WO2019151125A1 - フェライト系ステンレス鋼 - Google Patents
フェライト系ステンレス鋼 Download PDFInfo
- Publication number
- WO2019151125A1 WO2019151125A1 PCT/JP2019/002413 JP2019002413W WO2019151125A1 WO 2019151125 A1 WO2019151125 A1 WO 2019151125A1 JP 2019002413 W JP2019002413 W JP 2019002413W WO 2019151125 A1 WO2019151125 A1 WO 2019151125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- steel
- less
- mass
- thermal fatigue
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to ferritic stainless steel, and particularly has excellent creep resistance suitable for use in exhaust system members used at high temperatures such as exhaust pipes and converter cases of automobiles and motorcycles, and exhaust ducts of thermal power plants.
- the present invention relates to ferritic stainless steel having thermal fatigue characteristics.
- Excellent heat resistance is required for exhaust system members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers of automobiles.
- heat resistance There are several types of heat resistance, including thermal fatigue properties, high temperature fatigue properties, high temperature strength (high temperature strength), oxidation resistance, creep properties, and high temperature salt corrosion properties.
- the thermal fatigue property is one of particularly important heat resistances.
- the exhaust system member repeatedly receives heating and cooling as the engine is started and stopped. At this time, since the exhaust system member is connected to peripheral components, thermal expansion and contraction are limited, and thermal distortion occurs in the material itself.
- the low-cycle fatigue phenomenon that results in fracture due to repeated thermal strain is called thermal fatigue.
- Ferritic stainless steel such as Type 429 (14% Cr-0.9% Si-0.4% Nb system) to which Nb and Si are added is currently used as a material for the above-described members that require thermal fatigue characteristics. Is often used. However, when the exhaust gas temperature rises to a temperature exceeding 900 ° C. along with the improvement in engine performance, Type 429 can not sufficiently satisfy the necessary thermal fatigue characteristics.
- SUS444 (19% Cr-0.5% Nb-2%) defined in JIS G4305, which is a ferritic stainless steel in which high temperature proof stress is improved by adding Nb and Mo. Mo), or ferritic stainless steel to which Nb, Mo and W are added has been developed (see, for example, Patent Document 1).
- the exhaust gas temperature tends to increase, and even SUS444 and the like are sometimes lacking in heat resistance, particularly thermal fatigue characteristics. Further, when the exhaust gas temperature is increased to over 900 ° C., stainless steel is likely to undergo creep deformation, and thus the creep resistance is required.
- SUS444 has the highest level of heat resistance among ferritic stainless steels, but it cannot always be said that the heat resistance is sufficient when the exhaust gas temperature rises with the recent tightening of exhaust gas regulations and improved fuel economy.
- the thermal expansion of the exhaust system member when the exhaust system temperature rises increases, so the more severe thermal strain is added to the ferritic stainless steel used for the exhaust system member, which tends to be subject to thermal fatigue failure. End up.
- ferritic stainless steel is prone to creep deformation when held for a long time in a high temperature range, and when creep deformation occurs, it begins to break down from the thinned portion due to creep deformation, improving creep resistance characteristics Is also needed.
- an object of the present invention is to solve such problems and provide a ferritic stainless steel having excellent creep resistance and thermal fatigue characteristics.
- excellent in creep resistance means that the rupture time when performing a creep test at 900 ° C. is superior to that of SUS444.
- “excelling in thermal fatigue characteristics” means having characteristics superior to that of SUS444. Specifically, the thermal fatigue life when heating and cooling are repeated between 200 and 950 ° C. is superior to that of SUS444. It means that
- Nb is 0.30 to 0.80%
- Mo is 1.80 to 2.50%
- the total content of Nb and Mo is 2.3 to 3.0%. It has been found that the high temperature strength increases in a wide temperature range and the thermal fatigue characteristics are improved. Furthermore, it has been found that the creep resistance is improved by containing Sb in the range of 0.002 to 0.50 mass%.
- the present invention has been completed by making specific component compositions containing appropriate amounts of all of Cr, Nb, Mo, and Sb.
- the above elements are important, but in order to achieve the effects of the present invention, it is necessary to adjust all the essential elements to a predetermined content.
- the gist of the present invention is as follows.
- the component composition is in mass%, and Ti: 0.01 to 0.16%, Zr: 0.01 to 0.50%, Co: 0.01 to 0.50%, B: 0 0002 to 0.0050%, V: 0.01 to 1.0%, W: 0.01 to 5.0%, Cu: 0.01 to 0.40%, Sn: 0.001 to 0.005
- the ferritic stainless steel according to [1] which contains one or more selected from%.
- the component composition contains, by mass%, one or two selected from Ca: 0.0002 to 0.0050% and Mg: 0.0002 to 0.0050% [1] ] Or ferritic stainless steel according to [2].
- the ferritic stainless steel of the present invention can be suitably used for exhaust system members such as automobiles.
- the ferritic stainless steel of the present invention is, by mass, C: 0.020% or less, Si: 0.1 to 1.0%, Mn: 0.05 to 0.60%, P: 0.050% or less. S: 0.008% or less, Ni: 0.02 to 0.60%, Al: 0.001 to 0.25%, Cr: 18.0 to 20.0%, Nb: 0.30 to 0.00. 80%, Mo: 1.80 to 2.50%, N: 0.015% or less, Sb: 0.002 to 0.50%, satisfying the following formula (1), the balance being Fe And inevitable impurities. Nb + Mo: 2.3 to 3.0% (1) (Nb and Mo in the formula (1) indicate the content (mass%) of each element.) In the present invention, the balance of the component composition is very important.
- a ferritic stainless steel having superior creep resistance and thermal fatigue properties than SUS444 can be obtained. If the content of the essential elements (C, Si, Mn, Ni, Al, Cr, Nb, Mo, N, Sb) in the above component composition is out of range, the expected creep resistance and thermal fatigue Characteristics cannot be obtained.
- % which is a unit of content of components means mass% unless otherwise specified.
- C 0.020% or less C is an element effective for increasing the strength of steel. However, if C is contained in excess of 0.020%, the toughness and formability deteriorate significantly. Moreover, the effect of improving the thermal fatigue characteristics and creep resistance characteristics of Nb, which will be described later, is reduced by increasing the amount of carbide formed in connection with Nb, which is important in the present invention. Therefore, the C content is 0.020% or less. In addition, it is preferable that C content shall be 0.010% or less from a viewpoint of ensuring a moldability. More preferably, the C content is 0.008% or less. Further, from the viewpoint of ensuring strength as an exhaust system member, the C content is preferably set to 0.001% or more. More preferably, the C content is 0.003% or more. More preferably, the C content is 0.004% or more.
- Si 0.1 to 1.0% Si is an important element necessary for improving oxidation resistance. In order to ensure oxidation resistance in the exhaust gas heated to a high temperature, it is necessary to contain 0.1% or more of Si. On the other hand, the excessive Si content exceeding 1.0% lowers the workability at room temperature, so the upper limit of the Si content is 1.0%.
- the Si content is 0.20% or more. More preferably, the Si content is 0.30% or more. More preferably, the Si content is 0.40% or more. Preferably, the Si content is 0.90% or less. More preferably, the Si content is 0.60% or less.
- Mn 0.05 to 0.60% Mn has the effect of improving thermal fatigue properties by increasing the peel resistance of the oxide scale. In order to obtain these effects, it is necessary to contain 0.05% or more of Mn. On the other hand, when Mn is excessively contained in excess of 0.60%, a ⁇ phase is likely to be generated at a high temperature, and heat resistance is lowered. Therefore, the Mn content is 0.05% or more and 0.60% or less.
- the Mn content is 0.10% or more. More preferably, the Mn content is 0.15% or more.
- the Mn content is 0.50% or less. More preferably, the Mn content is 0.40% or less.
- P 0.050% or less
- P is a harmful element that lowers the toughness of steel, and is desirably reduced as much as possible. Therefore, the P content is 0.050% or less. Preferably, the P content is 0.040% or less. More preferably, the P content is 0.030% or less.
- S 0.008% or less
- S is a harmful element that lowers elongation and r value, adversely affects formability, and lowers corrosion resistance, which is a basic characteristic of stainless steel, so it is desirable to reduce it as much as possible. . Therefore, in the present invention, the S content is set to 0.008% or less. Preferably, the S content is 0.006% or less.
- Ni 0.02 to 0.60%
- Ni is an element that improves the toughness and oxidation resistance of steel. In order to obtain these effects, the Ni content is 0.02% or more. If the oxidation resistance is insufficient, thermal fatigue characteristics deteriorate due to a decrease in the cross-sectional area of the material due to an increase in the amount of oxide scale generated and peeling of the oxide scale.
- Ni is a strong ⁇ -phase-forming element. Therefore, if Ni is contained excessively, a ⁇ -phase is formed at a high temperature, the oxidation resistance is lowered, and the thermal expansion coefficient is increased, so that the thermal fatigue characteristics are lowered. . Therefore, the upper limit of the Ni content is 0.60%.
- the Ni content is 0.05% or more. More preferably, the Ni content is 0.10% or more.
- the Ni content is 0.40% or less. More preferably, the Ni content is 0.30% or less.
- Al 0.001 to 0.25%
- Al is an element having an effect of improving oxidation resistance. In order to acquire the effect, Al needs to contain 0.001% or more.
- Al is also an element that increases the thermal expansion coefficient. When the thermal expansion coefficient is increased, the thermal fatigue characteristics are degraded. Furthermore, the steel becomes extremely hard and the workability is reduced. Therefore, the Al content is set to 0.25% or less.
- the Al content is 0.005% or more. More preferably, the Al content is over 0.010%. More preferably, the Al content is more than 0.020%. Also preferably, the Al content is less than 0.20%. More preferably, the Al content is less than 0.08%.
- Cr 18.0-20.0% Cr is an important element effective in improving the corrosion resistance and oxidation resistance, which are the characteristics of stainless steel. However, if the Cr content is less than 18.0%, sufficient oxidation resistance in a high temperature range exceeding 900 ° C. Cannot be obtained. If the oxidation resistance is insufficient, the amount of oxide scale generated increases, and the thermal fatigue characteristics also decrease as the cross-sectional area of the material decreases.
- Cr is an element that solidifies and strengthens steel at room temperature, and hardens and lowers ductility. When the Cr content exceeds 20.0%, the above-described adverse effects become significant, and the thermal fatigue properties also deteriorate. Therefore, the upper limit of the Cr content is 20.0%.
- the Cr content is 18.5% or more.
- the Cr content is 19.5% or less.
- Nb 0.30 to 0.80% Nb is an important element in the present invention that increases the high temperature strength to improve the thermal fatigue characteristics and creep resistance characteristics. Such an effect is recognized when the content of Nb is 0.30% or more. When the Nb content is less than 0.30%, the strength at high temperature is insufficient, and excellent thermal fatigue characteristics and creep resistance characteristics cannot be obtained. However, if the Nb content exceeds 0.80%, the Laves phase (Fe 2 Nb), which is an intermetallic compound, is likely to precipitate, the high-temperature strength is lowered, and the thermal fatigue characteristics and creep resistance are only lowered. Rather, it promotes embrittlement. Therefore, the Nb content is 0.30% or more and 0.80% or less. Preferably, the Nb content is 0.40% or more. More preferably, the Nb content is 0.45% or more. More preferably, the Nb content is more than 0.50%. Preferably, the Nb content is 0.70% or less. More preferably, the Nb content is 0.60% or less.
- Mo 1.80 to 2.50% Mo is an effective element that improves thermal fatigue characteristics and creep resistance characteristics by dissolving in steel and improving the high temperature strength of the steel. The effect appears when the Mo content is 1.80% or more. When the Mo content is less than 1.80%, the high temperature strength is insufficient, and excellent thermal fatigue characteristics and creep resistance characteristics cannot be obtained. On the other hand, the excessive Mo content not only hardens the steel and decreases the workability, but also precipitates as a Laves phase (Fe 2 Mo) in the same manner as Nb, and the amount of solute Mo in the steel decreases. For this reason, the thermal fatigue characteristics deteriorate. In addition, precipitation as a coarse ⁇ phase during the thermal fatigue test serves as a starting point for fracture, and the thermal fatigue characteristics deteriorate.
- Laves phase Fe 2 Mo
- the upper limit of the Mo content is 2.50%.
- the Mo content is 1.90% or more. More preferably, the Mo content is over 2.00%.
- the Mo content is 2.30% or less. More preferably, the Mo content is 2.10% or less.
- N 0.015% or less
- N is an element that lowers the toughness and formability of steel. If it exceeds 0.015%, not only the decrease in toughness and formability becomes significant, but also Nb nitride. As a result, the amount of dissolved Nb decreases, and the creep resistance and thermal fatigue characteristics decrease. Therefore, the N content is set to 0.015% or less. N is preferably reduced as much as possible from the viewpoint of securing toughness and formability, and the N content is preferably less than 0.010%.
- Sb 0.002 to 0.50%
- Sb is an important element for improving the creep resistance in the present invention.
- Sb dissolves in the steel and suppresses creep deformation of the steel at a high temperature.
- Sb does not precipitate as a carbonitride or a Laves phase even in a high temperature range, and dissolves in the steel even after a long period of use and suppresses creep deformation, thereby improving the creep resistance. This effect is obtained when the Sb content is 0.002% or more.
- an excessive content of Sb reduces the toughness and hot workability of the steel, so that not only cracking is likely to occur during production, but also the thermal fatigue properties are reduced due to the decrease in hot ductility. Therefore, the upper limit of Sb content is 0.50%.
- the Sb content is 0.005% or more. More preferably, it is 0.020% or more.
- the Sb content is 0.30% or less. More preferably, the Sb content is 0.10% or less.
- Nb + Mo 2.3 to 3.0% (1)
- Nb and Mo are effective elements for improving thermal fatigue characteristics and creep resistance characteristics. The effect is recognized by containing 0.30% or more and 1.80% or more, respectively.
- both elements are used. After containing in a predetermined range, it is necessary to satisfy at least Nb + Mo ⁇ 2.3%, that is, Nb + Mo amount (total content of Nb and Mo) should be 2.3% or more.
- Nb + Mo > 2.5%.
- the upper limit of the Nb + Mo amount is 3.0%.
- the amount of Nb + Mo is 2.7% or less.
- Nb and Mo in said formula (1) show content (mass%) of each element.
- the balance consists of Fe and inevitable impurities.
- the ferritic stainless steel of the present invention further includes, as an optional component, one or more selected from Ti, Zr, Co, B, V, W, Cu, and Sn. It can contain in the following range.
- Ti 0.01 to 0.16% Ti is an element that fixes C and N, improves corrosion resistance and formability, and prevents intergranular corrosion of the welded portion.
- Ti can be contained as necessary.
- Ti is preferentially combined with C and N over Nb, so that it is possible to secure an amount of solute Nb in steel effective for high-temperature strength, and it is also effective for improving heat resistance.
- These effects can be obtained with a Ti content of 0.01% or more.
- the excessive Ti content exceeding 0.16% causes a decrease in toughness, and has an adverse effect on manufacturability such as, for example, breakage caused by bending-bending repeated in a hot-rolled sheet annealing line. It becomes like this.
- the Ti content is set to 0.01 to 0.16%.
- the Ti content is 0.03% or more.
- the Ti content is 0.12% or less. More preferably, the Ti content is 0.08% or less. More preferably, the Ti content is 0.05% or less.
- Zr 0.01 to 0.50%
- Zr is an element that improves oxidation resistance, and can be contained as necessary in the present invention. This effect is obtained with a Zr content of 0.01% or more. However, if the Zr content exceeds 0.50%, the Zr intermetallic compound precipitates and embrittles the steel. Therefore, when Zr is contained, the Zr content is set to 0.01 to 0.50%.
- the Zr content is 0.03% or more. More preferably, the Zr content is 0.05% or more.
- the Zr content is not more than 0.30%. More preferably, the Zr content is 0.10% or less.
- Co 0.01 to 0.50%
- Co is known as an element effective for improving the toughness of steel. This effect is obtained with a Co content of 0.01% or more.
- the upper limit of the Co content is 0.50%. Therefore, when Co is contained, the Co content is set to 0.01 to 0.50%.
- the Co content is 0.03% or more.
- the Co content is 0.30% or less.
- B 0.0002 to 0.0050%
- B is an element effective for improving the workability of steel, particularly the secondary workability. Such an effect can be obtained with a B content of 0.0002% or more.
- excessive B content generates BN and degrades workability. Therefore, when B is contained, the B content is set to 0.0002 to 0.0050%.
- the B content is 0.0005% or more. More preferably, the B content is 0.0008% or more.
- the B content is 0.0030% or less. More preferably, the B content is 0.0020% or less.
- V 0.01 to 1.0%
- V is an element effective for improving the workability of steel and an element effective for improving oxidation resistance. These effects become significant when the V content is 0.01% or more. However, the excessive V content exceeding 1.0% leads to the precipitation of coarse V (C, N), not only lowering the toughness but also lowering the surface properties. Therefore, when V is contained, the V content is set to 0.01 to 1.0%.
- the V content is 0.03% or more. More preferably, the V content is 0.05% or more.
- the V content is 0.50% or less. More preferably, the V content is 0.20% or less.
- W 0.01-5.0% W, like Mo, is an element that greatly improves high-temperature strength by solid solution strengthening. This effect is obtained with a W content of 0.01% or more.
- the W content is set to 0.01 to 5.0%.
- the W content is 0.05% or more.
- the W content is 3.5% or less. More preferably, the W content is 1.0% or less. More preferably, the W content is less than 0.30%.
- Cu 0.01 to 0.40%
- Cu is an element having an effect of improving the corrosion resistance of steel, and is contained when corrosion resistance is required. The effect is obtained with a Cu content of 0.01% or more.
- the Cu content is set to 0.01 to 0.40%.
- the Cu content is 0.03% or more. More preferably, the Cu content is 0.06% or more.
- the Cu content is 0.20% or less. More preferably, the Cu content is 0.10% or less.
- Sn 0.001 to 0.005%
- Sn is an element effective for improving the high-temperature strength of steel. The effect can be obtained with a Sn content of 0.001% or more. On the other hand, the excessive Sn content decreases the thermal fatigue characteristics as the steel becomes brittle. Therefore, when Sn is contained, the Sn content is set to 0.001 to 0.005%. Preferably, the Sn content is 0.001% or more and 0.003% or less.
- the ferritic stainless steel of the present invention can further contain one or two selected from Ca and Mg as optional components in the following range.
- Ca 0.0002 to 0.0050%
- Ca is an effective component for preventing nozzle clogging due to precipitation of Ti-based inclusions that are likely to occur during continuous casting. The effect is obtained with a Ca content of 0.0002% or more.
- the Ca content needs to be 0.0050% or less. Therefore, when Ca is contained, the Ca content is set to 0.0002 to 0.0050%.
- the Ca content is 0.0005% or more.
- the Ca content is 0.0030% or less. More preferably, the Ca content is 0.0020% or less.
- Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness.
- Mg also has an effect of suppressing the coarsening of Nb and Ti carbonitrides. The effect is obtained when the Mg content is 0.0002% or more.
- the Ti carbonitride becomes coarse, it becomes a starting point for brittle cracking, so that the toughness is greatly reduced.
- Nb carbonitrides become coarse, the amount of Nb solid solution in steel decreases, leading to a decrease in thermal fatigue characteristics.
- the Mg content exceeds 0.0050%, the surface properties of the steel are deteriorated.
- the Mg content is set to 0.0002 to 0.0050%.
- the Mg content is 0.0003% or more. More preferably, the Mg content is 0.0004% or more.
- the Mg content is 0.0030% or less. More preferably, the Mg content is 0.0020% or less.
- the balance is Fe and inevitable impurities.
- the optional component contained below the lower limit the optional component contained at a content below the lower limit is included as an inevitable impurity.
- the method for producing stainless steel of the present invention can be suitably employed as long as it is a normal method for producing ferritic stainless steel, and is not particularly limited.
- steel is produced in a known melting furnace such as a converter or an electric furnace, or further subjected to secondary refining such as ladle refining or vacuum refining, and the steel having the above-described component composition of the present invention. It is made into a steel slab (slab) by the ingot-bundling rolling method, and then made into a cold-rolled annealed plate through various processes such as hot-rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing and pickling It can be manufactured in a manufacturing process.
- the cold rolling may be performed once or two or more cold rolling sandwiching the intermediate annealing, and the steps of cold rolling, finish annealing, and pickling may be performed repeatedly.
- hot-rolled sheet annealing may be omitted, and skin pass rolling may be performed after cold rolling or after finish annealing when surface gloss or roughness adjustment of the steel sheet is required.
- the steelmaking process for melting steel includes secondary refining of steel melted in a converter or electric furnace by the VOD method, AOD method, etc., and steel containing the above essential components and optional components added as necessary. It is preferable to do.
- the molten steel can be made into a steel material by a known method, it is preferable to use a continuous casting method in terms of productivity and quality.
- the steel material is preferably heated to 1050 to 1250 ° C., and hot rolled into a desired thickness by hot rolling. In production, the thickness of the hot-rolled sheet is preferably 5 mm or less. Of course, hot working can be performed in addition to the plate material.
- the hot-rolled sheet is then subjected to continuous annealing at a temperature of 900 to 1150 ° C. or batch annealing at a temperature of 700 to 900 ° C. as necessary, and then descaling by pickling or polishing, It is preferable to do. If necessary, the scale may be removed by shot blasting before pickling.
- the hot-rolled product may be a cold-rolled product through a process such as cold rolling.
- the cold rolling may be performed once, but may be performed twice or more with intermediate annealing in view of productivity and required quality.
- the total rolling reduction of one or more cold rollings is preferably 60% or more, more preferably 70% or more.
- the cold-rolled steel sheet is subsequently subjected to continuous annealing (finish annealing) at a temperature of preferably 900 to 1200 ° C., more preferably 1000 to 1150 ° C., pickling or polishing, and a cold-rolled product (cold-rolled annealing plate). It is preferable to do.
- Finish annealing may be performed in a reducing atmosphere, and in that case, pickling or polishing after finish annealing may be omitted. Further, depending on the application, after finish annealing, skin pass rolling or the like may be performed to adjust the shape, surface roughness, and material of the steel sheet.
- the hot-rolled product or cold-rolled product obtained as described above is then subjected to processing such as cutting, bending processing, overhanging processing, drawing processing, etc. according to the respective use, and exhaust pipes and catalysts for automobiles and motorcycles. It is molded into an outer cylinder material, an exhaust duct of a thermal power plant or a fuel cell-related member, such as a separator, an interconnector or a reformer.
- the ferritic stainless steel of the present invention is preferably used for exhaust system members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers.
- the method for welding these members is not particularly limited, and normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), spot welding, and seam welding.
- normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), spot welding, and seam welding.
- resistance welding such as high frequency resistance welding such as electric resistance welding, high frequency induction welding, and the like can be applied.
- the scale is removed by pickling or polishing to form a cold-rolled annealed plate having a thickness of 1.5 mm.
- the sample was subjected to a creep test.
- SUS444 (conventional example No. 28) was also subjected to a creep test by producing a cold-rolled annealed plate in the same manner as described above.
- annealing temperature temperature was determined about each steel, confirming a structure within the said temperature range.
- ⁇ Creep test> A test piece having the shape shown in FIG. 1 was cut out from each cold-rolled annealed plate obtained as described above, and a creep test was performed at 900 ° C. with a stress of 15 MPa. Based on the time taken to break, evaluation was performed as follows. As for comparison, SUS444 (conventional example No. 28) took 5.5 hours to break.
- a test piece was prepared in the same manner as described above for a steel having a SUS444 component composition (conventional example No. 28) and subjected to a thermal fatigue test.
- the thermal fatigue test was performed under the condition that the temperature rise / fall was repeated between 200 ° C. and 950 ° C. while restraining the test piece with a restraint rate of 0.5. At this time, the temperature rising rate was 5 ° C./second, and the temperature decreasing rate was 2 ° C./second. And the holding time in 200 degreeC and 950 degreeC was 30 seconds, respectively.
- the free thermal expansion strain amount is the strain amount when the temperature is raised without applying any mechanical stress, and the control strain amount indicates the absolute value of the strain amount generated during the test.
- the substantial restraint strain amount generated in the material by restraint is (free thermal expansion strain amount ⁇ control strain amount).
- the thermal fatigue life is calculated by dividing the load detected at 200 ° C. by the cross-sectional area of the test piece soaking parallel part (see FIG. 2) to calculate the stress.
- the number of cycles in which the stress value was reduced to 75% with respect to the stress value was evaluated as follows.
- SUS444 (conventional example No. 28) had a thermal fatigue life of 650 cycles.
- ferritic stainless steels (hereinafter, ferritic stainless steels are simply referred to as “steel”) show superior characteristics in comparison with SUS444 (conventional steel No. 28) in the creep test and thermal fatigue test. Yes.
- No. Steel No. 29 had an Nb + Mo content of less than 2.3% by mass, and the creep rupture time and thermal fatigue life were unacceptable.
- No. Steel No. 30 had a Ni content exceeding 0.60% by mass, and the thermal fatigue life was rejected.
- No. Steel No. 31 had a Cr content of less than 18.0% by mass and failed in its thermal fatigue life.
- No. Steel No. 32 had a Mo content of less than 1.80% by mass, and the creep rupture time and thermal fatigue life were rejected.
- No. Steel No. 33 had an Nb content of less than 0.30% by mass, and the creep rupture time and thermal fatigue life both failed.
- No. Steel No. 39 had an N content exceeding 0.015% by mass, and the creep rupture time and thermal fatigue life were rejected as the Nb content in the steel decreased due to precipitation of Nb nitride.
- No. Steel No. 40 had an Sb content exceeding 0.50% by mass, and the thermal fatigue life was rejected as the hot ductility decreased.
- No. In steel No. 41 the Mo content exceeded 2.50% by mass, and during the thermal fatigue test, a coarse ⁇ phase (Fe—Cr intermetallic compound) was precipitated and the thermal fatigue life was rejected. . The creep rupture time was also rejected.
- Sn content exceeded 0.005 mass% and thermal fatigue life was rejected.
- the ferritic stainless steel of the present invention is not only suitable for exhaust system members such as automobiles, but also as exhaust system members for thermal power generation systems and solid oxide type fuel cell members that require similar characteristics. It can be used suitably.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
Nb+Mo:2.3~3.0% ・・・(1)
(式(1)中のNb、Moは、各元素の含有量(質量%)を示す。)
Nb+Mo:2.3~3.0% ・・・(1)
(式(1)中のNb、Moは、各元素の含有量(質量%)を示す。)
本発明では、成分組成のバランスが非常に重要であり、上記のような成分組成の組み合わせとすることで、耐クリープ特性と熱疲労特性がSUS444より優れたフェライト系ステンレス鋼を得ることができる。上記成分組成における必須元素(C、Si、Mn、Ni、Al、Cr、Nb、Mo、N、Sb)の含有量の範囲が1つでも外れた場合は、所期した耐クリープ特性と熱疲労特性は得られない。
Cは、鋼の強度を高めるのに有効な元素であるが、0.020%を超えてCを含有すると、靭性および成形性の低下が顕著となる。また、本発明で重要なNbと結びつき生成する炭化物量が多くなることで、後述するNbの熱疲労特性と耐クリープ特性を向上させる効果が小さくなってしまう。よって、C含有量は0.020%以下とする。なお、C含有量は、成形性を確保する観点からは0.010%以下とすることが好ましい。より好ましくは、C含有量は0.008%以下とする。また、排気系部材としての強度を確保する観点からは、C含有量は0.001%以上とすることが好ましい。より好ましくは、C含有量は0.003%以上とする。さらに好ましくは、C含有量は0.004%以上とする。
Siは、耐酸化性向上のために必要な重要元素である。高温化した排ガス中での耐酸化性を確保するためには0.1%以上のSiの含有が必要である。一方、1.0%を超える過剰のSiの含有は、室温における加工性を低下させるため、Si含有量の上限は1.0%とする。好ましくは、Si含有量は0.20%以上とする。より好ましくは、Si含有量は0.30%以上とする。さらに好ましくは、Si含有量は0.40%以上とする。また、好ましくは、Si含有量は0.90%以下とする。より好ましくは、Si含有量は0.60%以下とする。
Mnは、酸化スケールの耐剥離性を高めることにより熱疲労特性を向上させる効果を有する。これらの効果を得るためには、0.05%以上のMnの含有が必要である。一方、Mnの0.60%を超える過剰な含有は、高温でγ相が生成しやすくなり、耐熱性を低下させる。よって、Mn含有量は0.05%以上0.60%以下とする。好ましくは、Mn含有量は0.10%以上とする。より好ましくは、Mn含有量は0.15%以上とする。また、好ましくは、Mn含有量は0.50%以下とする。より好ましくは、Mn含有量は0.40%以下とする。
Pは、鋼の靭性を低下させる有害な元素であり、可能な限り低減することが望ましい。よって、P含有量は0.050%以下とする。好ましくは、P含有量は0.040%以下である。より好ましくは、P含有量は0.030%以下である。
Sは、伸びやr値を低下させ、成形性に悪影響を及ぼすとともに、ステンレス鋼の基本特性である耐食性を低下させる有害元素でもあるため、できる限り低減することが望ましい。よって、本発明では、S含有量は0.008%以下とする。好ましくは、S含有量は0.006%以下である。
Niは、鋼の靭性および耐酸化性を向上させる元素である。これらの効果を得るためには、Ni含有量は0.02%以上とする。耐酸化性が不十分であると、酸化スケールの生成量が多くなることによる素材断面積の減少や、酸化スケールの剥離により、熱疲労特性が低下する。一方、Niは強力なγ相形成元素であるため、過剰にNiを含有すると、高温でγ相を生成し、耐酸化性を低下させとともに熱膨張係数が大きくなることで熱疲労特性が低下する。よって、Ni含有量の上限は0.60%とする。好ましくは、Ni含有量は0.05%以上である。より好ましくは、Ni含有量は0.10%以上である。また、好ましくは、Ni含有量は0.40%以下である。より好ましくは、Ni含有量は0.30%以下である。
Alは、耐酸化性を向上させる効果を有する元素である。その効果を得るためにAlは0.001%以上の含有が必要である。一方、Alは熱膨張係数を高める元素でもある。熱膨張係数が大きくなると熱疲労特性が低下してしまう。さらに、鋼が著しく硬質化して加工性が低下してしまう。よって、Al含有量は0.25%以下とする。好ましくは、Al含有量は0.005%以上である。より好ましくは、Al含有量は0.010%超えである。さらに好ましくは、Al含有量は0.020%超えである。また、好ましくは、Al含有量は0.20%未満である。より好ましくは、Al含有量は0.08%未満である。
Crは、ステンレス鋼の特徴である耐食性、耐酸化性を向上させるのに有効な重要元素であるが、Cr含有量が18.0%未満では、900℃を超える高温域で十分な耐酸化性が得られない。耐酸化性が不十分であると、酸化スケール生成量が多くなり、素材の断面積の減少に伴い熱疲労特性も低下する。一方、Crは、室温において鋼を固溶強化し、硬質化および低延性化する元素であり、Cr含有量が20.0%を超えると、上記弊害が顕著となり、熱疲労特性も却って低下するため、Cr含有量の上限は20.0%とする。好ましくは、Cr含有量は18.5%以上である。また、好ましくは、Cr含有量は19.5%以下である。
Nbは、高温強度を上昇させて熱疲労特性、耐クリープ特性を向上させる本発明に重要な元素である。このような効果は、0.30%以上のNbの含有で認められる。Nb含有量が0.30%未満の場合は、高温における強度が不足し、優れた熱疲労特性、耐クリープ特性が得られない。しかし、0.80%を超えるNbの含有は、金属間化合物であるLaves相(Fe2Nb)等が析出しやすくなり、高温強度が低下し、熱疲労特性と耐クリープ特性はかえって低下するのみならず、脆化を促進する。よって、Nb含有量は0.30%以上0.80%以下とする。好ましくは、Nb含有量は0.40%以上である。より好ましくは、Nb含有量は0.45%以上である。さらに好ましくは、Nb含有量は0.50%超えである。また、好ましくは、Nb含有量は0.70%以下である。より好ましくは、Nb含有量は0.60%以下である。
Moは、鋼中に固溶し鋼の高温強度を向上させることで熱疲労特性、耐クリープ特性を向上させる有効な元素である。その効果は1.80%以上のMoの含有で現れる。Mo含有量が1.80%未満の場合は高温強度が不十分となり、優れた熱疲労特性、耐クリープ特性は得られない。一方、過剰なMoの含有は、鋼を硬質化させて加工性を低下させてしまうのみならず、Nbと同様にLaves相(Fe2Mo)として析出し、鋼中固溶Mo量は低減するため却って熱疲労特性は低下してしまう。また、熱疲労試験中に粗大なσ相として析出することで破壊の起点となり熱疲労特性が低下してしまう。よって、Mo含有量の上限は2.50%とする。好ましくは、Mo含有量は1.90%以上である。より好ましくは、Mo含有量は2.00%超えである。また、好ましくは、Mo含有量は2.30%以下である。より好ましくは、Mo含有量は2.10%以下である。
Nは、鋼の靭性および成形性を低下させる元素であり、0.015%を超えて含有すると、靭性および成形性の低下が顕著となるのみならず、Nb窒化物の形成により固溶Nb量が低下し、耐クリープ特性と熱疲労特性が低下する。よって、N含有量は0.015%以下とする。なお、Nは、靭性、成形性を確保する観点からは、できるだけ低減することが好ましく、N含有量は0.010%未満とすることが望ましい。
Sbは本発明において耐クリープ特性を向上させるために重要な元素である。Sbは鋼中に固溶し、高温での鋼のクリープ変形を抑制する。Sbは高温域においても炭窒化物やLaves相として析出せず、長期間の使用後にも鋼中に固溶し、クリープ変形を抑制するため耐クリープ特性を向上させることができる。この効果はSbの0.002%以上の含有で得られる。一方、Sbの過剰な含有は鋼の靭性、熱間加工性を低下させるため、製造時に割れが発生しやすくなるのみならず、熱間延性が低下することで熱疲労特性も低下する。したがって、Sb含有量の上限は0.50%とする。好ましくは、Sb含有量は0.005%以上である。より好ましくは0.020%以上である。また、好ましくは、Sb含有量は0.30%以下である。より好ましくは、Sb含有量は0.10%以下である。
上述したように、NbとMoは熱疲労特性、耐クリープ特性向上に有効な元素である。それぞれ0.30%以上、1.80%以上の含有でその効果が認められる。しかし、排ガスの高温化に対応するために200~950℃間で昇温と降温を繰り返したときの熱疲労寿命がSUS444より優れる熱疲労特性、耐クリープ特性を実現するためには、両元素を所定の範囲で含有した上で、少なくともNb+Mo≧2.3%を満たす、すなわちNb+Mo量(NbとMoの合計含有量)を2.3%以上とする必要がある。これを満たさない場合は、たとえSbを所定量添加しても優れた耐クリープ特性が得られない。好ましくは、Nb+Mo>2.5%である。一方、Nb+Mo量が増加し過ぎると鋼が脆くなり、優れた熱疲労特性、耐クリープ特性は得られなくなる。そのため、Nb+Mo量の上限は3.0%とする。好ましくは、Nb+Mo量は2.7%以下である。
Tiは、CおよびNを固定して、耐食性や成形性を向上し、溶接部の粒界腐食を防止する元素であり、本発明では、必要に応じて含有することができる。Tiを含有することにより、TiがNbよりも優先的にCおよびNと結びつくため、高温強度に有効な鋼中固溶Nb量を確保することができ、耐熱性向上にも有効である。それらの効果は0.01%以上のTiの含有で得られる。一方、0.16%を超える過剰なTiの含有は、靭性の低下を招いて、例えば、熱延板焼鈍ラインで繰り返し受ける曲げ-曲げ戻しによって破断を起こしたりする等、製造性に悪影響を及ぼすようになる。また、Tiの炭窒化物を核としてNbの炭窒化物が析出しやすくなるため、高温強度に有効な鋼中固溶Nb量を却って低減させてしまい、熱疲労特性、耐クリープ特性が低下する。よって、Tiを含有する場合、Ti含有量は0.01~0.16%とする。好ましくは、Ti含有量は0.03%以上である。また、好ましくは、Ti含有量は0.12%以下である。より好ましくは、Ti含有量は0.08%以下である。さらに好ましくは、Ti含有量は0.05%以下である。
Zrは耐酸化性を向上させる元素であり、本発明では、必要に応じて含有することができる。この効果は0.01%以上のZrの含有で得られる。しかし、Zr含有量が0.50%を超えると、Zr金属間化合物が析出して、鋼を脆化させる。よって、Zrを含有する場合は、Zr含有量は0.01~0.50%とする。好ましくは、Zr含有量は0.03%以上である。より好ましくは、Zr含有量は0.05%以上である。また、好ましくは、Zr含有量は0.30%以下である。より好ましくは、Zr含有量は0.10%以下である。
Coは、鋼の靭性向上に有効な元素として知られている。この効果は0.01%以上のCoの含有で得られる。一方、過剰なCoの含有は鋼の靭性を却って低下させるため、Co含有量の上限は0.50%とする。よって、Coを含有する場合、Co含有量は0.01~0.50%とする。好ましくは、Co含有量は0.03%以上である。また、好ましくは、Co含有量は0.30%以下である。
Bは、鋼の加工性、特に二次加工性を向上させるために有効な元素である。このような効果は、0.0002%以上のBの含有で得ることができる。一方、過剰なBの含有は、BNを生成して加工性を低下させる。よって、Bを含有する場合は、B含有量は0.0002~0.0050%とする。好ましくは、B含有量は0.0005%以上である。より好ましくは、B含有量は0.0008%以上である。また、好ましくは、B含有量は0.0030%以下である。より好ましくは、B含有量は0.0020%以下である。
Vは、鋼の加工性向上に有効な元素であるとともに、耐酸化性の向上にも有効な元素である。これらの効果は、V含有量が0.01%以上で顕著となる。しかし、1.0%を超える過剰なVの含有は、粗大なV(C、N)の析出を招き、靭性を低下させるのみならず、表面性状を低下させる。よって、Vを含有する場合は、V含有量は0.01~1.0%とする。好ましくは、V含有量は0.03%以上である。より好ましくは、V含有量は0.05%以上である。また、好ましくは、V含有量は0.50%以下である。より好ましくは、V含有量は0.20%以下である。
Wは、Moと同様に固溶強化により高温強度を大きく向上させる元素である。この効果は0.01%以上のWの含有で得られる。一方、過剰なWの含有は鋼を著しく硬質化するのみならず、製造時の焼鈍工程において強固なスケールが生成するため、酸洗時の脱スケールが困難になる。よって、Wを含有する場合は、W含有量は0.01~5.0%とする。好ましくは、W含有量は0.05%以上である。また、好ましくは、W含有量は3.5%以下である。より好ましくは、W含有量は1.0%以下である。さらに好ましくは、W含有量は0.30%未満である。
Cuは鋼の耐食性を向上させる効果を有する元素であり、耐食性が必要な場合に含有する。その効果は0.01%以上のCuの含有で得られる。一方で0.40%を超えてCuを含有すると、酸化スケールが剥離しやすくなり、耐繰り返し酸化特性が低下する。そのため、Cuを含有する場合は、Cu含有量は0.01~0.40%とする。好ましくは、Cu含有量は0.03%以上である。より好ましくは、Cu含有量は0.06%以上である。また、好ましくは、Cu含有量は0.20%以下である。より好ましくは、Cu含有量は0.10%以下である。
Snは、鋼の高温強度向上に有効な元素である。その効果は0.001%以上のSnの含有で得られる。一方、過剰なSnの含有は、鋼の脆化に伴い熱疲労特性を却って低下させる。そのため、Snを含有する場合には、Sn含有量は0.001~0.005%とする。好ましくは、Sn含有量は0.001%以上0.003%以下である。
Caは、連続鋳造の際に発生しやすいTi系介在物析出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0002%以上のCaの含有で得られる。一方、表面欠陥を発生させず良好な表面性状を得るためには、Ca含有量は0.0050%以下とする必要がある。従って、Caを含有する場合は、Ca含有量は0.0002~0.0050%とする。好ましくは、Ca含有量は0.0005%以上である。また、好ましくは、Ca含有量は0.0030%以下である。より好ましくは、Ca含有量は0.0020%以下である。
Mgは、スラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。本発明のようにNbやTiを含有する鋼においては、MgはNbやTiの炭窒化物の粗大化を抑制する効果も有する。その効果は0.0002%以上のMgの含有で得られる。Ti炭窒化物が粗大化すると、脆性割れの起点となるため靭性が大きく低下する。Nb炭窒化物が粗大化すると、Nbの鋼中固溶量が低下するため、熱疲労特性の低下に繋がる。一方、Mg含有量が0.0050%超えとなると、鋼の表面性状を悪化させてしまう。よって、Mgを含有する場合は、Mg含有量は0.0002~0.0050%とする。好ましくは、Mg含有量は0.0003%以上である。より好ましくは、Mg含有量は0.0004%以上である。また、好ましくは、Mg含有量は0.0030%以下である。より好ましくは、Mg含有量は0.0020%以下である。
上記のようにして得た各冷延焼鈍板から図1に示す形状の試験片を切り出し、900℃で応力15MPaを負荷するクリープ試験を行った。破断までにかかった時間を元に、下記のように評価した。比較として行ったSUS444(従来例No.28)については、破断までにかかった時間は5.5hrであった。
○:6hr≦破断時間<10hr
×:破断時間<6hr
上記評価で、◎と○を合格、×を不合格とした。得られた結果を表1に示す(表1中のクリープ900℃参照)。
熱疲労試験は、図3に示すように、上記試験片を拘束率0.5で拘束しながら、200℃と950℃の間で昇温・降温を繰り返す条件で行った。このとき、昇温速度は5℃/秒とし、降温速度は2℃/秒とした。そして、200℃、950℃での保持時間はそれぞれ30秒とした。なお、上記の拘束率については、図3に示すように、拘束率η=a/(a+b)として表すことができ、aは(自由熱膨張ひずみ量-制御ひずみ量)/2であり、bは制御ひずみ量/2である。また、自由熱膨張ひずみ量とは機械的な応力を一切与えずに昇温した場合のひずみ量であり、制御ひずみ量とは試験中に生じているひずみ量の絶対値を示す。拘束により材料に生じる実質的な拘束ひずみ量は、(自由熱膨張ひずみ量-制御ひずみ量)である。
○:800サイクル以上1000サイクル未満(合格)
×:800サイクル未満(不合格)
上記評価で、◎、○を合格、×を不合格とした。得られた結果を表1に示す(表1中の熱疲労寿命950℃参照)。
Claims (4)
- 質量%で、
C:0.020%以下、
Si:0.1~1.0%、
Mn:0.05~0.60%、
P:0.050%以下、
S:0.008%以下、
Ni:0.02~0.60%、
Al:0.001~0.25%、
Cr:18.0~20.0%、
Nb:0.30~0.80%、
Mo:1.80~2.50%、
N:0.015%以下、
Sb:0.002~0.50%
を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼。
Nb+Mo:2.3~3.0% ・・・(1)
(式(1)中のNb、Moは、各元素の含有量(質量%)を示す。) - 前記成分組成は、質量%で、さらに、
Ti:0.01~0.16%、
Zr:0.01~0.50%、
Co:0.01~0.50%、
B:0.0002~0.0050%、
V:0.01~1.0%、
W:0.01~5.0%、
Cu:0.01~0.40%、
Sn:0.001~0.005%
のうちから選ばれる1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼。 - 前記成分組成は、質量%で、さらに、
Ca:0.0002~0.0050%、
Mg:0.0002~0.0050%
のうちから選ばれる1種または2種を含有する請求項1または2に記載のフェライト系ステンレス鋼。 - エンジンからの排ガスによって700℃以上まで昇温するエキゾーストマニホールドに使用される請求項1から3のいずれかに記載のフェライト系ステンレス鋼。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19746936.4A EP3719164A1 (en) | 2018-01-31 | 2019-01-25 | Ferritic stainless steel |
CN201980010962.6A CN111684092A (zh) | 2018-01-31 | 2019-01-25 | 铁素体系不锈钢 |
KR1020207022119A KR102508125B1 (ko) | 2018-01-31 | 2019-01-25 | 페라이트계 스테인리스강 |
JP2019526014A JP6624347B1 (ja) | 2018-01-31 | 2019-01-25 | フェライト系ステンレス鋼 |
US16/966,711 US20210032731A1 (en) | 2018-01-31 | 2019-01-25 | Ferritic stainless steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018015830 | 2018-01-31 | ||
JP2018-015830 | 2018-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151125A1 true WO2019151125A1 (ja) | 2019-08-08 |
Family
ID=67479296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002413 WO2019151125A1 (ja) | 2018-01-31 | 2019-01-25 | フェライト系ステンレス鋼 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210032731A1 (ja) |
EP (1) | EP3719164A1 (ja) |
JP (1) | JP6624347B1 (ja) |
KR (1) | KR102508125B1 (ja) |
CN (1) | CN111684092A (ja) |
TW (1) | TWI722377B (ja) |
WO (1) | WO2019151125A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157580A1 (ja) * | 2023-01-23 | 2024-08-02 | Jfeスチール株式会社 | フェライト系ステンレス鋼およびその製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018921A (ja) | 2002-06-14 | 2004-01-22 | Jfe Steel Kk | 室温で軟質かつ耐高温酸化性に優れたフェライト系ステンレス鋼 |
WO2014119796A1 (ja) * | 2013-02-04 | 2014-08-07 | 新日鐵住金ステンレス株式会社 | 加工性に優れたフェライト系ステンレス鋼板およびその製造方法 |
WO2014157104A1 (ja) * | 2013-03-29 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | ろう付け性に優れたフェライト系ステンレス鋼板、熱交換器、熱交換器用フェライト系ステンレス鋼板、フェライト系ステンレス鋼、燃料供給系部材用フェライト系ステンレス鋼、及び燃料供給系部品 |
WO2016117458A1 (ja) * | 2015-01-19 | 2016-07-28 | 新日鐵住金ステンレス株式会社 | 加熱後耐食性に優れた排気系部材用フェライト系ステンレス鋼 |
WO2018043309A1 (ja) * | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1818421A1 (fr) * | 2006-02-08 | 2007-08-15 | UGINE & ALZ FRANCE | Acier inoxydable ferritique dit à 19% de chrome stabilisé au niobium |
US8470237B2 (en) * | 2006-05-09 | 2013-06-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion |
JP4998719B2 (ja) * | 2007-05-24 | 2012-08-15 | Jfeスチール株式会社 | 打ち抜き加工性に優れる温水器用フェライト系ステンレス鋼板およびその製造方法 |
JP5387057B2 (ja) * | 2008-03-07 | 2014-01-15 | Jfeスチール株式会社 | 耐熱性と靭性に優れるフェライト系ステンレス鋼 |
JP5320034B2 (ja) * | 2008-11-14 | 2013-10-23 | 新日鐵住金ステンレス株式会社 | 加熱後耐食性に優れた自動車排気系部材用省Mo型フェライト系ステンレス鋼 |
CN101962740B (zh) * | 2009-07-23 | 2013-03-27 | 宝山钢铁股份有限公司 | 汽车尾气排放系统用铁素体不锈钢及其制造方法 |
JP5609571B2 (ja) * | 2010-11-11 | 2014-10-22 | Jfeスチール株式会社 | 耐酸化性に優れたフェライト系ステンレス鋼 |
KR101573511B1 (ko) * | 2011-03-29 | 2015-12-01 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | 용접부의 내식성 및 강도가 우수한 페라이트계 스테인리스강 및 tig 용접 구조물 |
CN102277538B (zh) * | 2011-07-27 | 2013-02-27 | 山西太钢不锈钢股份有限公司 | 一种含锡铁素体不锈钢板及其制造方法 |
EP2902523B1 (en) * | 2012-09-25 | 2018-09-05 | JFE Steel Corporation | Ferritic stainless steel |
JP6205407B2 (ja) * | 2013-03-06 | 2017-09-27 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れたフェライト系ステンレス鋼板 |
JP6295155B2 (ja) * | 2014-07-22 | 2018-03-14 | 新日鐵住金ステンレス株式会社 | フェライト系ステンレス鋼およびその製造方法、並びにフェライト系ステンレス鋼を部材とする熱交換器 |
MX2017005210A (es) * | 2014-10-31 | 2017-07-26 | Nippon Steel & Sumikin Sst | Chapa de acero inoxidable con base en ferrita, tubo de acero, y metodo de produccion de estos. |
EP3214198B1 (en) * | 2014-10-31 | 2022-06-01 | NIPPON STEEL Stainless Steel Corporation | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
JP6744740B2 (ja) * | 2016-03-28 | 2020-08-19 | 日鉄ステンレス株式会社 | 排気マニホールド用フェライト系ステンレス鋼板 |
EP3487410A4 (en) * | 2016-08-01 | 2020-04-08 | Cordance Medical Inc. | ULTRASONIC OPENING OF THE BLOOD BRAIN CABINET |
-
2019
- 2019-01-25 KR KR1020207022119A patent/KR102508125B1/ko active IP Right Grant
- 2019-01-25 WO PCT/JP2019/002413 patent/WO2019151125A1/ja unknown
- 2019-01-25 US US16/966,711 patent/US20210032731A1/en not_active Abandoned
- 2019-01-25 EP EP19746936.4A patent/EP3719164A1/en active Pending
- 2019-01-25 CN CN201980010962.6A patent/CN111684092A/zh active Pending
- 2019-01-25 JP JP2019526014A patent/JP6624347B1/ja active Active
- 2019-01-29 TW TW108103350A patent/TWI722377B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018921A (ja) | 2002-06-14 | 2004-01-22 | Jfe Steel Kk | 室温で軟質かつ耐高温酸化性に優れたフェライト系ステンレス鋼 |
WO2014119796A1 (ja) * | 2013-02-04 | 2014-08-07 | 新日鐵住金ステンレス株式会社 | 加工性に優れたフェライト系ステンレス鋼板およびその製造方法 |
WO2014157104A1 (ja) * | 2013-03-29 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | ろう付け性に優れたフェライト系ステンレス鋼板、熱交換器、熱交換器用フェライト系ステンレス鋼板、フェライト系ステンレス鋼、燃料供給系部材用フェライト系ステンレス鋼、及び燃料供給系部品 |
WO2016117458A1 (ja) * | 2015-01-19 | 2016-07-28 | 新日鐵住金ステンレス株式会社 | 加熱後耐食性に優れた排気系部材用フェライト系ステンレス鋼 |
WO2018043309A1 (ja) * | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3719164A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157580A1 (ja) * | 2023-01-23 | 2024-08-02 | Jfeスチール株式会社 | フェライト系ステンレス鋼およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102508125B1 (ko) | 2023-03-08 |
JPWO2019151125A1 (ja) | 2020-02-06 |
TWI722377B (zh) | 2021-03-21 |
EP3719164A4 (en) | 2020-10-07 |
JP6624347B1 (ja) | 2019-12-25 |
TW201934778A (zh) | 2019-09-01 |
CN111684092A (zh) | 2020-09-18 |
EP3719164A1 (en) | 2020-10-07 |
KR20200100833A (ko) | 2020-08-26 |
US20210032731A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6075349B2 (ja) | フェライト系ステンレス鋼 | |
JP5700175B2 (ja) | フェライト系ステンレス鋼 | |
JP4702493B1 (ja) | 耐熱性に優れるフェライト系ステンレス鋼 | |
JP5234214B2 (ja) | フェライト系ステンレス鋼 | |
JP6123964B1 (ja) | フェライト系ステンレス鋼 | |
WO2015174078A1 (ja) | フェライト系ステンレス鋼 | |
JP5904306B2 (ja) | フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板 | |
CN104364404B (zh) | 铁素体系不锈钢 | |
JP6908179B2 (ja) | フェライト系ステンレス鋼 | |
WO2015174079A1 (ja) | フェライト系ステンレス鋼 | |
JP6624345B1 (ja) | フェライト系ステンレス鋼 | |
JP6624347B1 (ja) | フェライト系ステンレス鋼 | |
JP7468470B2 (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP7528894B2 (ja) | フェライト系ステンレス鋼 | |
JP2024030778A (ja) | フェライト系ステンレス冷延焼鈍鋼板、その素材となる冷延鋼板および前記冷延焼鈍鋼板の製造方法 | |
JP2024129726A (ja) | フェライト系ステンレス鋼およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019526014 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19746936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019746936 Country of ref document: EP Effective date: 20200702 |
|
ENP | Entry into the national phase |
Ref document number: 20207022119 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |