WO2020090948A1 - Cyclic-di-AMPナトリウム塩結晶 - Google Patents

Cyclic-di-AMPナトリウム塩結晶 Download PDF

Info

Publication number
WO2020090948A1
WO2020090948A1 PCT/JP2019/042706 JP2019042706W WO2020090948A1 WO 2020090948 A1 WO2020090948 A1 WO 2020090948A1 JP 2019042706 W JP2019042706 W JP 2019042706W WO 2020090948 A1 WO2020090948 A1 WO 2020090948A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium salt
crystals
crystal
salt crystal
aqueous solution
Prior art date
Application number
PCT/JP2019/042706
Other languages
English (en)
French (fr)
Inventor
美沙樹 ▲高▼松
▲吉▼田 晃
万里恵 松永
和也 石毛
Original Assignee
ヤマサ醤油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマサ醤油株式会社 filed Critical ヤマサ醤油株式会社
Priority to KR1020217012301A priority Critical patent/KR102650450B1/ko
Priority to CN201980068123.XA priority patent/CN115551872A/zh
Priority to EP19877628.8A priority patent/EP3875463B1/en
Priority to CA3118069A priority patent/CA3118069C/en
Priority to US17/290,361 priority patent/US11485754B2/en
Priority to JP2020554017A priority patent/JP7201263B2/ja
Publication of WO2020090948A1 publication Critical patent/WO2020090948A1/ja
Priority to JP2022177835A priority patent/JP2023011874A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a crystalline sodium salt of Cyclic-di-AMP which is considered to be a useful substance as an adjuvant.
  • Cyclic-di-AMP (hereinafter referred to as "c-di-AMP") is a substance discovered as a second messenger of bacteria. In recent years, it has been reported that this substance can induce type 1 interferon, and its use as a pharmaceutical is expected (Non-Patent Document 1).
  • a chemical synthesis method (Non-Patent Documents 2 and 3) and an enzymatic synthesis method using diadenylate cyclase derived from Bacillus or Streptococcus are known. (Non-patent documents 4, 5).
  • Patent Document 1 The c-di-AMP currently generally sold is a freeze-dried product, and regarding the acquisition of crystals, only the free acid crystals shown in Patent Document 1 have been reported (Patent Document 1). Some of them are sold as crystalline solids (“crystalline solids”), but they are commercially available crystalline solids that are amorphous and spread without cleavage when crushed. Was not a crystal (Fig. 1).
  • Freeze-dried products of c-di-AMP are generally known, but freeze-dried products require a freeze-dryer in the manufacturing process, and there are naturally limits to scale-up for mass production. Therefore, there has been a demand for the development of a crystal acquisition method that enables simple and large-scale acquisition without using a special device such as a freeze dryer.
  • the existing c-di-AMP free acid crystal has a drawback that its stability is deteriorated under severe conditions, for example, at 105 ° C.
  • the present inventors obtained the sodium salt crystal of c-di-AMP for the first time and completed the present invention.
  • the pH of step (1) is important for crystallization, and under acidic conditions below pH 5.2, crystallization itself is difficult, and even if crystals could be obtained, the yield would be low. , Not preferable.
  • the method for producing c-di-AMP sodium salt crystals of the present invention is a method suitable for mass production of c-di-AMP salt crystals.
  • FIG. 1 shows a photograph of the appearance when a commercially available c-di-AMP crystalline solid was spread.
  • FIG. 2 shows a crystal photograph of the c-di-AMP sodium salt crystal ⁇ obtained in Example 1.
  • FIG. 3 shows the X-ray diffraction spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 1.
  • FIG. 4 shows an infrared absorption spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 1.
  • FIG. 5 shows the results of thermogravimetric measurement / differential thermal analysis of the c-di-AMP sodium salt crystals ⁇ obtained in Example 1.
  • FIG. 6 shows a crystal photograph of c-di-AMP sodium salt crystal ⁇ obtained in Example 2.
  • FIG. 1 shows a photograph of the appearance when a commercially available c-di-AMP crystalline solid was spread.
  • FIG. 2 shows a crystal photograph of the c-di-AMP sodium salt crystal ⁇ obtained in Example 1.
  • FIG. 3 shows the
  • FIG. 7 shows the X-ray diffraction spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 2.
  • FIG. 8 shows the infrared absorption spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 2.
  • FIG. 9 shows the results of thermogravimetric measurement / differential thermal analysis of the c-di-AMP sodium salt crystal ⁇ obtained in Example 2.
  • FIG. 10 shows a crystal photograph of c-di-AMP sodium salt crystal ⁇ obtained in Example 4.
  • FIG. 11 shows the X-ray diffraction spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 4.
  • FIG. 12 shows an infrared absorption spectrum of the c-di-AMP sodium salt crystal ⁇ obtained in Example 4.
  • FIG. 13 shows the results of thermogravimetric measurement / differential thermal analysis of the c-di-AMP sodium salt crystal ⁇ obtained in Example 4.
  • FIG. 14 shows a crystal photograph of c-di-AMP free acid crystals.
  • FIG. 15 shows the X-ray diffraction spectrum of the c-di-AMP free acid crystal.
  • FIG. 16 shows the infrared absorption spectrum of the c-di-AMP free acid crystal.
  • FIG. 17 shows the results of thermogravimetric measurement / differential thermal analysis of c-di-AMP free acid crystals.
  • FIG. 18 shows the severe conditions of the c-di-AMP free acid crystals obtained in Reference Example, the sodium salt crystals ⁇ obtained in Examples 1 and 2, and the sodium salt crystals ⁇ obtained in Example 4. The stability test result under (105 degreeC) is shown.
  • the present invention provides a sodium salt crystal of c-di-AMP represented by the following structural formula.
  • X in the following structural formula is either a hydrogen atom (H) or a sodium atom (Na), and at least one of the two Xs in the formula is a sodium atom.
  • the sodium salt crystals of c-di-AMP of the present invention can take two forms depending on the pH of the c-di-AMP aqueous solution at the time of preparation.
  • c-di-AMP crystals having a pH at the time of preparation of 6.0 to 12.0 are crystals ⁇
  • crystals having a pH at the time of preparation of 5.2 to 6.0 are ⁇ . It is defined as.
  • the c-di-AMP sodium salt crystal ⁇ of the present invention has a sodium content within the range of 6.2 to 6.8% when analyzed by an atomic absorption spectrophotometric method. From this, it is understood that the abundance ratio of sodium atoms to the c-di-AMP1 molecule in the crystal ⁇ is 2.
  • the c-di-AMP sodium salt crystal ⁇ of the present invention is obtained as columnar crystals (see FIGS. 2 and 6).
  • the sodium salt crystal ⁇ of the present invention is analyzed by a powder X-ray diffractometer using Cu—K ⁇ ray, the diffraction angles (2 ⁇ ) are 10.9 and 23.9 (°, as shown in Examples below. A characteristic peak is shown near () (see FIGS. 3 and 7).
  • the diffraction angle (2 ⁇ ) in powder X-ray diffraction may include an error range of less than 5%. Therefore, in addition to crystals in which the diffraction angles of peaks in powder X-ray diffraction are completely the same, Crystals whose bending angles match with an error of less than 5% are also included in the sodium salt crystal ⁇ of the present invention.
  • the diffraction angles (2 ⁇ ) have characteristic peaks at 10.9 ⁇ 0.5 and 23.9 ⁇ 1.2 (°).
  • the sodium salt crystal ⁇ of the present invention has a characteristic peak near 3118, 1604, 1221, and 1074 (cm ⁇ 1 ) when the infrared absorption spectrum is measured (see FIGS. 4 and 8).
  • an error range of generally less than 2 (cm ⁇ 1 ) may be included. Therefore, in addition to crystals in which the above numerical values and peak positions in the infrared absorption spectrum are completely the same, the peak is 2 cm ⁇ Crystals that match with an error of less than 1 are also included in the sodium salt crystal ⁇ of the present invention. For example, when an infrared absorption spectrum is measured, it has characteristic peaks at 3118 ⁇ 1.9, 1604 ⁇ 1.9, 1221 ⁇ 1.9, and 1074 ⁇ 1.9 (cm ⁇ 1 ).
  • the sodium salt crystal ⁇ of the present invention has an endothermic peak near 255 ° C. when analyzed by a thermogravimetric / differential thermal analysis (TG / DTA) device (heating rate 5 ° C./min) (FIGS. 5 and 9). reference).
  • TG / DTA thermogravimetric / differential thermal analysis
  • the c-di-AMP sodium salt crystal ⁇ of the present invention has a sodium content in the range of 4.7 to 5.2% when analyzed by an atomic absorption spectrophotometric method. From this, it is found that the abundance ratio of sodium atoms to the c-di-AMP1 molecule in the crystal ⁇ is 1.5.
  • the c-di-AMP sodium salt crystal ⁇ of the present invention is obtained as a cubic crystal (see FIG. 10).
  • the sodium salt crystal ⁇ of the present invention is analyzed by a powder X-ray diffractometer using Cu—K ⁇ ray, the diffraction angles (2 ⁇ ) are 9.3, 23.6, and 24, as shown in Examples below. A characteristic peak is shown in the vicinity of 0.3 (°) (see FIG. 11).
  • the diffraction angle (2 ⁇ ) in powder X-ray diffraction may include an error range of less than 5%. Therefore, in addition to crystals in which the diffraction angles of peaks in powder X-ray diffraction are completely the same, Crystals whose bending angles match with an error of less than 5% are also included in the sodium salt crystal ⁇ of the present invention.
  • the diffraction angles (2 ⁇ ) have characteristic peaks at 9.3 ⁇ 0.5, 23.6 ⁇ 1.2, and 24.3 ⁇ 1.2 (°).
  • the sodium salt crystal ⁇ of the present invention has characteristic peaks near 3119, 1606, 1222, and 1074 (cm ⁇ 1 ) when the infrared absorption spectrum is measured (see FIG. 12).
  • an error range of generally less than 2 (cm ⁇ 1 ) may be included. Therefore, in addition to crystals in which the above numerical values and peak positions in the infrared absorption spectrum are completely the same, the peak is 2 cm ⁇ Crystals that match with an error of less than 1 are also included in the sodium salt crystal ⁇ of the present invention. For example, when the infrared absorption spectrum is measured, it has characteristic peaks at 3119 ⁇ 1.9, 1606 ⁇ 1.9, 1222 ⁇ 1.9, 1074 ⁇ 1.9 (cm ⁇ 1 ).
  • the sodium salt crystal ⁇ of the present invention has an endothermic peak near 239 ° C. when analyzed by a thermogravimetric / differential thermal analysis (TG / DTA) device (heating rate 5 ° C./min) (see FIG. 13).
  • TG / DTA thermogravimetric / differential thermal analysis
  • the c-di-AMP sodium salt crystal of the present invention has a purity of 97% or more, more preferably 99% or more, when subjected to a purity test by a high performance liquid chromatography method. Furthermore, the c-di-AMP sodium salt crystal of the present invention exhibits high solubility as compared with the existing c-di-AMP free acid crystal.
  • C-di-AMP used for crystallization may be synthesized by a known method such as an enzymatic synthesis method or a chemical synthesis method. .. A known method may be used for the synthesis, and for example, the methods described in Non-Patent Documents 2 to 5 can be used.
  • c-di-AMP produced in the reaction solution can be purified by activated carbon or reverse phase chromatography.
  • the sodium salt crystals of the present invention can be obtained by adjusting the aqueous c-di-AMP solution to have a pH of 5.2 to 12.0 and adding an organic solvent.
  • the pH of the c-di-AMP aqueous solution is 5.2 to 6.0
  • the obtained sodium salt crystals become crystals ⁇
  • the pH is 6.0 to 12.0
  • the obtained sodium salt crystals are obtained.
  • Sodium salt crystals are crystals ⁇ .
  • the pH is less than 5.2, when a high-concentration c-di-AMP aqueous solution is prepared, precipitation occurs in the aqueous solution and pure c-di-AMP sodium salt crystals may be obtained. It will be difficult.
  • the pH of the c-di-AMP aqueous solution in the above step (1) is within the range of 5.2 to 12.0, c-di-AMP sodium salt crystals can be obtained, but a high-concentration aqueous solution is obtained.
  • the pH is preferably 5.4 or higher, and particularly preferably 5.6 or higher.
  • the pH of the aqueous solution of c-di-AMP is preferably pH 7.0 to 11.0, and more preferably pH 7 because the pH of the aqueous solution becomes nearly neutral when the crystals are dissolved. It is from 0.0 to 10.0, more preferably from pH 7.0 to 8.5, and in this case, the crystal ⁇ is obtained by adding an organic solvent.
  • Examples of the acid used in the above step (1) include, but are not limited to, hydrochloric acid, sulfuric acid, and nitric acid.
  • Examples of the base used include, but are not limited to, sodium hydroxide, sodium acetate and the like. In order to prevent amorphization and rapid crystal precipitation due to rapid addition of acid or base, it is preferable to perform addition slowly.
  • the absorbance OD 257 of the c-di-AMP aqueous solution at the measurement wavelength of 257 nm is 500 or more, crystals can be obtained by adding an organic solvent. Since it is possible to reduce the required amount of the organic solvent to be added, it is more preferably 1000 or more, more preferably 2000 or more, and further preferably 3000 or more. On the other hand, when the concentration of the c-di-AMP aqueous solution is high, the viscosity of the solution becomes high and the handling property deteriorates. Therefore, the absorbance OD 257 of the c-di-AMP aqueous solution at the measurement wavelength of 257 nm is 20000 or less. It is preferably 15,000 or less, more preferably 15,000 or less.
  • step (3) the temperature of the c-di-AMP aqueous solution is heated to 30 to 70 ° C.
  • the temperature of the aqueous solution in step (3) is more preferably 40 ° C. or higher, and more preferably 50 ° C. or higher, because crystals are more likely to precipitate as there is a temperature difference from that during cooling in step (5). ..
  • the organic solvent may be contained in the c-di-AMP aqueous solution before the addition of the organic solvent, which is used in the present crystal acquisition step, as long as crystals are not precipitated.
  • the content of the organic solvent is preferably 30% (v / v) or less, more preferably 20% (v / v) or less, and 10% (v / v) or less. v / v) or less is more preferable, 5% (v / v) or less is more preferable, and it is more preferable that the organic solvent is not substantially contained.
  • Examples of the organic solvent used in the step (4) include alcohols having 6 or less carbon atoms such as methanol and ethanol, ketones such as acetone, ethers such as dioxane, nitriles such as acetonitrile, amides such as dimethylformamide.
  • alcohols having 6 or less carbon atoms such as methanol and ethanol, ketones such as acetone, ethers such as dioxane, nitriles such as acetonitrile, amides such as dimethylformamide.
  • alcohols having 6 or less carbon atoms are preferable, and among them, ethanol is preferably used.
  • the c-di-AMP aqueous solution is cooled to 1 to 30 ° C. Crystals are more likely to precipitate when there is a temperature difference from that during heating in step (3). Therefore, the temperature of the aqueous solution in step (5) is more preferably 20 ° C. or lower, and more preferably 10 ° C. or lower. ..
  • steps (1) to (5) are preferably performed in order, it is also possible to appropriately perform successive steps simultaneously.
  • the c-di-AMP sodium salt crystals obtained by the above production method can be made into a product by filtering and then drying.
  • a method such as reduced pressure drying can be appropriately used.
  • Example 1 Production of c-di-AMP sodium salt crystal ⁇ at pH 8.2 c-di-AMP was enzymatically synthesized by a known method and purified. OD 257 obtained by purification is 4710, warmed c-di-AMP solution of pH8.2 to (102 mL) to 40 ° C.. While stirring, 142 mL of 99.5% (w / w) ethanol was slowly added thereto, followed by cooling until the liquid temperature became 4 ° C. to precipitate crystals. The crystals thus precipitated were collected by filtration with a basket separator to obtain wet crystals. The wet crystals were dried at 30 ° C. for 2 hours to obtain 9.8 g of dry crystals.
  • FIG. 2 A photograph of c-di-AMP sodium salt crystal ⁇ in this example is shown in FIG. As shown in FIG. 2, it was revealed that the c-di-AMP sodium salt crystal ⁇ had a columnar crystal form.
  • the c-di-AMP sodium salt crystals ⁇ of this example have diffraction angles (2 ⁇ ) of 6.2, 10.9, 12.6, and 23.9 (°). A peak was shown in the vicinity, and particularly characteristic peaks were shown in the vicinity of 10.9 and 23.9 (°).
  • the c-di-AMP sodium salt crystal ⁇ of this example had characteristic peaks near 3119, 1604, 1220, and 1073 (cm ⁇ 1 ). The results are shown in FIG.
  • Example 2 Production of c-di-AMP sodium salt crystal ⁇ at pH 10.0
  • c-di-AMP was enzymatically synthesized and purified.
  • OD 257 obtained by purification is 6600, warmed c-di-AMP solution pH10.0 the (50 mL) to 40 ° C..
  • 45 mL of ethanol was slowly added thereto, and then the liquid temperature was cooled to 4 ° C. to precipitate crystals.
  • the crystals thus precipitated were collected by filtration with a membrane filter (3 ⁇ m) to obtain wet crystals.
  • the wet crystals were dried at 20 ° C. for 1 hour and 30 minutes to obtain 7 g of dried crystals.
  • FIG. 6 shows a photograph of the c-di-AMP sodium crystal ⁇ of this example. As shown in FIG. 6, it was revealed that the c-di-AMP sodium salt crystal ⁇ had a columnar crystal form.
  • the c-di-AMP sodium salt crystal ⁇ of this example shows characteristic peaks at diffraction angles (2 ⁇ ) of around 10.9 and 24.0 (°). It was
  • the c-di-AMP sodium salt crystal ⁇ of this example had characteristic peaks near 3118, 1604, 1221 and 1074 (cm ⁇ 1 ). The results are shown in FIG.
  • Example 3 Acquisition test of c-di-AMP sodium salt crystals in a low pH range (pH 5.0 to 6.5) In order to determine a pH range in which c-di-AMP sodium salt crystals can be acquired, a low pH value is determined. An acquisition test of crystals in the region (pH 5.0 to 6.5) was performed.
  • c-di-AMP was enzymatically synthesized and purified.
  • OD 257 is 2500
  • pH is in 5.0,5.2,5.4,5.6,5.8,6.0 or 6.5
  • An aqueous c-di-AMP solution was prepared.
  • the resulting c-di-AMP solution (0.2 mL) having an OD 257 of 2500 was heated to 30 ° C. After slowly adding 1 mL of 99.5% (w / w) ethanol thereto, the mixture was hermetically sealed and left standing overnight at 30 ° C. for several days to precipitate crystals. The crystals thus precipitated were collected by filtration with a membrane filter to obtain wet crystals.
  • Crystals indicate whether or not crystals can be obtained.
  • Crystals could be obtained without problems
  • Crystals could be obtained, but the amount was small compared to other pH's
  • Aqueous solution could not be prepared and crystals could not be obtained It means that.
  • the c-di-AMP crystals obtained in the pH range of 5.4 or more and less than 6.0 had the same properties such as a cubic appearance, and were considered to have the same morphology. At pH 6.0, cubic and columnar crystals were mixed.
  • the c-di-AMP crystals obtained in the pH range higher than pH 6.0 showed properties similar to those of the crystals obtained in Examples 1 and 2, such as a columnar appearance. From the above results, when the pH of the c-di-AMP aqueous solution is in the range of 5.2 to 6.0, the c-di-AMP crystal ⁇ of the embodiment is obtained, and the pH of 6.0 to 12 is obtained. It was revealed that the c-di-AMP sodium salt crystal ⁇ was obtained in the range of 0.0.
  • Example 4 Production of c-di-AMP sodium salt crystal ⁇ at pH 5.6
  • c-di-AMP was enzymatically synthesized and purified.
  • a c-di-AMP solution (15 mL) having an OD 257 of 3000 and a pH of 5.6 obtained by purification was heated to 30 ° C. While stirring, 15 mL of ethanol was slowly added thereto, and then the liquid temperature was cooled to 4 ° C. to precipitate crystals. The crystals thus precipitated were collected by filtration with a membrane filter to obtain wet crystals. The wet crystals were dried at 25 ° C. for 2 hours to obtain 1.0 g of dry crystals.
  • FIG. 10 shows a photograph of c-di-AMP sodium salt crystal ⁇ in this example. As shown in FIG. 10, it was revealed that the c-di-AMP sodium salt crystal ⁇ had a cubic crystal form.
  • the c-di-AMP sodium salt crystal ⁇ of this example has peaks at diffraction angles (2 ⁇ ) of around 9.3, 23.6, and 24.3 (°). Indicated.
  • the c-di-AMP sodium salt crystal ⁇ of this example had characteristic peaks near 3119, 1606, 1222, and 1074 (cm ⁇ 1 ). The results are shown in FIG.
  • the c-di-AMP free acid crystals described in Patent Document 1 have diffraction angles (2 ⁇ ) of 9.2, 10.2, 10.9, 11.1, 13 A characteristic peak was shown in the vicinity of 0.7, 15.2, 19.0, 20.6, 22.4, 23.1, 24.3, 26.6, 26.8 (°).
  • Example 4 Stability test of obtained crystals under 105 ° C conditions
  • the crystals obtained in the above-mentioned Example 1, Example 2, Example 4 and Reference Example were allowed to stand under 105 ° C conditions. Crystals were recovered from the mixture with time, an aqueous solution was prepared, and the purity of the crystals was analyzed by high performance liquid chromatography. The obtained results are shown in FIG. 18 and Table 6.
  • the c-di-AMP sodium salt crystals belonging to the present invention are superior in stability even under the severe condition of 105 ° C. as compared with the existing c-di-AMP free acid crystals. Do you get it. Furthermore, while stirring the existing c-di-AMP free acid crystals required a stirring operation, the c-di-AMP sodium salt crystals of the present invention dissolved rapidly. From this, it became clear that the c-di-AMP sodium salt crystal of the present invention has higher solubility than the existing c-di-AMP free acid crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

Cyclic-di-AMPの凍結乾燥品は、製造に特別な設備を必要とすることから、大量生産に適していない。Cyclic-di-AMPの遊離酸結晶は、105℃の過酷条件下において不安定である。そこで、簡便かつ大量に取得でき、かつ、105℃の過酷条件下における安定性に優れたCyclic-di-AMP結晶を提供することを課題とする。 本発明のc-di-AMPナトリウム塩結晶は、105℃の過酷条件下においても極めて安定である。 また、本発明のc-di-AMPナトリウム塩結晶は、c-di-AMP水溶液をpH5.2~12.0となるよう調整後、有機溶媒を添加するという簡便な方法によって、大量に調製可能である。

Description

Cyclic-di-AMPナトリウム塩結晶
 本発明はアジュバントとして有用な物質になりうると考えられるCyclic-di-AMPのナトリウム塩結晶に関するものである。
 Cyclic-di-AMP(以下「c-di-AMP」と表記)は細菌のセカンドメッセンジャーとして発見された物質である。近年になって本物質は1型インターフェロンを誘発しうることが報告されるなど医薬品としての利用が期待される(非特許文献1)。これまでにc-di-AMPの製造方法としては、化学合成法(非特許文献2、3)およびBacillus属やStreptococcus属などに由来するジアデニレートシクラーゼを用いた酵素合成法が知られている(非特許文献4、5)。
 現在一般的に販売されているc-di-AMPは凍結乾燥品であり、また結晶の取得については特許文献1に示す遊離酸結晶についてのみ報告がなされている(特許文献1)。一部には結晶性固体(“crystalline solid”)として販売されているものも存在するが、不定形で、かつ、押し潰した際には劈開せずに展延するため、市販の結晶性固体は結晶とは言えなかった(図1)。
国際公開第2015/137469号
Science, 328, 1703-1705(2010) SYNTHESIS, 24, 4230-4236(2006) Nucleosides Nucleotides Nucleic Acids, 32, 1-16(2013) Molecular Cell, 30, 167-178(2008) Nagoya J. Med. Sci., 73, 49-57(2011)
 c-di-AMPは凍結乾燥品が一般的に知られているが、凍結乾燥品はその製造過程において凍結乾燥機が必要となり、大量生産のためにスケールアップをするにも自ずと限界がある。そこで凍結乾燥機のような特別な装置を使用することなく、かつ簡便に大量に取得できる結晶取得法の開発が望まれていた。
 また、本発明者らの検討において、既存のc-di-AMP遊離酸結晶は過酷条件下、たとえば105℃条件下において、安定性が低下するという欠点が見出された。
 本発明者らは、c-di-AMPの結晶化に関して鋭意研究を重ねた結果、c-di-AMPのナトリウム塩結晶を初めて取得し、本発明を完成させた。
 本発明者らの検討で、(1)c-di-AMP水溶液に塩基及び/又は酸を添加し、pHを5.2~12.0に調整する工程、(2)c-di-AMP水溶液を測定波長257nmにおける吸光度OD257を500~20000とする工程、(3)c-di-AMP水溶液を30~70℃まで加熱する工程、(4)c-di-AMP水溶液に有機溶媒を添加する工程、(5)c-di-AMP水溶液を1~30℃になるまで冷却する工程を経ることで、本発明のc-di-AMPナトリウム塩結晶を取得でき、得られたc-di-AMPナトリウム塩結晶は、105℃の過酷条件下においても極めて安定であることが明らかとなった。さらに、本発明のc-di-AMPナトリウム塩結晶は、既存のc-di-AMP遊離酸結晶と比較して、高い溶解性を示した。
 特に、結晶化のためには(1)工程のpHが重要で、pH5.2未満の酸性条件では、結晶化自体が困難であり、仮に結晶を取得できた場合でも収率が低くなることから、好ましいものではない。それに対し、pHが5.2以上の条件では、ナトリウム塩結晶のみを容易に取得することが可能である。したがって、本発明のc-di-AMPナトリウム塩結晶の製造法は、c-di-AMP塩結晶の大量製造に好適な方法である。
図1は、市販c-di-AMP結晶性固体を展延した際の外観写真を示す。 図2は、実施例1で得られたc-di-AMPナトリウム塩結晶αの結晶写真を示す。 図3は、実施例1で得られたc-di-AMPナトリウム塩結晶αのX線回折スペクトルを示す。 図4は、実施例1で得られたc-di-AMPナトリウム塩結晶αの赤外線吸収スペクトルを示す。 図5は、実施例1で得られたc-di-AMPナトリウム塩結晶αの熱重量測定/示差熱分析結果を示す。 図6は、実施例2で得られたc-di-AMPナトリウム塩結晶αの結晶写真を示す。 図7は、実施例2で得られたc-di-AMPナトリウム塩結晶αのX線回折スペクトルを示す。 図8は、実施例2で得られたc-di-AMPナトリウム塩結晶αの赤外線吸収スペクトルを示す。 図9は、実施例2で得られたc-di-AMPナトリウム塩結晶αの熱重量測定/示差熱分析結果を示す。 図10は、実施例4で得られたc-di-AMPナトリウム塩結晶βの結晶写真を示す。 図11は、実施例4で得られたc-di-AMPナトリウム塩結晶βのX線回折スペクトルを示す。 図12は、実施例4で得られたc-di-AMPナトリウム塩結晶βの赤外線吸収スペクトルを示す。 図13は、実施例4で得られたc-di-AMPナトリウム塩結晶βの熱重量測定/示差熱分析結果を示す。 図14は、c-di-AMP遊離酸結晶の結晶写真を示す。 図15は、c-di-AMP遊離酸結晶のX線回折スペクトルを示す。 図16は、c-di-AMP遊離酸結晶の赤外線吸収スペクトルを示す。 図17は、c-di-AMP遊離酸結晶の熱重量測定/示差熱分析結果を示す。 図18は、参考例で得られたc-di-AMP遊離酸結晶、実施例1及び実施例2で得られたナトリウム塩結晶α、及び実施例4で得られたナトリウム塩結晶βの過酷条件(105℃)下での安定性試験結果を示す。
 本発明は、下記の構造式で示されるc-di-AMPのナトリウム塩結晶を提供するものである。下記構造式中のXは、水素原子(H)又はナトリウム原子(Na)のいずれかであり、式中にある2つのXのうち少なくとも一方はナトリウム原子である。
Figure JPOXMLDOC01-appb-C000001
 本発明のc-di-AMPのナトリウム塩結晶は、調製時のc-di-AMP水溶液のpHに応じて、2つの形態を取り得る。以下においては、調製時のpHが6.0~12.0の範囲であるc-di-AMP結晶を結晶α、調製時のpHが5.2~6.0の範囲であるものを結晶βと定義する。
 本発明のc-di-AMPナトリウム塩結晶αは、原子吸光光度法で分析すると、ナトリウム含量が6.2~6.8%の範囲内となる。このことから、結晶αにおいて、c-di-AMP1分子に対するナトリウム原子の存在量比は2であることが分かる。
 本発明のc-di-AMPナトリウム塩結晶αは、柱状結晶として得られる(図2および図6参照)。
 また、本発明のナトリウム塩結晶αをCu-Kα線を用いた粉末X線回折装置で分析すると、後述実施例に示すように、回折角(2θ)が、10.9、23.9(°)付近に特徴的なピークを示す(図3および図7参照)。
 なお一般に、粉末X線回折における回折角(2θ)は、5%未満の誤差範囲を含む場合があることから、粉末X線回折におけるピークの回折角が完全に一致する結晶のほか、ピークの回折角が5%未満の誤差で一致する結晶も、本発明のナトリウム塩結晶αに包含される。例えば、粉末X線回折において、回折角(2θ)は、10.9±0.5、23.9±1.2(°)に特徴的なピークを有する。
 本発明のナトリウム塩結晶αは、赤外線吸収スペクトルを測定したとき、3118、1604、1221、1074(cm-1)付近に特徴的なピークを有する(図4および図8参照)。
 なお、赤外線吸収スペクトル測定では、一般に2(cm-1)未満の誤差範囲を含む場合があることから、上記数値と赤外線吸収スペクトルにおけるピークの位置が完全に一致する結晶のほか、ピークが2cm-1未満の誤差で一致する結晶も、本発明のナトリウム塩結晶αに包含される。例えば、赤外線吸収スペクトルを測定したとき、3118±1.9、1604±1.9、1221±1.9、1074±1.9(cm-1)に特徴的なピークを有する。
 本発明のナトリウム塩結晶αは、熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析したとき、255℃付近に吸熱ピークを有する(図5および図9参照)。
 本発明のc-di-AMPナトリウム塩結晶βは、原子吸光光度法で分析すると、ナトリウム含量が4.7~5.2%の範囲内となる。このことから、結晶βにおいて、c-di-AMP1分子に対するナトリウム原子の存在量比は1.5であることが分かる。
 本発明のc-di-AMPナトリウム塩結晶βは、立方体状結晶として得られる(図10参照)。
 また、本発明のナトリウム塩結晶βをCu-Kα線を用いた粉末X線回折装置で分析すると、後述実施例に示すように、回折角(2θ)が、9.3、23.6、24.3(°)付近に特徴的なピークを示す(図11参照)。
 なお一般に、粉末X線回折における回折角(2θ)は、5%未満の誤差範囲を含む場合があることから、粉末X線回折におけるピークの回折角が完全に一致する結晶のほか、ピークの回折角が5%未満の誤差で一致する結晶も、本発明のナトリウム塩結晶βに包含される。例えば、粉末X線回折において、回折角(2θ)は、9.3±0.5、23.6±1.2、24.3±1.2(°)に特徴的なピークを有する。
 本発明のナトリウム塩結晶βは、赤外線吸収スペクトルを測定したとき、3119、1606、1222、1074(cm-1)付近に特徴的なピークを有する(図12参照)。
 なお、赤外線吸収スペクトル測定では、一般に2(cm-1)未満の誤差範囲を含む場合があることから、上記数値と赤外線吸収スペクトルにおけるピークの位置が完全に一致する結晶のほか、ピークが2cm-1未満の誤差で一致する結晶も、本発明のナトリウム塩結晶βに包含される。例えば、赤外線吸収スペクトルを測定したとき、3119±1.9、1606±1.9、1222±1.9、1074±1.9(cm-1)に特徴的なピークを有する。
 本発明のナトリウム塩結晶βは、熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析したとき、239℃付近に吸熱ピークを有する(図13参照)。
 本発明のc-di-AMPナトリウム塩結晶は、高速液体クロマトグラフィー法にて純度検定したとき、97%以上、より好ましくは99%以上の純度を有する。さらに、本発明のc-di-AMPナトリウム塩結晶は、既存のc-di-AMP遊離酸結晶と比較して、高い溶解性を示す。
 次に、本発明のc-di-AMPのナトリウム塩結晶の調製法について説明すれば、結晶化に用いるc-di-AMPは、酵素合成法や化学合成法など公知の方法によって合成すればよい。合成を行うに当たっては既知の方法に従えばよく、たとえば非特許文献2~5に記載の方法を用いることができる。反応後、反応液中に生成したc-di-AMPは、活性炭や逆相クロマトグラフィーなどにより精製することができる。
 本発明のナトリウム塩結晶は、c-di-AMP水溶液をpH5.2~12.0となるよう調整し、有機溶媒を添加することにより、得ることができる。
 c-di-AMP水溶液のpHが5.2~6.0である場合には、取得されるナトリウム塩結晶は結晶βとなり、pHが6.0~12.0である場合には、取得されるナトリウム塩結晶は結晶αとなる。
 pHが5.2未満である場合には、高濃度のc-di-AMP水溶液を調製しようとすると水溶液中に沈殿が生じてしまい、純粋なc-di-AMPナトリウム塩結晶を取得することが困難となる。沈殿の生成を回避するため、c-di-AMP水溶液の濃度を低濃度とした場合には、c-di-AMPナトリウム塩結晶が全く取得できず、もしくは極微量しか取得できないために、効率的な結晶の製造ができない。結果として、c-di-AMP塩結晶を工業上利用可能な水準で大量かつ効率的に調製するためには、pHを5.2以上とすることが必須となる。
 上記結晶化においては、より高い収率で結晶を得るため、(1)c-di-AMP水溶液に塩基及び/又は酸を添加し、pHを5.2~12.0に調整する工程、(2)c-di-AMP水溶液を測定波長257nmにおける吸光度OD257を500~20000とする工程、(3)c-di-AMP水溶液を30~70℃まで加熱する工程、(4)c-di-AMP水溶液に有機溶媒を添加する工程、(5)c-di-AMP水溶液を1~30℃になるまで冷却する工程、を行うことが好ましい。
 上記工程(1)におけるc-di-AMP水溶液のpHは、5.2~12.0の範囲内であればc-di-AMPナトリウム塩結晶を取得することができるが、高濃度の水溶液の調製が容易であるという観点から、pHは5.4以上であることが好ましく、5.6以上であることが特に好ましい。さらに、結晶を溶解させた際に水溶液のpHが中性付近となり利便性が高いことから、c-di-AMP水溶液のpHは、好ましくはpH7.0~11.0であり、より好ましくはpH7.0~10.0であり、より好ましくはpH7.0~8.5であり、この場合には有機溶媒を添加することによって結晶αが取得される。
 上記工程(1)で使用する酸としては、塩酸、硫酸、硝酸を例示することができるが、これらに限定されない。使用する塩基としては、水酸化ナトリウム、酢酸ナトリウムなどを例示することができるが、これらに限定されない。酸又は塩基を急激に添加することによるアモルファス化や急激な結晶析出を防ぐため、添加はゆっくり行うことが好ましい。
 上記工程(2)において、c-di-AMP水溶液の測定波長257nmにおける吸光度OD257は、500以上である場合には有機溶媒の添加によって結晶を取得することができるが、結晶を析出させるために必要な有機溶媒の添加量を低減できることから、1000以上であることがより好ましく、2000以上であることがより好ましく、3000以上であることがより好ましい。一方で、c-di-AMP水溶液が高濃度となる場合には、溶液の粘度が高くなり取扱い性が低下することから、c-di-AMP水溶液の測定波長257nmにおける吸光度OD257は20000以下であることが好ましく、15000以下であることがより好ましく、10000以下であることがより好ましい。
 上記工程(3)においては、c-di-AMP水溶液の温度を30~70℃まで加熱する。工程(5)での冷却時と温度差がある程結晶が析出しやすいため、工程(3)での水溶液の温度は40℃以上であることがより好ましく、50℃以上であることがより好ましい。
 本結晶取得工程に用いる、有機溶媒添加前のc-di-AMP水溶液には、結晶が析出しない範囲内で有機溶媒を含有こともできる。しかし、予期しない結晶析出を防止する観点から、有機溶媒の含有量は30%(v/v)以下であることが好ましく、20%(v/v)以下であることがより好ましく、10%(v/v)以下であることがより好ましく、5%(v/v)以下であることがより好ましく、有機溶媒を実質的に含まないことがより好ましい。
 上記工程(4)で使用する有機溶媒としては、メタノール、エタノール等の炭素数6以下のアルコール類、アセトン等のケトン類、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類等を例示することができるが、これらに限定されない。特に、入手容易性及び安全性の観点から、炭素数6以下のアルコール類が好ましく、中でもエタノールを用いることが好ましい。
 上記工程(5)においては、c-di-AMP水溶液を1~30℃になるまで冷却する。工程(3)での加熱時と温度差がある程結晶が析出しやすいため、工程(5)での水溶液の温度は20℃以下であることがより好ましく、10℃以下であることがより好ましい。
 さらに、上記(1)~(5)の工程は順に行うことが好ましいが、適宜連続する工程を同時に行うこともできる。
 上記製法によって得られたc-di-AMPナトリウム塩結晶は、濾取した後に乾燥させることで、製品とすることができる。乾燥させる際には、減圧乾燥等の方法を適宜利用することができる。
 以下、実施例を示し、本発明を具体的に説明するが、本発明がこれに限定されないのは明らかである。
(実施例1)pH8.2におけるc-di-AMPナトリウム塩結晶αの製造
 公知の方法により、酵素的にc-di-AMPを合成し、精製を行った。
 精製して得られたOD257が4710、pH8.2のc-di-AMP溶液(102mL)を40℃に加温した。そこに撹拌しながら、142mLの99.5%(w/w)エタノールをゆっくり添加したのち、液温が4℃になるまで冷却し、結晶を析出させた。このようにして析出した結晶はバスケット分離機にて濾取し、湿結晶を得た。湿結晶は2時間、30℃で乾燥して、乾燥結晶9.8gを得た。
(A)ナトリウム塩の形態分析
 原子吸光光度法で分析したところ、本実施例のc-di-AMPナトリウム塩結晶におけるナトリウム含量は、6.4%であった。このことから、c-di-AMP1分子に対するナトリウム原子の存在量は2.0となり、本実施例のc-di-AMPナトリウム塩結晶αは、2ナトリウム塩の形態を取っていることが明らかとなった。
(B)純度検定
 上記実施例1で得られたc-di-AMPナトリウム塩結晶αの純度を、高速液体クロマトグラフィー法で分析した結果、c-di-AMP純度は100%であった。なお、高速液体クロマトグラフィー法は以下の条件で行った。
(条件)
カラム:Hydrosphere C18(YMC社製)
溶出液:0.1M TEA-P(pH6.0)+4.5% ACN
検出法:UV260nmによる検出
(C)結晶形
 本実施例におけるc-di-AMPナトリウム塩結晶αの写真を図2に示す。図2に示すように、c-di-AMPナトリウム塩結晶αは柱状の結晶形を示すことが明らかとなった。
(D)粉末X線回折
 本実施例のc-di-AMPナトリウム塩結晶αについて、X線回折装置X’Pert PRO MPD(スペクトリス)を用い、下記の測定条件でX線回折スペクトルを測定した。
 (測定条件)
ターゲット:Cu
X線管電流:40mA
X線管電圧:45kV
走査範囲:2θ=4.0~40.0°
前処理:めのう製乳鉢を用いて粉砕
 図3および表1に示すように、本実施例のc-di-AMPナトリウム塩結晶αは、回折角(2θ)が、6.2、10.9、12.6、23.9(°)付近にピークを示し、特に10.9、23.9(°)付近に特徴的なピークを示した。
Figure JPOXMLDOC01-appb-T000002
(E)赤外線吸収スペクトル
 本実施例のc-di-AMPナトリウム塩結晶αについて、フーリエ変換赤外分光光度計Spectrum One(Perkin  Elmer)を用いてATR(Attenuated Total Reflectance、減衰全反射)法によって赤外線吸収スペクトルを測定した。
 本実施例のc-di-AMPナトリウム塩結晶αは、3119、1604、1220、1073(cm-1)付近に特徴的なピークを有していた。これらの結果を図4に示す。
(F)示差走査熱量分析
 熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析したところ、本実施例のc-di-AMPナトリウム塩結晶αは、255℃付近に吸熱ピークを有した(図5)。
(実施例2)pH10.0におけるc-di-AMPナトリウム塩結晶αの製造
 公知の方法により、酵素的にc-di-AMPを合成し、精製を行った。
 精製して得られたOD257が6600、pH10.0のc-di-AMP溶液(50mL)を40℃に加温した。そこに撹拌しながら、45mLのエタノールをゆっくり添加したのち、液温が4℃になるまで冷却し、結晶を析出させた。このようにして析出した結晶はメンブレンフィルター(3μm)にて濾取し、湿結晶を得た。湿結晶は1時間半、20℃で乾燥して、乾燥結晶7gを得た。
(A)ナトリウム塩の形態分析
 原子吸光光度法で分析したところ、本実施例のc-di-AMPナトリウム塩結晶αにおけるナトリウム含量は、6.6%であった。このことから、c-di-AMP1分子に対するナトリウム原子の存在量は2.0となり、本実施例のc-di-AMPナトリウム塩結晶αは、2ナトリウム塩の形態を取っていることが明らかとなった。
(B)純度検定
 上記実施例2で得られたc-di-AMPナトリウム塩結晶αの純度を、高速液体クロマトグラフィー法で分析した結果、c-di-AMP純度は100%であった。なお、高速液体クロマトグラフィー法は以下の条件で行った。
(条件)
カラム:Hydrosphere C18(YMC社製)
溶出液:0.1M TEA-P(pH6.0)+4.5% ACN
検出法:UV260nmによる検出
(C)結晶形
 本実施例のc-di-AMPナトリウム結晶αの写真を図6に示す。図6に示すように、c-di-AMPナトリウム塩結晶αは柱状の結晶形を示すことが明らかとなった。
(D)粉末X線回折
 本実施例のc-di-AMPナトリウム塩結晶αについて、X線回折装置X’Pert PRO MPD(スペクトリス)を用い、下記の測定条件でX線回折スペクトルを測定した。
 (測定条件)
ターゲット:Cu
X線管電流:40mA
X線管電圧:45kV
走査範囲:2θ=4.0~40.0°
前処理:めのう製乳鉢を用いて粉砕
 図7および表2に示すように、本実施例のc-di-AMPナトリウム塩結晶αは、回折角(2θ)が、10.9、24.0(°)付近に特徴的なピークを示した。
Figure JPOXMLDOC01-appb-T000003
(E)赤外線吸収スペクトル
 本実施例のc-di-AMPナトリウム塩結晶αについて、フーリエ変換赤外分光光度計Spectrum One(Perkin  Elmer)を用いてATR(Attenuated Total Reflectance、減衰全反射)法によって赤外線吸収スペクトルを測定した。
 本実施例のc-di-AMPナトリウム塩結晶αは、3118、1604、1221、1074(cm-1)付近に特徴的なピークを有していた。これらの結果を図8に示す。
(F)示差走査熱量分析
 熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析したところ、本実施例のc-di-AMPナトリウム塩結晶αは、255℃付近に吸熱ピークを有した(図9)。
(実施例3)低pH領域(pH5.0~6.5)におけるc-di-AMPナトリウム塩結晶の取得試験
 c-di-AMPナトリウム塩結晶を取得できるpH範囲を決定するために、低pH領域(pH5.0~6.5)における結晶の取得試験を実施した。
 公知の方法により、酵素的にc-di-AMPを合成し、精製を行った。
 精製して得られたc-di-AMPを用いて、OD257が2500、pHが5.0,5.2,5.4,5.6,5.8,6.0又は6.5であるc-di-AMP水溶液を調製した。得られたOD257が2500のc-di-AMP溶液(0.2mL)を30℃に加温した。そこに、1mLの99.5%(w/w)エタノールをゆっくり添加したのち、密閉して一晩から数日間30℃下で静置し、結晶を析出させた。このようにして析出した結晶はメンブレンフィルターにて濾取し、湿結晶を得た。
 得られた結果を以下の表3に示す。下記表3中で、「結晶」とあるのは結晶取得可否を表しており、
○:問題なく結晶が取得できた
△:結晶を取得することはできたが、その量は他のpHと比べると少量であった
×:水溶液を調製することができず、結晶を取得できなかった
ことを表している。
Figure JPOXMLDOC01-appb-T000004
 上記表3に示す通り、pH5.0においてはc-di-AMPの溶解度が低く、そもそもOD257が2500のc-di-AMP水溶液を調製することができなかった。希釈することで低濃度のc-di-AMP水溶液は調製できたものの、以降同様の操作を行っても結晶を取得することはできなかった。pH5.2においては、結晶を取得することはできたが、析出した結晶の量は、5.4以上に比べて少量であった。pH5.4以上では、問題なく結晶を取得することができた。
 pH5.4以上6.0未満の範囲で得られたc-di-AMP結晶は、立方体状の外観を示すなどいずれも同様の性状であり、同一の形態であると考えられた。pH6.0では、結晶として立方体状のものと柱状のものが混在していた。pH6.0より高いpH領域において得られたc-di-AMP結晶は、柱状の外観を示すなど、実施例1及び2において取得された結晶と同様の性状を示した。以上の結果から、c-di-AMP水溶液のpHが5.2~6.0の範囲である場合には本実施例の形態のc-di-AMP結晶βが取得され、pH6.0~12.0の範囲である場合にはc-di-AMPナトリウム塩結晶αが取得されることが明らかとなった。
(実施例4)pH5.6におけるc-di-AMPナトリウム塩結晶βの製造
 公知の方法により、酵素的にc-di-AMPを合成し、精製を行った。
 精製して得られたOD257が3000、pH5.6のc-di-AMP溶液(15mL)を30℃に加温した。そこに撹拌しながら、15mLのエタノールをゆっくり添加したのち、液温が4℃になるまで冷却し、結晶を析出させた。このようにして析出した結晶はメンブレンフィルターにて濾取し、湿結晶を得た。湿結晶は2時間、25℃で乾燥して、乾燥結晶1.0gを得た。
(A)ナトリウム塩の形態分析
 原子吸光光度法で分析したところ、本実施例のc-di-AMPナトリウム塩結晶βにおけるナトリウム含量は、5.2%であった。このことから、c-di-AMP1分子に対するナトリウム原子の存在量は1.5であることが分かった。
(B)純度検定
 本実施例で得られたc-di-AMPナトリウム塩結晶βの純度を、高速液体クロマトグラフィー法で分析した結果、c-di-AMP純度は100%であった。なお、高速液体クロマトグラフィー法は以下の条件で行った。
(条件)
カラム:YMC-Triart C18(YMC社製)
溶出液:0.1M TEA-P(pH6.0)+4.5% ACN
検出法:UV260nmによる検出
(C)結晶形
 本実施例におけるc-di-AMPナトリウム塩結晶βの写真を図10に示す。図10に示すように、c-di-AMPナトリウム塩結晶βは、立方体状の結晶形を示すことが明らかとなった。
(D)粉末X線回折
 本実施例のc-di-AMPナトリウム塩結晶について、X線回折装置X’Pert PRO MPD(スペクトリス)を用い、下記の測定条件でX線回折スペクトルを測定した。
 (測定条件)
ターゲット:Cu
X線管電流:40mA
X線管電圧:45kV
走査範囲:2θ=4.0~40.0°
前処理:めのう製乳鉢を用いて粉砕
 図11および表4に示すように、本実施例のc-di-AMPナトリウム塩結晶βは、回折角(2θ)が、9.3、23.6、24.3(°)付近にピークを示した。
Figure JPOXMLDOC01-appb-T000005
(E)赤外線吸収スペクトル
 本実施例のc-di-AMPナトリウム塩結晶βについて、フーリエ変換赤外分光光度計Spectrum One(Perkin  Elmer)を用いてATR(Attenuated Total Reflectance、減衰全反射)法によって赤外線吸収スペクトルを測定した。
 本実施例のc-di-AMPナトリウム塩結晶βは、3119、1606、1222、1074(cm-1)付近に特徴的なピークを有していた。これらの結果を図12に示す。
(F)示差走査熱量分析
 熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析したところ、本実施例のc-di-AMPナトリウム塩結晶βは、239℃付近に吸熱ピークを有した(図13)。
(参考例)c-di-AMP遊離酸結晶の製造
 公知の方法により、酵素的にc-di-AMPを合成し、精製を行った。
 精製して得られたc-di-AMP溶液から、特許文献1に記載の方法によってc-di-AMP遊離酸結晶を取得した。すなわち、OD257が114のc-di-AMP溶液(980mL)を50℃に加温した。そこに、2N HClを少しずつ添加し、pH1.8まで調製し、液温が4℃になるまで冷却して結晶を析出させた。このようにして析出した結晶はグラスフィルター(G3)にて濾取し、湿結晶を得た。湿結晶は1時間、20℃で乾燥して、乾燥結晶2.8gを得た。
(A)純度検定
 上記参考例で得られたc-di-AMP遊離酸結晶の純度を、高速液体クロマトグラフィー法で分析した結果、c-di-AMP純度は100%であった。なお、高速液体クロマトグラフィー法は以下の条件で行った。
(条件)
カラム:Hydrosphere C18(YMC社製)
溶出液:0.1M TEA-P(pH6.0)+4.5% ACN
検出法:UV260nmによる検出
(B)結晶形
 c-di-AMP遊離酸結晶の代表的な写真を図14に示す。c-di-AMP遊離酸結晶は、針状の結晶形を示す。
(C)粉末X線回折
 c-di-AMP遊離酸結晶について、X線回折装置X’Pert PRO MPD(スペクトリス)を用いて、下記の測定条件でX線回折スペクトルを測定した。
 (測定条件)
ターゲット:Cu
X線管電流:40mA
X線管電圧:45kV
走査範囲:2θ=4.0~40.0°
前処理:めのう製乳鉢を用いて粉砕
 図15および表5に示すように、特許文献1に記載のc-di-AMP遊離酸結晶は、回折角(2θ)が、9.2、10.2、10.9、11.1、13.7、15.2、19.0、20.6、22.4、23.1、24.3、26.6、26.8(°)付近に特徴的なピークを示した。
Figure JPOXMLDOC01-appb-T000006
(D)赤外線吸収スペクトル
 c-di-AMP遊離酸結晶を、フーリエ変換赤外分光光度計Spectrum One(Perkin  Elmer)を用いてATR(Attenuated Total Reflectance、減衰全反射)法によって赤外線吸収スペクトルを測定した結果について、特許文献1に記載がある。
 特許文献1に記載のc-di-AMP遊離酸結晶は、3087、1686、1604、1504、1473、1415、1328、1213(cm-1)付近に特徴的なピークを有していた。これらの結果を図16に示す。
(E)示差走査熱量分析
 特許文献1に記載のc-di-AMP遊離酸結晶は、熱重量測定/示差熱分析(TG/DTA)装置(昇温速度5℃/分)で分析すると、193℃付近に吸熱ピークを有した(図17)。
(実施例4)105℃条件下における取得結晶の安定性試験
 上記実施例1、実施例2、実施例4及び参考例にて得られた結晶を、105℃条件下で静置した。そこから経時的に結晶を回収し、水溶液を調製し、高速液体クロマトグラフィー法で結晶の純度を分析した。得られた結果を図18および表6に示す。
Figure JPOXMLDOC01-appb-T000007
 表6に示す通り、本発明に属するc-di-AMPナトリウム塩結晶は、既存のc-di-AMP遊離酸結晶と比べて、105℃という過酷条件下においても安定性に優れていることが分かった。さらに、既存のc-di-AMP遊離酸結晶を溶解させる際には撹拌操作が必要であったのに対し、本発明のc-di-AMPナトリウム塩結晶は迅速に溶解した。このことから、本発明のc-di-AMPナトリウム塩結晶は、既存のc-di-AMP遊離酸結晶と比較して、高い溶解性を示すことが明らかとなった。

Claims (5)

  1. Cyclic-di-AMPナトリウム塩結晶。
  2. Cu-Kα線を用いた粉末X線回折の回折角(2θ)として、10.9±0.5、23.9±1.2(°)に特徴的なピークを有することを特徴とする、Cyclic-di-AMPナトリウム塩結晶α。
  3. Cu-Kα線を用いた粉末X線回折の回折角(2θ)として、9.3±0.5、23.6±1.2、24.3±1.2(°)に特徴的なピークを有することを特徴とする、Cyclic-di-AMPナトリウム塩結晶β。
  4. Cyclic-di-AMP水溶液のpHを5.2~12.0に調整し、有機溶媒を添加し、析出する結晶を取得する工程からなる、請求項1から3のいずれか一項に記載のCyclic-di-AMPナトリウム塩結晶の製造法。
  5. (1)c-di-AMP水溶液に塩基及び/又は酸を添加し、pHを5.2~12.0に調整する工程、
    (2)c-di-AMP水溶液を測定波長257nmにおける吸光度OD257を500~20000とする工程、
    (3)c-di-AMP水溶液を30~70℃まで加熱する工程、
    (4)c-di-AMP水溶液に有機溶媒を添加する工程、
    (5)c-di-AMP水溶液を1~30℃になるまで冷却する工程
    を含むことを特徴とする、請求項3に記載のCyclic-di-AMPナトリウム塩結晶の製造法。
PCT/JP2019/042706 2018-11-01 2019-10-31 Cyclic-di-AMPナトリウム塩結晶 WO2020090948A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217012301A KR102650450B1 (ko) 2018-11-01 2019-10-31 Cyclic-di-AMP 나트륨염 결정
CN201980068123.XA CN115551872A (zh) 2018-11-01 2019-10-31 Cyclic-di-AMP钠盐晶体
EP19877628.8A EP3875463B1 (en) 2018-11-01 2019-10-31 Cyclic-di-amp sodium salt crystal
CA3118069A CA3118069C (en) 2018-11-01 2019-10-31 Crystal of cyclic-di-amp sodium salt
US17/290,361 US11485754B2 (en) 2018-11-01 2019-10-31 Cyclic-di-AMP sodium salt crystal
JP2020554017A JP7201263B2 (ja) 2018-11-01 2019-10-31 Cyclic-di-AMPナトリウム塩結晶
JP2022177835A JP2023011874A (ja) 2018-11-01 2022-11-07 Cyclic-di-AMPナトリウム塩結晶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206292 2018-11-01
JP2018206292 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020090948A1 true WO2020090948A1 (ja) 2020-05-07

Family

ID=70463281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042706 WO2020090948A1 (ja) 2018-11-01 2019-10-31 Cyclic-di-AMPナトリウム塩結晶

Country Status (7)

Country Link
US (1) US11485754B2 (ja)
EP (1) EP3875463B1 (ja)
JP (2) JP7201263B2 (ja)
KR (1) KR102650450B1 (ja)
CN (1) CN115551872A (ja)
CA (1) CA3118069C (ja)
WO (1) WO2020090948A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519698A (ja) * 2000-01-07 2003-06-24 トランスフォーム ファーマスーティカルズ,インコーポレイテッド 多様な固体形態のハイスループットでの形成、同定および分析
WO2015137469A1 (ja) 2014-03-14 2015-09-17 ヤマサ醤油株式会社 3',5'-サイクリックジアデニル酸の包接化合物、およびその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519698A (ja) * 2000-01-07 2003-06-24 トランスフォーム ファーマスーティカルズ,インコーポレイテッド 多様な固体形態のハイスループットでの形成、同定および分析
WO2015137469A1 (ja) 2014-03-14 2015-09-17 ヤマサ醤油株式会社 3',5'-サイクリックジアデニル酸の包接化合物、およびその製造法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3.3.1. New Pharmaceuticals", PHARMACEUTICAL INVESTIGATION , vol. 568, 2001, JP, pages 1 - 46, XP009527831 *
AWAGUCHI, YOKO; KONNO, MICHIKO; AIKAWA, YOSHIHIRO: "Drug and crystal polymorphism", JOURNAL OF HUMAN ENVIRONMENTAL ENGINEERING, vol. 4, no. 2, 30 November 2001 (2001-11-30), JP, pages 310 - 317, XP009527798 *
HIROSHI OSHIMA : "Kessho Takei-Gitakei no Sekishutsu Kyodo to Seigyo - Crystallization of Polymorphs and Pseudo-polymorphs and Its Control", PHARM STAGE , vol. 6, no. 10, 1 January 2007 (2007-01-01), JP, pages 48 - 53, XP008184800, ISSN: 1346-3918 *
MITSUHISA YAMANO: "Approach to Crystal Polymorph in Process Research of New Drug", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 65, no. 9, 1 September 2007 (2007-09-01), pages 907 - 913, XP055358201, ISSN: 0037-9980, DOI: 10.5059/yukigoseikyokaishi.65.907 *
MOLECULAR CELL, vol. 30, 2008, pages 167 - 178
NAGOYA J., MED. SCI., vol. 73, 2011, pages 49 - 57
NORIYUKI TAKADA : "Soyaku Dankai ni Okeru Gen'yaku Form Screening to Sentaku - API form screening and selection in drug discovery stage", PHARM STAGE , vol. 6, no. 10, 1 January 2007 (2007-01-01), JP, pages 20 - 25, XP008145548, ISSN: 1346-3918 *
NUCLEOSIDES NUCLEOTIDES NUCLEIC ACIDS, vol. 32, 2013, pages 1 - 16
SCIENCE, vol. 328, 2010, pages 1703 - 1705
STEPHEN BYRN, RALPH PFEIFFER, MICHAEL GANEY, CHARLES HOIBERG,GUIRAG POOCHIKIAN : "Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations", PHARMACEUTICAL RESEARCH , vol. 12, no. 7, 1 July 1995 (1995-07-01), pages 945 - 954, XP055531015, DOI: 10.1023/A:1016241927429 *
SYNTHESIS, vol. 24, 2006, pages 4230 - 4236

Also Published As

Publication number Publication date
KR20210064331A (ko) 2021-06-02
KR102650450B1 (ko) 2024-03-21
JPWO2020090948A1 (ja) 2021-09-02
JP7201263B2 (ja) 2023-01-10
EP3875463A1 (en) 2021-09-08
US20210371451A1 (en) 2021-12-02
EP3875463A4 (en) 2021-12-15
CA3118069C (en) 2023-05-23
CA3118069A1 (en) 2020-05-07
US11485754B2 (en) 2022-11-01
CN115551872A (zh) 2022-12-30
JP2023011874A (ja) 2023-01-24
EP3875463B1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US10836783B2 (en) Inclusion compound of 3′ ,5′-cyclic diadenylic acid and manufacturing method thereof
WO2016199824A1 (ja) 6-ブロモ-3-ヒドロキシ-2-ピラジンカルボキサミドの結晶およびその製造方法
US10787479B2 (en) Crystalline 3′,5′-cyclic diguanylic acid
WO2017161985A1 (zh) 甜菊糖b苷晶型及制备方法和用途
WO2020090948A1 (ja) Cyclic-di-AMPナトリウム塩結晶
KR101963570B1 (ko) 무정형 디뉴클레오사이드 폴리포스페이트 화합물의 제조방법
CN103827129A (zh) 盐酸表阿霉素的结晶
JP7201262B2 (ja) 3’,3’-cGAMPの水和物結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554017

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217012301

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3118069

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877628

Country of ref document: EP

Effective date: 20210601