WO2019150870A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2019150870A1
WO2019150870A1 PCT/JP2018/048159 JP2018048159W WO2019150870A1 WO 2019150870 A1 WO2019150870 A1 WO 2019150870A1 JP 2018048159 W JP2018048159 W JP 2018048159W WO 2019150870 A1 WO2019150870 A1 WO 2019150870A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
terminals
semiconductor
terminal
semiconductor module
Prior art date
Application number
PCT/JP2018/048159
Other languages
English (en)
French (fr)
Inventor
成功 有村
浩志 瀧
高志 増澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019150870A1 publication Critical patent/WO2019150870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Definitions

  • the present disclosure relates to a semiconductor module including a pair of DC terminals and a semiconductor element electrically connected to each DC terminal.
  • a semiconductor module including a pair of DC terminals of a positive electrode terminal and a negative electrode terminal, a semiconductor element such as a MOSFET electrically connected to each DC terminal, and a sealing member for sealing them is known. (See Patent Document 1 below).
  • This semiconductor module is used for a power converter. In this power conversion device, the semiconductor element is switched to convert DC power supplied through the DC terminal into AC power.
  • the inductance L is parasitic on the DC terminal.
  • the current I flowing through the DC terminal changes with time, an eddy current is generated in the opposing bus bar in a direction that prevents a change in the magnetic field generated around the current I. Thereby, it is possible to reduce the inductance L parasitic on the pair of DC terminals. Therefore, it can suppress that a big surge voltage is added to a semiconductor element.
  • the above semiconductor module has a problem that the temperature of the opposite bus bar is likely to rise. That is, when eddy current flows, resistance heat is generated in the opposite bus bar.
  • the temperature of the opposing bus bar easily rises. Therefore, there is a possibility that heat is transmitted from the opposing bus bar to the sealing member, and the sealing member is deteriorated.
  • the present disclosure is intended to provide a semiconductor module that can reduce the inductance parasitic to the DC terminal and can easily suppress the temperature rise of the opposite bus bar.
  • One aspect of the present disclosure is a pair of DC terminals of a positive electrode terminal and a negative electrode terminal, which are arranged at positions adjacent to each other, and a DC voltage is applied between each of them, A pair of semiconductor elements, an upper arm semiconductor element electrically connected to the positive terminal and a lower arm semiconductor element electrically connected to the negative terminal; An opposing bus bar that is disposed at a position adjacent to the pair of DC terminals in the thickness direction of the DC terminals, and that generates eddy currents with time change of current flowing through the DC terminals; A sealing member made of an insulating material and sealing the pair of semiconductor elements and the opposing bus bar; A heat sink for cooling the semiconductor element, The opposing bus bar is in a semiconductor module connected to the heat sink.
  • the opposed bus bar is connected to the heat sink. Therefore, when eddy current flows through the opposing bus bar and heat is generated, the heat can be transmitted to the heat radiating plate, and the temperature rise of the opposing bus bar can be suppressed. For this reason, it is possible to suppress a problem that heat is transferred to the sealing member and deteriorates.
  • FIG. 1 is a perspective view of a semiconductor module drawn with the filling portion omitted in Embodiment 1.
  • FIG. 2 is a plan view of the semiconductor module drawn in FIG.
  • FIG. 3 is a cross-sectional view of the semiconductor module according to the first embodiment.
  • FIG. 4 is a partially enlarged view of FIG.
  • FIG. 5 is a rear view of the semiconductor module according to the first embodiment.
  • FIG. 6 is a perspective view of the DC terminal and the opposite bus bar in the first embodiment.
  • FIG. 7 is a plan view of the DC terminal and the opposed bus bar in the first embodiment.
  • FIG. 8 is a circuit diagram of the semiconductor module according to the first embodiment.
  • FIG. 1 is a perspective view of a semiconductor module drawn with the filling portion omitted in Embodiment 1.
  • FIG. 2 is a plan view of the semiconductor module drawn in FIG.
  • FIG. 3 is a cross-sectional view of the semiconductor module according to the first embodiment.
  • FIG. 4 is a partially enlarged
  • FIG. 9 is a circuit diagram of the power conversion device according to the first embodiment.
  • FIG. 10 is a plan view of the DC terminal and the opposite bus bar in the second embodiment.
  • FIG. 11 is a plan view of a DC terminal and an opposing bus bar in the third embodiment.
  • FIG. 12 is a plan view of a DC terminal and an opposing bus bar in Embodiment 4.
  • FIG. 13 is a plan view of a DC terminal and an opposite bus bar in the fifth embodiment.
  • FIG. 14 is a plan view of the DC terminal and the opposing bus bar in the sixth embodiment.
  • FIG. 15 is a perspective view of the DC terminal and the opposite bus bar in the seventh embodiment. 16 is a view taken in the direction of arrow XVI in FIG.
  • FIG. 17 is a perspective view of a DC terminal and an opposing bus bar in the eighth embodiment.
  • 18 is a view taken along arrow XVIII in FIG.
  • FIG. 19 is a partially enlarged back view of the semiconductor module according to the eighth embodiment
  • the semiconductor module 1 of the present embodiment includes a pair of DC terminals 2 (2 P , 2 N ), a pair of semiconductor elements 3 (3 U , 3 L ), an opposing bus bar 4, The sealing member 5 and the heat sink 6 are provided.
  • the DC terminal 2 includes a positive terminal 2 P and a negative terminal 2 N. A DC voltage is applied to these DC terminals 2 from a DC power supply 8 (see FIG. 9).
  • the pair of DC terminals 2 P and 2 N are arranged adjacent to each other.
  • the semiconductor element 3 includes an upper arm semiconductor element 3 U electrically connected to the positive terminal 2 P and a lower arm semiconductor element 3 L electrically connected to the negative terminal 2 N.
  • the opposing bus bar 4 is disposed at a position adjacent to the pair of DC terminals 2 in the thickness direction (Z direction) of the DC terminals 2.
  • the eddy current i is generated in the opposite bus bar 4 with the time change of the current I flowing through the DC terminal 2.
  • the sealing member 5 seals the pair of semiconductor elements 3 and the opposing bus bar 4.
  • the heat sink 6 is provided for cooling the semiconductor element 3.
  • a part of the opposing bus bar 4 is exposed from the sealing member 5 and connected to the heat sink 6.
  • the semiconductor module 1 of this embodiment is an on-vehicle semiconductor module to be mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • the power conversion device 19 is configured using a plurality of semiconductor modules 1. Then, by switching the semiconductor element 3 (MOSFET in this embodiment) sealed in each semiconductor module 1, the DC power supplied from the DC power supply 8 is converted into AC power. The three-phase AC motor 89 is driven using the obtained AC power.
  • the semiconductor module 1 of the present embodiment includes a frame portion 51 (see FIGS. 1 and 2) made of an insulating material and a filling portion 52 (see FIGS. 3 and 4) that fills the space in the frame portion 51.
  • the frame member 51 and the filling portion 52 constitute the sealing member 5.
  • the frame portion 51 is made of synthetic resin, and the filling portion 52 is made of silicon gel or the like.
  • the upper arm semiconductor element 3 U and a lower arm semiconductor element 3 L are disposed. Further, as shown in FIGS. 3 and 4, the heat radiating plate 6 is attached to the frame portion 51. The heat radiating plate 6 is used to radiate heat generated from the semiconductor elements 3 U and 3 L. A cooler (not shown) is attached to the heat radiating plate 6.
  • the heat radiation side connection plate 13 is interposed between the semiconductor element 50 and the heat radiation plate 6.
  • the heat radiation side connection plate 13 includes an insulating layer 132 made of a ceramic such as alumina or silicon nitride, and a metal layer 131 formed on the surface of the insulating layer 132.
  • a drain electrode D (see FIG. 3) of the semiconductor element 3 is connected to the metal layer 131.
  • the insulating layer 132 insulates the metal layer 131 and the heat sink 6 from each other.
  • an upper arm semiconductor element 3 U of the radiator-side connecting plate 13 U and the positive electrode terminal 2 P it is electrically connected by a bonding wire 10.
  • the opening-side connection plate 15 is disposed on the opening 511 side in the Z direction with respect to the semiconductor element 50.
  • the source electrode S of the semiconductor element 3 is connected to the opening side connection plate 15.
  • an opening-side connecting plate 15 L of the lower arm semiconductor element 3 L and the negative terminal 2 N it is electrically connected by a bonding wire 10.
  • Opening-side connecting plate 15 U of the upper arm semiconductor element 3 U is connected to the radiator-side connecting plate 13 L of the lower arm semiconductor element 3 L.
  • the output terminal 11 is connected to the heat radiation side connection plate 13 L of the lower arm semiconductor element 3 L.
  • the DC terminal 2 includes a power supply connection portion 21 that is electrically connected to the DC power supply 8 (see FIG. 9) and an element connection portion 22 that is electrically connected to the semiconductor element 3.
  • the DC terminal 2 is bent, and the positions of the power supply connection portion 21 and the element connection portion 22 in the Z direction are different from each other.
  • a bolt insertion hole 211 is formed in the power supply connection portion 21.
  • a screw hole (not shown) is formed in the frame portion 51 at a position corresponding to the bolt insertion hole 211.
  • the power supply connection portion 21 is disposed closer to the opening 511 than the element connection portion 22 in the Z direction.
  • the opposing bus bar 4 is bent along the DC terminal 2.
  • the opposing bus bar 4 includes a power supply side bus bar portion 41 disposed on the power supply connection portion 21 side in an orthogonal direction (Y direction) orthogonal to both the arrangement direction (X direction) and the Z direction of the pair of DC terminals 2; And an element-side bus bar part 42 disposed on the element connection part 22 side.
  • the surface of the element side bus bar portion 42 opposite to the side where the element connection portion 22 is arranged in the Z direction is an exposed surface 40 exposed from the sealing member 5.
  • the exposed surface 40 is in contact with the heat sink 6.
  • the tip 411 of the power supply side bus bar portion 41 in the Y direction is embedded in the frame portion 51.
  • the tip 421 of the element side bus bar portion 42 in the Y direction is also embedded in the frame portion 51.
  • the creeping distance between the power supply side bus bar part 41 and the power supply connection part 21 is increased, and the creeping distance between the element side bus bar part 42 and the element connection part 22 is increased.
  • the opposing bus bar 4 is electrically connected to the ground via the heat sink 6, the potentials of the opposing bus bar 4 (the power source side bus bar part 41 and the element side bus bar part 42) and the DC terminal 2 are different from each other. In the present embodiment, the creeping distance between the opposing bus bar 4 and the DC terminal 2 is increased to suppress short circuit between them.
  • a pedestal 512 is formed in the frame 51.
  • the element connecting portion 22 is placed on the pedestal portion 512.
  • a control board (not shown) is accommodated in the frame portion 51.
  • the control board is connected to the semiconductor element 3.
  • the switching operation of the semiconductor element 3 is controlled by this control board.
  • a plurality of control terminals 12 protrude from the frame portion 51. These control terminals 12 are electrically connected to the control board.
  • the power supply-side bus bar portion 41 of the opposing bus bar 4 when viewed from the Z direction, and a power connection 21 P of the positive terminal 2 P, and the power connection 21 N of the negative terminal 2 N It is comprised so that it may overlap with any of these.
  • the area where the power supply side bus bar portion 41 overlaps the power supply connection portions 21 P and 21 N in the Z direction is increased, and the current I flowing through the power supply connection portions 21 P and 21 N changes with time.
  • a large amount of eddy current i is generated by the side bus bar portion 41.
  • the element-side bus bar portion 42 when viewed from the Z direction, and the element connection portion 22 P of the positive terminal 2 P, one that is configured to be overlapped with the element connection portion 22 N of the negative terminal 2 N.
  • the element-side bus bar portion 42 overlaps the element connecting portions 22 P and 22 N in the Z direction and the current I flowing through the element connecting portions 22 P and 22 N changes with time, the element A large amount of eddy current i is generated by the side bus bar portion 42.
  • the element connecting portion 22 of the DC terminal 2 is electrically connected to the semiconductor element 3 through a plurality of bonding wires 10.
  • the plurality of bonding wires 10 are arranged between both end edges 428 and 429 of the element-side bus bar portion 42 in the X direction.
  • the opposing bus bar 4 is connected to the heat sink 6. Therefore, when the eddy current i flows through the opposing bus bar 4 and heat is generated, the heat can be transmitted to the heat radiating plate 6 and the temperature rise of the opposing bus bar 4 can be suppressed. For this reason, it is possible to suppress a problem that heat is transferred to the sealing member 5 and deteriorates.
  • the surface of the element side bus bar portion 42 opposite to the side where the element connection portion 22 is arranged in the Z direction is connected to the heat radiating plate 6. Therefore, the heat generated by the eddy current i flowing through the opposed bus bar 4 can be dissipated to the side opposite to the element connecting portion 22 of the DC terminal 2. Therefore, it becomes difficult for heat to be transmitted from the element side bus bar part 42 to the element connection part 22 side (that is, the sealing member 5 side), and the temperature rise of the sealing member 5 can be more effectively suppressed.
  • the individual DC terminals 2 are bent so that the positions of the power supply connection portion 21 and the element connection portion 22 in the Z direction are different from each other.
  • the opposing bus bar 4 is bent so as to follow the shape of the DC terminal 2. In this way, the entire opposing bus bar 4 can be brought close to the DC terminal 2. Therefore, it becomes easy to generate the eddy current i in the opposing bus bar 4, and the inductance L of the DC terminal 2 can be reduced more effectively.
  • the element-side bus bar portion 42 overlaps both the positive electrode terminal 2 P and the negative electrode terminal 2 N when viewed from the Z direction. Therefore, the area where the element side bus bar portion 42 overlaps the DC terminals 2 P and 2 N in the Z direction can be widened. Therefore, when the current I flowing through the DC terminals 2 P and 2 N changes with time, more eddy current i can be generated by the element-side bus bar portion 42. Therefore, the inductance L parasitic on the DC terminals 2 P and 2 N can be further reduced.
  • each element connection portion 22 and the semiconductor element 3 are electrically connected through a plurality of bonding wires 10.
  • the plurality of bonding wires 10 are arranged between both end edges 428 and 429 of the element-side bus bar portion 42 in the X direction.
  • both end edges 428 and 429 of the element-side bus bar portion 42 are located outside the bonding wire 10 in the X direction. Therefore, the X direction width
  • a MOSFET is used as the semiconductor element 3, but the present disclosure is not limited to this, and an IGBT or the like can be used, for example.
  • FIG. 10 This embodiment is an example in which the shape of the opposing bus bar 4 is changed.
  • the element-side bus bar portion 42 of the opposing bus bar 4 is configured to be interposed between the pair of DC terminals 2 P and 2 N when viewed from the Z direction. That is, when viewed from the Z direction, the element-side bus bar portion 42 is configured not to overlap with either the positive electrode terminal 2 P or the negative electrode terminal 2 N. If it does in this way, the area of the opposing bus-bar 4 can be made small and the opposing bus-bar 4 can be formed with few materials. Therefore, the manufacturing cost of the semiconductor module 1 can be reduced.
  • the power supply side bus bar portion 41 is configured to overlap with both the positive electrode terminal 2 P and the negative electrode terminal 2 N when viewed from the Z direction.
  • the same configuration and operational effects as those of the first embodiment are provided.
  • This embodiment is an example in which the shape of the opposing bus bar 4 is changed.
  • the end edges 428 and 429 of the element-side bus bar portion 42 are two outer end edges 228 and 229 of the DC terminals 2 P and 2 N in the X direction. Located between.
  • the individual DC terminals 2 P and 2 N are electrically connected to the semiconductor element 3 through a plurality of bonding wires 10, respectively.
  • a plurality of bonding wires 10 are positioned between the end edges 428 and 429 of the element side bus bar portion 42 in the X direction.
  • This embodiment is an example in which the shape of the opposing bus bar 4 is changed.
  • the power supply side bus bar portion 41 when viewed from the Z direction, is configured not to overlap with either the positive electrode terminal 2 P or the negative electrode terminal 2 N.
  • the same configuration and operational effects as those of the first embodiment are provided.
  • This embodiment is an example in which the shape of the opposing bus bar 4 is changed.
  • the length in the X direction of the power supply side bus bar portion 41 is longer than that in the first embodiment.
  • both end edges 418 and 419 of the power supply side bus bar portion 41 overlap with the outer end edges 218 and 219 of the DC terminals 2 P and 2 N.
  • the power supply side bus bar portion 41 is formed with a through hole 412 for inserting a bolt (not shown) at a position corresponding to the bolt insertion hole 211 of the DC terminal 2.
  • This embodiment is an example in which the shape of the opposing bus bar 4 is changed. As shown in FIG. 14, in this embodiment, a through hole 416 that penetrates in the Z direction is formed in a portion 417 that exists between the pair of DC terminals 2 P and 2 N in the power supply side bus bar portion 41.
  • the opposing bus-bar 4 can be formed with few materials. Therefore, the manufacturing cost of the semiconductor module 1 can be reduced. In addition, the same configuration and operational effects as those of the first embodiment are provided.
  • This embodiment is an example in which the shapes of the DC terminal 2 and the opposed bus bar 4 are changed.
  • the power supply connection portion 21 of the DC terminal 2 and the element connection portion 22 are formed at positions shifted in the X direction.
  • the power supply side bus bar portion 41 and the element side bus bar portion 42 of the opposing bus bar 4 are formed at positions shifted in the X direction. If it does in this way, the design freedom of direct-current terminal 2 and counter bus bar 4 can be raised.
  • the same configuration and operational effects as those of the first embodiment are provided.
  • Electrode 8 This embodiment is an example in which the shapes of the DC terminal 2 and the opposed bus bar 4 are changed.
  • the positive electrode terminal 2 P and the negative electrode terminal 2 N each include a plurality of element connection portions 22.
  • the plurality of element connection portions 22 are arranged in the X direction. Separate semiconductor elements 3 are connected to the individual element connection portions 22.
  • a single-phase semiconductor module 1 is used to configure a three-phase power conversion device 19 (see FIG. 9).
  • the element-side bus bar portion 42 of the opposing bus bar 4 has a long shape that is long in the X direction. All the element connection portions 22 are configured to overlap the element-side bus bar portion 42 when viewed from the Z direction.
  • the element-side bus bar portion 42 of this embodiment includes an overlapping portion 422 that overlaps with the element connecting portions 22 P and 22 N of the DC terminal 2 when viewed from the Z direction, and a plurality of overlapping portions. And a connecting portion 423 for connecting 422.
  • the overlapping portion 422 and the connecting portion 423 form an element-side bus bar portion 42 that has a long shape in the X direction.
  • the element-side bus bar portion 42 has an exposed surface 40 exposed from the sealing member 5, as in the first embodiment. In this embodiment, the entire surface of the element side bus bar portion 42 is exposed from the sealing member 5 and is in contact with the heat sink 6.
  • the effect of this form is demonstrated. If the said structure is employ
  • the same configuration and operational effects as those of the first embodiment are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

一対の直流端子(2(2P,2N))と、個々の直流端子(2)に接続した半導体素子(3(3U,3L))と、対向バスバー(4)と、封止部材(5)とを備える。対向バスバー(4)は、直流端子(2)の厚さ方向において一対の直流端子(2)に隣り合う位置に配置されている。直流端子(2)を流れる電流(I)の時間変化に伴って、対向バスバー(4)に渦電流(i)が発生する。封止部材(5)は、一対の半導体素子(3)と対向バスバー(4)とを封止している。対向バスバー(4)の一部は、封止部材(5)から露出している。

Description

半導体モジュール 関連出願の相互参照
 本出願は、2018年1月31日に出願された日本出願番号2018-15526号に基づくもので、ここにその記載内容を援用する。
 本開示は、一対の直流端子と、個々の直流端子に電気接続した半導体素子とを備える半導体モジュールに関する。
 従来から、正極端子と負極端子との一対の直流端子と、個々の直流端子に電気接続した、MOSFET等の半導体素子と、これらを封止する封止部材とを備えた半導体モジュールが知られている(下記特許文献1参照)。この半導体モジュールは、電力変換装置に用いられる。この電力変換装置では、上記半導体素子をスイッチング動作させ、これにより、上記直流端子を介して供給される直流電力を交流電力に変換している。
 上記直流端子には、インダクタンスLが寄生している。このインダクタンスLが大きいと、上記半導体素子をスイッチング動作させたときに大きなサージ電圧V(=LdI/dt)が発生しやすくなる。そのため、上記半導体モジュールでは、インダクタンスLを低減するために、一対の直流端子に隣り合う位置に、対向バスバーを配置している。対向バスバーは、上記封止部材に、半導体素子等と共に封止されている。直流端子を流れる電流Iが時間的に変化すると、対向バスバーに、電流Iの周囲に発生した磁界の変化を妨げる向きに渦電流が発生する。これにより、一対の直流端子に寄生するインダクタンスLを低減することが可能になる。そのため、半導体素子に大きなサージ電圧が加わることを抑制できる。
特開2017-99231号公報
 上記半導体モジュールは、対向バスバーの温度が上昇しやすいという課題がある。すなわち、渦電流が流れると対向バスバーに抵抗熱が発生する。上記半導体モジュールでは、対向バスバーの放熱効率を高める工夫をしていないため、対向バスバーの温度が上昇しやすい。そのため、対向バスバーから封止部材に熱が伝わり、封止部材が変質する可能性が考えられる。
 本開示は、直流端子に寄生するインダクタンスを低減でき、かつ対向バスバーの温度上昇を抑制しやすい半導体モジュールを提供しようとするものである。
 本開示の一態様は、互いに隣り合う位置に配され、それぞれの間に直流電圧が加えられる、正極端子と負極端子との一対の直流端子と、
 上記正極端子に電気接続した上アーム半導体素子と、上記負極端子に電気接続した下アーム半導体素子との、一対の半導体素子と、
 上記直流端子の厚さ方向において上記一対の直流端子に隣り合う位置に配置され、上記直流端子を流れる電流の時間変化に伴って渦電流が発生する対向バスバーと、
 絶縁材料からなり、上記一対の半導体素子と上記対向バスバーとを封止する封止部材と、
 上記半導体素子を冷却する放熱板とを備え、
 上記対向バスバーは上記放熱板に接続している、半導体モジュールにある。
 上記半導体モジュールでは、上記厚さ方向において一対の直流端子に隣り合う位置に、上記対向バスバーを配置してある。
 そのため、半導体素子をスイッチング動作させ、直流端子を流れる電流Iが時間的に変化した場合、対向バスバーに、電流Iの周囲に発生した磁界の変化を妨げる向きに渦電流を流すことができる。これにより、一対の直流端子に寄生するインダクタンスLを低減でき、大きなサージ電圧V(=LdI/dt)が発生することを抑制できる。
 また、上記半導体モジュールでは、上記対向バスバーを上記放熱板に接続してある。
 そのため、対向バスバーに渦電流が流れて熱が発生した場合に、熱を放熱板に伝えることができ、対向バスバーの温度上昇を抑制できる。そのため、熱が封止部材に伝わって変質する不具合を抑制できる。
 以上のごとく、上記態様によれば、直流端子に寄生するインダクタンスを低減でき、かつ対向バスバーの温度上昇を抑制しやすい半導体モジュールを提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、充填部を省略して描いた半導体モジュールの斜視図であり、 図2は、実施形態1における、充填部を省略して描いた半導体モジュールの平面図であり、 図3は、実施形態1における、半導体モジュールの断面図であり、 図4は、図3の部分拡大図であり、 図5は、実施形態1における、半導体モジュールの裏面図であり、 図6は、実施形態1における、直流端子と対向バスバーの斜視図であり、 図7は、実施形態1における、直流端子と対向バスバーの平面図であり、 図8は、実施形態1における、半導体モジュールの回路図であり、 図9は、実施形態1における、電力変換装置の回路図であり、 図10は、実施形態2における、直流端子と対向バスバーの平面図であり、 図11は、実施形態3における、直流端子と対向バスバーの平面図であり、 図12は、実施形態4における、直流端子と対向バスバーの平面図であり、 図13は、実施形態5における、直流端子と対向バスバーの平面図であり、 図14は、実施形態6における、直流端子と対向バスバーの平面図であり、 図15は、実施形態7における、直流端子と対向バスバーの斜視図であり、 図16は、図15のXVI矢視図であり、 図17は、実施形態8における、直流端子と対向バスバーの斜視図であり、 図18は、図17のXVIII矢視図であり、 図19は、実施形態8における、半導体モジュールの部分拡大裏面図である。
(実施形態1)
 上記半導体モジュールに係る実施形態について、図1~図9を参照して説明する。図1~図3に示すごとく、本形態の半導体モジュール1は、一対の直流端子2(2P,2N)と、一対の半導体素子3(3U,3L)と、対向バスバー4と、封止部材5と、放熱板6とを備える。直流端子2には、正極端子2Pと負極端子2Nとがある。これらの直流端子2は、直流電源8(図9参照)から直流電圧が加えられる。一対の直流端子2P,2Nは、互いに隣り合う位置に配されている。
 また、上記半導体素子3には、正極端子2Pに電気接続した上アーム半導体素子3Uと、負極端子2Nに電気接続した下アーム半導体素子3Lとがある。
 対向バスバー4は、図4、図6に示すごとく、直流端子2の厚さ方向(Z方向)において一対の直流端子2に隣り合う位置に配置されている。直流端子2を流れる電流Iの時間変化に伴って、対向バスバー4に渦電流iが発生するよう構成されている。
 封止部材5は、図3に示すごとく、一対の半導体素子3と対向バスバー4とを封止している。放熱板6は、半導体素子3を冷却するために設けられている。
 図3、図4に示すごとく、対向バスバー4の一部が封止部材5から露出しており、放熱板6に接続している。
 本形態の半導体モジュール1は、電気自動車やハイブリッド車等の車両に搭載するための、車載用半導体モジュールである。本形態では図9に示すごとく、複数の半導体モジュール1を用いて、電力変換装置19を構成している。そして、個々の半導体モジュール1に封止された半導体素子3(本形態ではMOSFET)をスイッチング動作させることにより、直流電源8から供給される直流電力を交流電力に変換している。そして、得られた交流電力を用いて三相交流モータ89を駆動させている。
 本形態の半導体モジュール1は、絶縁材料からなる枠部51(図1、図2参照)と、該枠部51内の空間を充填する充填部52(図3、図4参照)とを備える。これら枠部51と充填部52とによって、上記封止部材5が構成されている。枠部51は合成樹脂からなり、充填部52はシリコンゲル等からなる。
 枠部51内に、上アーム半導体素子3Uと下アーム半導体素子3Lとが配されている。また、図3、図4に示すごとく、枠部51には、上記放熱板6が取り付けられている。この放熱板6を用いて、半導体素子3U,3Lから発生した熱を放熱している。放熱板6には、図示しない冷却器が取り付けられる。
 図3に示すごとく、半導体素子50と放熱板6との間には、放熱側接続板13が介在している。放熱側接続板13は、図4に示すごとく、アルミナや窒化ケイ素等のセラミックスからなる絶縁層132と、該絶縁層132の表面に形成された金属層131とを備える。この金属層131に、半導体素子3のドレイン電極D(図3参照)が接続している。絶縁層132によって、金属層131と放熱板6とを絶縁している。図3に示すごとく、上アーム半導体素子3Uの放熱側接続板13Uと正極端子2Pとを、ボンディングワイヤ10によって電気接続してある。
 また、枠部51内には、半導体素子50よりもZ方向における開口511側に、開口側接続板15が配されている。この開口側接続板15に、半導体素子3のソース電極Sが接続している。図1、図2に示すごとく、下アーム半導体素子3Lの開口側接続板15Lと負極端子2Nとを、ボンディングワイヤ10によって電気接続してある。上アーム半導体素子3Uの開口側接続板15Uは、下アーム半導体素子3Lの放熱側接続板13Lに接続している。また、下アーム半導体素子3Lの放熱側接続板13Lには、出力端子11が接続している。
 図1~図3に示すごとく、直流端子2は、直流電源8(図9参照)に電気接続される電源接続部21と、半導体素子3に電気接続された素子接続部22とを備える。直流端子2は屈曲形成されており、Z方向における電源接続部21と素子接続部22との位置が互いに異なっている。図4に示すごとく、電源接続部21にはボルト挿通孔211が形成されている。枠部51には、このボルト挿通孔211に対応する位置に、螺孔(図示しない)が形成されている。このように枠部51に螺孔を形成するため、電源接続部21を、Z方向において素子接続部22よりも開口511側に配置してある。
 また、図3、図6に示すごとく、対向バスバー4は、直流端子2に沿うように屈曲している。対向バスバー4は、一対の直流端子2の配列方向(X方向)とZ方向との双方に直交する直交方向(Y方向)における、電源接続部21側に配された電源側バスバー部41と、素子接続部22側に配された素子側バスバー部42とを備える。図4に示すごとく、素子側バスバー部42の、Z方向における素子接続部22を配した側とは反対側の面は、封止部材5から露出した露出面40となっている。この露出面40が、放熱板6に接触している。
 図4に示すごとく、Y方向における電源側バスバー部41の先端411は、枠部51に埋設されている。同様に、Y方向における素子側バスバー部42の先端421も、枠部51に埋設されている。これにより、電源側バスバー部41と電源接続部21との沿面距離を長くすると共に、素子側バスバー部42と素子接続部22との沿面距離を長くしている。対向バスバー4は、放熱板6を介してグランドに電気接続されるため、対向バスバー4(電源側バスバー部41、及び素子側バスバー部42)と直流端子2との電位は互いに異なる。本形態では、対向バスバー4と直流端子2との沿面距離を長くすることにより、これらが短絡することを抑制している。
 一方、図1、図2に示すごとく、枠部51内には、台座部512が形成されている。この台座部512に、素子接続部22を載置してある。また、枠部51内には、図示しない制御基板が収容されている。制御基板は、半導体素子3に接続している。この制御基板によって、半導体素子3のスイッチング動作を制御している。また、枠部51から、複数の制御端子12が突出している。これらの制御端子12は、上記制御基板に電気接続している。
 図6、図7に示すごとく、対向バスバー4の電源側バスバー部41は、Z方向から見たとき、正極端子2Pの電源接続部21Pと、負極端子2Nの電源接続部21Nとのいずれとも重なるよう構成されている。これにより、電源側バスバー部41が電源接続部21P,21NとZ方向に重なる面積を大きくし、電源接続部21P,21Nを流れた電流Iが時間的に変化した場合に、電源側バスバー部41により多くの渦電流iが発生するようにしてある。
 同様に、素子側バスバー部42は、Z方向から見たとき、正極端子2Pの素子接続部22Pと、負極端子2Nの素子接続部22Nとのいずれとも重なるよう構成されている。これにより、素子側バスバー部42が素子接続部22P,22NとZ方向に重なる面積を大きくし、素子接続部22P,22Nを流れた電流Iが時間的に変化した場合に、素子側バスバー部42により多くの渦電流iが発生するようにしてある。
 また、図6、図7に示すごとく、直流端子2の素子接続部22は、複数本のボンディングワイヤ10を介して半導体素子3に電気接続している。複数本のボンディングワイヤ10は、X方向において、素子側バスバー部42の両端縁428,429の間に配されている。
 次に、本形態の作用効果について説明する。図6、図7に示すごとく、本形態では、Z方向において一対の直流端子2P,2Nに隣り合う位置に、対向バスバー4を配置してある。
 そのため、半導体素子3をスイッチング動作させ、直流端子2を流れる電流Iが時間的に変化した場合、対向バスバー4に、電流Iの周囲に発生した磁界の変化を妨げる向きに渦電流iを流すことができる。これにより、一対の直流端子2P,2Nに寄生するインダクタンスLを低減でき、大きなサージ電圧V(=LdI/dt)が発生することを抑制できる。
 また、本形態では図4、図5に示すごとく、対向バスバー4を放熱板6に接続してある。
 そのため、対向バスバー4に渦電流iが流れて熱が発生した場合に、熱を放熱板6に伝えることができ、対向バスバー4の温度上昇を抑制できる。そのため、熱が封止部材5に伝わって変質する不具合を抑制できる。
 また、図4に示すごとく、本形態では、素子側バスバー部42の、Z方向における素子接続部22を配した側とは反対側の面が、放熱板6に接続している。
 そのため、対向バスバー4に渦電流iが流れて発生した熱を、直流端子2の素子接続部22とは反対側に放熱することができる。したがって、熱が素子側バスバー部42から素子接続部22側(すなわち封止部材5側)へ伝わりにくくなり、封止部材5の温度上昇をより効果的に抑制できる。
 また、図4に示すごとく、個々の直流端子2は、電源接続部21と素子接続部22とのZ方向における位置が互いに異なるように屈曲形成されている。そして、対向バスバー4を、直流端子2の形状に沿うように屈曲させている。
 このようにすると、対向バスバー4全体を、直流端子2に接近させることができる。そのため、対向バスバー4に渦電流iを発生させやすくなり、直流端子2のインダクタンスLをより効果的に低減できる。
 また、図6、図7に示すごとく、Z方向から見たときに、電源側バスバー部41は、正極端子2Pと負極端子2Nとのいずれとも重なっている。
 そのため、電源側バスバー部41が直流端子2P,2NとZ方向に重なる面積を大きくすることができる。したがって、直流端子2P,2Nを流れる電流Iが時間的に変化した場合に、電源側バスバー部41により多くの渦電流iを発生させることができる。そのため、直流端子2P,2Nに寄生するインダクタンスLをより低減させることができる。
 また、図6、図7に示すごとく、Z方向から見たときに、素子側バスバー部42は、正極端子2Pと負極端子2Nとのいずれとも重なっている。
 そのため、素子側バスバー部42が直流端子2P,2NとZ方向に重なる面積を広くすることができる。したがって、直流端子2P,2Nを流れる電流Iが時間的に変化した場合に、素子側バスバー部42により多くの渦電流iを発生させることができる。そのため、直流端子2P,2Nに寄生するインダクタンスLをより低減させることができる。
 また、図6、図7に示すごとく、個々の素子接続部22と半導体素子3とは、複数本のボンディングワイヤ10を介して電気接続している。複数本のボンディングワイヤ10は、X方向において、素子側バスバー部42の両端縁428,429の間に配されている。
 このようにすると、素子側バスバー部42の両端縁428,429がボンディングワイヤ10よりもX方向における外側に位置することになる。そのため、素子側バスバー部42のX方向幅を長くすることができる。したがって、素子側バスバー部42を、素子接続部22に対して広い面積にわたって対向させることができ、渦電流iをより多く発生させることができる。そのため、直流端子2P,2Nに寄生するインダクタンスLをより低減させることができる。
 以上のごとく、本形態によれば、直流端子に寄生するインダクタンスを低減でき、かつ対向バスバーの温度上昇を抑制しやすい半導体モジュールを提供することができる。
 なお、本形態では、半導体素子3としてMOSFETを用いたが、本開示はこれに限るものではなく、例えばIGBT等を用いることもできる。
 以下の実施形態においては、図面に用いた符号のうち、実施形態1において用いた符号と同一のものは、特に示さない限り、実施形態1と同様の構成要素等を表す。
(実施形態2)
 本形態は、対向バスバー4の形状を変更した例である。図10に示すごとく、本形態では、Z方向から見たときに、対向バスバー4の素子側バスバー部42が、一対の直流端子2P,2Nの間に介在するよう構成してある。すなわち、Z方向から見たときに、素子側バスバー部42が、正極端子2Pと負極端子2Nとのいずれとも重ならないよう構成してある。このようにすると、対向バスバー4の面積を小さくすることができ、対向バスバー4を少ない材料で形成することができる。そのため、半導体モジュール1の製造コストを低減できる。
 また、本形態では実施形態1と同様に、電源側バスバー部41は、Z方向から見たときに、正極端子2Pと負極端子2Nとの、いずれとも重なるよう構成してある。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態3)
 本形態は、対向バスバー4の形状を変更した例である。本形態では図11に示すごとく、Z方向から見たときに、素子側バスバー部42の端縁428,429が、X方向において、直流端子2P,2Nの2つの外側端縁228,229の間に位置している。
 また、実施形態1と同様に、個々の直流端子2P,2Nは、それぞれ複数本のボンディングワイヤ10を介して半導体素子3と電気接続している。X方向における、素子側バスバー部42の端縁428,429の間に、複数本のボンディングワイヤ10が位置している。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態4)
 本形態は、対向バスバー4の形状を変更した例である。本形態では図12に示すごとく、Z方向から見たときに、電源側バスバー部41が、正極端子2Pと負極端子2Nとのいずれとも重ならないよう構成してある。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態5)
 本形態は、対向バスバー4の形状を変更した例である。本形態では図13に示すごとく、電源側バスバー部41のX方向長さを、実施形態1よりも長く形成してある。Z方向から見たとき、電源側バスバー部41の両端縁418,419は、直流端子2P,2Nの外側端縁218,219と重なっている。また、電源側バスバー部41には、直流端子2のボルト挿通孔211に対応する位置に、ボルト(図示しない)を挿通させるための貫通孔412が形成されている。
 本形態の作用効果について説明する。上記構成にすると、電源側バスバー部41が直流端子2P,2Nと重なる面積を大きくすることができる。そのため、電源側バスバー部41により多くの渦電流iを発生させることができる。したがって、直流端子2P,2NのインダクタンスLをより低減させることができる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態6)
 本形態は、対向バスバー4の形状を変更した例である。図14に示すごとく、本形態では、電源側バスバー部41のうち、一対の直流端子2P,2Nの間に存在する部位417に、Z方向に貫通する貫通穴416を形成してある。
 上記構造にすると、対向バスバー4を少ない材料で形成することができる。そのため、半導体モジュール1の製造コストを低減できる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態7)
 本形態は、直流端子2と対向バスバー4の形状を変更した例である。図15、図16に示すごとく、本形態では、直流端子2の電源接続部21と、素子接続部22とが、X方向においてずれた位置に形成されている。また、対向バスバー4の電源側バスバー部41と、素子側バスバー部42とが、X方向においてずれた位置に形成されている。
 このようにすると、直流端子2及び対向バスバー4の設計自由度を高めることができる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態8)
 本形態は、直流端子2と対向バスバー4の形状を変更した例である。図17、図18に示すごとく、本形態では、正極端子2P及び負極端子2Nは、素子接続部22をそれぞれ複数個備える。これら複数個の素子接続部22は、X方向に配列している。個々の素子接続部22に別々の半導体素子3が接続する。本形態では、1個の半導体モジュール1を用いて、3相の電力変換装置19(図9参照)を構成している。
 対向バスバー4の素子側バスバー部42は、X方向に長い長尺形状を呈する。Z方向から見たときに、全ての素子接続部22が素子側バスバー部42に重なるよう構成されている。
 より詳しくは、図17に示すごとく、本形態の素子側バスバー部42は、Z方向から見たときに直流端子2の素子接続部22P,22Nと重なる重複部422と、複数の重複部422を連結する連結部423とを備える。これら重複部422と連結部423とによって、X方向に長い長尺形状を呈する素子側バスバー部42が形成されている。また、図19に示すごとく、素子側バスバー部42には、実施形態1と同様に、封止部材5から露出した露出面40が形成されている。本形態では、素子側バスバー部42の全面を、封止部材5から露出させ、放熱板6に接触させている。
 本形態の作用効果について説明する。上記構成を採用すると、素子側バスバー部42の面積を大きくすることができる。そのため、露出面40の面積を大きくすることができ、対向バスバー4の熱を放熱板6へ効果的に伝えることができる。したがって、対向バスバー4を充分に冷却することができる。
 その他、実施形態1と同様の構成および作用効果を備える。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  互いに隣り合う位置に配され、それぞれの間に直流電圧が加えられる、正極端子(2P)と負極端子(2N)との一対の直流端子(2)と、
     上記正極端子に電気接続した上アーム半導体素子(3U)と、上記負極端子に電気接続した下アーム半導体素子(3L)との、一対の半導体素子(3)と、
     上記直流端子の厚さ方向(Z)において上記一対の直流端子に隣り合う位置に配置され、上記直流端子を流れる電流(I)の時間変化に伴って渦電流(i)が発生する対向バスバー(4)と、
     絶縁材料からなり、上記一対の半導体素子と上記対向バスバーとを封止する封止部材(5)と、
     上記半導体素子を冷却する放熱板(6)とを備え、
     上記対向バスバーは上記放熱板に接続している、半導体モジュール(1)。
  2.  個々の上記直流端子は、直流電源(8)に電気接続される電源接続部(21)と、上記半導体素子に電気接続した素子接続部(22)とを備え、上記対向バスバーは、上記一対の直流端子の配列方向(X)と上記厚さ方向との双方に直交する直交方向(Y)における、上記電源接続部側に配された電源側バスバー部(41)と、上記素子接続部側に配された素子側バスバー部(42)とを有し、該素子側バスバー部の、上記厚さ方向における上記素子接続部を配した側とは反対側の面が上記放熱板に接続している、請求項1に記載の半導体モジュール。
  3.  個々の上記直流端子は、上記電源接続部と上記素子接続部との上記厚さ方向における位置が互いに異なるように屈曲形成され、上記対向バスバーは、上記直流端子の形状に沿うように屈曲している、請求項2に記載の半導体モジュール。
  4.  上記厚さ方向から見たときに、上記電源側バスバー部は、上記正極端子と上記負極端子とのいずれとも重なっている、請求項2又は3に記載の半導体モジュール。
  5.  上記厚さ方向から見たときに、上記素子側バスバー部は、上記正極端子と上記負極端子とのいずれとも重なっている、請求項2~4のいずれか一項に記載の半導体モジュール。
  6.  個々の上記素子接続部と上記半導体素子とは、複数本のボンディングワイヤ(10)を介して電気接続しており、該複数本のボンディングワイヤは、上記配列方向において、上記素子側バスバー部の両端縁(428,429)の間に配されている、請求項5に記載の半導体モジュール。
  7.  個々の上記直流端子は、上記素子接続部を複数個備え、該複数個の素子接続部は上記配列方向に並べられており、個々の上記素子接続部に別々の上記半導体素子が接続し、上記素子側バスバー部は上記配列方向に長い長尺形状を呈し、上記厚さ方向から見たときに、全ての上記素子接続部が上記素子側バスバー部と重なるよう構成されている、請求項5又は6に記載の半導体モジュール。
PCT/JP2018/048159 2018-01-31 2018-12-27 半導体モジュール WO2019150870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015526 2018-01-31
JP2018015526A JP2019134080A (ja) 2018-01-31 2018-01-31 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2019150870A1 true WO2019150870A1 (ja) 2019-08-08

Family

ID=67478125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048159 WO2019150870A1 (ja) 2018-01-31 2018-12-27 半導体モジュール

Country Status (2)

Country Link
JP (1) JP2019134080A (ja)
WO (1) WO2019150870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132446A (ja) * 2020-02-19 2021-09-09 株式会社日立製作所 電力変換ユニット、および電力変換装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074886A (ja) * 1996-08-30 1998-03-17 Hitachi Ltd 半導体モジュール
JP2002373971A (ja) * 2001-03-30 2002-12-26 Hitachi Ltd 半導体装置
JP2010287737A (ja) * 2009-06-11 2010-12-24 Renesas Electronics Corp 半導体装置
JP2014086506A (ja) * 2012-10-22 2014-05-12 Toyota Motor Corp 半導体装置
JP2016019319A (ja) * 2014-07-07 2016-02-01 株式会社東芝 半導体装置
JP2017099231A (ja) * 2015-11-27 2017-06-01 株式会社デンソー 電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074886A (ja) * 1996-08-30 1998-03-17 Hitachi Ltd 半導体モジュール
JP2002373971A (ja) * 2001-03-30 2002-12-26 Hitachi Ltd 半導体装置
JP2010287737A (ja) * 2009-06-11 2010-12-24 Renesas Electronics Corp 半導体装置
JP2014086506A (ja) * 2012-10-22 2014-05-12 Toyota Motor Corp 半導体装置
JP2016019319A (ja) * 2014-07-07 2016-02-01 株式会社東芝 半導体装置
JP2017099231A (ja) * 2015-11-27 2017-06-01 株式会社デンソー 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132446A (ja) * 2020-02-19 2021-09-09 株式会社日立製作所 電力変換ユニット、および電力変換装置
JP7308162B2 (ja) 2020-02-19 2023-07-13 株式会社日立製作所 電力変換ユニット、および電力変換装置

Also Published As

Publication number Publication date
JP2019134080A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
CN106158839B (zh) 半导体器件
US9390996B2 (en) Double-sided cooling power module and method for manufacturing the same
JP7053461B2 (ja) 半導体パワーモジュール
US9351423B2 (en) Semiconductor device and semiconductor device connection structure
KR101522089B1 (ko) 반도체 장치
JP6296888B2 (ja) 電力変換装置
JP6836201B2 (ja) 電力変換装置
US20120106220A1 (en) Switching module
JP5626274B2 (ja) 半導体装置
US11380656B2 (en) Semiconductor device
JP2007012721A (ja) パワー半導体モジュール
US10943877B2 (en) Semiconductor device
JP2018074089A (ja) 半導体装置
CN113557603B (zh) 半导体装置
CN115149772A (zh) 用于逆变器的功率模块和包括该功率模块的逆变器
JP6838243B2 (ja) 電力変換装置
WO2016203743A1 (ja) 半導体装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
WO2019150870A1 (ja) 半導体モジュール
JP2004031590A (ja) 半導体装置
JP6123722B2 (ja) 半導体装置
JP6891904B2 (ja) 半導体モジュール、電気自動車およびパワーコントロールユニット
JP7142784B2 (ja) 電気回路装置
JP2010177573A (ja) 半導体装置
JP3922698B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903535

Country of ref document: EP

Kind code of ref document: A1