WO2019151209A1 - 冷却構造 - Google Patents

冷却構造 Download PDF

Info

Publication number
WO2019151209A1
WO2019151209A1 PCT/JP2019/002878 JP2019002878W WO2019151209A1 WO 2019151209 A1 WO2019151209 A1 WO 2019151209A1 JP 2019002878 W JP2019002878 W JP 2019002878W WO 2019151209 A1 WO2019151209 A1 WO 2019151209A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
vehicle
cooling structure
air
region
Prior art date
Application number
PCT/JP2019/002878
Other languages
English (en)
French (fr)
Inventor
清一郎 冨川
遥斗 越水
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to DE112019000635.5T priority Critical patent/DE112019000635T5/de
Priority to CN201980011333.5A priority patent/CN111699102A/zh
Priority to US16/966,600 priority patent/US20210078386A1/en
Publication of WO2019151209A1 publication Critical patent/WO2019151209A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • B60H1/241Devices purely for ventilating or where the heating or cooling is irrelevant characterised by the location of ventilation devices in the vehicle
    • B60H1/242Devices purely for ventilating or where the heating or cooling is irrelevant characterised by the location of ventilation devices in the vehicle located in the front area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • B60H1/241Devices purely for ventilating or where the heating or cooling is irrelevant characterised by the location of ventilation devices in the vehicle
    • B60H1/244Devices purely for ventilating or where the heating or cooling is irrelevant characterised by the location of ventilation devices in the vehicle located in the rear area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • B60H1/26Ventilating openings in vehicle exterior; Ducts for conveying ventilating air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/187Arrangements or mounting of liquid-to-air heat-exchangers arranged in series

Definitions

  • the present disclosure relates to a cooling structure that cools each part of a vehicle.
  • Patent Document 1 discloses a cooling structure having a plurality of heat exchangers arranged side by side in the longitudinal direction of a vehicle.
  • the cooling structure In the case of a cooling structure in which a plurality of heat exchangers are arranged side by side in the front-rear direction of the vehicle, a region where the plurality of heat exchangers overlap and a region where they do not overlap in the vehicle height direction and the vehicle width direction of the vehicle. There may be a bias.
  • the cooling structure has a problem that the air velocity distribution of the air passing through each heat exchanger is biased and the cooling performance of the cooling structure is deteriorated.
  • an object of the present disclosure is to provide a vehicle cooling structure in which an uneven wind speed distribution hardly occurs and cooling performance is improved.
  • the first heat exchanger provided in the vehicle the first heat exchanger provided in the vehicle, and provided in front of the first heat exchanger in the front-rear direction of the vehicle.
  • a cooling structure is provided that is located between an upper end of one heat exchanger and an upper end of the second heat exchanger.
  • the width of the third heat exchanger in the vehicle width direction of the vehicle is smaller than the width of the first heat exchanger and the second heat exchanger in the vehicle width direction of the vehicle, and the third heat exchange is performed.
  • the left end of the heater in the vehicle width direction of the vehicle is located on the right side of the left end of the first heat exchanger and the second heat exchanger in the vehicle width direction of the vehicle, and the vehicle of the third heat exchanger
  • the right end in the vehicle width direction may be located on the left side of the right end in the vehicle width direction of the vehicle of the first heat exchanger and the second heat exchanger.
  • the lower end of the third heat exchanger may be located above the lower end of the second heat exchanger in the height direction of the vehicle.
  • the first heat exchanger may have a substantially rectangular parallelepiped shape
  • the second heat exchanger may have a substantially rectangular parallelepiped shape
  • the third heat exchanger may have a substantially rectangular parallelepiped shape.
  • FIG. 1 shows a configuration in a state where a cooling structure according to the present embodiment is provided in a vehicle.
  • FIG. 2 shows a configuration of the cooling structure according to the present embodiment.
  • FIG. 3 shows a configuration in which a cooling structure as a comparative example is provided in the vehicle.
  • FIG. 4 shows a configuration of a cooling structure as a comparative example.
  • FIG. 5 shows an example of air velocity distribution in the cooling structure according to the present embodiment and the cooling structure as a comparative example.
  • FIG. 1 is a diagram illustrating a configuration in a state where a cooling structure 1 according to the present embodiment is provided in a vehicle.
  • FIG. 2 is a diagram illustrating a configuration of the cooling structure 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the cooling structure 1 according to the present embodiment as viewed from the front side of the vehicle.
  • the vehicle has a cooling structure 1 and a side frame 2.
  • the cooling structure 1 has a function of cooling each part of the vehicle.
  • the side frame 2 is a plurality of members extending in the front-rear direction of the vehicle.
  • the cooling structure 1 is located between the side frames 2.
  • the cooling structure 1 is fixed to the plurality of side frames 2 via a frame (not shown).
  • the cooling structure 1 is located below the vehicle body (not shown).
  • the cooling structure 1 includes a first heat exchanger 11, a second heat exchanger 12, and a third heat exchanger 13.
  • the first heat exchanger 11 is a heat exchanger for cooling a vehicle engine, for example. Specifically, the first heat exchanger 11 exchanges heat between running air or air blown by a fan and cooling water for cooling the engine (hereinafter referred to as “engine cooling water”). Thus, the cooling water for the engine is cooled.
  • the traveling wind is a flow of air generated when the vehicle travels.
  • the fan is, for example, an induction fan, and is provided behind the cooling structure 1 in the front-rear direction of the vehicle, thereby causing an air flow from the front to the rear in the front-rear direction of the vehicle.
  • the first heat exchanger 11 has a substantially rectangular parallelepiped shape.
  • the 1st heat exchanger 11 is provided in the vehicle, and is provided in the backmost in the front-back direction of a vehicle among the several heat exchangers which cooling structure 1 has.
  • the first heat exchanger 11 is located between the plurality of side frames 2.
  • the first heat exchanger 11 has a predetermined angle with respect to the height direction of the vehicle so that the upper end of the first heat exchanger 11 is located behind the lower end of the first heat exchanger 11 in the front-rear direction of the vehicle. It is inclined at.
  • the second heat exchanger 12 is, for example, an intercooler.
  • the second heat exchanger 12 exchanges heat between the air blown by the traveling wind or the fan and the air circulated from the turbocharger (hereinafter referred to as “combustion air”) to thereby convert the combustion air. Cooling.
  • the second heat exchanger 12 has a substantially rectangular parallelepiped shape.
  • the second heat exchanger 12 is provided in the vehicle, and is provided in front of the first heat exchanger 11 in the front-rear direction of the vehicle.
  • the second heat exchanger 12 is located between the plurality of side frames 2.
  • the second heat exchanger 12 has a predetermined angle with respect to the height direction of the vehicle so that the upper end of the second heat exchanger 12 is located behind the lower end of the second heat exchanger 12 in the front-rear direction of the vehicle. It is inclined at.
  • the third heat exchanger 13 is, for example, a condenser for an air conditioner.
  • the third heat exchanger 13 exchanges heat between the air blown by the traveling wind or the fan and the refrigerant used in the air conditioner provided in the vehicle (hereinafter referred to as “air conditioner refrigerant”). Cool the air conditioner refrigerant.
  • the third heat exchanger 13 has a substantially rectangular parallelepiped shape.
  • the third heat exchanger 13 is provided in the vehicle, and is provided in front of the second heat exchanger 12 in the front-rear direction of the vehicle.
  • the third heat exchanger 13 is located between the plurality of side frames 2.
  • the third heat exchanger 13 has a predetermined angle with respect to the height direction of the vehicle such that the upper end of the third heat exchanger 13 is located behind the lower end of the third heat exchanger 13 in the front-rear direction of the vehicle. It is inclined at.
  • the first heat exchanger 11, the second heat exchanger 12, and the third heat exchanger 13 are, for example, heat exchangers having substantially the same structure.
  • the first heat exchanger 11 will be described as an example.
  • the first heat exchanger 11 has a plurality of pipes through which engine coolant flows inside the first heat exchanger 11. Then, air, for example, traveling wind flows from the front of the first heat exchanger 11 toward the rear of the plurality of tubes.
  • the engine coolant flowing inside the plurality of pipes is cooled by the air flowing through the space outside the plurality of pipes (hereinafter referred to as “air flow paths”).
  • air flow paths combustion air and air conditioner refrigerant flow inside the plurality of tubes, respectively.
  • the said plurality of pipes are the 1st heat exchanger 11, the 2nd heat exchanger 12, And formed in substantially the entire area of the third heat exchanger 13. Therefore, the air flowing from the front to the rear of the vehicle passes through each heat exchanger from the front to the rear in substantially the entire area of the first heat exchanger 11, the second heat exchanger 12, and the third heat exchanger 13.
  • the region that can be passed is used as a region for cooling a fluid that flows inside the plurality of pipes, for example, cooling water for an engine.
  • the 1st heat exchanger 11, the 2nd heat exchanger 12, and the 3rd heat exchanger 13 are the 3rd heat exchanger 13, the 2nd heat exchanger 12, and the back from the front in the front-back direction of vehicles.
  • the first heat exchanger 11 is provided in the vehicle in order.
  • the 1st heat exchanger 11, the 2nd heat exchanger 12, and the 3rd heat exchanger 13 are substantially parallel. Therefore, air that flows from the front to the rear in the front-rear direction of the vehicle, for example, traveling wind, flows to each heat exchanger in the order of the third heat exchanger 13, the second heat exchanger 12, and the first heat exchanger 11. It passes through the formed air flow path.
  • the air that has passed through the air flow paths of the respective heat exchangers in the order of the third heat exchanger 13, the second heat exchanger 12, and the first heat exchanger 11 is air conditioner refrigerant, combustion air, Heated by exchanging heat with engine coolant. Therefore, the air that has passed through the air flow paths of the respective heat exchangers in the order of the third heat exchanger 13, the second heat exchanger 12, and the first heat exchanger 11 flows into the air on the front surface of the third heat exchanger 13.
  • the temperature of the air increases in the order of the temperature, the temperature of the air on the front surface of the second heat exchanger 12, the temperature of the air on the front surface of the first heat exchanger 11, and the temperature of the air on the rear surface of the first heat exchanger 11.
  • FIG. 3 is a diagram illustrating a configuration in a state where a cooling structure 100 as a comparative example is provided in a vehicle.
  • FIG. 4 is a diagram illustrating a configuration of a cooling structure 100 as a comparative example.
  • FIG. 4 is a diagram illustrating a configuration in which a cooling structure 100 as a comparative example is viewed from the front side of the vehicle.
  • FIG. 5 is a diagram illustrating an example of air velocity distribution in the cooling structure 1 according to the present embodiment and the cooling structure 100 as a comparative example.
  • FIG. 5A is a diagram illustrating an example of the wind speed distribution of air in the third heat exchanger 103 of the cooling structure 100.
  • FIG. 5B is a diagram illustrating an example of the air velocity distribution in the second heat exchanger 12 of the cooling structure 100.
  • FIG. 5C is a diagram illustrating an example of the wind speed distribution of air in the first heat exchanger 11 of the cooling structure 100.
  • (D) of FIG. 5 is a figure which shows an example of the wind speed distribution of the air in the 3rd heat exchanger 13 of the cooling structure 1.
  • FIG. FIG. 5E is a diagram illustrating an example of the wind speed distribution of air in the second heat exchanger 12 of the cooling structure 1.
  • FIG. 5F is a diagram illustrating an example of the air velocity distribution in the first heat exchanger 11 of the cooling structure 1.
  • the cooling structure 100 as a comparative example is different from the cooling structure 1 according to the present embodiment in the shape of the third heat exchanger 103 and the position where the third heat exchanger 103 is provided.
  • the upper end of the third heat exchanger 103 is located at a position lower than the upper end of the second heat exchanger 12 in the height direction of the vehicle.
  • the length of the third heat exchanger 103 in the vehicle height direction is shorter than the length of the third heat exchanger 13 in the vehicle height direction.
  • the length of the third heat exchanger 103 in the vehicle width direction of the vehicle is longer than the length of the third heat exchanger 13 in the vehicle width direction of the vehicle. Since the cooling structure 100 is provided with the third heat exchanger 103 as described above, the wind speed distribution of the air flowing through the air flow path of each heat exchanger is likely to be biased.
  • the cooling structure 100 includes a region in which the first heat exchanger 11, the second heat exchanger 12, and the third heat exchanger 103 overlap each other from the bottom to the top in the height direction of the vehicle.
  • the first heat exchanger 11 and the second heat exchanger 12 are overlapped with each other, and only the first heat exchanger 11 is formed. Therefore, the cooling structure 100 has a large resistance in the lower region of the cooling structure 100 because the first heat exchanger 11, the second heat exchanger 12, and the third heat exchanger 103 are arranged to overlap each other. In the upper region of the cooling structure 100, the resistance is small because only the first heat exchanger 11 is provided.
  • the cooling structure 100 has, for example, a high wind speed of the air flowing above the first heat exchanger 11, but the second heat exchanger 12 and the third heat exchanger.
  • the wind speed of the air flowing in the lower part overlapping with 103 becomes small.
  • the upper end of the first heat exchanger 11 of the cooling structure 1 is located above the upper end of the second heat exchanger 12 in the vehicle height direction.
  • the cooling structure 1 is such that the upper end of the first heat exchanger 11 is positioned above the upper end of the second heat exchanger 12 and the upper end of the third heat exchanger 13 in the vehicle height direction,
  • the first heat exchanger 11 has a region 111 that does not overlap the second heat exchanger 12 and the third heat exchanger 13 in the vehicle width direction and height direction of the vehicle.
  • the wind speed of the air flowing through the air flow path in the region 111 is at least one of the second heat exchanger 12 and the third heat exchanger 13 in the first heat exchanger 11. It is larger than the wind speed of the air flowing through the air flow path in the area overlapping with one of the heat exchangers.
  • the 1st heat exchanger 11 has the area
  • the amount flowing through the air flow path of the heat exchanger 11 can be increased. Therefore, the 1st heat exchanger 11 has the field 111, and the temperature of the air which flows through the air passage of the 1st heat exchanger 11 is made into at least of the 2nd heat exchanger 12 or the 3rd heat exchanger 13. It can be made low compared with the temperature of the heated air by flowing through either one of the heat exchangers.
  • the cooling structure 1 has improved cooling performance because the first heat exchanger 11 has the region 111.
  • the upper end of the third heat exchanger 13 is higher than the upper end of the first heat exchanger 11 in the vehicle height direction, compared to the cooling structure 100 as the comparative example. 2 Located between the upper end of the heat exchanger 12.
  • the cooling structure 1 is such that the upper end of the third heat exchanger 13 is located between the upper end of the first heat exchanger 11 and the upper end of the second heat exchanger 12 in the height direction of the vehicle.
  • the third heat exchanger 13 has a region 131 that does not overlap the second heat exchanger 12 in the height direction of the vehicle.
  • the region 131 is a region between the upper end of the third heat exchanger 13 in the vehicle height direction and the same position as the upper end of the second heat exchanger 12.
  • the wind speed of the air flowing through the air flow path in the region 131 of the third heat exchanger 13 is the same as that of the second heat exchanger 12 in the vehicle height direction of the third heat exchanger 13. Larger than the wind speed of the air flowing through the overlapping area.
  • the wind speed of the air flowing through the air flow path in the region 131 overlapping the region 131 in the first heat exchanger 11 in the vehicle height direction and the vehicle width direction is reduced.
  • the wind speed of the air flowing through the air flow path in the region 131 that does not overlap the height direction of the vehicle and the vehicle width direction in the first heat exchanger 11 increases.
  • the cooling structure 1 can make it difficult for the air velocity distribution of the air flowing through the air flow path of each heat exchanger to be uneven. Further, as shown in FIG. 5 (d), the cooling structure 1 has a cooling performance because the third heat exchanger 13 has the region 131, so that the wind speed of the air flowing through the third heat exchanger 13 is increased. Will improve.
  • the lower end of the third heat exchanger 13 is positioned above the lower end of the second heat exchanger 12 in the vehicle height direction. Specifically, the lower end of the third heat exchanger 13 is positioned above the lower end of the first heat exchanger 11 and the lower end of the second heat exchanger 12 in the vehicle height direction. Therefore, the second heat exchanger 12 has a region 121 that does not overlap the third heat exchanger 13 in the vehicle height direction of the second heat exchanger 12. The region 121 is a region between the lower end of the second heat exchanger 12 and the same position as the lower end of the third heat exchanger 13 in the vehicle height direction.
  • the wind speed of the air flowing through the air flow path in the area 121 of the second heat exchanger 12 flows through the air flow path in the area overlapping with the third heat exchanger 13 in the height direction of the vehicle in the second heat exchanger 12. Larger than the wind speed of air. As a result, in the cooling structure 1, since the second heat exchanger 12 has the region 121, it is difficult to cause a deviation in the wind speed distribution of the air flowing through the air flow path of each heat exchanger.
  • the 2nd heat exchanger 12 increases the quantity which the air which is not flowing through the air flow path of the 3rd heat exchanger 13 flows through the air flow path of the 2nd heat exchanger 12 by having the area
  • the width of the second heat exchanger 12 in the vehicle width direction of the vehicle is substantially the same as the width of the first heat exchanger 11 in the vehicle width direction of the vehicle.
  • the left end of the second heat exchanger 12 in the vehicle width direction of the vehicle is located at substantially the same position as the left end of the first heat exchanger 11 in the vehicle width direction of the vehicle.
  • the right end of the second heat exchanger 12 in the vehicle width direction of the vehicle is located at substantially the same position as the right end of the first heat exchanger 11 in the vehicle width direction of the vehicle.
  • the width of the third heat exchanger 13 in the vehicle width direction of the vehicle is smaller than the width of the first heat exchanger 11 and the second heat exchanger 12 in the vehicle width direction of the vehicle.
  • the left end of the third heat exchanger 13 in the vehicle width direction of the vehicle is located on the right side of the left ends of the first heat exchanger 11 and the second heat exchanger 12 in the vehicle width direction of the vehicle.
  • the right end of the third heat exchanger 13 in the vehicle width direction of the vehicle is located on the left side of the right ends of the first heat exchanger 11 and the second heat exchanger 12 in the vehicle width direction of the vehicle.
  • the second heat exchanger 12 has a region 122 that does not overlap the third heat exchanger 13 in the vehicle width direction of the vehicle.
  • the region 122 is a region between the left end of the second heat exchanger 12 and the left end of the third heat exchanger 13 in the vehicle width direction of the vehicle, and the second heat exchanger 12 in the vehicle width direction of the vehicle. This is a region between the right end and the same position as the right end of the third heat exchanger 13.
  • the wind speed of the air flowing through the air flow path in the area 122 of the second heat exchanger 12 flows through the air flow path in the area overlapping the third heat exchanger 13 in the vehicle width direction of the vehicle in the second heat exchanger 12. Larger than the wind speed of air.
  • the 2nd heat exchanger 12 increases the quantity which the air which is not flowing through the air flow path of the 3rd heat exchanger 13 flows through the air flow path of the 2nd heat exchanger 12 by having the area
  • the first heat exchanger 11 is an engine cooling heat exchanger
  • the second heat exchanger 12 is an intercooler
  • the third heat exchanger 13 is an air conditioner condenser.
  • the 1st heat exchanger 11, the 2nd heat exchanger 12, and the 3rd heat exchanger 13 should just be a heat exchanger used in order to cool each part of vehicles, and which heat exchanger is which part of vehicles
  • the heat exchanger for cooling is optional.
  • the cooling structure 1 according to the present embodiment is provided with a first heat exchanger 11 provided in the vehicle and the vehicle, and is provided in front of the first heat exchanger 11 in the front-rear direction of the vehicle. And a third heat exchanger 13 provided in the vehicle and in front of the second heat exchanger 12 in the longitudinal direction of the vehicle.
  • the upper end of the first heat exchanger 11 is located above the upper end of the second heat exchanger 12 in the vehicle height direction, and the upper end of the third heat exchanger 13 is the first in the vehicle height direction. It is located between the upper end of the first heat exchanger 11 and the upper end of the second heat exchanger 12.
  • the upper end of the third heat exchanger 13 is thus located between the upper end of the first heat exchanger 11 and the upper end of the second heat exchanger 12 in the vehicle height direction.
  • the air flow in the region 131 of the third heat exchanger 13 formed by the upper end of the third heat exchanger 13 being located above the upper end of the second heat exchanger 12 in the vehicle height direction the air flow in the region 131
  • the wind speed of the air flowing through the path is greater than the wind speed of the air flowing through the air flow path in the region other than the region 131. Therefore, in the cooling structure 1, the wind speed of the air flowing through the air flow path of the third heat exchanger 13 is increased.
  • the cooling structure 1 is less likely to be biased in the wind speed distribution of the air passing through each heat exchanger, and the cooling performance is improved.
  • the cooling structure of the present disclosure is useful in that it is difficult to generate a bias in the wind speed distribution and the cooling performance can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷却構造1は、車両に設けられている第1熱交換器11と、車両に設けられており、かつ車両の前後方向において第1熱交換器11よりも前方に設けられている第2熱交換器12と、車両に設けられており、かつ車両の前後方向において第2熱交換器12よりも前方に設けられている第3熱交換器13と、を有し、第1熱交換器11の上端は、第2熱交換器12の上端よりも車両の高さ方向において上方に位置し、第3熱交換器13の上端は、車両の高さ方向において第1熱交換器11の上端と第2熱交換器12の上端との間に位置する。

Description

冷却構造
 本開示は、車両の各部を冷却する冷却構造に関する。
 従来、車両には、冷却構造が設けられている。特許文献1には、車両の前後方向において並べて配置されている複数の熱交換器を有する冷却構造が開示されている。
日本国特開2008-238855号公報
 車両の前後方向において複数の熱交換器が並べて配置されている冷却構造の場合、車両の高さ方向及び車両の車幅方向において複数の熱交換器が重なっている領域と重なっていない領域とで偏りが生じている場合がある。この場合、冷却構造は、各熱交換器を通過する空気の風速分布に偏りが生じてしまい、冷却構造の冷却性能が低下してしまうという問題が生じていた。
 そこで、本開示はこれらの点に鑑みてなされたものであり、風速分布の偏りが生じづらく、冷却性能が向上する車両の冷却構造を提供することを目的とする。
 本開示の第1の態様においては、車両に設けられている第1熱交換器と、前記車両に設けられており、かつ前記車両の前後方向において前記第1熱交換器よりも前方に設けられている第2熱交換器と、前記車両に設けられており、かつ前記車両の前後方向において前記第2熱交換器よりも前方に設けられている第3熱交換器と、を有し、前記第1熱交換器の上端は、前記第2熱交換器の上端よりも前記車両の高さ方向において上方に位置し、前記第3熱交換器の上端は、前記車両の高さ方向において前記第1熱交換器の上端と前記第2熱交換器の上端との間に位置することを特徴とする冷却構造を提供する。
 また、前記第3熱交換器の前記車両の車幅方向における幅は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における幅よりも小さく、前記第3熱交換器の前記車両の車幅方向における左端は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における左端よりも右側に位置し、前記第3熱交換器の前記車両の車幅方向における右端は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における右端よりも左側に位置していてもよい。また、前記第3熱交換器の下端は、前記第2熱交換器の下端よりも前記車両の高さ方向において上方に位置していてもよい。また、前記第1熱交換器は略直方体形状であり、前記第2熱交換器は略直方体形状であり、前記第3熱交換器は略直方体形状であってもよい。
 本開示によれば、車両の冷却構造において風速分布の偏りが生じづらくなり、冷却性能が向上するという効果を奏する。
図1は、本実施形態に係る冷却構造が車両に設けられている状態の構成を示す。 図2は、本実施形態に係る冷却構造の構成を示す。 図3は、比較例としての冷却構造が車両に設けられている状態の構成を示す。 図4は、比較例としての冷却構造の構成を示す。 図5は、本実施形態に係る冷却構造及び比較例としての冷却構造における空気の風速分布の一例を示す。
<本実施形態>[本実施形態に係る冷却構造1の概要]
 図1は、本実施形態に係る冷却構造1が車両に設けられている状態の構成を示す図である。図2は、本実施形態に係る冷却構造1の構成を示す図である。なお、図2は、本実施形態に係る冷却構造1を車両の前方側から見た構成を示す図である。
 車両は、冷却構造1、及びサイドフレーム2を有する。冷却構造1は、車両の各部を冷却する機能を有する。サイドフレーム2は、車両の前後方向において延伸する複数の部材である。冷却構造1は、複数のサイドフレーム2の間に位置する。冷却構造1は、複数のサイドフレーム2に図示しないフレームを介して固定されている。また、冷却構造1は、図示しない車両の車体の下方に位置している。
 冷却構造1は、第1熱交換器11、第2熱交換器12、及び第3熱交換器13を有する。第1熱交換器11は、例えば車両のエンジンを冷却するための熱交換器である。具体的には、第1熱交換器11は、走行風又はファンにより送風される空気と、エンジンを冷却するための冷却水(以下、「エンジン用冷却水」とする。)とを熱交換することで、エンジン用冷却水を冷却する。走行風は、車両が走行することで生じる空気の流れである。ファンは、例えば誘引ファンであり、冷却構造1よりも車両の前後方向における後方に設けられていることで、車両の前後方向における前方から後方への空気の流れを生じさせる。
 第1熱交換器11は、略直方体形状である。第1熱交換器11は、車両に設けられており、かつ冷却構造1が有する複数の熱交換器のうちで車両の前後方向における最も後方に設けられている。第1熱交換器11は、複数のサイドフレーム2の間に位置している。第1熱交換器11は、第1熱交換器11の上端が第1熱交換器11の下端よりも車両の前後方向における後方に位置するように、車両の高さ方向に対して所定の角度で傾斜している。
 第2熱交換器12は、例えばインタークーラである。第2熱交換器12は、走行風又はファンにより送風される空気と、ターボチャージャから循環してきた空気(以下、「燃焼用空気」とする。)とを熱交換することで、燃焼用空気を冷却する。
 第2熱交換器12は、略直方体形状である。第2熱交換器12は、車両に設けられており、かつ車両の前後方向において第1熱交換器11よりも前方に設けられている。第2熱交換器12は、複数のサイドフレーム2の間に位置している。第2熱交換器12は、第2熱交換器12の上端が第2熱交換器12の下端よりも車両の前後方向における後方に位置するように、車両の高さ方向に対して所定の角度で傾斜している。
 第3熱交換器13は、例えばエアコン用コンデンサである。第3熱交換器13は、走行風又はファンにより送風される空気と、車両に設けられているエアコンで用いられる冷媒(以下、「エアコン用冷媒」とする。)とを熱交換することで、エアコン用冷媒を冷却する。
 第3熱交換器13は、略直方体形状である。第3熱交換器13は、車両に設けられており、かつ車両の前後方向において第2熱交換器12よりも前方に設けられている。第3熱交換器13は、複数のサイドフレーム2の間に位置している。第3熱交換器13は、第3熱交換器13の上端が第3熱交換器13の下端よりも車両の前後方向における後方に位置するように、車両の高さ方向に対して所定の角度で傾斜している。
 第1熱交換器11、第2熱交換器12、及び第3熱交換器13は、例えば、略同様の構造を有する熱交換器である。例えば、第1熱交換器11を例として説明すると、第1熱交換器11は、第1熱交換器11の内側をエンジン用冷却水が流れる複数の管を有する。そして、当該複数の管の外側を、空気、例えば走行風が第1熱交換器11の前方から後方に向かって流れる。当該複数の管の内側を流れるエンジン用冷却水は、当該複数の管の外側の空間(以下、「空気流路」とする。)を流れる空気によって冷却される。第2熱交換器12、及び第3熱交換器13においては、当該複数の管の内側には、それぞれ燃焼用空気、エアコン用冷媒が流れている。
 図1及び図2で示す第1熱交換器11、第2熱交換器12、及び第3熱交換器13においては、当該複数の管が第1熱交換器11、第2熱交換器12、及び第3熱交換器13の略全域に形成されている。よって、車両の前方から後方に向かって流れる空気は、第1熱交換器11、第2熱交換器12、及び第3熱交換器13の略全領域において、それぞれの熱交換器を前方から後方に向かって通過可能であり、当該通過可能な領域は、複数の管の内側を流れる流体、例えばエンジン用冷却水を冷却するための領域として用いられる。
 第1熱交換器11、第2熱交換器12、及び第3熱交換器13は、車両の前後方向における前方から後方に向かって、第3熱交換器13、第2熱交換器12、及び第1熱交換器11の順に車両に設けられている。また、第1熱交換器11、第2熱交換器12、及び第3熱交換器13は、略平行である。よって、車両の前後方向における前方から後方に向かって流れる空気、例えば走行風は、第3熱交換器13、第2熱交換器12、及び第1熱交換器11の順にそれぞれの熱交換器に形成されている空気流路を通過する。
 この結果、第3熱交換器13、第2熱交換器12、第1熱交換器11の順にそれぞれの熱交換器の空気流路を通過した空気は、それぞれ、エアコン用冷媒、燃焼用空気、エンジン用冷却水と熱交換することで加熱される。よって、第3熱交換器13、第2熱交換器12、第1熱交換器11の順にそれぞれの熱交換器の空気流路を通過した空気は、第3熱交換器13の前面における空気の温度、第2熱交換器12の前面における空気の温度、第1熱交換器11の前面における空気の温度、第1熱交換器11の後面における空気の温度の順に、空気の温度が高くなる。
[本実施形態に係る冷却構造1の詳細]
 ここで、比較例としての冷却構造100について説明する。図3は、比較例としての冷却構造100が車両に設けられている状態の構成を示す図である。図4は、比較例としての冷却構造100の構成を示す図である。なお、図4は、比較例としての冷却構造100を車両の前方側から見た構成を示す図である。
 図5は、本実施形態に係る冷却構造1及び比較例としての冷却構造100における空気の風速分布の一例を示す図である。図5の(a)は、冷却構造100の第3熱交換器103における空気の風速分布の一例を示す図である。図5の(b)は、冷却構造100の第2熱交換器12における空気の風速分布の一例を示す図である。図5の(c)は、冷却構造100の第1熱交換器11における空気の風速分布の一例を示す図である。図5の(d)は、冷却構造1の第3熱交換器13における空気の風速分布の一例を示す図である。図5の(e)は、冷却構造1の第2熱交換器12における空気の風速分布の一例を示す図である。図5の(f)は、冷却構造1の第1熱交換器11における空気の風速分布の一例を示す図である。
 比較例としての冷却構造100は、本実施形態に係る冷却構造1と比べて、第3熱交換器103の形状と第3熱交換器103が設けられている位置が異なる。第3熱交換器103の上端は、車両の高さ方向において第2熱交換器12の上端よりも低い位置に位置する。
 また、第3熱交換器103の車両の高さ方向における長さは、第3熱交換器13の車両の高さ方向における長さよりも短い。また、第3熱交換器103の車両の車幅方向における長さは、第3熱交換器13の車両の車幅方向における長さよりも長い。冷却構造100は、第3熱交換器103がこのように設けられているので、各熱交換器の空気流路を流れる空気の風速分布に偏りが生じ易い。
 具体的には、冷却構造100は、車両の高さ方向において下方から上方に向かうにつれて第1熱交換器11、第2熱交換器12、及び第3熱交換器103が重なっている領域、第1熱交換器11と第2熱交換器12が重なっている領域、第1熱交換器11のみの領域となっている。よって、冷却構造100は、冷却構造100における下方の領域においては、第1熱交換器11、第2熱交換器12、及び第3熱交換器103が重なって配置されていることで抵抗が大きく、冷却構造100における上方の領域においては、第1熱交換器11のみの領域となっていることで抵抗が小さい。
 この結果、図5の(c)に示すように、冷却構造100は、例えば、第1熱交換器11の上方を流れる空気の風速は大きいが、第2熱交換器12及び第3熱交換器103と重なる下方を流れる空気の風速は小さくなってしまう。
 本実施形態に係る冷却構造1の第1熱交換器11の上端は、第2熱交換器12の上端よりも車両の高さ方向において上方に位置する。冷却構造1は、このように第1熱交換器11の上端が、第2熱交換器12の上端及び第3熱交換器13の上端よりも車両の高さ方向において上方に位置することで、第1熱交換器11の車両の車幅方向及び高さ方向において第2熱交換器12及び第3熱交換器13とは重なっていない領域111を有する。図5の(f)に示すように、領域111の空気流路を流れる空気の風速は、第1熱交換器11における第2熱交換器12又は第3熱交換器13のうちの少なくともいずれか一方の熱交換器と重なっている領域の空気流路を流れる空気の風速に比べて大きい。
 また、第1熱交換器11は、領域111を有することで、第3熱交換器13又は第2熱交換器12のうちのいずれの熱交換器の空気流路も流れていない空気が第1熱交換器11の空気流路を流れる量を増加させることができる。よって、第1熱交換器11は領域111を有することで、第1熱交換器11の空気流路を流れる空気の温度を、第2熱交換器12又は第3熱交換器13のうちの少なくともいずれか一方の熱交換器を流れることで加熱された空気の温度に比べて低くすることができる。これらの結果、冷却構造1は、第1熱交換器11が領域111を有することで、冷却性能が向上する。
 また、比較例としての冷却構造100に対して、本実施形態に係る冷却構造1においては、第3熱交換器13の上端は、車両の高さ方向において第1熱交換器11の上端と第2熱交換器12の上端との間に位置する。冷却構造1は、このように第3熱交換器13の上端が、車両の高さ方向において第1熱交換器11の上端と第2熱交換器12の上端との間に位置することで、第3熱交換器13が、車両の高さ方向において第2熱交換器12と重ならない領域131を有する。領域131は、第3熱交換器13の車両の高さ方向における上端と第2熱交換器12の上端と同じ位置との間の領域である。
 図5の(d)に示すように第3熱交換器13の領域131の空気流路を流れる空気の風速は、第3熱交換器13の車両の高さ方向において第2熱交換器12と重っている領域を流れる空気の風速に比べて大きい。また、図5の(f)に示すように、第1熱交換器11における領域131と車両の高さ方向及び車幅方向において重なっている領域の空気流路を流れる空気の風速は小さくなるが、第1熱交換器11における領域131と車両の高さ方向及び車幅方向と重なっていない領域の空気流路を流れる空気の風速は上昇する。
 よって、冷却構造1は、各熱交換器の空気流路を流れる空気の風速分布の偏りを生じづらくすることができる。また、図5の(d)に示すように、冷却構造1は、第3熱交換器13が領域131を有することで、第3熱交換器13を流れる空気の風速が大きくなるので、冷却性能が向上する。
 また、第3熱交換器13の下端は、第2熱交換器12の下端よりも車両の高さ方向において上方に位置する。具体的には、第3熱交換器13の下端は、第1熱交換器11の下端及び第2熱交換器12の下端よりも車両の高さ方向において上方に位置する。よって、第2熱交換器12は、第2熱交換器12の車両の高さ方向において第3熱交換器13と重なっていない領域121を有する。領域121は、車両の高さ方向における第2熱交換器12の下端と第3熱交換器13の下端と同じ位置との間の領域である。
 第2熱交換器12の領域121の空気流路を流れる空気の風速は、第2熱交換器12における車両の高さ方向において第3熱交換器13と重なっている領域の空気流路を流れる空気の風速に比べて大きい。この結果、冷却構造1は、第2熱交換器12が領域121を有することで、各熱交換器の空気流路を流れる空気の風速分布の偏りを生じづらくすることができる。
 また、第2熱交換器12は、領域121を有することで、第3熱交換器13の空気流路を流れていない空気が第2熱交換器12の空気流路を流れる量を増加させることができる。よって、第2熱交換器12は領域121を有することで、第2熱交換器12の空気流路を流れる空気の温度を、第3熱交換器13を流れることで加熱された空気の温度に比べて低くすることができる。これらの結果、冷却構造1は、第2熱交換器12が領域121を有することで、冷却性能が向上する。
 また、第2熱交換器12の車両の車幅方向における幅は、第1熱交換器11の車両の車幅方向における幅と略同じである。第2熱交換器12の車両の車幅方向における左端は、第1熱交換器11の車両の車幅方向における左端と略同じ位置に位置する。第2熱交換器12の車両の車幅方向における右端は、第1熱交換器11の車両の車幅方向における右端と略同じ位置に位置する。
 また、第3熱交換器13の車両の車幅方向における幅は、第1熱交換器11及び第2熱交換器12の車両の車幅方向における幅よりも小さい。第3熱交換器13の車両の車幅方向における左端は、第1熱交換器11及び第2熱交換器12の車両の車幅方向における左端よりも右側に位置する。第3熱交換器13の車両の車幅方向における右端は、第1熱交換器11及び第2熱交換器12の車両の車幅方向における右端よりも左側に位置する。
 よって、第2熱交換器12は、第3熱交換器13と車両の車幅方向において重なっていない領域122を有する。領域122は、車両の車幅方向における第2熱交換器12の左端と第3熱交換器13の左端と同じ位置との間の領域、及び車両の車幅方向における第2熱交換器12の右端と第3熱交換器13の右端と同じ位置との間の領域である。第2熱交換器12の領域122の空気流路を流れる空気の風速は、第2熱交換器12における車両の車幅方向において第3熱交換器13と重なっている領域の空気流路を流れる空気の風速に比べて大きい。
 また、第2熱交換器12は、領域122を有することで、第3熱交換器13の空気流路を流れていない空気が第2熱交換器12の空気流路を流れる量を増加させることができる。よって、第2熱交換器12は、領域122を有することで、第2熱交換器12の空気流路を流れる空気の温度を、第3熱交換器13を流れることで加熱された空気の温度に比べて低くすることができる。これらの結果、冷却構造1は、第2熱交換器12が領域122を有することで、冷却性能が向上する。
 上記実施形態では、第1熱交換器11は、エンジン冷却用の熱交換器であり、第2熱交換器12は、インタークーラであり、第3熱交換器13は、エアコン用コンデンサであるとしたが、これに限定されない。第1熱交換器11、第2熱交換器12、及び第3熱交換器13は、車両の各部を冷却するために用いられる熱交換器であればよく、どの熱交換器を車両のどの部分を冷却ための熱交換器とするのかは任意である。
 [本実施形態に係る冷却構造1による効果]
 本実施形態に係る冷却構造1は、車両に設けられている第1熱交換器11と、車両に設けられており、かつ車両の前後方向において第1熱交換器11よりも前方に設けられている第2熱交換器12と、車両に設けられており、かつ車両の前後方向において第2熱交換器12よりも前方に設けられている第3熱交換器13と、を有する。そして、第1熱交換器11の上端は、第2熱交換器12の上端よりも車両の高さ方向において上方に位置し、第3熱交換器13の上端は、車両の高さ方向において第1熱交換器11の上端と第2熱交換器12の上端との間に位置する。
 本実施形態に係る冷却構造1は、このように第3熱交換器13の上端が、車両の高さ方向において第1熱交換器11の上端と第2熱交換器12の上端との間に位置する。車両の高さ方向において第3熱交換器13の上端が第2熱交換器12の上端よりも上方に位置することで形成される第3熱交換器13の領域131では、領域131の空気流路を流れる空気の風速が、領域131以外の領域の空気流路を流れる空気の風速に比べて大きくなる。よって、冷却構造1は、第3熱交換器13の空気流路を流れる空気の風速が大きくなる。この結果、冷却構造1は、各熱交換器を通過する空気の風速分布に偏りが生じづらくなり、冷却性能が向上する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。
 本出願は、2018年2月1日付で出願された日本国特許出願(特願2018-016442)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の冷却構造は、風速分布の偏りが生じづらく、冷却性能を向上できるという点において有用である。
1、100・・・冷却構造
11・・・第1熱交換器
111・・・領域
12・・・第2熱交換器
121・・・領域
122・・・領域
13、103・・・第3熱交換器
131・・・領域
2・・・サイドフレーム

Claims (4)

  1.  車両に設けられている第1熱交換器と、
     前記車両に設けられており、かつ前記車両の前後方向において前記第1熱交換器よりも前方に設けられている第2熱交換器と、
     前記車両に設けられており、かつ前記車両の前後方向において前記第2熱交換器よりも前方に設けられている第3熱交換器と、
     を有し、
     前記第1熱交換器の上端は、前記第2熱交換器の上端よりも前記車両の高さ方向において上方に位置し、
     前記第3熱交換器の上端は、前記車両の高さ方向において前記第1熱交換器の上端と前記第2熱交換器の上端との間に位置することを特徴とする冷却構造。
  2.  前記第3熱交換器の前記車両の車幅方向における幅は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における幅よりも小さく、
     前記第3熱交換器の前記車両の車幅方向における左端は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における左端よりも右側に位置し、
     前記第3熱交換器の前記車両の車幅方向における右端は、前記第1熱交換器及び前記第2熱交換器の前記車両の車幅方向における右端よりも左側に位置することを特徴とする、
     請求項1に記載の冷却構造。
  3.  前記第3熱交換器の下端は、前記第2熱交換器の下端よりも前記車両の高さ方向において上方に位置することを特徴とする、
     請求項1又は2に記載の冷却構造。 
  4.  前記第1熱交換器は略直方体形状であり、前記第2熱交換器は略直方体形状であり、前記第3熱交換器は略直方体形状であることを特徴とする、
     請求項1~3のいずれか1項に記載の冷却構造。
PCT/JP2019/002878 2018-02-01 2019-01-29 冷却構造 WO2019151209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019000635.5T DE112019000635T5 (de) 2018-02-01 2019-01-29 Kühlstruktur
CN201980011333.5A CN111699102A (zh) 2018-02-01 2019-01-29 冷却构造
US16/966,600 US20210078386A1 (en) 2018-02-01 2019-01-29 Cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-016442 2018-02-01
JP2018016442A JP7040068B2 (ja) 2018-02-01 2018-02-01 冷却構造

Publications (1)

Publication Number Publication Date
WO2019151209A1 true WO2019151209A1 (ja) 2019-08-08

Family

ID=67478157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002878 WO2019151209A1 (ja) 2018-02-01 2019-01-29 冷却構造

Country Status (5)

Country Link
US (1) US20210078386A1 (ja)
JP (1) JP7040068B2 (ja)
CN (1) CN111699102A (ja)
DE (1) DE112019000635T5 (ja)
WO (1) WO2019151209A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227213A (ja) * 1997-02-14 1998-08-25 Nissan Motor Co Ltd 車両用冷却器の支持装置
JP2002081320A (ja) * 2000-09-06 2002-03-22 Shin Caterpillar Mitsubishi Ltd 建設機械の冷却装置
JP2011088571A (ja) * 2009-10-23 2011-05-06 Iseki & Co Ltd 作業車両のフロント補器の配置構成
JP2018118591A (ja) * 2017-01-24 2018-08-02 三菱自動車工業株式会社 車両構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9709446D0 (en) * 1997-05-10 1997-07-02 Rover Group A heat exchanger assembly for a motor vehicle
DE10124757A1 (de) * 2000-05-26 2001-11-29 Denso Corp Fahrzeugklimaanlage mit Kältespeicher
JP4557738B2 (ja) * 2005-02-04 2010-10-06 トヨタ自動車株式会社 燃料電池車の冷却装置
JP5004278B2 (ja) 2007-03-26 2012-08-22 Udトラックス株式会社 自動車の冷却装置
DE102010012485A1 (de) * 2010-03-24 2011-09-29 GM Global Technology Operations LLC , (n. d. Ges. d. Staates Delaware) Kühleinrichtung für ein Kraftfahrzeug
CN103121393B (zh) * 2011-11-17 2015-07-08 株式会社电装 车辆用热交换器的配置构造
US20140116658A1 (en) * 2012-10-30 2014-05-01 Deere & Company Vehicle cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227213A (ja) * 1997-02-14 1998-08-25 Nissan Motor Co Ltd 車両用冷却器の支持装置
JP2002081320A (ja) * 2000-09-06 2002-03-22 Shin Caterpillar Mitsubishi Ltd 建設機械の冷却装置
JP2011088571A (ja) * 2009-10-23 2011-05-06 Iseki & Co Ltd 作業車両のフロント補器の配置構成
JP2018118591A (ja) * 2017-01-24 2018-08-02 三菱自動車工業株式会社 車両構造

Also Published As

Publication number Publication date
JP2019131098A (ja) 2019-08-08
CN111699102A (zh) 2020-09-22
DE112019000635T5 (de) 2020-10-29
JP7040068B2 (ja) 2022-03-23
US20210078386A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
KR101405234B1 (ko) 차량용 라디에이터
JP2015017776A5 (ja)
JP2013002758A (ja) 車両用冷却装置
JP6556566B2 (ja) 車両用冷却装置
JP2018030469A (ja) 冷却システム
WO2015059890A1 (ja) 冷却システム
WO2019151209A1 (ja) 冷却構造
WO2020162096A1 (ja) 熱交換器
JP6051641B2 (ja) 車両用インタークーラ
CN112689576B (zh) 散热器结构
KR102629657B1 (ko) 자동차용 열 교환기 모듈
JP2018058531A (ja) 冷却システム
JP5748010B1 (ja) 複合熱交換器
WO2021020089A1 (ja) 熱交換装置
JP2006266114A (ja) 熱交換装置
JP2006207944A (ja) 熱交換器
WO2019111574A1 (ja) ラジエータ
JP2007170317A (ja) クーリングモジュール
JP2015174519A (ja) 車両下部構造
US20090025920A1 (en) Heat exchanger
JP2013159267A (ja) 車両用空調装置
US20220194212A1 (en) Cooling assembly for a motor vehicle
KR20200055477A (ko) 차량용 쿨링모듈
JPH10331638A (ja) 自動車用オイルクーラの取付構造
JP2015010792A (ja) 複合型熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748435

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19748435

Country of ref document: EP

Kind code of ref document: A1