WO2017131218A1 - アジルサルタン及びその製造方法 - Google Patents

アジルサルタン及びその製造方法 Download PDF

Info

Publication number
WO2017131218A1
WO2017131218A1 PCT/JP2017/003073 JP2017003073W WO2017131218A1 WO 2017131218 A1 WO2017131218 A1 WO 2017131218A1 JP 2017003073 W JP2017003073 W JP 2017003073W WO 2017131218 A1 WO2017131218 A1 WO 2017131218A1
Authority
WO
WIPO (PCT)
Prior art keywords
azilsartan
solution
crystals
reaction
activated carbon
Prior art date
Application number
PCT/JP2017/003073
Other languages
English (en)
French (fr)
Inventor
森 博志
吉貴 清家
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016014006A external-priority patent/JP6663232B2/ja
Priority claimed from JP2016232241A external-priority patent/JP6856365B2/ja
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201780008086.4A priority Critical patent/CN109071519A/zh
Publication of WO2017131218A1 publication Critical patent/WO2017131218A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to azilsartan (chemical name: 1-[[2 '-(4,5-dihydro-5-oxo-1,2,4- oxadiazol-3-yl) [1,1'-biphenyl- 4-yl] methyl] -2-ethoxy-1H-benzimidazole-7-carboxylic acid) and a process for producing the same.
  • Azilsartan is synthesized by the following method.
  • alkyl 2-ethoxy-1-[[2 ′-(hydroxyiminocarboxamido) biphenyl-4-yl] methyl] -1H-benzimidazole-7-carboxylate (hereinafter simply referred to as the formula (3)) (In some cases, it may be referred to as “amidoxime compound”) is used in the cyclization reaction as it is, or an ester protection reaction in which the hydroxyl group of the amidoxime compound is protected with an ester protecting group, and alkyl 2 represented by the above formula (4) -Ethoxy-1-[[2 ′-(alkyloxy-carbonyloxycarbamimidoyl) biphenyl-4-yl] methyl] -1H-benzimidazole-7-carboxylate (hereinafter simply referred to as “ester protecting group-containing compound”) In some cases, a cyclization reaction is carried out to obtain an alkyl 2-alkyl group represented by the formula (2).
  • the azilsartan obtained by the above method is required to have a very high purity, and various synthesis methods and purification methods are being studied.
  • this azilsartan is known to have a crystalline polymorph.
  • having crystal polymorphism means that there are a plurality of crystal forms having different crystal structures in the same molecule.
  • Each crystal form in the polymorph is often different in properties related to quality as a pharmaceutical product such as appearance, solubility, melting point, dissolution rate, bioavailability, stability, and efficacy.
  • colorless prism crystal azilsartan having a melting point of 156 to 157 ° C. is obtained by adding ethyl acetate to the residue obtained by distilling off the solvent from the reaction solution after hydrolysis. It is described.
  • Non-patent document 1 describes that colorless crystals of azilsartan having a melting point of 212 to 214 ° C. are obtained by washing crystals obtained by neutralizing the solution after the reaction with ethanol. ing.
  • Non-Patent Document 2 after obtaining a crude crystal of azilsartan from a mixed solvent of acetone and water, it is suspended in acetone and stirred for 1 hour, whereby white crystals of azilsartan having a melting point of 208 to 211 ° C. Is described.
  • Patent Document 2 it has been reported that each crystal of azilsartan synthesized by these methods has relatively low solubility and bioavailability.
  • Patent Document 2 describes a method for producing azilsartan crystal forms AK having superior physicochemical properties, particularly having relatively high solubility, bioavailability and / or effectiveness. .
  • a first object of the present invention is to provide a crystal of azilsartan having a novel crystal form with improved solubility in an organic solvent, and a method for producing the same.
  • azilsartan represented by the formula (2) is a dimerized impurity (hereinafter, sometimes simply referred to as “azirsartan dimer”).
  • the azilsartan dimer was considered to be synthesized as follows. That is, in the cyclization reaction when producing azilsartan, Following formula (3)
  • a dimer of an azilsartan alkyl ester represented by the following formula (hereinafter sometimes simply referred to as “azirsartan alkyl ester dimer”) is produced.
  • azirsartan alkyl ester dimer A dimer of an azilsartan alkyl ester represented by the following formula (hereinafter sometimes simply referred to as “azirsartan alkyl ester dimer”) is produced.
  • azirsartan alkyl ester dimer dimer was hydrolyzed as it was and formed as a by-product. That is, when producing azilsartan, it was considered that other reactions proceed and are produced at the same time (that is, those produced during the reaction even if the raw materials and the like are purified).
  • the second subject of the present invention is a method for producing high-purity azilsartan, which can selectively reduce the content of azilsartan dimer, in particular, from crude azilsartan containing azilsartan dimer as an impurity. Is to provide.
  • the present inventors have intensively studied the first problem. As a result, crystals of azilsartan obtained by adding a solvent of ketones and / or esters to a solution obtained by dissolving azilsartan in dimethylformamide were precipitated with the conventional crystal form. Were found to be in different crystal forms. And this azilsartan crystal is found to be a crystal having very high solubility in various solvents including alcohols such as methanol and ethanol and esters such as ethyl acetate, thereby completing the first invention. It came to.
  • At least 2 ⁇ 9.4 ⁇ 0.2 °, 11.5 ⁇ 0.2 °, 13.3 ⁇ 0.2 ° by X-ray diffraction using Cu—K ⁇ ray, It is azilsartan having a crystal structure giving characteristic peaks at 14.8 ⁇ 0.2 ° and 26.0 ⁇ 0.2 °.
  • the azilsartan of this invention which has this crystal structure may be called "Azilsartan M-type crystal".
  • the melting point determined by differential scanning calorimetry (DSC) measurement of the azilsartan M-type crystal of the first invention is 115 ° C. or higher and 135 ° C. or lower.
  • a first aspect of the present invention is to add azilsartan M-type crystals by adding a solvent of ketones and / or esters to a solution obtained by dissolving azilsartan in dimethylformamide. This is a method for producing a mold crystal.
  • the present inventors have intensively studied to solve the second problem. Specifically, a method for effectively removing the azilsartan dimer from the crude azilsartan solution was examined. As a result, it was found that by bringing activated carbon into contact with a solution in which crude azilsartan is dissolved, the content of the azilsartan dimer in the solution after removing the activated carbon is greatly reduced. It came to complete.
  • the method for producing azilsartan is characterized in that the crystals of azilsartan represented by the above are separated from the solution.
  • the activated carbon has a specific surface area determined by the BET method of 1000 to 3500 m 2 / g and a cumulative pore volume of 0.6 to 1.5 mL / g. preferable.
  • R 1 is an alkyl group
  • the azilsartan M-type crystal obtained by the method of the first present invention has a novel crystal structure, and it contains alcohols, esters, ketones, ethers as compared with known azilsartan crystals.
  • the solubility in each organic solvent is extremely high. Therefore, the azilsartan M-type crystal requires a small amount of the organic solvent at the time of recrystallization, and can be easily purified using an organic solvent having a high purification efficiency, and its industrial utility value is high. In particular, it can be optimally used as an intermediate for pharmaceuticals that require high-purity drug substances.
  • Example 1 is an X-ray diffraction chart of an azilsartan M-type crystal of the present invention produced in Example 1.
  • 2 is a DSC chart of the azilsartan M-type crystal of the present invention produced in Example 1.
  • 2 is an X-ray diffraction chart of a conventional azilsartan crystal manufactured in Comparative Example 1 (crystal form A in Patent Document 2).
  • 2 is a DSC chart of a conventional azilsartan crystal manufactured in Comparative Example 1 (crystal form A in Patent Document 2).
  • ⁇ 0.2 ° which is a measurement error of the X-ray diffraction angle includes a range of ⁇ 0.2 ° by rounding off.
  • the X-ray diffraction measurement result of this azilsartan M-type crystal is shown in FIG.
  • a peak having an intensity of less than 7% with respect to the maximum peak intensity is regarded as noise or the like, and does not correspond to a characteristic peak in the present invention.
  • the azilsartan M-type crystal of the present invention will be described in detail in the following examples.
  • methanol and The solubility of alcohols such as ethanol; esters such as ethyl acetate; ketones such as acetone; ethers such as tetrahydrofuran in organic solvents is improved.
  • azilsartan M-type crystals can be dissolved about 7 to 10 times in the same amount of methanol than known azilsartan crystals.
  • the azilsartan M-type crystal in the present invention has a lower melting point than known azilsartan crystals.
  • the melting point determined by differential scanning calorimetry (DSC) measurement is 115 ° C. or higher and 135 ° C. or lower.
  • the melting point determined by differential scanning calorimetry (DSC) measurement refers to the peak top temperature of the endothermic peak obtained by the measurement.
  • the azilsartan M-type crystal in the present invention is produced by adding a solvent of ketones and / or esters to a solution obtained by dissolving azilsartan in dimethylformamide to precipitate azilsartan M-type crystals. I can do it.
  • the azilsartan M-type crystal obtained by the production method of the present invention has a novel crystal structure, and compared with known azilsartan crystals, it is suitable for alcohols, esters, ketones, ethers in organic solvents. Very high solubility.
  • the azilsartan used in the present invention is not particularly limited, and those produced by a known method can be used.
  • the crystal form thereof is not particularly limited.
  • the crystal forms described in Non-Patent Documents 1 and 2 and Patent Documents 1 and 2 amorphous, organic amines A salt, or a mixed form thereof, a powder, a lump, or a mixed form thereof may be used, and an anhydrous form, a hydrate, a solvate, or a mixed form thereof may be used. May be.
  • the number of water or solvent molecules is not particularly limited.
  • a solvent of dimethylformamide and ketones and / or esters is used in the production of azilsartan M-type crystals, it may be a wet body containing the organic solvent, and other solvents may be used during crystallization. It may remain within a range that does not affect the above. Specifically, it may remain in an amount of 50% by mass or less of the azilsartan. Most preferably, no solvent other than the organic solvent is contained.
  • the purity of the azilsartan to be used is not particularly limited, and the purity obtained by the above production method can be used as it is.
  • azilsartan M-type crystal it is purified once or more as necessary by a general purification method such as recrystallization, reslurry, or column chromatography. It is preferable to use what was made as azilsartan.
  • HPLC high performance liquid chromatography
  • those having a peak area ratio of azilsartan of 100% in the HPLC purity measurement can also be used.
  • an azilsartan solution is obtained by first dissolving azilsartan in dimethylformamide.
  • the dimethylformamide used is not particularly limited, and a commercially available product can be used as it is.
  • the amount of dimethylformamide used may be appropriately determined depending on the crystal form of azilsartan to be used, but is generally 0.5 mL to 10 mL with respect to 1 g of azilsartan. When the amount of dimethylformamide used increases, the yield decreases, so that it is preferably 0.5 mL or more and 5 mL or less.
  • the volume of the solvent in this invention shall be in 25 degreeC.
  • the temperature at which azilsartan is dissolved may be appropriately determined depending on the crystal form of azilsartan used and the amount of dimethylformamide, and it is preferably dissolved in the range of 10 ° C to 50 ° C. As a matter of course, when there is a substance that does not completely dissolve, the substance that does not dissolve can be filtered and processed.
  • the method for obtaining the azilsartan solution in the present invention is not particularly limited, and the solution may be prepared by mixing azilsartan and dimethylformamide, and the mixing method and order are not particularly limited.
  • the method for producing an azilsartan M-type crystal according to the present invention is characterized in that an azilsartan M-type crystal is precipitated by adding a solvent of ketones and / or esters to the obtained azilsartan solution.
  • azilsartan M-type crystals with improved solubility in organic solvents can be obtained in high yield.
  • the solvent added to the azilsartan solution is ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone; and / or methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, etc.
  • the esters can be selected from: In order to obtain a higher purity azilsartan, it is preferable to add a solvent of an ester, and it is most preferable to use ethyl acetate among them.
  • these ketone solvents and esters can be mixed and added.
  • a solvent of ketones and / or esters to precipitate azilsartan, it is possible to precipitate azilsartan M-type crystals having improved solubility in organic solvents.
  • the amount of the ketone and / or ester solvent added to the azilsartan solution may be appropriately determined according to the type of solvent selected. Usually, it may be 1 mL or more and 50 mL or less with respect to 1 mL of dimethylformamide used in the preparation of the azilsartan solution, and it is preferably 5 mL or more and 20 mL or less in consideration of yield and operability.
  • the temperature at which the ketone and / or ester solvent is added is not particularly limited, and after confirming that azilsartan is dissolved in dimethylformamide, it can be added immediately at the temperature, but 30 ° C. or less. It is more preferable to add at. By adding at 30 ° C.
  • the method of adding the ketone and / or ester solvent is not particularly limited, and either a method of adding the whole amount at once or a method of adding it in several divided portions can be employed.
  • an azilsartan M-type crystal is precipitated by adding a ketone and / or ester solvent and stirring at a constant temperature.
  • the temperature maintained at this time may be ⁇ 5 ° C. or higher and 30 ° C. or lower.
  • azilsartan with a higher yield it is preferably maintained at 0 ° C. or higher and 10 ° C. or lower.
  • the holding time may be appropriately determined depending on the holding temperature, but it is usually preferably 5 hours or longer. At this time, if crystals of azilsartan are difficult to precipitate, seed crystals can be added.
  • the azilsartan M-type crystals thus precipitated can be isolated by solid-liquid separation by filtration, centrifugation, or the like, and then drying by a method such as natural drying, blast drying, or vacuum drying.
  • the azilsartan obtained by this method is an azilsartan M-type crystal having a novel crystal structure.
  • the azilsartan M-type crystal of the present invention has improved solubility in organic solvents, and the solubility of alcohols, esters, ketones, and ethers in solvents is extremely high compared to known crystal forms. Accordingly, when performing purification operations on azilsartan M-type crystals, purification operations such as recrystallization can be easily performed using solvents of alcohols, esters, ketones, and ethers.
  • the present invention relates to an azilsartan characterized in that after a solution of a crude azilsartan containing an azilsartan dimer as an impurity and activated carbon are contacted, crystals of azilsartan are fractionated from the solution. It is a manufacturing method.
  • crude azilsartan means azilsartan containing azilsartan dimers as impurities.
  • the crude azilsartan is not particularly limited, and those produced by a known method can be used.
  • the azilsartan described in the first invention can be used.
  • the crude azilsartan may be 96.0-99.0% pure azilsartan by high performance liquid chromatography (HPLC) analysis (in the present invention, purity and impurity percentage (%) were measured by HPLC. It is the value of area%.)
  • HPLC high performance liquid chromatography
  • Such a crude azilsartan can be suitably produced by hydrolyzing an azilsartan alkyl ester.
  • the crude azilsartan to be purified may contain 0.01 to 0.50% of the azilsartan dimer.
  • the said azilsartan dimer since the said azilsartan dimer can be reduced efficiently, the said azilsartan dimer may be contained in the said ratio.
  • the azilsartan dimer to be reduced is considered to be by-produced as follows. That is, an amidoxime compound (compound of formula (3)) used as a raw material is first reacted with azilsartan (compound of formula (1)) that is considered to have been produced when the amidoxime compound is cyclized. Thus, an azilsartan alkyl ester dimer is produced. Next, it is considered that an azilsartan dimer is obtained from the azilsartan alkyl ester dimer. Therefore, first, a method for producing the azilsartan alkyl ester will be described.
  • the azilsartan alkyl ester used for the hydrolysis reaction is not particularly limited, and those produced by a known method can be used.
  • those produced by the methods described in Patent Documents 1 to 3 and Non-Patent Document 1 can be used as they are. Specifically, it can be produced according to the following reaction formula.
  • the amidoxime compound represented by the formula (3) is a known compound, and its production method is described in Non-Patent Document 1 and Patent Document 1. That is, in the presence of a base, the amidoxime compound represented by the formula (3) and the compound represented by XCOOR 2 are reacted to carry out an ester protection reaction, and the ester protecting group-containing compound represented by the formula (4) Then, a cyclization reaction is performed to produce the azilsartan alkyl ester represented by the formula (2).
  • the azilsartan dimer can be efficiently reduced.
  • the final obtained azilsartan should have a higher purity, it is preferable to synthesize an azilsartan alkyl ester (compound of formula (2)) by employing the following method.
  • the azilsartan alkyl ester dimer which is a precursor of the azilsartan dimer, and other precursor impurities can be reduced, and the azilsartan alkyl used as a raw material
  • the ester can be highly purified. As a result, the purity of the finally obtained azilsartan is also higher.
  • R 2 examples include a general protecting group for protecting a hydroxyl group. Specific examples include an alkyl group which may have a substituent, a benzyl group, and a phenyl group which may have a substituent. Among these, an unsubstituted alkyl group having 1 to 8 carbon atoms is preferable in view of industrial availability, role in the ester protecting group-containing compound, and finally removal. This unsubstituted alkyl group may be a linear alkyl group or a branched alkyl group.
  • XCOOR 2 examples include methyl chloroformate, ethyl chloroformate, propyl chloroformate, isopropyl chloroformate, butyl chloroformate, isobutyl chloroformate, amyl chloroformate, 2-ethylhexyl chloroformate, hexyl chloroformate, Examples include heptyl chloroformate, chloromethyl chloroformate, 2-chloroethyl chloroformate, benzyl chloroformate, phenyl chloroformate, and 4-chlorophenyl chloroformate. Among these, it is preferable to use methyl chloroformate, ethyl chloroformate, propyl chloroformate and the like in view of industrial availability, reactivity, role in the ester protecting group-containing compound, and the like.
  • the amount of XCOOR 2 used is not particularly limited. Specifically, the amount of XCOOR 2 used may be 1 to 5 mol with respect to 1 mol of the compound represented by the formula (3).
  • the ester protection reaction is performed in the presence of a base.
  • a base examples include sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, lithium hydroxide
  • Inorganic bases such as methylamine, ethylamine, trimethylamine, triethylamine, diisopropylamine, tripropylamine, diisopropylethylamine, pyridine, piperazine, pyrrolidine, aniline, N, N-dimethylaminopyridine, diazabicycloundecene, N-methylmorpholine
  • organic bases such as Among these, considering the progress of the reaction, ease of removal, treatment in the subsequent steps, and the like, an organic base of triethylamine, pyridine, or diisopropylethylamine is preferable.
  • One kind of the base can be used, or a
  • the amount of the base used is not particularly limited. Specifically, the amount of the base used may be 1 to 5 mol with respect to 1 mol of the amidoxime compound represented by the formula (3). As will be described later, when the ester group-containing compound is cyclized, it is preferably carried out in the presence of a base. Therefore, when the ester group-containing compound obtained by this reaction is cyclized, the cyclization reaction can be carried out with the base remaining.
  • the solvent to be used may be selected from among aprotic solvents which do not react with XCOOR 2. Specific examples include benzene, toluene, methylene chloride, chloroform, 1,4-dioxane and the like. One kind of these reaction solvents may be used, or two or more kinds of mixed solvents may be used.
  • the reaction it is preferable to stir and mix in the presence of a base so that the amidoxime compound represented by the formula (3) and the XCOOR 2 are sufficiently in contact with each other.
  • the procedure for introducing these components into the reaction vessel is not particularly limited.
  • XCOOR 2 is preferably added dropwise to prevent sudden heat generation.
  • the conditions for carrying out the reaction are not particularly limited.
  • the reaction temperature is preferably ⁇ 10 to 10 ° C.
  • the reaction time may be appropriately determined while monitoring the remaining amount of the raw material amidoxime compound, but the remaining amount of the amidoxime compound is preferably 0.5% or less. It is usually sufficient to carry out for 0.5 to 15 hours.
  • the ester protecting group-containing compound represented by the above formula (4) can be produced.
  • the method for taking out the ester protecting group-containing compound from the reaction system is not particularly limited. Specifically, the ester protecting group-containing compound is dissolved in a water-insoluble solvent such as ethyl acetate, toluene, chloroform, methylene chloride, washed with water, concentrated, dried, etc. The compound can be removed. When a solvent that is hardly soluble in water is used as the solvent, the solution can be washed as it is.
  • the ester protecting group-containing compound represented by the above formula (4) obtained under the above conditions is not particularly limited, but may have a purity of 90.0 to 99.5%. Further, by adjusting the washing with water, the following cyclization reaction can be carried out in a state in which the extracted ester protecting group-containing compound contains a base.
  • the cyclization reaction is preferably carried out by heating the ester protecting group-containing compound obtained by the above reaction in a reaction solvent.
  • a hydrolyzate of an azilsartan alkyl ester represented by the following (hereinafter sometimes simply referred to as an “azirsartan alkyl ester desethyl form”), Further, although the structure is not clear, impurities with a molecular weight obtained by adding 10 to the molecular weight of azilsartan methyl ester in the analysis result of a liquid chromatograph mass spectrometer (LC-MASS) can be reduced.
  • LC-MASS liquid chromatograph mass spectrometer
  • This cyclization reaction can proceed by heating. Specifically, by heating a reaction solution in which the ester protecting group-containing compound is dissolved in a reaction solvent, the cyclization reaction is promoted, and the ester protecting group-containing compound can be an azilsartan alkyl ester.
  • the ester protecting group-containing compound is dissolved in a reaction solvent and heated while being stirred and mixed.
  • the ester protecting group-containing compound and the reaction solvent may be heated while stirring to form a reaction solution, and the reaction solution may be heated as it is.
  • the reaction temperature of the cyclization reaction is preferably 50 ° C. or higher and the reflux temperature of the reaction solution or lower, and preferably 60 ° C. or higher and the reaction solution reflux temperature or lower in order to increase the reaction rate and reduce impurities. It is more preferable that the temperature be 70 ° C. or higher and the reflux temperature of the reaction solution or lower. Since the reflux temperature of the reaction solution varies depending on the reaction solvent used, the concentration of the ester protecting group-containing compound, and the type of R 2 —OH produced as a by-product, it cannot be generally limited. However, in order to further suppress the generation of impurities, the reaction temperature is preferably 100 ° C. or lower.
  • the cyclization reaction can be promoted according to the above conditions.
  • the reaction in order to shorten the reaction time, the reaction is preferably performed in the presence of a base.
  • a base may be in a state where a base is contained in the reaction solution.
  • the base that can be used in the cyclization reaction is not particularly limited, but sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, lithium carbonate, sodium hydroxide, water Inorganic bases such as potassium oxide, barium hydroxide, lithium hydroxide and the like can be mentioned.
  • Organics such as methylamine, ethylamine, trimethylamine, triethylamine, diisopropylamine, tripropylamine, diisopropylethylamine, pyridine, piperazine, pyrrolidine, aniline, N, N-dimethylaminopyridine, diazabicycloundecene, N-methylmorpholine
  • a base can be used.
  • an organic base such as triethylamine, pyridine, or diisopropylethylamine in order to improve the ease of purification and operability of the obtained azilsartan alkyl ester.
  • One type of these bases can be used, and a plurality of types of bases can also be used.
  • the reference base amount is the total amount of the plurality of types of bases.
  • the base which remains when taking out this ester protective group containing compound can also be used. .
  • the cyclization reaction can proceed without using a base.
  • the amount of the base used is preferably 0.01 to 5 mol with respect to 1 mol of the ester protecting group-containing compound.
  • the reaction rate can be increased, and the yield and purity of the azilsartan alkyl ester can be increased.
  • the amount of the base used is more preferably 0.1 to 1 mol with respect to 1 mol of the ester protecting group-containing compound.
  • the base and the ester protecting group-containing compound may be added to the reaction solvent in advance and mixed with stirring while heating.
  • the base can be added to the reaction solution heated with stirring and mixing in order to promote the reaction from the middle.
  • the total amount of base used is the standard amount.
  • an azilsartan alkyl ester By performing the cyclization reaction under the above conditions, an azilsartan alkyl ester can be produced.
  • the method for taking out the obtained azilsartan alkyl ester from the reaction system is not particularly limited, and the methods described in Non-Patent Document 1 and Patent Document 1 can be employed.
  • the cyclization reaction is preferably performed by heating.
  • the temperature of the reaction solution (reaction temperature) is 50 ° C. or higher. Therefore, the reaction solution after completion of the reaction is preferably cooled to a range of 30 ° C. or less, more preferably -10 to 30 ° C., particularly -10 to 10 ° C. preferable.
  • the reaction solution after completion of the reaction is cooled at a cooling rate of 10 to 30 ° C./hour, and is 30 ° C. or less, preferably 0 to 30 ° C., more preferably
  • the temperature is preferably -10 to 30 ° C, particularly preferably -10 to 20 ° C.
  • the temperature is 30 ° C. or less, preferably 0 to 30 ° C., more preferably ⁇ 10 to 30 ° C., particularly preferably ⁇ 10 to 20 ° C. It is preferable to leave it for more than an hour, preferably more than 2 hours and less than 20 hours.
  • the azilsartan alkyl ester can be hydrolyzed as it is to obtain crude azilsartan.
  • the unpurified azilsartan alkyl ester obtained in this way contains a plurality of impurities in addition to the azilsartan alkyl ester dimer as impurities, in order to obtain a higher purity azilsartan. It is preferable to recrystallize the azilsartan alkyl ester obtained by the above method. By performing recrystallization, the amount of impurities including an azilsartan alkyl ester dimer can be further reduced.
  • the solvent to be used examples include methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, methyl butyl ketone, and methyl isobutyl ketone. These solvents can be used alone, or a plurality of kinds of mixed solvents can be used.
  • the amount of the solvent used is not particularly limited. Specifically, the amount of the solvent is preferably 3 to 30 ml, more preferably 5 to 20 ml, with respect to 1 g of the azilsartan alkyl ester crystal.
  • the crystal of the azilsartan alkyl ester is dissolved in a solvent containing a solvent.
  • the crystals of the azilsartan alkyl ester are dissolved by heating to the reflux temperature of the solution (about 60 ° C.). Then, it is preferably cooled at a cooling rate of 10 to 30 ° C./hour and left standing for a certain time in a temperature range of 0 to 30 ° C., more preferably ⁇ 10 to 30 ° C., particularly preferably ⁇ 10 to 20 ° C.
  • the azilsartan alkyl ester (compound of formula (2)) obtained by the above method has few impurities and can increase the purity of the finally obtained azilsartan. However, in this method, it is considered that azilsartan is generated (by-product) although it is a small amount during the cyclization reaction. And it is estimated that the said amidoxime compound which is a raw material reacts with this azilsartan, and the azilsartan alkyl ester dimer is by-produced though the content is small.
  • the purity of the azilsartan alkyl ester is 97.0 to 99.5%
  • the amount of the azilsartan alkyl ester desethyl compound as an impurity is 0.01% to 0.15%
  • the amount of the sultan alkyl ester dimer may be 0.05 to 0.20%.
  • azilsartan alkyl ester (Hydrolysis of azilsartan alkyl ester; production of crude azilsartan)
  • the azilsartan alkyl ester obtained by the above method can be converted to a crude azilsartan that is the subject of purification of the present invention by hydrolysis using a known method. According to the above method, since crude azilsartan having a relatively high purity can be obtained, the purity of the finally obtained azilsartan can be increased.
  • the hydrolysis of the azilsartan alkyl ester is not particularly limited, but it is preferable to use an inorganic base. Next, a method for hydrolysis using an inorganic base will be described.
  • the hydrolysis is preferably performed in a solution (in an aqueous solution) containing an azilsartan alkyl ester, an inorganic base, and water.
  • the procedure for mixing them is not particularly limited. Among these, in consideration of operability, it is preferable to contact an aqueous solution of an inorganic base with an azilsartan alkyl ester.
  • the aqueous solution containing the inorganic base is not particularly limited, and an inorganic base diluted and dissolved with a certain amount of water can be used.
  • inorganic bases used include sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, hydroxide Lithium etc. can be mentioned.
  • inorganic hydroxides such as sodium hydroxide and potassium hydroxide are preferable in consideration of the progress of the reaction and the treatment in the subsequent steps.
  • the inorganic base can be one kind or a plurality of kinds of inorganic bases. When a plurality of types of inorganic bases are used, the amount of the inorganic base serving as a reference is the total amount of the plurality of types of inorganic bases.
  • the amount of the inorganic base used is not particularly limited. Specifically, the amount of the inorganic base used may be 1 to 10 mol with respect to 1 mol of the azilsartan alkyl ester. Furthermore, the inorganic base may be used in the state of an aqueous solution after being diluted and dissolved to an appropriate concentration with water. At this time, the amount of water to be used may be appropriately determined depending on the amount and type of the inorganic base to be used. In consideration of operability and the like, the aqueous solution of the inorganic base has a concentration of 0.1 to 5 mol / L (inorganic The concentration of the base is preferably adjusted to be 1 to 3 mol / L. The inorganic base aqueous solution prepared by the above method may be used in an amount of 1 to 50 mL per 1 g of azilsartan alkyl ester.
  • reaction conditions for hydrolysis of azilsartan alkyl ester The hydrolysis reaction can be performed by mixing an azilsartan alkyl ester and an aqueous solution of an inorganic base.
  • the order of mixing these is not particularly limited, and it is preferable to carry out stirring and mixing.
  • the reaction temperature during hydrolysis is preferably from 40 to 80 ° C., from the viewpoint of increasing the yield of azilsartan and suppressing the amount of impurities forming the azilsartan dimer, and is in the range of 50 to 70 ° C. More preferably.
  • the reaction time is not particularly limited, but is usually in the range of 1 to 10 hours.
  • the reaction solution thus obtained is preferably brought into contact with activated carbon as a crude azilsartan solution.
  • the crude azilsartan with relatively few impurities can be obtained by hydrolyzing the azilsartan alkyl ester obtained by the above method. During this hydrolysis, the azilsartan alkyl ester dimer is also hydrolyzed to form an azilsartan dimer.
  • the crude azilsartan obtained as described above has a purity of azilsartan of 99.0 to 99.7%, the amount of azilsartan desethyl compound as an impurity is 0.02 to 0.20%, azilsartan dimer The amount of body can be 0.05 to 0.30%.
  • the purity of the final product azilsartan can be further increased.
  • the azilsartan dimer can be efficiently removed, a substance other than the crude azilsartan having the above-mentioned range of purity and impurity amount can be used as a purification target.
  • the finally produced azilsartan has a high purity. For this reason, it is preferable to use a material other than the crude azilsartan having a purity and an impurity amount in the above ranges.
  • the activated carbon used in the present invention is not particularly limited, but the specific surface area determined by the BET method is 1000 to 3500 m 2 / g and the cumulative pore volume is 0.6 to 1.5 mL / g. It is preferable that By using activated carbon having the physical properties in this range, the azilsartan dimer can be more effectively reduced.
  • the activation (activation) method of the activated carbon to be used is not particularly limited, and both zinc chloride coal obtained by a chemical activation method and steam coal obtained by a steam activation method can be suitably used.
  • the type of activated carbon is not particularly limited, and any activated carbon can be used as long as it satisfies the above properties, such as powdered coal, crushed coal, granular coal, granulated coal, and formed coal. Among these, considering the ease of handling, the removal efficiency of the activated carbon itself, etc., it is preferable to use powdered coal or granular coal.
  • activated carbon examples include refined white birch, characteristic white birch, granular white birch, white birch A, white birch P, white birch C, white birch M (above, manufactured by Osaka Gas Chemicals), Dazai A, Dazai CA, Dazai K, Dazai M. (Above, manufactured by Phutamura Chemical).
  • the solution of the crude azilsartan to be brought into contact with the activated carbon is not particularly limited as long as the crude azilsartan containing the azilsartan dimer which is an impurity is dissolved. Therefore, the solvent used in the crude azilsartan solution may be an organic solvent or water as long as the crude azilsartan can be dissolved. Among them, as described above, it is preferable to contact activated carbon with a solution containing crude azilsartan obtained by hydrolyzing an azilsartan alkyl ester (a solution containing crude azilsartan obtained after the hydrolysis reaction). In this case, the solution containing crude azilsartan can contain a base.
  • the solution obtained by dissolving the azilsartan taken out from the solution in a basic aqueous solution and the activated carbon can be contacted again.
  • the method of bringing the crude azilsartan solution into contact with the activated carbon is not particularly limited.
  • a method of simultaneously mixing crude azilsartan, activated carbon, and a solvent capable of dissolving crude azilsartan a method of preparing a solution in which crude azilsartan is dissolved, a method of adding activated carbon to the solution and mixing, or a method of filling activated carbon
  • a method of allowing the solution to pass through a column can be employed.
  • the amount of activated carbon used may be appropriately determined depending on the type of activated carbon, the amount of impurities, and the like.
  • the mixing of the solution and activated carbon is preferably carried out with stirring.
  • the temperature at the time of stirring and mixing is preferably 15 to 35 ° C., particularly preferably 20 to 30 ° C.
  • the contact time with the activated carbon is not particularly limited, and it is usually sufficient to carry out at the temperature in the range of 1 to 5 hours.
  • Method for removing activated carbon As described above, after bringing the crude azilsartan solution into contact with the activated carbon, the activated carbon is then separated from the mixture and the separated solution is recovered.
  • the method for separating the activated carbon is not particularly limited, and can be carried out by a known method. For example, a separation method such as decantation, filtration, and centrifugal filtration may be employed. At this time, a filter aid such as celite or radiolite may be used for the purpose of improving the efficiency of filtration.
  • the method for fractionating the crystals of azilsartan from the separated liquid is not particularly limited and can be carried out by a known method.
  • a method of fractionating azilsartan crystals by directly distilling off the solvent from the separated solution, or a method of precipitating azilsartan crystals by neutralizing the separated solution can be employed without particular limitation.
  • the crystals of azilsartan precipitated by the above method can be separated (sorted) by a known method. Specifically, separation methods such as decantation, reduced pressure / pressure filtration, and centrifugal filtration may be employed. Moreover, it is preferable to wash
  • the crystals of azilsartan thus obtained are wet bodies, and a dried form of azilsartan crystals is obtained by drying at 30 to 50 ° C. for 3 to 20 hours.
  • the crude azilsartan containing the azilsartan dimer as an impurity is contacted with activated carbon, and then the crystals of the azilsartan are separated from the solution.
  • High-purity azilsartan crystals having a reduced content can be obtained.
  • the activated carbon having a specific surface area determined by the BET method of 1000 to 3500 m 2 / g and a cumulative pore volume of 0.6 to 1.5 mL / g, The content of the monomer can be further reduced, and crystals of azilsartan with higher purity can be obtained.
  • high-purity azilsartan can be obtained efficiently and in a simple manner.
  • the crystal of the azilsartan has a high purity with a reduced content of azilsartan dimer and other impurities, and thus can be used as a pharmaceutical product as it is.
  • the azilsartan obtained by the method of the present invention can be further purified by a known purification method in order to obtain higher purity.
  • the azilsartan from which impurities have been removed by the second invention can also be used as a raw material for producing azilsartan M-type crystals according to the first invention.
  • the azilsartan methyl ester is about 14.5 minutes
  • the azilsartan methyl ester desethyl is about 7.0 minutes
  • the azilsartan methyl ester dimer is about 49.1 minutes
  • the azilsartan methyl ester is Impurities having a molecular weight 10 greater than that of the ester are about 5.5 minutes
  • the azilsartan is about 7.3 minutes
  • the azilsartan desethyl is about 3.5 minutes
  • the azilsartan dimer is about 29.1 minutes.
  • a peak is confirmed.
  • the purity values of the ester protecting group-containing compound, the azilsartan methyl ester, and the azilsartan are all the area values of all peaks measured under the above conditions (excluding the peak derived from the solvent). ) Is the ratio of the peak area value of each compound to the total.
  • Example and Comparative Example of the First Invention Production Example 1 Manufacture of azilsartan: Patent Document 1
  • a 5000 mL four-necked flask equipped with two stirring blades having a diameter of 15 cm 100 g of azilsartan methyl ester and 730 mL of methanol were placed and dissolved by heating while stirring. 590 mL of 2N lithium hydroxide aqueous solution was added there, and after heating up to reflux temperature, reaction was performed for 3 hours.
  • the obtained reaction solution was cooled to room temperature, and the pH of the reaction solution was adjusted to 3 using 2N hydrochloric acid aqueous solution.
  • the reaction solution was concentrated, 1200 mL of water and 3000 mL of dichloromethane were added to the resulting residue, stirred for 30 minutes, and allowed to stand for 15 minutes, and then the dichloromethane layer was separated by liquid separation.
  • the obtained dichloromethane solution was concentrated, and 2000 mL of ethyl acetate was added to the obtained residue, followed by stirring at 20-30 ° C. overnight. Then, the crystals precipitated by filtration under reduced pressure were collected and dried at 50 ° C. to obtain 82.5 g of colorless prism crystals of azilsartan (azylsultan purity: 96.12%).
  • a compound having a crystal structure that gives characteristic peaks at 2 ⁇ 7.62 °, 9.32 °, 17.41 °, 19.53 °, 21.31 ° when XRD is measured using this azilsartan as a sample. I found out. Moreover, melting
  • Non-Patent Document 1 Manufacture of azilsartan: Non-Patent Document 1 Into a 1000 mL four-necked flask equipped with two stirring blades having a diameter of 10 cm, 50 g of azilsartan methyl ester and 780 mL of 0.4N aqueous sodium hydroxide solution were added, and the temperature was raised to 70 ° C., followed by reaction at the same temperature for 1.5 hours. Went. The obtained reaction solution was cooled to room temperature, and the pH of the reaction solution was adjusted to 3 using 2N hydrochloric acid aqueous solution. The precipitated azilsartan crystals were separated by filtration under reduced pressure, and then the azilsartan crystals were washed with ethanol.
  • azilsartan wet body was dried at 50 ° C. to obtain 44.0 g of colorless prism crystals of azilsartan (azylsultan purity: 95.58%).
  • a compound having a crystal structure that gives characteristic peaks at 2 ⁇ 9.08 °, 9.63 °, 18.19 °, 21.82 °, 24.44 ° when XRD is measured using this azilsartan as a sample. I found out.
  • fusing point by DSC measurement was 212 degreeC.
  • Example 1 5 g of azilsartan obtained in Production Example 1 was weighed in a 100 mL three-necked flask equipped with two stirring blades having a diameter of 2.5 cm, and 10 mL of dimethylformamide was added and dissolved by heating at 30 ° C. After adding 50 mL of ethyl acetate to the obtained azilsartan solution, it cooled to 5 degreeC and stirred all night. Then, the crystals precipitated by filtration under reduced pressure were collected and dried at 50 ° C. to obtain 4.9 g of azilsartan crystals (azylsultan purity: 99.14%).
  • Example 2 5 g of azilsartan obtained in Production Example 2 was weighed into a 100 mL three-necked flask equipped with two stirring blades having a diameter of 2.5 cm, and 10 mL of dimethylformamide was added and dissolved by heating at 40 ° C. After cooling the obtained azilsartan solution to 30 ° C. or lower, 50 mL of ethyl acetate was added, further cooled, and stirred at 5 ° C. overnight. Then, the crystals precipitated by filtration under reduced pressure were collected and dried at 50 ° C. to obtain 4.9 g of azilsartan crystals (azylsultan purity: 98.49%).
  • Example 3 The same operation as Example 1 was performed except having used acetone as an additional solvent, and 4.6 g of azilsartan crystals were obtained (Azilsartan purity: 98.85%).
  • the melting point by DSC measurement was 118 degreeC.
  • Example 4 The same operation as in Example 1 was carried out except that propyl acetate was used as an additional solvent to obtain 4.4 g of azilsartan crystals (azylsartan purity: 99.02%).
  • the melting point determined by DSC measurement was 124 ° C.
  • Example 5 The same operation as in Example 1 was carried out except that methyl ethyl ketone was used as an additional solvent to obtain 4.8 g of azilsartan crystals (azylsultan purity: 98.80%).
  • fusing point by DSC measurement was 120 degreeC.
  • Example 6 The same operation as in Example 2 was performed except that the A-type crystal of azilsartan obtained in Comparative Example 1 was used, and 4.8 g of azilsartan crystals were obtained (Azilsartan purity: 99.69%).
  • fusing point by DSC measurement was 130 degreeC.
  • Example 7 The same operation as in Example 2 was carried out except that the B-type crystal of azilsartan obtained in Comparative Example 2 was used to obtain 4.8 g of azilsartan crystals (Azilsartan purity: 99.44%).
  • fusing point by DSC measurement was 126 degreeC.
  • the azilsartan methyl ester used as a raw material in each example is as follows.
  • Raw material 1 Crystal of azilsartan methyl ester (purity of azilsartan methyl ester: 97.3%, azilsartan methyl ester desethyl: 0.14%, azilsartan methyl ester dimer: 0.20%, azil Impurities with a molecular weight 10 greater than sultan methyl ester: not detected)
  • Raw material 2 Crystal of azilsartan methyl ester purified by recrystallization of raw material 1 (purity of azilsartan methyl ester: 99.1%, azilsartan methyl ester desethyl form: 0.02%, azilsartan methyl ester dimer Body: 0.07%, impurities whose molecular weight is 10 larger than azilsartan methyl ester: not detected)
  • Raw material 3 Crystal of azilsartan methyl ester (purity of azilsartan
  • Example 8 (Production of azilsartan; with activated carbon treatment) (Hydrolysis) Weigh 5 g of azilsartan methyl ester of raw material 2 in a 100 mL three-necked flask equipped with two stirring blades with a diameter of 3.5 cm, add 40 mL of a 1.25 M aqueous sodium hydroxide solution and heat to 70 ° C. For 2 hours.
  • the crude azilsartan solution after the reaction had azilsartan purity: 99.61%, azilsartan desethyl compound: 0.06%, and azilsartan dimer: 0.08%.
  • Table 2 shows the results of the azilsartan purity and the amount of impurities of the crude azilsartan solution after the reaction.
  • Example 9 to 10 (Hydrolysis) A hydrolysis reaction was performed in the same manner as in Example 8 except that the azilsartan alkyl ester shown in Table 2 was used as a raw material. Table 2 shows the purity of the crude azilsartan solution after the hydrolysis reaction and the measurement results of the amount of impurities.
  • Example 11 to 12 (Hydrolysis) A hydrolysis reaction was carried out in the same manner as in Example 8. Table 2 shows the measurement results of the purity and impurity amount of the crude azilsartan solution after the reaction.
  • Example 13 to 16 (Hydrolysis) A hydrolysis reaction was carried out in the same manner as in Example 8. Table 2 shows the measurement results of the purity and impurity amount of the crude azilsartan solution after the reaction.
  • azilsartan crystals were taken out from the reaction solution obtained in the same manner as in Reference Example 1. The purity and the amount of impurities were similarly measured for the obtained crystals of azilsartan. The results are shown in Table 3.
  • Example 17 (Hydrolysis) Weigh 40 g of azilsartan methyl ester of raw material 4 in a 1 L four-necked flask equipped with two stirring blades with a diameter of 10 cm, add 1.25 M aqueous sodium hydroxide solution 260 mL, heat to 70 ° C., and then at the same temperature The reaction was performed for 2 hours. Azilsartan purity in the crude azilsartan solution after the reaction was 99.69%, azilsartan desethyl compound: 0.05%, and azilsartan dimer: 0.04%.
  • the filtrate was filtered under reduced pressure to remove purified white glaze, and the obtained filtrate was heated to 40 ° C., and then 260 mL of methanol and 29.2 mL of acetic acid were added at the same temperature to precipitate crystals of azilsartan.
  • the reaction solution was cooled to 20 ° C. at a rate of 20 ° C./hour, and then stirred at the same temperature for 6 hours.
  • the obtained slurry was filtered under reduced pressure, and the precipitated crystals were collected and dried at 40 ° C. : 0.02%, azilsartan dimer: not detected) crystals were obtained (yield: 95.5%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明により、 Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4±0.2°、11.5±0.2°、13.3±0.2°、14.8±0.2°、26.0±0.2°に特徴的なピークを与えることを特徴とするアジルサルタン、及びその製造方法が提供される。

Description

アジルサルタン及びその製造方法
 本発明は、アジルサルタン(化学名称:1-[[2′-(4,5-ジヒドロ-5-オキソ-1,2,4- オキサジアゾール-3-イル)[1,1′-ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボン酸)及びその製造方法に関する。
 下記式(1)
Figure JPOXMLDOC01-appb-C000006
 
で示されるアジルサルタン(化学名称:1-[[2′-(4,5-ジヒドロ-5-オキソ-1,2,4- オキサジアゾール-3-イル)[1,1′-ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボン酸)は、アンジオテンシンII受容体拮抗薬として優れた効果を示す治療薬として非常に有用な化合物である(特許文献1)。
 アジルサルタンは、以下のような方法で合成されている。
Figure JPOXMLDOC01-appb-C000007
 
 即ち、前記式(3)で示されるアルキル 2-エトキシ-1-[[2’-(ヒドロキシイミノカルボキサミド)ビフェニル-4-イル]メチル]-1H-ベンズイミダゾール-7-カルボキシラート(以下、単に、「アミドキシム化合物」とする場合もある)をそのまま環化反応に用いるか、又は、該アミドキシム化合物のヒドロキシル基をエステル保護基で保護するエステル保護反応を行い、前記式(4)で示されるアルキル 2-エトキシ-1-[[2’-(アルキロキシ-カルボニルオキシカルバムイミドイル)ビフェニル-4-イル]メチル]-1H-ベンズイミダゾール-7-カルボキシラート(以下、単に、「エステル保護基含有化合物」とする場合もある)とした後、環化反応を行い、前記式(2)で示されるアルキル 2-エトキシ-1-[[2’-(2,5-ジヒドロ-5-オキソ-1,2,4-オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]ベンズイミダゾール-7-カルボキシラート(以下、単に、「アジルサルタンアルキルエステル」とする場合もある)を製造する。そして、最後に、該アジルサルタンアルキルエステルを加水分解することにより、前記式(1)で示されるアジルサルタンが製造される(例えば、特許文献1~3、非特許文献1参照)。
 以上のような方法で得られるアジルサルタンは、非常に高純度のものが望まれており、様々な合成方法、精製方法が検討されている。
 また、このアジルサルタンは、結晶多形を有することが知られている。ここで、結晶多形を有するとは、同一分子において結晶構造が異なる複数の結晶形が存在することを意味する。結晶多形における各結晶形は、外観、溶解性、融点、溶出率、バイオアベイラビリティー、安定性、有効性などの医薬品としての品質に関係する特性が異なることが多い。
 特許文献1では、加水分解後の反応溶液から溶媒を留去して得られた残渣に酢酸エチルを加えて結晶化することで、156~157℃の融点を有する無色プリズム晶のアジルサルタンを得ることが記載されている。
 また、非特許文献1では、反応後の溶液を中和処理して得られた結晶をエタノールで洗浄することで、212~214℃の融点を有する無色プリズム晶のアジルサルタンを得ることが記載されている。
 さらに、非特許文献2では、アセトンと水の混合溶媒からアジルサルタンの粗結晶を取得した後、アセトン中に懸濁させて1時間撹拌することで、融点208~211℃の白色結晶のアジルサルタンを得る方法が記載されている。
 しかしながら、これらの方法によって合成されたアジルサルタンの各結晶は比較的低い溶解度、バイオアベイラビリティーであることが報告されている(特許文献2)。
 そのため、特許文献2では、より優れた物理化学的性質を有する、特に相対的に高い溶解度、バイオアベイラビリティー及び/又は有効性を有するアジルサルタンの結晶形A~Kの製造方法が記載されている。
 
特許2645962号公報 特表2014-530805号公報 特表2014-505097号公報
ジャーナル オブ メディシナル ケミストリー、(米国)、1996年、vol.39、p.5228-5235 オーガニック プロセス リサーチ アンド ディベロップメント、(米国)2013年、Vol.17、p.77-86
 一般的に化合物を医薬品原薬として用いる場合には、非常に高純度のものが望まれている。有機溶媒を用いた再結晶法等の方法は精製効果が高いため、好適に採用される。
 しかしながら、本発明者が特許文献1、非特許文献1及び2に記載の方法でアジルサルタンを合成したところ、得られたアジルサルタンの各結晶は、有機溶媒に対して非常に難溶性であることが分かった。さらに、特許文献2に記載の方法でアジルサルタンの結晶形A~Kを合成したところ、酸性水溶液に対する溶解度は、特許文献1、非特許文献1及び2に記載の方法で得られる従来の結晶に比べて改善されているものの、有機溶媒に対する溶解度は低いままであった。そのため、従来のアジルサルタンの結晶と同様、有機溶媒を用いて精製操作を行う場合には、多量の有機溶媒が必要となる。したがって、工業的に精製を行う場合には大きな問題があった。
 そのため、有機溶媒に対して可溶であって、有機溶媒を用いた再結晶法が採用可能なアジルサルタンの結晶の開発が望まれていた。
 本発明の第1の課題は、有機溶媒への溶解性が改善された、新規な結晶形を有するアジルサルタンの結晶、及びその製造方法を提供することにある。
 また、本発明者等が検討したところ、上記特許文献1-3、及び非特許文献1の方法に従いアジルサルタンを製造したとしても、低減することが難しい不純物があることが分かった。この不純物を分析したところ、
 下記式(5)
Figure JPOXMLDOC01-appb-C000008
 
で示されるアジルサルタンが二量化した不純物(以下、単に、「アジルサルタン二量体」という場合がある)であることが分かった。
 前記アジルサルタン二量体は、以下のようにして合成されるものと考えられた。すなわち、アジルサルタンを製造する際の前記環化反応において、
 下記式(3)
Figure JPOXMLDOC01-appb-C000009
 
(式中、Rはアルキル基である)
で示される未反応のアミドキシム化合物と、
 下記式(1)
Figure JPOXMLDOC01-appb-C000010
 
で示されるアジルサルタンとが先ず反応して、
 下記式(6)
Figure JPOXMLDOC01-appb-C000011
 
(式中、Rはアルキル基である)
で示されるアジルサルタンアルキルエステルの二量体(以下、単に、「アジルサルタンアルキルエステル二量体」とする場合もある)が製造される。次いで、このアジルサルタンアルキルエステル二量体が、そのまま加水分解されて副生するものと考えられた。つまり、アジルサルタンを製造する際に、他反応が同時に進行して製造されるもの(即ち、原料等を高純度化しても反応の際に生成してしまうもの)であると考えられた。
 さらに、当該不純物(アジルサルタン二量体)は、従来の方法では、最終生成物からの低減が困難であった。また、加水分解前のアジルサルタンアルキルエステル二量体も、同様に除去が困難であった。そのため、従来の方法において、アジルサルタン二量体をより低減するためには、精製操作を繰り返して行う必要があり、操作性や収率の点で工業的に製造するには改善の余地があった。
 本発明の第2の課題は、不純物としてアジルサルタン二量体を含む粗アジルサルタンから、特にアジルサルタン二量体の含有量を選択的に低減することができる、高純度のアジルサルタンの製造方法を提供することにある。
 
 本発明者らは、上記第1の課題に対して鋭意検討を行った。その結果、アジルサルタンをジメチルホルムアミドに溶解して得た溶液に、ケトン類及び/又はエステル類の溶媒を加えて析出させることで得たアジルサルタンの結晶は、その結晶形が従来の結晶形とは異なる結晶形態であることを見出した。そして、このアジルサルタンの結晶は、メタノールやエタノールなどのアルコール類や酢酸エチルなどのエステル類を含む、様々な溶媒に対する溶解度が非常に高い結晶であることを見出し、第1の本発明を完成するに至った。
 即ち、第1の本発明は、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4±0.2°、11.5±0.2°、13.3±0.2°、14.8±0.2°、26.0±0.2°に特徴的なピークを与える結晶構造を有するアジルサルタンである。なお、本明細書においては、この結晶構造を有する本発明のアジルサルタンを「アジルサルタンM型結晶」という場合がある。
 第1の本発明のアジルサルタンM型結晶の示差走査熱量(DSC)測定で決定される融点は、115℃以上135℃以下である。
 第1の本発明は、アジルサルタンをジメチルホルムアミドに溶解することで得た溶液に、ケトン類及び/又はエステル類の溶媒を加えてアジルサルタンM型結晶を析出させることを特徴とするアジルサルタンM型結晶の製造方法である。
 また、本発明者らは、上記第2の課題を解決するために鋭意検討を重ねた。具体的には、粗アジルサルタンの溶液から前記アジルサルタン二量体を効果的に除去する方法について検討を行った。その結果、粗アジルサルタンが溶解した溶液に、活性炭を接触させることによって、活性炭を除去した後の溶液における前記アジルサルタン二量体の含有量が大きく低減されることを見出し、第2の本発明を完成するに至った。
 即ち、第2の本発明は、
 下記式(5)
Figure JPOXMLDOC01-appb-C000012
 
で示されるアジルサルタン二量体を含む粗アジルサルタンが溶解した溶液と、活性炭とを接触させた後、
 下記式(1)
Figure JPOXMLDOC01-appb-C000013
 
で示されるアジルサルタンの結晶を該溶液から分別することを特徴とするアジルサルタンの製造方法である。
 なお、第2の本発明においては、前記活性炭が、BET法で求めた比表面積が1000~3500m/gであり、且つ、累積細孔容積が0.6~1.5mL/gであること好ましい。
 また、前記粗アジルサルタンは、
 下記式(2)
Figure JPOXMLDOC01-appb-C000014
 
(式中、Rはアルキル基である)
で示されるアジルサルタンアルキルエステルを、無機塩基により加水分解して得られたものである場合に、特に優れた効果を発揮する。
 
 第1の本発明の方法により得られたアジルサルタンM型結晶は、新規な結晶構造を有しており、既知のアジルサルタン結晶と比較して、アルコール類、エステル類、ケトン類、エーテル類の各有機溶媒に対する溶解度が極めて高い。したがって、アジルサルタンM型結晶は、再結晶時の有機溶媒の必要量が少量で済み、精製効率が高い有機溶媒を用いた精製操作が容易に可能となり、その工業的利用価値は高い。特に高純度の原薬を必要とする医薬品等の中間体として、最適に利用することが出来る。
 第2の本発明の方法によれば、特に、不純物としてアジルサルタン二量体の含有量が低減された高純度のアジルサルタンを、精製操作を繰り返すことなく、効率的且つ簡便な方法で製造することができる。
 
実施例1において製造された本発明のアジルサルタンM型結晶のX線回折チャートである。 実施例1において製造された本発明のアジルサルタンM型結晶のDSCチャートである。 比較例1において製造された従来のアジルサルタン結晶(特許文献2における結晶形A)のX線回折チャートである。 比較例1において製造された従来のアジルサルタン結晶(特許文献2における結晶形A)のDSCチャートである。
 以下、第1の本発明、及び第2の本発明について、それぞれ説明する。
1. 第1の本発明
 (アジルサルタンM型結晶)
 本発明のアジルサルタンM型結晶は、Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4±0.2°、11.5±0.2°、13.3±0.2°、14.8±0.2°、26.0±0.2°に特徴的なピークを有する化合物である。なお、X線回折角の測定誤差である±0.2°は、四捨五入により±0.2°となる範囲を含む。このアジルサルタンM型結晶のX線回折測定結果を図1に示した。
 ここで、本発明における特徴的なピークとは、2θ=9.4±0.2°に強度が最大となるピークを有するとともに、2θ=11.5±0.2°、13.3±0.2°、14.8±0.2°、26.0±0.2°に、最大ピーク強度(2θ=9.4±0.2°のピーク強度)に対して7%以上の強度を有するピークが現れることをいう。最大ピーク強度に対して7%未満の強度を有するピークは、ノイズ等と看做し、本発明における特徴的なピークには該当しないものとする。
 下記の実施例において詳細に説明するが、本発明のアジルサルタンM型結晶は、特許文献1~3、非特許文献1、2に記載されている既知のアジルサルタン結晶と比較して、メタノールやエタノールなどのアルコール類;酢酸エチルなどのエステル類;アセトンなどのケトン類;テトラヒドロフランなどのエーテル類の有機溶媒に対する溶解性が改善されている。具体的には、室温において、アジルサルタンM型結晶は、既知のアジルサルタン結晶よりも同量のメタノールに約7~10倍溶解させることができる。
 また、本発明におけるアジルサルタンM型結晶は、既知のアジルサルタン結晶と比較して低い融点を示す。具体的には、示差走査熱量(DSC)測定で決定される融点が115℃以上135℃以下である。本発明において、示差走査熱量(DSC)測定で決定される融点は、測定により得られた吸熱ピークのピークトップ温度を指す。
 (アジルサルタンM型結晶の製造方法)
 本発明におけるアジルサルタンM型結晶は、アジルサルタンをジメチルホルムアミドに溶解することで得た溶液に、ケトン類及び/又はエステル類の溶媒を加えてアジルサルタンM型結晶を析出させることにより製造することが出来る。
 本発明の製造方法により得られるアジルサルタンM型結晶は、新規な結晶構造を有しており、既知のアジルサルタン結晶と比較して、アルコール類、エステル類、ケトン類、エーテル類の有機溶媒に対する溶解度が極めて高い。
 (アジルサルタン)
 本発明において使用されるアジルサルタンは、特に制限されず、公知の方法で製造されたものを使用することができる。例えば、特許文献1に記載の方法、すなわち、アジルサルタンメチルエステル(化学名称:メチル-1-[[2′-(5-オキソ-4,5-ジヒドロ-1,2,4- オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンゾイミダゾール-7-カルボキシレート)をメタノールと水酸化リチウム水溶液の混合溶液中で3時間、加熱還流しながら反応させることによって製造することができる(特許文献1、実施例1eを参照)。
 本発明において使用されるアジルサルタンは、一旦溶液状態とするため、その結晶形などは特に限定されず、たとえば非特許文献1、2及び特許文献1、2に記載の結晶形、アモルファス、有機アミン塩、又はこれらが混合した形態であってもよく、粉末、塊状物、又はこれらが混合した形状であってもよく、無水物、水和物、溶媒和物、又はこれらが混合した形態であってもよい。水和物又は溶媒和物である場合、水又は溶媒の分子数は特に制限されない。また、アジルサルタンM型結晶の製造時にジメチルホルムアミドとケトン類及び/又はエステル類の溶媒を用いることから、当該有機溶媒を含む湿体であってもよく、その他の溶媒についても、結晶化の際に影響を及ぼさない範囲で残留していても良い。具体的には、当該アジルサルタンの50質量%以下の量で残留していてもよい。当該有機溶媒以外の溶媒を含まないことが最も好ましい。また、使用するアジルサルタンの純度は特に制限されず、上記製造方法によって得られたものをそのまま使用することができる。ただし、最終的に得られるアジルサルタンM型結晶の純度をより高くするためには、一般的な精製方法、例えば再結晶やリスラリー、カラムクロマトグラフィーなどの方法により、必要に応じて1回以上精製したものを、アジルサルタンとして利用することが好ましい。
 具体的には、下記の実施例で記載した高速液体クロマトグラフィー(HPLC)の条件で測定した際、アジルサルタンのピーク面積割合が95%以上であるアジルサルタンを用いることが好ましい。また、有機溶媒に対する溶解度が高い結晶を得ることを目的として、前記HPLCの純度測定において、アジルサルタンのピーク面積割合が100%となるものを使用することもできる。
 (アジルサルタン溶液の調製方法)
 本発明によるアジルサルタンM型結晶の製造方法は、まずアジルサルタンをジメチルホルムアミドに溶解することでアジルサルタン溶液を得る。この際、使用するジメチルホルムアミドは特に制限されることなく、市販のものをそのまま用いることができる。ジメチルホルムアミドの使用量は、使用するアジルサルタンの結晶形により適宜決定すれば良いが、一般的にアジルサルタン1gに対して、0.5mL以上10mL以下とすればよい。ジメチルホルムアミドの使用量が多くなると、収率が低下するため、0.5mL以上5mL以下とすることが好ましい。なお、本発明における溶媒の体積は、25℃におけるものとする。また、アジルサルタンを溶解させる際の温度は、使用するアジルサルタンの結晶形やジメチルホルムアミドの量によって適宜決定すればよく、10℃以上50℃以下の範囲で溶解させることが好ましい。なお、当然のことながら、完全に溶解しないものが存在する場合には、溶解しないものを濾別して処理することもできる。さらに、本発明においてアジルサルタン溶液を得る方法は、特に制限されず、アジルサルタンとジメチルホルムアミドとを混合して溶液を調整すれば良く、混合する方法や順序も特に制限されない。
 (アジルサルタンM型結晶の結晶化)
 本発明によるアジルサルタンM型結晶の製造方法は、得られたアジルサルタン溶液にケトン類及び/又はエステル類の溶媒を加えてアジルサルタンM型結晶を析出させることを特徴とする。本方法を採用することで、有機溶媒への溶解度が改善されたアジルサルタンM型結晶を高収率で取得することができる。本発明において、アジルサルタン溶液に加える溶媒は、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類;及び/又は酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチルなどのエステル類から選択することができる。より高純度のアジルサルタンを取得するためにはエステル類の溶媒を加えることが好ましく、その中でも酢酸エチルを使用することが最も好ましい。また、本発明においては、これらケトン類の溶媒とエステル類の溶媒とを混合して加えることもできる。本発明においては、ケトン類及び/又はエステル類の溶媒を加えてアジルサルタンを析出させることで、有機溶媒に対する溶解性が向上したアジルサルタンM型結晶を析出させることができる。
 本発明において、アジルサルタン溶液に加えるケトン類及び/又はエステル類の溶媒の使用量は、選択する溶媒の種類により適宜決定すればよい。通常、上記アジルサルタン溶液の調製で使用したジメチルホルムアミド1mLに対して、1mL以上50mL以下とすればよく、収率、操作性を考慮すると5mL以上20mL以下とすることが好ましい。この際、ケトン類及び/又はエステル類の溶媒を加える温度は特に制限されず、アジルサルタンがジメチルホルムアミドに溶解したことを確認した後、当該温度にてすぐに加えることもできるが、30℃以下で加えることがより好ましい。30℃以下で加えることにより、熱分解による不純物の増加を抑制することができ、得られるアジルサルタンM型結晶の純度もより高純度となる。また、ケトン類及び/又はエステル類の溶媒を加える方法も特に制限されず、一度で全量加える方法、数回に分割して加える方法のどちらも採用することができる。本発明では、ケトン類及び/又はエステル類の溶媒を加えた後、一定温度で撹拌することでアジルサルタンM型結晶を析出させる。この際に保持する温度は-5℃以上30℃以下とすればよく、より高収率でアジルサルタンを取得するためには、0℃以上10℃以下で保持することが好ましい。また、保持する時間は、保持する温度により適宜決定すればよいが、通常5時間以上とすることが好ましい。また、この際、アジルサルタンの結晶が析出しにくい場合には、種結晶を添加することもできる。
 このようにして析出したアジルサルタンM型結晶は、ろ過や遠心分離などにより固液分離した後、自然乾燥、送風乾燥、真空乾燥などの方法で乾燥することにより単離することが出来る。
 本方法にて取得したアジルサルタンは、新規な結晶構造を有したアジルサルタンM型結晶である。本発明のアジルサルタンM型結晶は、有機溶媒に対する溶解度が改善されており、既知の結晶形と比較してアルコール類、エステル類、ケトン類、エーテル類の溶媒に対する溶解度が極めて高い。したがって、アジルサルタンM型結晶を対象として精製操作を行う場合には、アルコール類、エステル類、ケトン類、エーテル類の各溶媒を用いて、容易に再結晶等の精製操作を行うことができる。
 
2. 第2の本発明
 本発明は、不純物としてアジルサルタン二量体を含む粗アジルサルタンの溶液と、活性炭とを接触させた後、アジルサルタンの結晶を該溶液から分別することを特徴とするアジルサルタンの製造方法である。
 (粗アジルサルタン)
 本発明において、粗アジルサルタンとは、不純物としてアジルサルタン二量体を含むアジルサルタンを意味する。本発明において、粗アジルサルタンは、特に制限されるものではなく、公知の方法で製造したものを使用することができる。例えば、上記第1の発明に記載したアジルサルタンを使用することができる。粗アジルサルタンは、高速液体クロマトグラフィー(HPLC)分析で96.0~99.0%純度のアジルサルタンであってもよい(本発明において、純度、不純物の割合(%)は、HPLCで測定した際の面積%の値である。)。このような粗アジルサルタンは、アジルサルタンアルキルエステルを加水分解することで好適に製造することができる。また、精製の対象となる粗アジルサルタンには、前記アジルサルタン二量体が0.01~0.50%含まれるものであってもよい。本発明においては、前記アジルサルタン二量体を効率よく低減できるため、上記割合で前記アジルサルタン二量体が含まれていてもよい。
 先ず、精製の対象となる粗アジルサルタンの製造方法について説明する。低減する対象となるアジルサルタン二量体は、以下のようにして副生されると考えられる。すなわち、原料として使用するアミドキシム化合物(式(3)の化合物)と、該アミドキシム化合物を環化する際に、既に生成していると考えられるアジルサルタン(式(1)の化合物)とが先ず反応して、アジルサルタンアルキルエステル二量体を生成する。次いで、該アジルサルタンアルキルエステル二量体からアジルサルタン二量体が得られると考えられる。そのため、最初に、該アジルサルタンアルキルエステルの製造方法について説明する。
 (原料化合物;アジルサルタンアルキルエステルの合成)
 当該加水分解反応に用いるアジルサルタンアルキルエステルは、特に制限されず、公知の方法で製造されたものを使用することができる。例えば、特許文献1~3、非特許文献1に記載の方法で製造したものをそのまま使用することができる。具体的には、以下の反応式に従い製造することができる。
Figure JPOXMLDOC01-appb-C000015
 
 前記式(3)で示されるアミドキシム化合物は、公知の化合物であり、その製造方法は、非特許文献1、特許文献1に記載されている。つまり、塩基の存在下、前記式(3)で示されるアミドキシム化合物と、XCOORで示される化合物とを反応させて、エステル保護反応を行い、前記式(4)で示されるエステル保護基含有化合物を製造した後、環化反応を行い、前記式(2)で示されるアジルサルタンアルキルエステルを製造する。
 本発明の方法によれば、効率よく、前記アジルサルタン二量体を低減できる。しかしながら、最終的に得られるアジルサルタンは純度が高い方がよいことから、以下の方法を採用して、アジルサルタンアルキルエステル(式(2)の化合物)を合成することが好ましい。
 以下の方法でアジルサルタンアルキルエステルを製造することで、アジルサルタン二量体の前駆体であるアジルサルタンアルキルエステル二量体、その他の前駆体不純物を低減することができ、原料となるアジルサルタンアルキルエステルを高純度化することができる。その結果、最終的に得られるアジルサルタンの純度もより高純度となる。
 (アミドキシム化合物のエステル保護反応)
 前記反応式において、前記式(3)で示されるアミドキシム化合物と反応させるXCOORは、Xがハロゲン原子であり、Rが前記式(4)で示されるエステル保護基含有化合物におけるRと同じであり、ヒドロキシル基を保護する保護基である。
 前記Rは、ヒドロキシル基を保護する、一般的な保護基が挙げられる。具体的には、置換基を有していてもよいアルキル基、ベンジル基、置換基を有していてもよいフェニル基等が挙げられる。中でも、工業的入手のし易さ、エステル保護基含有化合物における役割、最終的に除去すること等を考慮すると、炭素数1~8の非置換アルキル基であることが好ましい。この非置換アルキル基は、直鎖状のアルキル基であっても、分岐状のアルキル基であってもよい。
 前記XCOORを具体的に例示すれば、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸プロピル、クロロギ酸イソプロピル、クロロギ酸ブチル、クロロギ酸イソブチル、クロロギ酸アミル、クロロギ酸-2-エチルヘキシル、クロロギ酸ヘキシル、クロロギ酸ヘプチル、クロロギ酸クロロメチル、クロロギ酸-2-クロロエチル、クロロギ酸ベンジル、クロロギ酸フェニル、クロロギ酸-4-クロロフェニル等が挙げられる。この中でも、工業的入手のし易さ、反応性、およびエステル保護基含有化合物における役割等を考慮すると、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸プロピル等を用いることが好ましい。
 前記XCOORの使用量は、特に制限されるものではない。具体的には、前記式(3)で示される化合物1モルに対して、XCOORの使用量は1~5モルとすればよい。
 エステル保護反応は、塩基の存在下で行う。使用する塩基を例示すれば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等の無機塩基;メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、トリプロピルアミン、ジイソプロピルエチルアミン、ピリジン、ピペラジン、ピロリジン、アニリン、N,N-ジメチルアミノピリジン、ジアザビシクロウンデセン、N-メチルモルホリン等の有機塩基を挙げることができる。この中でも、反応の進行性、除去し易さ、後工程における処理等を考慮すると、トリエチルアミン、ピリジン、ジイソプロピルエチルアミンの有機塩基であることが好ましい。前記の塩基は、1種類を使用することもできるし、複数種類の塩基を使用することもできる。複数種類の塩基を使用する場合には、基準となる塩基の量は、複数種類の塩基の合計量である。
 前記塩基の使用量は、特に制限されるものではない。具体的には、前記式(3)で示されるアミドキシム化合物1モルに対して、前記塩基の使用量は1~5モルとすればよい。なお、後述するが、エステル基含有化合物を環化する際には、塩基の存在下で実施することが好ましい。そのため、この反応で得られるエステル基含有化合物を環化する場合には、前記塩基が残存している状態で環化反応を実施することもできる。
 また、使用する溶媒は、XCOORと反応しない非プロトン性溶媒の中から選択すればよい。具体的には、ベンゼン、トルエン、塩化メチレン、クロロホルム、1,4-ジオキサン等を挙げることができる。これら反応溶媒は、1種類を使用してもよいし、2種類以上の混合溶媒を使用してもよい。
 反応は、塩基の存在下、溶媒中、前記式(3)で示されるアミドキシム化合物、および前記XCOORが十分に接するように、撹拌混合することが好ましい。これら成分を反応容器に導入する手順は、特に制限されるものではない。好ましい方法としては、予め溶媒中に前記式(3)で示されるアミドキシム化合物と前記塩基とを加え、次いで必要に応じて溶媒で希釈したXCOORを加えていくことが好ましい。この際、急激な発熱を防ぐため、XCOORを滴下することが好ましい。その他、前記反応を行う際の条件は、特に制限されるものではない。反応温度は、-10~10℃であることが好ましい。また、反応時間は、原料であるアミドキシム化合物の残量をモニタリングしながら、適宜決定すればよいがアミドキシム化合物の残量が0.5%以下となることが好ましい。通常0.5~15時間行えば十分である。
 以上のような条件で反応させることにより、前記式(4)で示されるエステル保護基含有化合物を製造することができる。前記エステル保護基含有化合物を反応系から取り出す方法は、特に制限されるものではない。具体的には、前記エステル保護基含有化合物を酢酸エチル、トルエン、クロロホルム、塩化メチレンのような水に難溶な溶媒に溶解させ、水洗、濃縮、乾燥等を行うことにより、前記エステル保護基含有化合物を取り出すことができる。なお、溶媒に前記水に難溶な溶媒を使用した場合には、そのまま、溶液を水洗することもできる。
 以上のような条件で得られる前記式(4)で示されるエステル保護基含有化合物は、特に制限されるものではないが、純度が90.0~99.5%のものとすることができる。また、水洗を調整することにより、取り出した該エステル保護基含有化合物が塩基を含んだ状態で、次の環化反応を実施することもできる。
 (該エステル保護基含有化合物の環化反応)
 環化反応は、前記反応で得られたエステル保護基含有化合物を反応溶媒中で加熱して実施することが好ましい。当該方法にて環化反応を行うことにより、除去が困難な不純物である下記式(6)
Figure JPOXMLDOC01-appb-C000016
 
(式中、Rはアルキル基である)
で示されるアジルサルタンアルキルエステル二量体や、
 下記式(7)
Figure JPOXMLDOC01-appb-C000017
(式中、Rはアルキル基である)
で示されるアジルサルタンアルキルエステルの加水分解物(以下、単に、「アジルサルタンアルキルエステルデスエチル体」とする場合もある)、
 さらに構造は明らかではないが、液体クロマトグラフ質量分析計(LC-MASS)の分析結果において、アジルサルタンメチルエステルの分子量に10を加えた分子量の不純物を低減することができる。
 以上の不純物は、アジルサルタンアルキルエステルとの分離が難しく、最終的には、これら不純物由来の不純物(加水分解されたもの)がアジルサルタンに含まれる可能性がある。そのため、なるべくこれら不純物が生成しない、下記に詳述する方法を採用することが好ましい。
 この環化反応は、加熱することにより、その反応を進行することができる。具体的には、前記エステル保護基含有化合物が反応溶媒に溶解した反応溶液を加熱することにより、環化反応が促進され、前記エステル保護基含有化合物をアジルサルタンアルキルエステルとすることができる。この環化反応の際には、前記エステル保護基含有化合物を反応溶媒に溶解し、撹拌混合しながら加熱することが好ましい。なお、当然のことながら、前記エステル保護基含有化合物と反応溶媒とを攪拌させながら加熱して反応溶液とし、その反応溶液をそのまま加熱してもよい。
 環化反応の反応温度は、反応速度を高め、かつ不純物を低減するためには、50℃以上、反応溶液の還流温度以下とすることが好ましく、60℃以上、反応溶液の還流温度以下とすることがより好ましく、70℃以上、反応溶液の還流温度以下とすることがさらに好ましい。反応溶液の還流温度は、使用する反応溶媒、前記エステル保護基含有化合物の濃度、副生するR-OHの種類によって異なるため、一概に限定できない。ただし、より不純物の生成を抑制するためには、反応温度は、100℃以下とすることが好ましい。
 本発明においては、前記条件に従って環化反応を促進できる。中でも、反応時間をより短くするためには、塩基の存在下で実施する好ましい。具体的には、前記反応溶液中に塩基が含まれる状態であればよい。環化反応において使用できる塩基は、特に制限されるものではないが、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等の無機塩基が挙げられる。また、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、トリプロピルアミン、ジイソプロピルエチルアミン、ピリジン、ピペラジン、ピロリジン、アニリン、N,N-ジメチルアミノピリジン、ジアザビシクロウンデセン、N-メチルモルホリン等の有機塩基を使用することができる。中でも、得られるアジルサルタンアルキルエステルの精製のし易さ、操作性を向上するためには、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基を使用することが好ましい。これら塩基は、1種類を使用することもできるし、複数種類の塩基を使用することもできる。複数種類の塩基を使用する場合には、基準となる塩基の量は、複数種類の塩基の合計量である。なお、この塩基は、前記の通り、前記エステル保護基含有化合物を製造する際に塩基を使用した場合には、該エステル保護基含有化合物を取り出す際に残存している塩基を使用することもできる。
 本発明においては、塩基を使用しなくとも、環化反応を進行させることができる。ただし、塩基を使用する場合には、前記エステル保護基含有化合物1モルに対して、使用する塩基の量は0.01~5モルとすることが好ましい。塩基をこの範囲で使用することにより、反応速度を高めることができ、かつアジルサルタンアルキルエステルの収率、および純度を高くすることができる。この効果をより高めるためには、前記エステル保護基含有化合物1モルに対して、使用する塩基の量は0.1~1モルとすることがより好ましい。本発明において、塩基を使用する場合には、反応溶媒に、予め塩基、および前記エステル保護基含有化合物を加えて、加熱しながら撹拌混合することもできる。また、撹拌混合しながら加熱している反応溶液に、途中から反応を促進させるために該塩基を追加することもできる。途中から塩基を追加した場合には、使用した塩基の全量が基準の量となる。
 以上のような条件で環化反応を行うことにより、アジルサルタンアルキルエステルを製造することができる。得られたアジルサルタンアルキルエステルを反応系から取り出す方法は、特に制限されるものではなく、非特許文献1、特許文献1に記載の方法を採用することができる。
 環化反応は、好ましくは加熱して行う。そして、より好ましい態様では、反応溶液の温度(反応温度)を50℃以上とする。そのため、反応終了後の反応溶液を、30℃以下の範囲に冷却することが好ましく、さらに-10~30℃の範囲に冷却することが好ましく、特に-10~10℃の範囲に冷却することが好ましい。
 得られるアジルサルタンアルキルエステルの純度をより高くするためには、反応終了後の反応溶液を10~30℃/時間の冷却速度で冷却して、30℃以下、好ましくは0~30℃、さらに好ましくは-10~30℃、特に好ましくは-10~20℃の温度とすることが好ましい。さらに、得られたアジルサルタンアルキルエステルの収率を高めるためには、30℃以下、好ましくは0~30℃、さらに好ましくは-10~30℃、特に好ましくは-10~20℃の温度として1時間以上、好ましくは2時間以上20時間以下放置することが好ましい。
 本発明においては、前記アジルサルタンアルキルエステルをそのまま加水分解して、粗アジルサルタンとすることもできる。ただし、このようにして得られた未精製のアジルサルタンアルキルエステルには、不純物としてアジルサルタンアルキルエステル二量体の他に複数の不純物を含有しており、より高純度のアジルサルタンを得るためには、前記方法で得られたアジルサルタンアルキルエステルを再結晶することが好ましい。再結晶を行うことで、アジルサルタンアルキルエステル二量体を含む不純物の量をさらに低減することができる。使用する溶媒を例示すれば、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン等を挙げることができる。これら溶媒は1種類で使用することもできるし、複数種類の混合溶媒を使用することもできる。使用する溶媒の量は、特に制限されるものではない。具体的には、前記アジルサルタンアルキルエステルの結晶1gに対して、溶媒の量は3~30mlとすることが好ましく、さらに5~20mlとすることが好ましい。
 再結晶の方法としては、溶媒を含む溶媒中に前記アジルサルタンアルキルエステルの結晶を溶解させる。好ましくは、溶液の還流温度(約60℃)に加熱して前記アジルサルタンアルキルエステルの結晶を溶解させる。次いで、10~30℃/時間の冷却速度で冷却し、0~30℃、さらに好ましくは-10~30℃、特に好ましくは-10~20℃の温度範囲で一定時間放置することが好ましい。
 以上の方法で得られるアジルサルタンアルキルエステル(式(2)の化合物)は、不純物が少なく、最終的に得られるアジルサルタンの純度を高くすることができる。ただし、この方法においては、環化反応時に少量ではあるがアジルサルタンが生成(副生)するものと考えられる。そして、原料である前記アミドキシム化合物と該アジルサルタンとが反応し、その含有量は少ないがアジルサルタンアルキルエステル二量体が副生すると推定される。そのため、上記方法に従えば、アジルサルタンアルキルエステルの純度が97.0~99.5%であり、不純物であるアジルサルタンアルキルエステルデスエチル体の量が0.01%~0.15%、アジルサルタンアルキルエステル二量体の量が0.05~0.20%とすることも可能である。次に、以上の方法で得られたアジルサルタンアルキルエステルを加水分解する方法について説明する。
 (アジルサルタンアルキルエステルの加水分解;粗アジルサルタンの製造)
 前記方法で得られたアジルサルタンアルキルエステルは、公知の方法で加水分解することにより、本発明の精製の対象となる粗アジルサルタンとすることができる。以上の方法に従えば、比較的純度の高い粗アジルサルタンとすることができるため、最終的に得られるアジルサルタンの純度を高くすることができる。
 アジルサルタンアルキルエステルの加水分解は、特に制限されるものではないが、無機塩基を使用することが好ましい。次に、無機塩基を使用して加水分解する方法について説明する。
 (無機塩基を使用したアジルサルタンアルキルエステルの加水分解)
 当該加水分解反応においては、無機塩基を使用することが好ましい。特に、該加水分解は、アジルサルタンアルキルエステル、無機塩基、及び水を含む溶液中(水溶液中)で反応を行うことが好ましい。これらを混合する手順(反応容器内に導入する手順)は、特に制限されるものではない。その中でも、操作性を考慮すると、無機塩基の水溶液とアジルサルタンアルキルエステルとを接触させることが好ましい。当該無機塩基を含む水溶液は、特に制限されるものではなく、無機塩基を一定量の水で希釈・溶解したものを使用することができる。
 使用する無機塩基を例示すれば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等を挙げることができる。この中でも、反応の進行性、後工程における処理等を考慮すると、水酸化ナトリウム、水酸化カリウム等の無機水酸化物であることが好ましい。前記の無機塩基は、1種類をすることもできるし、複数種類の無機塩基を使用することもできる。複数種類の無機塩基を使用する場合には、基準となる無機塩基の量は、複数種類の無機塩基の合計量である。
 前記無機塩基の使用量は、特に制限されるものではない。具体的には、アジルサルタンアルキルエステル1モルに対して、前記無機塩基の使用量は1~10モルとすればよい。さらに、前記無機塩基は水で適当な濃度に希釈・溶解して水溶液の状態で使用すればよい。この際、用いる水の量は、使用する無機塩基の量、および種類により適宜決定すれば良いが、操作性等を考慮すると前記無機塩基の水溶液が0.1~5モル/Lの濃度(無機塩基の濃度)となるよう調整することが好ましく、1~3モル/Lの濃度であることがより好ましい。前記方法によって調整した無機塩基の水溶液は、アジルサルタンアルキルエステル1gに対して、1~50mL使用すればよい。
 (アジルサルタンアルキルエステルを加水分解する際の反応条件)
 当該加水分解反応は、アジルサルタンアルキルエステルと無機塩基の水溶液とを混合して行なうことができる。これらを混合する順序は、特に限定されず、攪拌混合して行うことが好ましい。
 また、加水分解時の反応温度は、アジルサルタンの収率を高める観点、及び不純物であるアジルサルタン二量体の生成量を抑制する観点から、40~80℃が好ましく、50~70℃の範囲で行うがより好ましい。また、反応時間は、特に制限されるものではないが、通常1~10時間の範囲で行われる。このようにして得られた反応液を、粗アジルサルタンの溶液として、活性炭を接触させることが好ましい。
 前記方法で得られたアジルサルタンアルキルエステルを、前記方法で加水分解することにより、比較的不純物の少ない粗アジルサルタンを得ることができる。この加水分解時に、アジルサルタンアルキルエステル二量体も加水分解されて、アジルサルタン二量体となる。
 以上のようにして得られる粗アジルサルタンは、アジルサルタンの純度が99.0~99.7%、不純物であるアジルサルタンデスエチル体の量が0.02~0.20%、アジルサルタン二量体の量が0.05~0.30%とすることができる。このような粗アジルサルタンを対象とすることにより、より一層最終生成物のアジルサルタンの純度を高くすることができる。本発明によれば、アジルサルタン二量体を効率よく除去できるため、前記範囲の純度、不純物量の粗アジルサルタン以外のものを精製の対象とすることができる。ただし、最終的に製造するアジルサルタンは、高純度のものとすることが好ましい。そのため、前記範囲の純度、不純物量の粗アジルサルタン以外のものを精製の対象とすることが好ましい。
 (粗アジルサルタンが溶解した溶液と活性炭との接触方法)
 本発明においては、アジルサルタン二量体を含む粗アジルサルタンの溶液と、活性炭とを接触させることを最大の特徴とする。
 本発明で使用する活性炭は、特に制限されるものではないが、BET法で求めた比表面積が1000~3500m/gであり、且つ、累積細孔容積が0.6~1.5mL/gであることが好ましい。当該範囲の物性を有する活性炭を用いることで、前記アジルサルタン二量体をより効果的に低減することができる。
 使用する活性炭の賦活(活性化)方法は、特に制限されず、薬品賦活法により得られる塩化亜鉛炭、水蒸気賦活法により得られる水蒸気炭のどちらも好適に使用することができる。また、活性炭の種類も特に制限されず、粉末炭、破砕炭、粒状炭、顆粒炭、成形炭等、前記物性を満たすものであれば使用することができる。中でも、取り扱い易さや、活性炭自体の除去効率等を考慮すると、粉末炭、粒状炭を使用することが好ましい。活性炭について、具体的に例示すれば、精製白鷺、特性白鷺、粒状白鷺、白鷺A、白鷺P、白鷺C、白鷺M(以上、大阪ガスケミカル製)、太閤A、太閤CA、太閤K、太閤M(以上、フタムラ化学製)等を挙げることができる。
 本発明において、活性炭と接触させる粗アジルサルタンの溶液は、不純物であるアジルサルタン二量体を含む粗アジルサルタンが溶解している溶液であれば、特に制限されるものではない。そのため、粗アジルサルタンの溶液に使用する溶媒は、該粗アジルサルタンが溶解できる溶媒であれば、有機溶媒であっても、水であってもよい。その中でも、前記の通り、アジルサルタンアルキルエステルを加水分解して得られる粗アジルサルタンを含む溶液(加水分解反応後に得られる粗アジルサルタンを含む溶液)と、活性炭とを接触させることが好ましい。この場合、粗アジルサルタンを含む溶液は塩基を含むことができる。また、アジルサルタン二量体を低減することを目的として、該溶液から取り出したアジルサルタンを、再度、塩基性水溶液等に溶解した溶液と活性炭とを接触させることもできる。ただし、作業性を考慮すると、加水分解反応後に得られる粗アジルサルタンを含む溶液を対象とすることが好ましい。
 粗アジルサルタンの溶液と上記活性炭を接触させる方法は、特に限定されるものではない。例えば、粗アジルサルタン、活性炭、及び粗アジルサルタンを溶解できる溶媒を同時に混合する方法、粗アジルサルタンが溶解した溶液を準備し、該溶液に活性炭を添加して混合する方法、又は活性炭を充填したカラムに該溶液を通過させる方法などを採用することができる。中でも、操作の容易性から、該溶液に活性炭を添加して混合する方法を採用することが好ましい。
 本発明において、活性炭の使用量は、活性炭の種類、不純物量等によって適宜決定すればよい。前記方法で得られる粗アジルサルタンが溶解した溶液を使用する場合には、粗アジルサルタン1gに対して、活性炭を0.03~0.2g使用することが好ましい。この際、該溶液と活性炭との混合は、撹拌して行なうことが好ましい。また、撹拌混合時の温度は15~35℃で行うことが好ましく、20~30℃で行うことが特に好ましい。また、活性炭との接触時間は、特に制限されず、通常、当該温度にて1~5時間の範囲で行えば十分である。
 (活性炭の除去方法)
 前記のように、粗アジルサルタンの溶液と、活性炭とを接触させた後、次に、当該混合液から活性炭を分離して分離液を回収する。活性炭を分離する方法は、特に制限されず、公知の方法により実施することができる。例えば、デカンテーション、ろ過、遠心ろ過などの分離方法を採用すればよい。この際、ろ過の効率を向上させる目的で、セライト、ラヂオライトなどのろ過助剤を使用することもできる。
 (アジルサルタンの分別)
 本発明においては、前記活性炭処理後に得られた分離液からアジルサルタンの結晶を分別する必要がある。分離液からアジルサルタンの結晶を分別する方法についても、特に制限されず、公知の方法により実施することができる。例えば、分離液から溶媒をそのまま留去することによってアジルサルタンの結晶を分別する方法や、分離液を中和してアジルサルタンの結晶を析出させる方法が、特に制限なく採用できる。
 上記方法で析出させたアジルサルタンの結晶は、公知の方法により、分離する(分取する)ことができる。具体的には、デカンテーション、減圧/加圧ろ過、遠心ろ過などの分離方法を採用すればよい。また、分離されたアジルサルタンの結晶は、前記溶媒と同種の溶媒を用いて洗浄することが好ましい。このようにして得られたアジルサルタンの結晶は湿体であり、30~50℃で3~20時間乾燥することによって、アジルサルタンの結晶の乾燥体が得られる。
 本発明では、上記のとおり、不純物としてアジルサルタン二量体を含む粗アジルサルタンと、活性炭とを接触させた後、アジルサルタンの結晶を該溶液から分別することにより、特にアジルサルタン二量体の含有量が低減された、高純度のアジルサルタンの結晶を得ることができる。さらに、上記活性炭として、BET法で求めた比表面積が1000~3500m/gであり、累積細孔容積が0.6~1.5mL/gであるものを使用することによって、前記アジルサルタン二量体の含有量をより低減させることができ、より高純度のアジルサルタンの結晶が得られる。
 本発明によれば、効率的に、簡便な方法で高純度のアジルサルタンを得ることができる。当該アジルサルタンの結晶は、アジルサルタン二量体やその他の不純物の含有量が低減された、高純度のものであるから、そのまま医薬品として十分に使用可能なものである。
 なお、本発明の方法により得られたアジルサルタンは、その後、より高純度のものとするために、公知の精製方法で精製することもできる。
 この第2の発明によって不純物が除去されたアジルサルタンは、第1の本発明によりアジルサルタンM型結晶を製造するための原料とすることもできる。
 
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例によって何等制限されることはない。
 先ず、アジルサルタンの溶解性の評価、アジルサルタンの定量、および純度の測定、粉末X線回折(XRD)の測定、示差走査熱量計(DSC)を用いた融点の測定は、以下の方法でおこなった。
 <アジルサルタンの溶解性評価>
 1gのアジルサルタンをナスフラスコに量りとり、室温条件下、5mLの有機溶媒を加えた後、スターラーピースを用いて1時間攪拌を行った。その後、30分間静置して得られた飽和溶液中のアジルサルタン量を、下記<アジルサルタンの純度の測定>における条件と同じ条件で高速液体クロマトグラフィー(HPLC)を用いて検量線法により定量した。
 <アジルサルタンの純度の測定>
装置:高速液体クロマトグラフィー(HPLC)
機種:2695-2489-2998(Waters社製)
検出器:紫外吸光光度計(測定波長:210nm)
カラム:Kromasil C18、内径4.6mm、長さ15cm(粒子径5μm)(AkzoNobel社製)
カラム温度:30℃一定
サンプル温度:25℃一定
移動相A:アセトニトリル
移動相B:15mMリン酸二水素カリウム水溶液(pH=2.5 リン酸にて調整)
移動相の送液:移動相A,Bの混合比を表1のように変えて濃度勾配制御する。
Figure JPOXMLDOC01-appb-T000018
流速:1.0mL/min
測定時間:40~90分
 上記条件において、前記アジルサルタンメチルエステルは約14.5分、前記アジルサルタンメチルエステルデスエチル体は約7.0分、前記アジルサルタンメチルエステル二量体は約49.1分、前記アジルサルタンメチルエステルよりも分子量が10大きい不純物は約5.5分、前記アジルサルタンは約7.3分、前記アジルサルタンデスエチル体は約3.5分、前記アジルサルタン二量体は約29.1分にピークが確認される。
 以下の実施例、比較例において、前記エステル保護基含有化合物、前記アジルサルタンメチルエステル、前記アジルサルタンの各純度は、すべて、上記条件で測定される全ピークの面積値(溶媒由来のピークを除く)の合計に対する各化合物のピーク面積値の割合である。
 <アジルサルタンの結晶形の測定>
装置:X線回折装置(XRD)
機種:SmartLab(株式会社リガク製)
測定方法:ASC6 BB Dtex
X 線出力:40kV-30mA
波長:CuKa/1.541882Å
 <アジルサルタンの融点の測定>
装置:示差走査熱量計(DSC)
機種:DSC6200(エスアイアイ・ナノテクノロジー社製)
昇温条件:5℃/分
ガス:アルゴン
A. 第1の本発明の実施例及び比較例
 製造例1
 (アジルサルタンの製造:特許文献1)
 直径15cmの2枚撹拌翼を備えた5000mL四つ口フラスコにアジルサルタンメチルエステル100g、メタノール730mLを入れ、撹拌しながら加熱溶解した。そこに2N水酸化リチウム水溶液590mLを添加し、還流温度まで昇温した後、3時間反応を行った。得られた反応溶液を室温まで冷却し、2N塩酸水溶液を用いて反応液のpHを3に調製した。該反応溶液を濃縮して、得られた残渣に水1200mL、ジクロロメタン3000mLを加えて30分間撹拌、15分間静置した後、ジクロロメタン層を分液により分取した。得られたジクロロメタン溶液を濃縮して、得られた残渣に酢酸エチル2000mLを加えて20~30℃で終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、82.5gのアジルサルタンの無色プリズム晶を得た(アジルサルタン純度:96.12%)。このアジルサルタンを試料として、XRDを測定すると2θ=7.62°、9.32°、17.41°、19.53°、21.31°に特徴的なピークを与える結晶構造を有する化合物であることが分かった。また、DSC測定による融点は157℃であった。
 (溶解性評価)
 製造例1で得られたアジルサルタンの無色プリズム晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:15.8g/L、酢酸エチル:1.3g/L、アセトン:1.9g/L、テトラヒドロフラン:5.9g/Lであった。
 製造例2
 (アジルサルタンの製造:非特許文献1)
 直径10cmの2枚撹拌翼を備えた1000mL四つ口フラスコにアジルサルタンメチルエステル50g、0.4N水酸化ナトリウム水溶液780mLを入れ、70℃まで昇温した後、同温度にて1.5時間反応を行った。得られた反応溶液を室温まで冷却し、2N塩酸水溶液を用いて反応液のpHを3に調製した。析出したアジルサルタン結晶を減圧濾過により濾別した後、エタノールを用いてアジルサルタン結晶を洗浄した。得られたアジルサルタン湿体を50℃で乾燥して、44.0gのアジルサルタンの無色プリズム晶を得た(アジルサルタン純度:95.58%)。このアジルサルタンを試料として、XRDを測定すると2θ=9.08°、9.63°、18.19°、21.82°、24.44°に特徴的なピークを与える結晶構造を有する化合物であることが分かった。また、DSC測定による融点は212℃であった。
 (溶解性評価)
 製造例2で得られたアジルサルタンの無色プリズム晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:11.1g/L、酢酸エチル:1.1g/L、アセトン:1.5g/L、テトラヒドロフラン:5.6g/Lであった。
 [実施例1]
 直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、ジメチルホルムアミド10mLを入れ、30℃で加熱溶解した。得られたアジルサルタン溶液に酢酸エチル50mLを加えた後、5℃まで冷却し、終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、4.9gのアジルサルタンの結晶を得た(アジルサルタン純度:99.14%)。このアジルサルタンを試料として、XRDを測定すると、図1に示すX線回折チャートが得られ、この結晶は2θ=9.31°、11.49°、13.28°、14.81°、26.00°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は128℃であった(図2)。
 (溶解性評価)
 実施例1で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:121.9g/L、酢酸エチル:110.1g/L、アセトン:113.8g/L、テトラヒドロフラン:110.4g/Lであった。
 [実施例2]
 直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例2で得られたアジルサルタン5gを量りとり、ジメチルホルムアミド10mLを入れ、40℃で加熱溶解した。得られたアジルサルタン溶液を30℃以下まで冷却した後、酢酸エチル50mLを加え、さらに冷却し、5℃で終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、4.9gのアジルサルタンの結晶を得た(アジルサルタン純度:98.49%)。このアジルサルタンを試料として、XRDを測定すると、2θ=9.40°、11.43°、13.39°、14.79°、26.06°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は123℃であった。
 (溶解性評価)
 実施例2で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:119.8g/L、酢酸エチル:109.4g/L、アセトン:111.3g/L、テトラヒドロフラン:109.8g/Lであった。
 [実施例3]
 追加溶媒としてアセトンを使用した以外は、実施例1と同様の操作を行い、4.6gのアジルサルタン結晶を得た(アジルサルタン純度:98.85%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.32°、11.50°、13.33°、14.81°、26.02°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は118℃であった。
 (溶解性評価)
 実施例3で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:120.4g/L、酢酸エチル:111.5g/L、アセトン:112.2g/L、テトラヒドロフラン:111.6g/Lであった。
 [実施例4]
 追加溶媒として酢酸プロピルを使用した以外は、実施例1と同様の操作を行い、4.4gのアジルサルタン結晶を得た(アジルサルタン純度:99.02%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.29°、11.43°、13.32°、14.78°、26.07°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は124℃であった。
 (溶解性評価)
 実施例4で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:118.6g/L、酢酸エチル:112.4g/L、アセトン:111.9g/L、テトラヒドロフラン:111.8g/Lであった。
 [実施例5]
 追加溶媒としてメチルエチルケトンを使用した以外は、実施例1と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:98.80%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.31°、11.34°、13.22°、14.88°、26.08°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は120℃であった。
 (溶解性評価)
 実施例5で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:121.1g/L、酢酸エチル:111.4g/L、アセトン:110.6g/L、テトラヒドロフラン:109.9g/Lであった。
 [比較例1]
 (特許文献2に記載の方法によるアジルサルタン結晶形Aの製造)
 直径5.0cmの2枚撹拌翼を備えた300mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、メタノール50mLを入れ、還流温度で加熱撹拌した。還流温度にて1時間撹拌を行ったが、完全に溶解しなかったため、不溶物を濾過した後に得られたアジルサルタン溶液を25℃まで冷却し、同温度にて1時間撹拌を行った。その後、さらに10℃で2時間撹拌した。次いで、析出した結晶を減圧濾過して分取し、50℃で乾燥して、2.1gのアジルサルタンの結晶を得た(アジルサルタン純度:98.44%)。このアジルサルタンを試料として、XRDを測定すると、図3に示すX線回折チャートが得られ、2θ=9.09°、18.28°、21.52°、23.81°に特徴的なピークを与えるA型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は201℃であった(図4)。
 (溶解性評価)
 比較例1で得られたアジルサルタンA型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:13.2g/L、酢酸エチル:1.9g/L、アセトン:2.4g/L、テトラヒドロフラン:7.1g/Lであった。
 [比較例2]
 (特許文献2に記載の方法によるアジルサルタン結晶形Bの製造)
 直径5.0cmの2枚撹拌翼を備えた300mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、テトラヒドロフラン25mLを入れ、還流温度まで加熱撹拌した。還流温度にて1時間撹拌を行ったが、完全に溶解しなかったため、不溶物を濾過した後に得られたアジルサルタン溶液を25℃まで冷却し、同温度にて1時間撹拌を行った。その後、さらに10℃で2時間撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、2.5gのアジルサルタンの結晶を得た(アジルサルタン純度:97.22%)。このアジルサルタンを試料として、XRDを測定すると2θ=9.11°、18.64°、21.51°に特徴的なピークを与えるB型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は197℃であった。
 (溶解性評価)
 比較例2で得られたアジルサルタンB型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:11.5g/L、酢酸エチル:1.7g/L、アセトン:1.9g/L、テトラヒドロフラン:6.3g/Lであった。
 [実施例6]
 比較例1で得られたアジルサルタンのA型結晶を使用した以外は、実施例2と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:99.69%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.32°、11.25°、13.38°、14.73°、26.00°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は130℃であった。
 (溶解性評価)
 実施例6で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:120.2g/L、酢酸エチル:114.4g/L、アセトン:110.9g/L、テトラヒドロフラン:111.5g/Lであった。
 [実施例7]
 比較例2で得られたアジルサルタンのB型結晶を使用した以外は、実施例2と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:99.44%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.30°、11.25°、13.46°、14.64°、25.99°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は126℃であった。
 (溶解性評価)
 実施例7で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:119.1g/L、酢酸エチル:113.1g/L、アセトン:111.1g/L、テトラヒドロフラン:109.5g/Lであった。
 
B. 第2の本発明の実施例及び比較例
 各実施例において原料として用いるアジルサルタンメチルエステルは以下のとおりである。
・原料1:アジルサルタンメチルエステルの結晶(アジルサルタンメチルエステルの純度:97.3%、アジルサルタンメチルエステルデスエチル体:0.14%、アジルサルタンメチルエステル二量体:0.20%、アジルサルタンメチルエステルよりも分子量が10大きい不純物:未検出)
・原料2:原料1を再結晶により精製したアジルサルタンメチルエステルの結晶(アジルサルタンメチルエステルの純度:99.1%、アジルサルタンメチルエステルデスエチル体:0.02%、アジルサルタンメチルエステル二量体:0.07%、アジルサルタンメチルエステルよりも分子量が10大きい不純物:未検出)
・原料3:アジルサルタンメチルエステルの結晶(アジルサルタンメチルエステルの純度:88.3%、アジルサルタンメチルエステルデスエチル体:0.36%、アジルサルタンメチルエステル二量体:0.27%、アジルサルタンメチルエステルよりも分子量が10大きい不純物:10.8%)(非特許文献1に記載の製造方法により製造される)
・原料4:アジルサルタンメチルエステルの結晶(アジルサルタンメチルエステルの純度:98.9%、アジルサルタンメチルエステルデスエチル体:未検出、アジルサルタンメチルエステル二量体:0.04%)
 [実施例8](アジルサルタンの製造;活性炭処理あり)
 (加水分解)
 直径3.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに原料2のアジルサルタンメチルエステル5gを量りとり、1.25M水酸化ナトリウム水溶液40mLを加え、70℃まで加熱した後、同温度にて2時間反応を行った。反応後の粗アジルサルタン溶液のアジルサルタン純度:99.61%、アジルサルタンデスエチル体:0.06%、アジルサルタン二量体:0.08%であった。反応後の粗アジルサルタン溶液のアジルサルタン純度および不純物量の結果を表2に示した。
 (活性炭処理)
 加水分解反応終了後の溶液を30℃まで冷却した後、精製白鷺(大阪ガスケミカル製、比表面積:1430m/g、累積細孔容積:1.17mL/g)0.24gを加えて、20~30℃で1時間撹拌を行った。活性炭処理後の溶液のアジルサルタン純度:99.85%、アジルサルタンデスエチル体:0.05%、アジルサルタン二量体:0.01%であった。
 (活性炭の除去、及び精製)
 次いで、減圧ろ過して精製白鷺を除去し、得られたろ液を40℃まで加温した後、同温度でアセトン25mL、酢酸17mL、水17mLを加えて、アジルサルタンの結晶を析出させた。反応液を20℃/時間の速度で20℃まで冷却した後、同温度にて6時間撹拌した。次いで、得られたスラリー液を減圧濾過して析出した結晶を分取し、40℃で乾燥して、4.6gのアジルサルタンの結晶を得た(収率:95.6%)。前記アジルサルタンの純度:99.89%、アジルサルタンデスエチル体:0.03%、アジルサルタン二量体:未検出、不明不純物:未検出であった。結果を表3に示した。
 [実施例9~10]
 (加水分解)
 表2に示したアジルサルタンアルキルエステルを原料として使用した以外は、実施例8と同様にして、加水分解反応を行った。加水分解反応後の粗アジルサルタン溶液の純度、および不純物量の測定結果を表2に示した。
 ((活性炭処理)、(活性炭の除去、および精製))
 また、加水分解後の溶液に、実施例8と同様の方法で(活性炭処理)、(活性炭の除去、および精製)を行い、アジルサルタンの結晶を得た。得られたアジルサルタンの結晶について、同様に純度及び不純物量の測定を行った。その結果を表3に示した。
 [実施例11~12]
 (加水分解)
 実施例8と同様にして、加水分解反応を行った。反応後の粗アジルサルタン溶液の純度および不純物量の測定結果を表2に示した。
 (活性炭処理)
 また、表3に示すように、活性炭処理時の活性炭の使用量を変更した以外は、実施例8と同様にして処理を行った。
 (活性炭の除去、および精製)
 活性炭の除去、および精製については、実施例8と同様の操作を行った。得られたアジルサルタンの結晶について純度及び不純物量の測定を行った。その結果を表3に示した。
 [実施例13~16]
 (加水分解)
 実施例8と同様にして、加水分解反応を行った。反応後の粗アジルサルタン溶液の純度および不純物量の測定結果を表2に示した。
 (活性炭処理)
 また、表3に示すように、活性炭処理時の活性炭の種類、使用量を変更した以外は、実施例8と同様にして処理を行った。表4に実施例で使用した活性炭の特性(比表面積、累積細孔容積)をまとめた。
 (活性炭の除去、および精製)
 活性炭の除去、および精製については、実施例8と同様の操作を行った。得られたアジルサルタンの結晶について純度及び不純物量の測定を行った。その結果を表3に示した。
 [参考例1](アジルサルタンの製造;活性炭処理なし)
 直径3.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに原料1のアジルサルタンメチルエステル5gを量りとり、1.25M水酸化ナトリウム水溶液40mLを加え、70℃まで加熱した後、同温度にて2時間反応を行った。反応後の粗アジルサルタン溶液のアジルサルタン純度:98.98%、アジルサルタンデスエチル体:0.20%、アジルサルタン二量体:0.22%であった。反応後の粗アジルサルタン溶液のアジルサルタン純度および不純物量の結果を表2に示した。
 次いで、得られた反応液を45℃まで冷却した後、同温度でアセトン25mL、酢酸17mL、水17mLを加えて、アジルサルタンの結晶を析出させた。反応液を20℃/時間の速度で20℃まで冷却した後、同温度にて6時間撹拌した。次いで、得られたスラリー液を減圧濾過して析出した結晶を分取し、40℃で乾燥して、4.7gのアジルサルタンの結晶を得た(収率:96.5%)。前記アジルサルタンの純度:99.17%、アジルサルタンデスエチル体:0.15%、アジルサルタン二量体:0.20%、不明不純物:未検出であった。結果を表3に示した。
 [参考例2~3](アジルサルタンの製造;活性炭処理なし)
 表2に示すアジルサルタンアルキルエステルを原料として使用した以外は、参考例1と同様にして、加水分解反応を行った。反応後の粗アジルサルタン溶液の純度および不純物量の測定結果を表2に示した。
 また、参考例1と同様の方法で得られた反応液からアジルサルタンの結晶を取り出した。得られたアジルサルタンの結晶について、同様に純度及び不純物量の測定を行った。その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
 [実施例17]
(加水分解)
 直径10cmの2枚撹拌翼を備えた1L四つ口フラスコに原料4のアジルサルタンメチルエステル40gを量りとり、1.25M水酸化ナトリウム水溶液260mLを加え、70℃まで加熱した後、同温度にて2時間反応を行った。反応後の粗アジルサルタン溶液におけるアジルサルタン純度:99.69%、アジルサルタンデスエチル体:0.05%、アジルサルタン二量体:0.04%であった。
 加水分解反応終了後の溶液を30℃まで冷却した後、精製白鷺(大阪ガスケミカル製、比表面積:1430m/g、累積細孔容積:1.17mL/g)2.0gを加えて、20~30℃で1時間撹拌を行った。活性炭処理後の溶液のアジルサルタン純度:99.85%、アジルサルタンデスエチル体:0.04%、アジルサルタン二量体:未検出であった。
 次いで、減圧ろ過して精製白鷺を除去し、得られたろ液を40℃まで加温した後、同温度でメタノール260mL、酢酸29.2mLを加えて、アジルサルタンの結晶を析出させた。反応液を20℃/時間の速度で20℃まで冷却した後、同温度にて6時間撹拌した。次いで、得られたスラリー液を減圧濾過して析出した結晶を分取し、40℃で乾燥して、38.2gのアジルサルタン(前記アジルサルタンの純度:99.88%、アジルサルタンデスエチル体:0.02%、アジルサルタン二量体:未検出)の結晶を得た(収率:95.5%)。
(AZL精製)
 直径10cmの2枚撹拌翼を備えた1L四つ口フラスコに前記アジルサルタン35gを量りとり、ジメチルホルムアミド70mLを入れ、30℃で加熱溶解した。得られたアジルサルタン溶液に酢酸エチル350mLを加えた後、5℃まで冷却し、15時間撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、34.7gのアジルサルタンの結晶を得た(収率:99.2%)。このアジルサルタンを試料として、XRDを測定すると、図1に示すX線回折チャートが得られ、この結晶は2θ=9.41°、11.52°、13.33°、14.81°、26.01°に特徴的なピークを与える新規結晶構造を有する化合物であることが分かった。また、DSC測定による融点は127℃であった。

 

Claims (7)

  1.  Cu-Kα線を用いるX線回折により、少なくとも2θ=9.4±0.2°、11.5±0.2°、13.3±0.2°、14.8±0.2°、26.0±0.2°に特徴的なピークを与えることを特徴とするアジルサルタン。
  2.  示差走査熱量(DSC)測定で決定される融点が、115℃以上135℃以下である請求項1に記載のアジルサルタン。
  3.  アジルサルタンをジメチルホルムアミドに溶解することで得た溶液に、ケトン類、及び/又はエステル類の溶媒を加えてアジルサルタンを析出させることを特徴とする請求項1又は2記載のアジルサルタンの製造方法。
  4.  不純物として下記式(5)
    Figure JPOXMLDOC01-appb-C000001
    で示されるアジルサルタン二量体を含む粗アジルサルタンが溶解した溶液と、活性炭とを接触させた後、
     下記式(1)
    Figure JPOXMLDOC01-appb-C000002
     
    で示されるアジルサルタンの結晶を該溶液から分別する工程を有することを特徴とするアジルサルタンの製造方法。
  5.  前記活性炭が、BET法で求めた比表面積が1000~3500m/gであり、且つ、累積細孔容積が0.6~1.5mL/gである請求項4に記載のアジルサルタンの製造方法。
  6.  不純物として下記式(5)
    Figure JPOXMLDOC01-appb-C000003
     
    で示されるアジルサルタン二量体を含む粗アジルサルタンが溶解した溶液と、活性炭とを接触させた後、
     下記式(1)
    Figure JPOXMLDOC01-appb-C000004
     
    で示されるアジルサルタンの結晶を該溶液から分別する工程と、
     前記アジルサルタンの結晶をジメチルホルムアミドに溶解することで得た溶液に、ケトン類、或いはエステル類の溶媒を加えてアジルサルタンを析出させる工程と、
    を有することを特徴とする請求項1又は2記載のアジルサルタンの製造方法。
  7.  前記粗アジルサルタンが、
     下記式(2)
    Figure JPOXMLDOC01-appb-C000005
     
    (式中、Rはアルキル基である)
    で示されるアジルサルタンアルキルエステルを、無機塩基により加水分解して得られたものであることを特徴とする請求項4又は5に記載のアジルサルタンの製造方法。

     
PCT/JP2017/003073 2016-01-28 2017-01-28 アジルサルタン及びその製造方法 WO2017131218A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780008086.4A CN109071519A (zh) 2016-01-28 2017-01-28 阿齐沙坦及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016014006A JP6663232B2 (ja) 2016-01-28 2016-01-28 新規結晶構造を有するアジルサルタン及びその製造方法
JP2016-014006 2016-01-28
JP2016232241A JP6856365B2 (ja) 2016-11-30 2016-11-30 アジルサルタンの製造方法
JP2016-232241 2016-11-30

Publications (1)

Publication Number Publication Date
WO2017131218A1 true WO2017131218A1 (ja) 2017-08-03

Family

ID=59398273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003073 WO2017131218A1 (ja) 2016-01-28 2017-01-28 アジルサルタン及びその製造方法

Country Status (2)

Country Link
CN (1) CN109071519A (ja)
WO (1) WO2017131218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155922A1 (ja) * 2018-02-09 2019-08-15 株式会社トクヤマ アジルサルタンa型結晶の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456202B (zh) * 2017-12-15 2021-10-29 江苏联环药业股份有限公司 一种低酰胺杂质含量的阿齐沙坦制备方法
CN111454255B (zh) * 2020-06-03 2022-03-18 迪嘉药业集团有限公司 一种小粒度阿齐沙坦的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080384A2 (en) * 2004-02-25 2005-09-01 Takeda Pharmaceutical Company Limited Benzimidazole derivative and use as aii receptor antagonist
CN103319473A (zh) * 2013-07-02 2013-09-25 合肥医工医药有限公司 阿齐沙坦的多晶型及其制备方法
WO2013156005A1 (en) * 2012-04-19 2013-10-24 Zentiva, K.S. Method of preparing potassium salt of azilsartan medoxomil of high purity
WO2013186792A2 (en) * 2012-06-11 2013-12-19 Msn Laboratories Limited Process for the preparation of (5-methyl-2-oxo-l,3-dioxoi-4-vl)methvl 2- ethoxv-l-{[2'-(5-oxo-4,5-dihvdro-l,2,4-oxadiazol-3-vl)biphenyi-4-vl]methyl}- lh-benzimidazole-7-carboxyiate and its salts
WO2014020381A1 (en) * 2012-08-01 2014-02-06 Alembic Pharmaceuticals Limited Novel crystalline form of azilsartan medoxomil potassium
JP2014530805A (ja) * 2011-09-30 2014-11-20 スンシネ ルアケ プハルマ カンパニー リミテッド アジルサルタンの結晶形並びにその製造及び使用
CN104316608A (zh) * 2014-10-09 2015-01-28 广东东阳光药业有限公司 阿齐沙坦酯杂质的检测及其制备方法
JP2015532267A (ja) * 2012-09-26 2015-11-09 ゼンティーバ,カー.エス. 高純度のアジルサルタンメドキソミルのカリウム塩の製造方法
WO2016058563A1 (en) * 2014-10-15 2016-04-21 Zentiva, K.S. A process for preparing highly pure azilsartan
CN105669495A (zh) * 2014-11-21 2016-06-15 重庆朗天制药有限公司 一种阿奇沙坦及其中间体新的制备方法
WO2016147120A1 (en) * 2015-03-18 2016-09-22 Smilax Laboratories Limited An improved process for the preparation of substantially pure azilsartan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2925753A4 (en) * 2012-08-27 2017-02-15 Hetero Research Foundation Novel polymorphs of azilsartan medoxomil
CN103113364B (zh) * 2012-08-27 2015-11-18 南京华威医药科技开发有限公司 阿齐沙坦多晶型的制备方法
CN103435604B (zh) * 2013-08-28 2016-04-13 合肥久诺医药科技有限公司 一种高纯度阿齐沙坦的精制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080384A2 (en) * 2004-02-25 2005-09-01 Takeda Pharmaceutical Company Limited Benzimidazole derivative and use as aii receptor antagonist
JP2014530805A (ja) * 2011-09-30 2014-11-20 スンシネ ルアケ プハルマ カンパニー リミテッド アジルサルタンの結晶形並びにその製造及び使用
WO2013156005A1 (en) * 2012-04-19 2013-10-24 Zentiva, K.S. Method of preparing potassium salt of azilsartan medoxomil of high purity
WO2013186792A2 (en) * 2012-06-11 2013-12-19 Msn Laboratories Limited Process for the preparation of (5-methyl-2-oxo-l,3-dioxoi-4-vl)methvl 2- ethoxv-l-{[2'-(5-oxo-4,5-dihvdro-l,2,4-oxadiazol-3-vl)biphenyi-4-vl]methyl}- lh-benzimidazole-7-carboxyiate and its salts
WO2014020381A1 (en) * 2012-08-01 2014-02-06 Alembic Pharmaceuticals Limited Novel crystalline form of azilsartan medoxomil potassium
JP2015532267A (ja) * 2012-09-26 2015-11-09 ゼンティーバ,カー.エス. 高純度のアジルサルタンメドキソミルのカリウム塩の製造方法
CN103319473A (zh) * 2013-07-02 2013-09-25 合肥医工医药有限公司 阿齐沙坦的多晶型及其制备方法
CN104316608A (zh) * 2014-10-09 2015-01-28 广东东阳光药业有限公司 阿齐沙坦酯杂质的检测及其制备方法
WO2016058563A1 (en) * 2014-10-15 2016-04-21 Zentiva, K.S. A process for preparing highly pure azilsartan
CN105669495A (zh) * 2014-11-21 2016-06-15 重庆朗天制药有限公司 一种阿奇沙坦及其中间体新的制备方法
WO2016147120A1 (en) * 2015-03-18 2016-09-22 Smilax Laboratories Limited An improved process for the preparation of substantially pure azilsartan

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RADL, STANISLAV ET AL.: "Improved process for Azilsartan Medoxomil: A New Angiotensin Receptor Blocker", ORGANIC PROCESS RESEARCH AND DEVELOPMENT, vol. 17, 2013, pages 77 - 86, XP002716686, DOI: doi:10.1021/op3002867 *
SHU B. ET AL.: "Synthesis of Azilsartan", CHINESE JOURNAL OF PHARMACEUTICALS, vol. 41, no. 12, 2010101, pages 881 - 883, XP008177684 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155922A1 (ja) * 2018-02-09 2019-08-15 株式会社トクヤマ アジルサルタンa型結晶の製造方法
CN111699183A (zh) * 2018-02-09 2020-09-22 株式会社德山 阿齐沙坦a型晶体的制造方法
JPWO2019155922A1 (ja) * 2018-02-09 2021-02-04 株式会社トクヤマ アジルサルタンa型結晶の製造方法
JP7177796B2 (ja) 2018-02-09 2022-11-24 株式会社トクヤマ アジルサルタンa型結晶の製造方法

Also Published As

Publication number Publication date
CN109071519A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP5535082B2 (ja) ボセンタン、その多形形態及びその塩の合成方法
JP5889275B2 (ja) ラルテグラビル塩およびその結晶形
WO2013044816A1 (en) Crystalline forms of azilsartan and preparation and uses thereof
JP2020526476A (ja) オメカムティブメカルビルの合成
WO2018008219A1 (ja) アジルサルタン中間体、アジルサルタン、及びこれらの製造方法
WO2017131218A1 (ja) アジルサルタン及びその製造方法
TWI464162B (zh) 新穎溶劑合物結晶
JP2004520446A (ja) ロサルタンカリウムの結晶化方法
JP2004520446A5 (ja)
WO2003087039A1 (fr) Nouveau cristal de nateglinide
JP6676491B2 (ja) アジルサルタンアルキルエステルの製造方法、及びアジルサルタンの製造方法
JP6091339B2 (ja) オルメサルタンメドキソミルの製造方法
JP2012020970A (ja) {2−アミノ−1,4−ジヒドロ−6−メチル−4−(3−ニトロフェニル)−3,5−ピリジンジカルボン酸3−(1−ジフェニルメチルアゼチジン−3−イル)エステル5−イソプロピルエステル}の製造方法
JP6663232B2 (ja) 新規結晶構造を有するアジルサルタン及びその製造方法
JP5501054B2 (ja) 3,3−ジアミノアクリル酸(1−ジフェニルメチルアゼチジン−3−イル)エステル酢酸塩の製造方法
JP6275596B2 (ja) テルミサルタンのアンモニウム塩の製造方法
JP2018076258A (ja) アジルサルタンアルキルエステル、アジルサルタンメチルエステルの製造方法、及びアジルサルタンの製造方法
JP3884063B2 (ja) セフカペンピボキシルのメタンスルホン酸塩
WO2009081608A1 (ja) N-シクロプロピル-3-アミノ-2-ヒドロキシヘキサン酸アミド塩酸塩の製造方法
JP6856365B2 (ja) アジルサルタンの製造方法
JP7177796B2 (ja) アジルサルタンa型結晶の製造方法
JP5448588B2 (ja) L−カルノシンの精製方法
JP2021059607A (ja) アジルサルタンアルキルエステル、アジルサルタンメチルエステルの製造方法、及びアジルサルタンの製造方法
JP5836851B2 (ja) ブリンゾラミドの製造方法
JP6147546B2 (ja) 酢酸が低減されたテルミサルタンa型結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744448

Country of ref document: EP

Kind code of ref document: A1