶の純度をより高くするために、一般的な精製方法、例えば再結晶やリスラリー、カラムクロマトグラフィーなどの方法により、必要に応じて1回以上精製したものを、アジルサルタンとして利用することもできる。本発明における粗アジルサルタンは、高速液体クロマトグラフィー(HPLC)分析で95.0%以上99.9%以下の純度のアジルサルタンであってもよい(以下、本発明において、純度、不純物の割合(%)は、HPLCで測定した際の面積%の値である。)。また、本発明による方法を用いることで、アジルサルタンA型結晶を安定的に製造することができる。そのため、A型結晶のアジルサルタンを得ることを目的として、A型結晶以外の結晶形を有する純度100%のアジルサルタンを粗アジルサルタンとすることもできる。
 また、粗アジルサルタンには、下記式(4)
Figure JPOXMLDOC01-appb-C000004
 
で示されるアジルサルタン二量体が不純物として含まれる場合がある。そのため、当該不純物の除去を目的としてWO2017/131218に記載のとおり、活性炭処理を施したアジルサルタンを粗アジルサルタンとすることがより好ましい。活性炭処理を行うことでアジルサルタン二量体の不純物量を低減し、より高純度のアジルサルタンM型結晶を得ることができ、さらに本発明の製造方法により、高純度のアジルサルタンA型結晶を取得することができる。
 (アジルサルタンA型結晶の製造方法)
 本発明のアジルサルタンA型結晶の製造方法は、前述のアジルサルタンM型結晶と、プロトン性溶媒、エステル類、アセトニトリルの中から選択される少なくとも一つの溶媒と、を接触させることを特徴とする。かかる方法によって、アジルサルタンM型結晶は、溶媒媒介転移によってアジルサルタンA型結晶へと変化しているものと推測される。ここで、溶媒媒介転移現象とは、溶液中で溶質が溶解度の差に基づき転移する現象であり、準安定形結晶(本発明においてはアジルサルタンM型結晶を指す)が溶解すると共に安定形結晶(本発明においてはアジルサルタンA型結晶を指す)の結晶核が発生して成長することにより転移が進行する現象である。
 具体的には、有機溶媒に溶解し易いアジルサルタンM型結晶と、プロトン性溶媒、エステル類、アセトニトリルの中から選択される少なくとも一つの溶媒と、を接触させると、アジルサルタンM型結晶が上記溶媒に一度溶解した後、該溶媒に対する溶解度が低く且つ、該溶媒中で安定なアジサルタンA型結晶が析出してくるものと推測される。従って、アジルサルタンM型結晶を得る際に十分な精製処理を行って高純度のアジルサルタンM型結晶を得、次いで該M型結晶をアジルサルタンA型結晶と変換することで、高純度のアジルサルタンA型結晶を効率的に得ることができる。
(アジルサルタンM型結晶を接触させる溶媒)
 本発明において使用する溶媒は、プロトン性溶媒、エステル類、アセトニトリルの中から選択される。当該溶媒を選択することで安定してA型結晶への転移を起こすことが可能となる。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、3-メチル-1-ブタノール、1-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2,4-ジメチル-3-ペンタノール、3-エチル-3-ペンタノール等のアルコール類や、酢酸、ギ酸等の有機酸溶液、水などを含むプロトン性溶媒; 酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等のエステル類; アセトニトリルが挙げられる。この中でも、得られるアジルサルタンA型結晶の収率、純度、およびデスエチル体の除去効果という点から、プロトン性溶媒を選択することが好ましく、中でもアルコール類を選択することが特に好ましい。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、水が好ましく、メタノール、エタノール、1-プロパノールが特に好ましい。当該溶媒を選択することで、効率的にデスエチル体を除去することが出来、より高純度化されたアジルサルタンA型結晶を取得することができる。
 以上例示した溶媒は、1種類で使用することもできるし、2種類以上の混合物を使用することもできる。混合物として使用した場合には、使用する量の基準は、混合物の全量を対象とすればよい。なお、本発明において使用する溶媒は、プロトン性溶媒、エステル類、アセトニトリルの中から選択されるのであって、他の溶媒は実質的に含まない。実質的に含まないとは、全溶媒量に対して10体積%以上の量で含まないことを意味する。
 本発明における、溶媒の使用量は、選択する溶媒の種類やアジルサルタンM型結晶の添加方法等により適宜決定すればよく、通常、上記アジルサルタンM型結晶1gに対して1mL以上50mL以下とすればよく、収率、操作性を考慮すると5mL以上30mL以下とすることが好ましい。使用する溶媒の種類にもよるが、通常使用する溶媒の量が多くなるとアジルサルタンA型結晶の溶解度が増加するため収率が低下してしまう。また、使用する溶媒の量が少ないとアジサルタンM型結晶からアジルサルタンA型結晶への転移速度が速くなるため、析出したアジルサルタンA型結晶の結晶内部に溶媒を取り込みやすくなる。
 (アジルサルタンM型結晶と溶媒とを接触させる方法)
 本発明において、アジルサルタンM型結晶と溶媒とを接触させる方法は特に制限されず、添加順序や添加方法も制限されるものではない。さらに、本発明におけるアジルサルタンM型結晶と溶媒とを接触させる温度は、選択した溶媒の種類や使用量によって適宜決定すればよく、アジルサルタンM型結晶がA型結晶に十分変換される条件下で行えば良い。また、接触させる時間も同様である。通常、接触させる温度が低い場合には、アジルサルタンM型結晶からアジルサルタンA型結晶への転移速度が遅くなるため、接触させる時間は長くなる。一方で、接触させる温度が高い場合には、転移速度は速くなる。しかし、接触させる温度が高すぎる場合には、加水分解物である前述のデスエチル体の含有量が増加する。そのため、0℃以上45℃以下で行うことが好ましく、5℃以上35℃以下で行うことが特に好ましい。接触させる時間は、通常1時間以上である。
 本発明は結晶形間の溶解度差を利用したアジサルタンの精製法である。つまり、溶媒に対して溶解度が高いアジルサルタンM型結晶が溶媒に溶解した後、該溶媒に対する溶解度が低く且つ、該溶媒中で安定なアジサルタンA型結晶が溶媒媒介転移によって析出すると推測される。この際に、アジルサルタンA型結晶への転移速度が速い場合には、析出するアジルサルタンA型結晶の結晶内部に溶媒を取り込みやすくなる。そのため、得られるアジルサルタンA型結晶中の残留溶媒量を低減するためには、溶媒に対してアジサルタンM型結晶を数回に分割して接触させて、アジルサルタンA型結晶に転移させる方法を採用することがより好ましい。アジルサルタンM型結晶を溶媒に対して分割して接触させることで、アジルサルタンA型結晶への転移速度を抑制し、残留溶媒量が低減されたアジルサルタンA型結晶を取得することができる。アジサルタンM型結晶を分割して接触させる方法は特に制限されるものではないが、操作性を考慮すると6分割以内とすることが好ましい。また、分割して接触させる場合には、接触間隔を10分以上空けることが好ましく、30分以上空けることがより好ましく、効率性を考慮すると3時間以内とすることが適当である。当該時間の間隔は毎回同じで時間であっても良いし、毎回異なる時間であっても良い。また、分割して接触させるアジルサルタンM型結晶の量についても同様である。分割してアジルサルタンM型結晶を接触させることで、溶媒の使用量を低減し、さらに残留溶媒量が低減されたアジルサルタンA型結晶を取得することができる。
 本発明では、アジサルタンM型結晶を溶媒と接触させた後、さらに低温で一定時間保持することが好ましい。低温条件下で保持することで、より収率を高めることができる。この際に保持する温度は-5℃以上30℃以下とすればよく、より高収率にてアジルサルタンA型結晶を取得するためには、0℃以上10℃以下で保持することが好ましい。また、保持する時間は、保持する温度により適宜決定すればよいが、通常3時間以上とすることが好ましい。
 このようにして析出したアジルサルタンA型結晶は、ろ過や遠心分離などにより固液分離した後、自然乾燥、送風乾燥、真空乾燥などの方法で乾燥することにより単離することができる。
 (アジルサルタンA型結晶)
 本発明の方法において、得られるアジルサルタンA型結晶は、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを有する化合物である。この場合、X線回折角の測定誤差は、±0.2°まで許容される。このアジルサルタンA型結晶のX線回折測定結果を図2に示した。また、本発明におけるアジルサルタンA型結晶は、アジルサルタンの結晶形の中でも最も高い融点を示す。示差走査熱量(DSC)測定で決定される融点は、200℃以上214℃以下である。本発明において、示差走査熱量(DSC)測定で決定される融点は、測定により得られた吸熱ピークのピークトップ温度を指す。
 本発明の方法で取得されるアジルサルタンは、デスエチル体が低減された高純度のアジルサルタンである。さらに、得られるアジルサルタンは安定なA型結晶となる。本発明の方法を用いれば、安定して高純度のアジルサルタンA型結晶を取得することができる。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例によって何等制限されることはない。
 先ず、アジルサルタンの純度、およびデスエチル体含有量の測定(高速液体クロマトグラフィー測定)、残留溶媒量の測定(ガスクロマトグラフィー測定)、結晶形の確認(粉末X線回折の測定)、融点の測定(示差走査熱量計の測定)は以下の方法でおこなった。
 <アジルサルタンの定量、および純度、デスエチル体含有量の測定>
 装置:高速液体クロマトグラフィー(HPLC)
 機種:2695-2489-2998(Waters社製)
 検出器:紫外吸光光度計(測定波長:210nm)
 カラム:Kromasil C18、内径4.6mm、長さ15cm(粒子径5μm)
  (AkzoNobel社製)
 カラム温度:30℃一定
 サンプル温度:25℃一定
 移動相A:アセトニトリル
 移動相B:15mMリン酸二水素カリウム水溶液(pH=2.5 リン酸にて調整)
 移動相の送液:移動相A,Bの混合比を下記表1のように変えて濃度勾配制御する。
 流速:1.0mL/min
 測定時間:40分
Figure JPOXMLDOC01-appb-T000005
 
 上記条件において、アジルサルタンは約7.3分、不純物であるデスエチル体は約3.3分にピークが確認される。以下の実施例、比較例において、アジルサルタンの純度、並びに、デスエチル体の含有量は、すべて、上記条件で測定される全ピークの面積値(溶媒由来のピークを除く)の合計に対する各化合物のピーク面積値の割合である。
 <アジルサルタンの残留溶媒量の測定>
 試料に含まれる各溶媒の残留溶媒量は、下記の条件にて、ガスクロマトグラフィー(GC)による測定をして求められた各溶媒のピーク面積値から、検量線法により算出した。ここで、各溶媒の残留溶媒量は、試料の質量に対する各溶媒の質量の割合を示したものである。
 測定方法:ガスクロマトグラフィー(GC)
 装置:島津製作所製 GC-2010 Plus
 検出器:水素炎イオン化検出器(FID)
 カラム:アジレント・テクノロジー社製 DB-WAX(長さ30m、内径0.530mm、膜厚:1.00μm)
 カラム温度:40℃付近の一定温度で注入後、5分間維持し、次いで毎分10℃で230℃まで昇温し、230℃で10分間維持した。
 注入口温度:180℃
 検出器温度:260℃
 キャリアーガス:He
 カラム圧力:3.071psi
 上記条件において、メタノールは約5.5分にピークが確認される。
 <アジルサルタンの結晶形の測定>
 装置:X線回折装置(XRD)
 機種:SmartLab(株式会社リガク製)
 測定方法:ASC6 BB Dtex
 X線出力:40kV-30mA
 波長:CuKa/1.541882Å
 <アジルサルタンの融点の測定>
 装置:示差走査熱量計(DSC)
 機種:DSC6200(エスアイアイ・ナノテクノロジー社製)
 昇温条件:5℃/分
 ガス:アルゴン
 製造例1(粗アジルサルタンの製造:活性炭処理なし)
 直径7.5cmの2枚撹拌翼を備えた1000mL四つ口フラスコにアジルサルタンメチルエステル(アジルサルタンメチルエステル純度:99.1%)50gを量りとり、1.25M水酸化ナトリウム水溶液400mLを加え、70℃まで加熱した後、同温度にて2時間反応を行った。反応後の粗アジルサルタン溶液に含まれるアジルサルタンは、アジルサルタン純度:99.62%、アジルサルタンデスエチル体:0.06%、アジルサルタン二量体:0.08%であった。反応後の溶液を40℃まで冷却した後、同温度でアセトン250mL、酢酸170mL、水170mLを加えて、粗アジルサルタンの結晶を析出させた。反応液を-20℃/時間の速度で20℃まで冷却した後、同温度で6時間撹拌した。次いで、得られたスラリー液を減圧濾過して析出した結晶を分取し、40℃で乾燥して、47gの粗アジルサルタンの結晶を得た(収率:96.4%)。この粗アジルサルタンは、アジルサルタン純度:99.71%、アジルサルタンデスエチル体:0.06%、アジルサルタン二量体:0.06%であった。また、この粗アジルサルタンを試料として、XRDを測定すると2θ=9.2°、12.1°、21.7°、23.7°に特徴的なピークを有するA型結晶構造のアジルサルタンであることが分かった。
 製造例2(粗アジルサルタンの製造:活性炭処理あり)
 直径15cmの2枚撹拌翼を備えた5000mL四つ口フラスコにアジルサルタンメチルエステル(アジルサルタンメチルエステル純度:99.1%)250gを量りとり、1.25M水酸化ナトリウム水溶液2000mLを加え、70℃まで加熱した後、同温度にて2時間反応を行った。反応後の粗アジルサルタン溶液に含まれるアジルサルタンは、アジルサルタン純度:99.61%、アジルサルタンデスエチル体:0.06%、アジルサルタン二量体:0.08%であった。反応後の溶液を30℃まで冷却した後、精製白鷺(大阪ガスケミカル製、比表面積:1430m/g、累計細孔容積:1.17mL/g)12.5gを加えて、20~30℃で1時間撹拌を行った。活性炭処理後の溶液に含まれるアジルサルタンは、アジルサルタン純度:99.85%、アジルサルタンデスエチル体:0.05%、アジルサルタン二量体:0.01%であった。次いで、減圧濾過して精製白鷺を除去し、得られたろ液を40℃まで加温した後、同温度でアセトン1250mL、酢酸850mL、水850mLを加えて、粗アジルサルタンの結晶を析出させた。反応液を-20℃/時間の速度で20℃まで冷却した後、同温度で6時間撹拌した。次いで、得られたスラリー液を減圧濾過して析出した結晶を分取し、40℃で乾燥して、231gの粗アジルサルタンの結晶を得た(収率:95.4%)。この粗アジルサルタンは、アジルサルタン純度:99.89%、アジルサルタンデスエチル体:0.04%、アジルサルタン二量体:未検出であった。また、この粗アジルサルタンを試料として、XRDを測定すると2θ=9.2°、12.0°、21.6°、23.6°に特徴的なピークを有するA型結晶構造のアジルサルタンであることが分かった。
 製造例3(アジルサルタンM型結晶の製造)
 直径7.5cmの2枚撹拌翼を備えた1000mL三つ口フラスコに製造例2で得られた粗アジルサルタン70gを量りとり、ジメチルホルムアミド140mLを加えて、35℃で加熱溶解した。得られたアジルサルタン溶液を30℃以下まで冷却した後、酢酸エチル700mLを加え、さらに冷却し、5℃で終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、69gのアジルサルタンの結晶を得た(アジルサルタン純度:99.92%、デスエチル体:0.03%)。このアジルサルタンを試料として、XRDを測定すると、図1に示すX線回折チャートが得られ、この結晶は2θ=9.3°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有するM型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は128℃であった。
 実施例1(アジルサルタンA型結晶の製造)
 直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例3で得られたアジルサルタンM型結晶4gを量りとり、メタノール40mLを加えて、35℃で撹拌しながら溶解した。35℃で1時間保持するとアジルサルタンの結晶が析出してきた。その後、5℃まで冷却し、終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、3.2gのアジルサルタンの結晶を得た(収率:80%)。得られたアジルサルタンは、アジルサルタン純度:99.96%、デスエチル体:0.01%であった。また、残留溶媒を測定すると、メタノールが949ppm検出された。さらに、このアジルサルタンを試料として、XRDを測定すると、図2に示すX線回折チャートが得られ、この結晶は2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを有するA型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は202℃であった。
 実施例2(アジルサルタンA型結晶の製造;分割添加)
 直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコにメタノール30mLを加えて、35℃に昇温して撹拌した。製造例3で得られたアジルサルタンM型結晶3gを3回に分けて1時間毎に添加して撹拌した。アジルサルタンM型結晶を全量添加した後、35℃で1時間保持した。その後、5℃まで冷却し、終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、2.4gのアジルサルタンの結晶を得た(収率:80%)。得られたアジルサルタンは、アジルサルタン純度:99.96%、デスエチル体:0.01%であった。また、残留溶媒を測定すると、メタノールが257ppm検出された。さらに、このアジルサルタンを試料として、XRDを測定すると、2θ=9.2°、12.1°、21.6°、23.6°に特徴的なピークを有するA型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は203℃であった。
 実施例3~9(アジルサルタンA型結晶の製造)
 実施例1において、使用する有機溶媒の種類、使用量を変更した以外は同様の操作を行い、得られたアジルサルタンについてHPLC純度測定、およびXRDによる結晶形の確認を行った。結果を表2に示した。
 比較例1(ジメチルホルムアミド)
 実施例1において、使用する有機溶媒をジメチルホルムアミドに変更した以外は同様の操作を行い、得られたアジルサルタンについてHPLC純度測定、およびXRDによる結晶形の確認を行った。XRDを測定すると、2θ=9.3°、11.5°、13.4°、14.8°、26.0°に特徴的なピークを有するM型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は126℃であった。結果を表2に示した。
 比較例2(ヘプタン)
 実施例1において、使用する有機溶媒をヘプタンに変更した以外は同様の操作を行い、得られたアジルサルタンについてHPLC純度測定、およびXRDによる結晶形の確認を行った。XRDを測定すると、2θ=9.3°、11.5°、13.3°、14.8°、26.1°に特徴的なピークを有するM型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は128℃であった。結果を表2に示した。
 比較例3(アセトン)
 実施例1において、使用する有機溶媒をアセトンに変更した以外は同様の操作を行い、得られたアジルサルタンについてHPLC純度測定、およびXRDによる結晶形の確認を行った。XRDを測定すると、2θ=7.6°、8.6°、11.1°、19.0°、21.1°に特徴的なピークを有するH型結晶構造のアジルサルタンであることが分かった。また、DSC測定による融点は177℃であった。結果を表2に示した。
 実施例10
 直径5.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例2で得られた粗アジルサルタン6gを量りとり、ジメチルホルムアミド12mLを加えて、35℃で加熱溶解した。得られたアジルサルタン溶液を30℃以下まで冷却した後、酢酸エチル60mLを加え、さらに冷却し、5℃で終夜撹拌した。次いで、減圧濾過して析出したアジルサルタンM型結晶を湿体として得た。
 直径5.5cmの2枚撹拌翼を備えた100mL三つ口フラスコにメタノール60mLを加えて、20℃で撹拌した。上記アジルサルタンM型結晶の湿体を6分割して1時間毎に添加した。全量添加した後、20℃でさらに1時間保持した。その後、5℃まで冷却し、6時間撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、4.8gのアジルサルタンの結晶を得た(収率:80%)。得られたアジルサルタンは、アジルサルタン純度:99.97%、デスエチル体:0.01%であった。また、残留溶媒を測定すると、メタノールが180ppm検出された。さらに、このアジルサルタンを試料として、XRDを測定すると、2θ=9.2°、12.1°、21.6°、23.6°に特徴的なピークを有するA型結晶構造のアジルサルタンであることが分かった。
 実施例11
 直径5.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例2で得られた粗アジルサルタン6gを量りとり、ジメチルホルムアミド12mLを加えて、35℃で加熱溶解した。得られたアジルサルタン溶液を30℃以下まで冷却した後、酢酸エチル60mLを加え、さらに冷却し、5℃で終夜撹拌した。次いで、減圧濾過して析出したアジルサルタンM型結晶を湿体として得た。
 直径5.5cmの2枚撹拌翼を備えた100mL三つ口フラスコにエタノール30mL、水30mLを加えて、20℃で撹拌した。上記アジルサルタンM型結晶の湿体を6分割して1時間毎に添加した。全量添加した後、20℃でさらに1時間保持した。その後、5℃まで冷却し、7時間撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、5.3gのアジルサルタンの結晶を得た(収率:88%)。得られたアジルサルタンは、アジルサルタン純度:99.94%、デスエチル体:0.02%であった。また、残留溶媒を測定すると、エタノールが309ppm検出された。さらに、このアジルサルタンを試料として、XRDを測定すると、2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを与えるA型結晶構造を有するアジルサルタンであることが分かった。
Figure JPOXMLDOC01-appb-T000006

Claims (4)

  1.  Cu-Kα線を用いるX線回折により、少なくとも2θ=9.2°、12.1°、21.6°、23.7°に特徴的なピークを有するアジルサルタンA型結晶の製造方法であって、
     少なくとも2θ=9.4°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを有するアジルサルタン結晶をプロトン性溶媒、エステル類、アセトニトリルの中から選択される少なくとも一つの溶媒と接触させることを特徴とする方法。
  2.  前記溶媒がプロトン性溶媒である請求項1記載の方法。
  3.  前記プロトン性溶媒がアルコール類である請求項1又は2記載の方法。
  4.  前記アジルサルタン結晶を溶媒に対して分割して接触させる請求項1~3の何れか1項に記載の方法。

     
PCT/JP2019/002595 2018-02-09 2019-01-25 アジルサルタンa型結晶の製造方法 WO2019155922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980012161.3A CN111699183A (zh) 2018-02-09 2019-01-25 阿齐沙坦a型晶体的制造方法
JP2019570681A JP7177796B2 (ja) 2018-02-09 2019-01-25 アジルサルタンa型結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021631 2018-02-09
JP2018-021631 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155922A1 true WO2019155922A1 (ja) 2019-08-15

Family

ID=67549428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002595 WO2019155922A1 (ja) 2018-02-09 2019-01-25 アジルサルタンa型結晶の製造方法

Country Status (3)

Country Link
JP (1) JP7177796B2 (ja)
CN (1) CN111699183A (ja)
WO (1) WO2019155922A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766139A (zh) * 2012-08-14 2012-11-07 江苏先声药物研究有限公司 阿齐沙坦的多晶型物及其制备方法
CN103664921A (zh) * 2013-11-27 2014-03-26 湖南千金湘江药业股份有限公司 一种阿齐沙坦晶型a及其制备方法
JP2014530805A (ja) * 2011-09-30 2014-11-20 スンシネ ルアケ プハルマ カンパニー リミテッド アジルサルタンの結晶形並びにその製造及び使用
CN104262334A (zh) * 2014-09-16 2015-01-07 常州大学 一种阿奇沙坦晶体及其制备方法
WO2016147210A1 (en) * 2015-03-13 2016-09-22 Cristaldi, Angelo Automatic plant and process for producing electric energy from solar irradiation, from a fuel-type auxiliary plant and from a system for storing thermal energy
CN106749216A (zh) * 2016-12-30 2017-05-31 湖南千金湘江药业股份有限公司 一种晶型a阿齐沙坦的精制方法
WO2017131218A1 (ja) * 2016-01-28 2017-08-03 株式会社トクヤマ アジルサルタン及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557899B (zh) * 2014-11-17 2018-05-22 江苏中邦制药有限公司 一种阿齐沙坦i晶型晶体的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530805A (ja) * 2011-09-30 2014-11-20 スンシネ ルアケ プハルマ カンパニー リミテッド アジルサルタンの結晶形並びにその製造及び使用
CN102766139A (zh) * 2012-08-14 2012-11-07 江苏先声药物研究有限公司 阿齐沙坦的多晶型物及其制备方法
CN103664921A (zh) * 2013-11-27 2014-03-26 湖南千金湘江药业股份有限公司 一种阿齐沙坦晶型a及其制备方法
CN104262334A (zh) * 2014-09-16 2015-01-07 常州大学 一种阿奇沙坦晶体及其制备方法
WO2016147210A1 (en) * 2015-03-13 2016-09-22 Cristaldi, Angelo Automatic plant and process for producing electric energy from solar irradiation, from a fuel-type auxiliary plant and from a system for storing thermal energy
WO2017131218A1 (ja) * 2016-01-28 2017-08-03 株式会社トクヤマ アジルサルタン及びその製造方法
CN106749216A (zh) * 2016-12-30 2017-05-31 湖南千金湘江药业股份有限公司 一种晶型a阿齐沙坦的精制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE, Y. H. ET AL.: "Crystal type iof azilsartan polymorphs: Preparation and analysis", JOURNAL OF CRYSTALLIZATION PROCESS AND TECHNOLOGY, vol. 6, no. 1, 2016, pages 1 - 10, XP055629450 *

Also Published As

Publication number Publication date
JPWO2019155922A1 (ja) 2021-02-04
JP7177796B2 (ja) 2022-11-24
CN111699183A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
EA015037B1 (ru) Способ получения 3-(2,2,2-триметилгидразиний)пропионата дигидрата
WO2018008219A1 (ja) アジルサルタン中間体、アジルサルタン、及びこれらの製造方法
WO2017131218A1 (ja) アジルサルタン及びその製造方法
WO2019155922A1 (ja) アジルサルタンa型結晶の製造方法
JP5595820B2 (ja) カンデサルタンシレキセチルの製造方法
JP6392320B2 (ja) 結晶性3’,5’−サイクリックジグアニル酸
JP6663232B2 (ja) 新規結晶構造を有するアジルサルタン及びその製造方法
JP6124562B2 (ja) 4′−[[2−n−プロピル−4−メチル−6−(1−メチルベンズイミダゾール−2−イル)−ベンズイミダゾール−1−イル]−メチル]−ビフェニル−2−カルボン酸のアンモニウム塩の結晶
JP7426832B2 (ja) 新規結晶構造を有するイグラチモド及びその製造方法
JP6382736B2 (ja) バルサルタンの製造方法
JP6382660B2 (ja) オルメサルタンメドキソミルの製造方法
JP6676491B2 (ja) アジルサルタンアルキルエステルの製造方法、及びアジルサルタンの製造方法
JPH10245352A (ja) ビスクレゾール類の精製方法
JP2018076258A (ja) アジルサルタンアルキルエステル、アジルサルタンメチルエステルの製造方法、及びアジルサルタンの製造方法
JP7201262B2 (ja) 3’,3’-cGAMPの水和物結晶
JP6198269B2 (ja) オルメサルタンメドキソミルの製造方法
JP6275596B2 (ja) テルミサルタンのアンモニウム塩の製造方法
JP2011144162A (ja) 光学活性4−アミノ−3−(4−クロロフェニル)ブタン酸の新規な結晶およびその製造方法
JP6008734B2 (ja) オランザピンii型結晶の製造方法
JP2021059607A (ja) アジルサルタンアルキルエステル、アジルサルタンメチルエステルの製造方法、及びアジルサルタンの製造方法
WO2020090948A1 (ja) Cyclic-di-AMPナトリウム塩結晶
JP4402500B2 (ja) イオパミドールの精製方法
JP6147546B2 (ja) 酢酸が低減されたテルミサルタンa型結晶の製造方法
JP2010077070A (ja) イミダゾール誘導体の精製方法
JP2013087089A (ja) カンデサルタンシレキセチルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751755

Country of ref document: EP

Kind code of ref document: A1