WO2019144884A1 - 节流装置及具有其的换热系统 - Google Patents

节流装置及具有其的换热系统 Download PDF

Info

Publication number
WO2019144884A1
WO2019144884A1 PCT/CN2019/072832 CN2019072832W WO2019144884A1 WO 2019144884 A1 WO2019144884 A1 WO 2019144884A1 CN 2019072832 W CN2019072832 W CN 2019072832W WO 2019144884 A1 WO2019144884 A1 WO 2019144884A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
valve
throttling device
hole
groove
Prior art date
Application number
PCT/CN2019/072832
Other languages
English (en)
French (fr)
Inventor
宋治国
单宇宽
曾庆军
程明扬
刘海波
Original Assignee
浙江盾安禾田金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820130099.0U external-priority patent/CN208012180U/zh
Priority claimed from CN201811005057.5A external-priority patent/CN110873226B/zh
Priority claimed from CN201920089146.6U external-priority patent/CN209856454U/zh
Application filed by 浙江盾安禾田金属有限公司 filed Critical 浙江盾安禾田金属有限公司
Priority to KR1020207021598A priority Critical patent/KR102376051B1/ko
Publication of WO2019144884A1 publication Critical patent/WO2019144884A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Definitions

  • the present invention relates to the technical field of valves, and in particular to a throttling device and a heat exchange system therewith.
  • a throttling device is required in the heat exchange system, and capillary throttling is often used as a throttling device, or an electronic expansion valve is used as a throttling device.
  • the conventional throttle device is a throttle valve whose valve opening degree changes according to the differential pressure between the pressure of the refrigerant on the condenser side (primary side) and the pressure of the refrigerant on the evaporator side (secondary side), and is installed.
  • a spring that resists the force caused by the differential pressure and biases the needle in the valve closing direction.
  • a primary object of the present invention is to provide a throttling device and a heat exchange system therewith for solving the problem of the flow rate of the control device in the prior art.
  • a throttling device comprising: a fixing base having an air inlet hole and a receiving cavity, and the air inlet hole is in communication with the receiving cavity; the throttle structure is movable The ground is disposed in the accommodating cavity.
  • the throttle device further includes a pipe body having an inner cavity;
  • the fixing seat is fixedly disposed in the inner cavity, the fixing seat further has a vent hole, the vent hole is in communication with the accommodating cavity, and the air inlet hole and the vent hole are both Communicating with the inner cavity;
  • the throttle structure includes a first throttle portion and a second throttle portion; wherein the first throttle portion can extend into the air inlet hole to reduce gas entering the air inlet hole, and the second throttle portion can be The gas is inserted into the vent hole to reduce the gas entering the vent hole until the flow rate of the gas entering the accommodating chamber reaches a preset value.
  • the throttling device further includes: a plug disposed at the vent hole to block the vent hole, the plug having a vent hole, the vent hole communicating with the accommodating cavity and the inner cavity, and the second throttling portion being extendable
  • the gas is introduced into the vent hole to throttle the gas entering the vent hole;
  • the elastic structure is disposed between the plug and the throttling structure, and the elastic structure provides the throttling structure with an elastic force moving toward the side of the intake hole.
  • the throttle structure further includes a connecting column, the first throttle portion and the second throttle portion are respectively disposed at two ends of the connecting column, the connecting column has a first ventilation structure through which the gas passes; wherein the gas enters the air inlet hole And discharged through the first ventilation structure from the vent hole into the inner cavity.
  • first ventilation structure is a through groove or a through hole extending in the axial direction of the connection post, or the first ventilation structure is a concave portion spirally disposed along an axis of the connection post.
  • the elastic structure is a spring
  • the plug has a protruding structure toward the surface of the throttle structure.
  • One end of the spring is sleeved on the protruding structure, and the other end of the spring abuts the connecting post to provide an elastic force to the connecting post.
  • the throttle device further includes: a limiting member disposed at the exhaust hole, the limiting member having a limiting portion for limiting the axial movement of the throttle structure, wherein the limiting portion is located at the elastic structure and the receiving cavity Between the walls of the cavity.
  • the limiting member includes a connecting portion connected to the limiting portion, the connecting portion is sandwiched between the fixing seat and the plug and is fixed with the fixing seat, and the limiting portion is a plate structure or an arc structure.
  • the throttle structure further includes: a connecting sleeve; a first connecting portion connected to the first throttle portion, the first connecting portion extends into one end of the connecting sleeve to connect with the connecting sleeve; and the second throttle portion a second connecting section connected to the other end of the connecting sleeve for connecting with the connecting sleeve; wherein the first connecting section has a second ventilation structure, and the second connecting section has a second ventilation structure In communication with the third venting structure, the gas enters the air intake hole and is sequentially discharged from the vent hole into the inner cavity through the third venting structure and the second venting structure.
  • the throttle structure further includes: a third connecting portion connected to the first throttle portion, the third connecting portion has a receiving groove, and the third connecting portion has a fourth ventilation structure communicating with the receiving groove and the receiving cavity; a fourth connecting portion connected to the second throttle portion, the fourth connecting portion extends into the receiving groove and is fixedly connected with the receiving groove, the fourth connecting portion has a fifth ventilation structure communicating with the receiving groove and the receiving cavity, and the fourth The venting structure is in communication with the fifth venting structure; wherein the gas enters the air inlet hole and is sequentially discharged from the vent hole into the inner cavity via the fourth venting structure and the fifth venting structure.
  • the first throttle portion is a first tapered structure, and at least a portion of the first tapered structure gradually increases in a direction from the intake hole to the exhaust hole, and the second throttle portion is a second tapered shape The structure, in the direction from the intake hole to the exhaust hole, at least a portion of the second tapered structure gradually decreases in size.
  • the throttle device comprises: a tube body having an inner cavity; and a fixing seat fixedly disposed in the inner cavity, the fixing seat has an air inlet hole, a gas exhaust hole and a receiving cavity communicating with the air inlet hole and the air outlet hole, The air inlet hole and the exhaust hole are both connected to the inner cavity; the throttle structure and the throttle structure are movably disposed in the receiving cavity; the pipe body and the fixing seat are provided with matching limiting portions for the tube body and the fixing body The seats are fixed to each other, and a circulation passage is arranged between the pipe body and the fixed seat, and both ends of the circulation passage are connected with the inner cavity.
  • the limiting portion includes a concave ring disposed on the tubular body and a fitting groove disposed on the outer wall surface of the fixing seat, and the concave ring is sealingly embedded in the fitting groove.
  • the inner concave ring is formed as an extruded tubular body.
  • the inner concave ring and the fitting groove are both closed annular.
  • a fluid groove is provided on the inner wall surface of the pipe body and/or the outer wall surface of the fixing seat, and the fluid groove forms a circulation passage.
  • the fluid groove is disposed on the fixing seat, the fluid groove includes a first fluid groove on one side of the fitting groove and a second fluid groove on the other side of the fitting groove, the first fluid groove And the second fluid groove is in communication with the mating groove.
  • the first fluid groove penetrates from the fitting groove to the end of the fixing seat.
  • the second fluid groove penetrates from the fitting groove to the end of the fixing seat.
  • first fluid groove and the second fluid groove extend in the same direction as the axial direction of the tube body, or the first fluid groove and the second fluid groove are both gaps disposed on the sides of the matching groove .
  • the throttle device comprises a valve seat, the valve seat is provided with a valve chamber, an inlet and a valve port, the valve port is connected with the valve chamber and the inlet, the valve chamber is provided with a guiding member, a valve needle and an elastic member, and the valve needle passes through the guiding member
  • the elastic member drives the valve needle to move toward the closing valve port
  • the guiding member is provided with a connecting passage connecting the valve chambers at both ends of the guiding member, and the opening at one end of the connecting passage is located on one end surface of the guiding member, and the other end of the connecting passage is connected The opening is located on the other end face of the guide.
  • valve needle is provided with a guide section through the guide, the length of the guide being smaller than the length of the guide section.
  • the circumferential side wall of the valve needle is provided with a protrusion, and the protrusion is located at one end of the guide member facing away from the valve port.
  • the elastic member is in a free state, and the protrusion and the end surface of the guiding member facing each other have gap.
  • the connecting passage includes an outer venting groove provided on the outer side wall of the guiding member; or the connecting passage includes a venting hole provided in the guiding member; or the connecting passage includes an inner venting groove provided on the inner side wall of the guiding member.
  • the connecting passage extends in the axial direction of the valve needle.
  • the flow area of the connecting passage is not less than the flow area of the valve port, and the flow area of the connecting passage remains unchanged.
  • valve chamber is located at the valve port and is provided with a communication member for keeping the valve port open, the communication member abuts against the valve needle and separates the valve needle from the valve port, and the communication member is provided with a communication port connecting the valve chamber and the inlet.
  • the communication member extends along the circumferential direction of the valve port, and the communication port penetrates the circumferential side wall of the communication member, and the communication member is further provided with a through hole for the valve core to pass through, and the through hole is in alignment with the valve port.
  • the side wall of the valve port is provided with a communication groove connecting the valve chamber and the inlet, the opening of one end of the communication groove is located at one end of the valve port, and the opening of the other end of the communication groove is located at the other end of the valve port.
  • valve needle is provided with an adjustment passage, and the opening at one end of the adjustment passage is located at the top end of the valve needle and is in communication with the inlet, and the opening at the other end of the adjustment passage is located at the side wall of the valve needle and is in communication with the valve chamber.
  • a heat exchange system comprising the above-described throttling device.
  • a heat exchange system comprising a heat exchange body and a throttling device disposed on the heat exchange body, the throttling device being the throttling device described above.
  • the fluid enters the accommodating cavity from the air inlet of the throttling device, and the throttling structure is movably disposed in the accommodating cavity, so that the throttling device can control the flow rate of the fluid.
  • the technical solution of the present invention effectively solves the problem that the flow control device controls the flow rate of the fluid in the prior art.
  • Figure 1 shows a cross-sectional view of a first embodiment of a throttling device according to the present invention
  • FIG. 2 is a front elevational view showing the throttle structure of the throttle device of Figure 1;
  • FIG. 3 shows a top view of the throttle structure of Figure 2;
  • Figure 4 is a cross-sectional view showing a second embodiment of the throttling device according to the present invention.
  • FIG. 5 is a cross-sectional view showing another angle of the throttle device of Figure 4.
  • Figure 6 shows a plan view of the throttling device of Figure 4.
  • Figure 7 is a cross-sectional view showing a third embodiment of the throttling device according to the present invention.
  • Figure 8 is a cross-sectional view showing another angle of the throttle device of Figure 7;
  • FIG. 9 is a front elevational view showing the throttle structure of the fourth embodiment of the throttle device according to the present invention.
  • Figure 10 is a block diagram showing the structure of the fifth embodiment of the throttling device according to the present invention.
  • Figure 11 is an enlarged schematic view showing a portion A of the throttling device of Figure 10;
  • Figure 12 is a block diagram showing the first structure of the fixing base of the throttling device of Figure 10;
  • Figure 13 is a view showing the structure of a second structure of the fixing seat of the throttle device of Figure 10;
  • Figure 14 is a view showing the structure of a third structure of the fixing seat of the throttle device of Figure 10;
  • Figure 15 is a view showing the structure of a fourth structure of the fixing base of the throttle device of Figure 10;
  • Figure 16 is a block diagram showing the first structure of the head of the throttle structure of the throttle device of Figure 10;
  • Figure 17 is a block diagram showing another angle of the head of the throttle structure of Figure 16;
  • Figure 18 is a view showing the structure of a first structure of a valve needle of the throttle structure of the throttle device of Figure 10;
  • Figure 19 is a view showing the structure of another angle of the valve needle of the throttle structure of Figure 18;
  • Figure 20 is a view showing the structure of a second structure of the head of the throttle structure of the throttle device of Figure 10;
  • Figure 21 is a view showing the structure of a second structure of the valve needle of the throttle structure of the throttle device of Figure 20;
  • Figure 22 is a view showing the structure of a third structure of the head of the throttle structure of the throttle device of Figure 10;
  • Figure 23 is a cross-sectional view showing the head of the throttle structure of Figure 22;
  • Figure 24 is a cross-sectional view showing the sixth embodiment of the present invention.
  • Figure 25 is a perspective view of a guide member according to a sixth embodiment of the present invention.
  • Figure 26 is a schematic view of a valve needle according to Embodiment 6 and Embodiment 7 of the present invention.
  • Figure 27 is a perspective view of a valve seat in a seventh embodiment of the present invention.
  • Figure 28 is a cross-sectional view showing a seventh embodiment of the present invention.
  • Figure 29 is a perspective view of a guide member according to a seventh embodiment of the present invention.
  • Figure 30 is a perspective view of an eighth embodiment of the present invention.
  • Figure 31 is a perspective view of a guide member according to Embodiment 8 of the present invention.
  • Figure 32 is a perspective view of a valve needle in an eighth embodiment of the present invention.
  • Figure 33 is a perspective view of a ninth embodiment of the present invention.
  • Figure 34 is a perspective view of a communication member in Embodiment 9 of the present invention.
  • orientation words used such as “up and down”, are generally referred to in the directions shown in the drawings, or in the vertical, vertical or gravity directions, without being otherwise described.
  • “left and right” are generally for the left and right as shown in the drawing; “inside and outside” refer to the inside and outside of the contour of each component, but the above orientation Words are not intended to limit the invention.
  • the present application provides a heat exchange system having the same.
  • the throttle device includes a tubular body 10, a fixed base 20, and a throttle structure 30.
  • the tube body 10 has a lumen 11 therein.
  • the fixing base 20 is fixedly disposed in the inner cavity 11.
  • the fixing base 20 has an air inlet hole 21, an exhaust hole 22, and a receiving cavity 23 communicating with both the air inlet hole 21 and the exhaust hole 22, and the air inlet hole 21 and the exhausting air
  • the holes 22 are all in communication with the inner chamber 11.
  • the throttle structure 30 is movably disposed in the accommodating cavity 23, and the throttle structure 30 includes a first throttle portion 31 and a second throttle portion 32; wherein the first throttle portion 31 can extend into the air inlet hole 21 to The gas entering the intake port 21 is reduced, and the second throttle portion 32 can extend into the vent hole 22 to reduce the gas entering the vent hole 22 until the flow rate of the gas entering the accommodating chamber 23 reaches a preset value.
  • the throttle structure 30 is movably disposed in the accommodating cavity 23, and the first throttle portion 31 of the throttle structure 30 can extend into the air inlet hole 21 to reduce the gas entering the air inlet hole 21.
  • the second throttle portion 32 can extend into the vent hole 22 to reduce the gas entering the vent hole 22, and the first throttle portion 31 and the second throttle portion 32 can enter the accommodating chamber 23 of the fixed seat 20.
  • the gas is flow-regulated until the first throttle portion 31 and the second throttle portion 32 are subjected to force balance in the accommodating chamber 23 so that the flow rate of the gas passing through the throttle device reaches a preset value.
  • the common adjustment of the first throttle portion 31 and the second throttle portion 32 enables the throttle device to control the flow rate value flowing therethrough to meet different production processing requirements, thereby solving the prior art throttle device.
  • the throttle device further includes a plug 40 and an elastic structure 50.
  • the plug 40 is disposed at the vent hole 22 to block the vent hole 22, and the plug 40 has a vent hole 41.
  • the vent hole 41 communicates with the accommodating cavity 23 and the inner cavity 11, and the second throttle portion 32 extends.
  • the gas is introduced into the vent hole 41 to throttle the gas entering the vent hole 41.
  • the elastic structure 50 is disposed between the plug 40 and the throttle structure 30, and the elastic structure 50 provides the throttle structure 30 with an elastic force that moves toward the side of the intake hole 21. In this way, during the operation of the throttle device, the first throttle portion 31 and the second throttle portion 32 of the throttle structure 30 move under the action of the gas in the accommodating chamber 23 to realize the throttle structure 30 to the intake hole. 21 and the throttling action of the vent hole 41 until the force of the throttle structure 30 reaches equilibrium, the gas flow value discharged from the vent hole 41 reaches a preset value to realize the control of the flow rate (maximum flow rate) by the throttle device.
  • the gas enters the accommodating cavity 23 from the air inlet hole 21 and pushes the throttle structure 30 toward the vent hole 22, and the throttle structure 30 compresses the elastic structure 50, and the elastic structure 50 pairs
  • the throttle structure 30 applies an elastic force to move the throttle structure 30 toward the intake hole 21 to effect movement of the throttle structure 30 within the accommodating cavity 23 until the throttle structure 30 is subjected to the combined action of gas thrust and elastic force.
  • the force is balanced, the value of the gas flow discharged from the vent hole 41 reaches a preset value.
  • the throttle structure 30 further includes a connecting post 33, and the first throttle portion 31 and the second throttle portion 32 are respectively disposed at both ends of the connecting post 33, and the connecting post 33 has a gas for passing therethrough.
  • the first ventilation structure 331 The gas enters the intake hole 21 and is discharged from the vent hole 41 into the inner cavity 11 via the first venting structure 331.
  • the gas enters into the accommodating chamber 23 from the intake hole 21, and during the movement of the throttle structure 30, the gas flow rate value discharged from the vent hole 41 reaches a preset value.
  • the gas entering the accommodating chamber 23 is discharged from the vent hole 41 via the first venting structure 331 to ensure gas fluency in the throttle structure 30.
  • the first ventilation structure 331 is a through groove extending in the axial direction of the connecting post 33.
  • the gas entering the accommodating chamber 23 can enter the vent hole 41 through the through groove and be discharged from the vent hole 41.
  • the above structure has a simple structure and is easy to process and realize.
  • the structure of the first ventilation structure 331 is not limited thereto.
  • the first ventilation structure 331 is a through hole extending in the axial direction of the connection post 33.
  • the above structure has a simple structure and is easy to process and realize.
  • the cross-sectional area of the first ventilation structure 331 is greater than or equal to the cross-sectional area of the valve port 24.
  • the elastic structure 50 is a spring
  • the plug 40 has a protruding structure 42 facing the surface of the throttle structure 30 .
  • One end of the spring is sleeved on the protruding structure 42 , and the other end of the spring can abut the connecting post 33 .
  • the connecting post 33 To provide elastic force to the connecting post 33.
  • the throttle structure 30 moves in the accommodating chamber 23 under the combined action of the elastic force of the spring and the urging force of the gas until the throttle structure 30 is balanced by force, and the vent hole 41 is vented.
  • the flow rate of the discharged gas reaches a preset value.
  • the spring can be replaced (changing the spring constant of the spring) to balance the throttle structure 30 under different balancing forces to change the The flow rate of the gas after the throttling device is throttled to meet the production requirements of different flow values, and the use range of the throttling device is expanded.
  • the throttle device further includes a limiting member 60.
  • the limiting member 60 is disposed at the venting opening 22, and the limiting member 60 has a limiting portion 61 for limiting the axial movement of the throttle structure 30.
  • the limiting portion 61 is located at the elastic structure 50 and the accommodating cavity 23. Between the walls of the cavity.
  • the stop is arranged to prevent the throttle structure 30 from generating a spring force exceeding the maximum spring force of the spring itself, causing the spring to press (and loop) or even break, thereby improving the structural reliability of the throttle device.
  • the limiting member 60 includes a connecting portion 62 connected to the limiting portion 61 .
  • the connecting portion 62 is sandwiched between the fixing base 20 and the plug 40 and is limited to the fixing seat 20 .
  • 61 is a curved structure.
  • the limiting portion 61 is restrained from the surface of the connecting post 33 and the connecting post 33 to limit the stop of the restricting member 60 to the throttle structure 30, and the throttle structure 30 is prevented from being over-compressed by the spring.
  • the configuration of the limiting portion 61 is not limited to this.
  • the limiting portion 61 is a plate-like structure.
  • the above structure has a simple structure and is easy to process and realize.
  • the first throttle portion 31 is a first tapered structure, and the size of all the first tapered structures gradually increases in the direction from the intake hole 21 to the exhaust hole 22, and the second The throttle portion 32 has a second tapered structure, and the size of all the second tapered structures gradually decreases in the direction from the intake hole 21 to the exhaust hole 22.
  • the above-described structural arrangement ensures that the first throttle portion 31 and the second throttle portion 32 can both throttle the intake hole 21 and the vent hole 41, and also allow gas to pass through the intake hole 21 and the vent hole 41, thereby making The throttling device is able to operate normally.
  • the application also provides a heat exchange system (not shown) that includes the throttling device described above.
  • the heat exchange system is an air conditioner.
  • the throttling device of the second embodiment differs from the first embodiment in that the structure of the throttling structure 30 is different.
  • the throttle structure 30 further includes a connecting sleeve 34, a first connecting section 35 and a second connecting section 36.
  • the first connecting portion 35 is connected to the first throttle portion 31, and the first connecting portion 35 extends into one end of the connecting sleeve 34 to be connected with the connecting sleeve 34.
  • the second connecting section 36 is connected to the second throttle 32, and the second connecting section 36 extends into the other end of the connecting sleeve 34 to be connected to the connecting sleeve 34.
  • the first connecting section 35 has a second ventilation structure 351
  • the second connecting section 36 has a third ventilation structure 361 communicating with the second ventilation structure 351, and the gas enters the air inlet hole 21 and sequentially passes through the third ventilation.
  • the structure 361 and the second ventilation structure 351 are discharged from the vent hole 41 into the inner cavity 11.
  • first connecting portion 35 extends into the upper end of the connecting sleeve 34 and is fixedly connected to the end
  • second connecting portion 36 extends into the upper end of the connecting sleeve 34 and is fixedly connected with the end to connect the first connection
  • the segment 35 and the second connecting segment 36 are fixed to the connecting sleeve 34, thereby connecting the first throttle portion 31 and the second throttle portion 32 with the connecting sleeve 34.
  • the first connecting section 35 has an air gap between the end of the second connecting section 36 and the end of the second connecting section 36 facing the first connecting section 35 so as to enter the receiving cavity 23 from the air inlet opening 21 .
  • the gas is sequentially discharged from the vent hole 41 through the second ventilation structure 351, the air gap, and the third ventilation structure 361.
  • the second ventilation structure 351 is a through groove extending along the axial direction of the first connecting section 35.
  • the above structure has a simple structure and is easy to process and realize.
  • the third ventilation structure 361 is a through groove extending along the axial direction of the first connecting section 35.
  • the above structure has a simple structure and is easy to process and realize.
  • the throttling device of the third embodiment differs from the first embodiment in that the structure of the throttling structure 30 is different.
  • the throttle structure 30 further includes a third connecting section 37 and a fourth connecting section 38.
  • the third connecting section 37 is connected to the first throttle portion 31, the third connecting section 37 has a receiving groove 371, and the third connecting section 37 has a fourth ventilation structure 372 communicating with both the receiving groove 371 and the receiving cavity 23.
  • the fourth connecting portion 38 is connected to the second throttle portion 32.
  • the fourth connecting portion 38 extends into the receiving groove 371 and is fixedly connected to the receiving groove 371.
  • the fourth connecting portion 38 has a communication with the receiving groove 371 and the receiving cavity 23.
  • the fifth ventilation structure 381 is in communication with the fifth ventilation structure 372.
  • the gas enters the intake hole 21 and is sequentially discharged from the vent hole 41 into the inner cavity 11 via the fourth venting structure 372 and the fifth venting structure 381.
  • the fourth connecting portion 38 extends into the receiving groove 371 of the third connecting portion 37 and is fixedly connected with the groove wall of the receiving groove 371 to realize the connection of the third connecting portion 37 and the fourth connecting portion 38. Thereafter, the gas that has entered the accommodating chamber 23 from the intake port 21 is sequentially discharged from the vent hole 41 into the inner chamber 11 via the fourth venting structure 372 and the fifth venting structure 381.
  • the fourth connecting section 38 has an interference fit with the receiving groove 371.
  • the fourth connecting section 38 is welded to the groove wall of the receiving groove 371.
  • the above connection manner makes the connection of the third connecting section 37 and the receiving groove 371 more stable, and improves the structural stability of the throttle structure 30.
  • the fourth venting structure 372 includes a first radial through hole extending in a radial direction of the third connecting portion 37 and a first axial through hole communicating with the first radial through hole.
  • the fifth venting structure 381 includes a second radial through hole extending in a radial direction of the fourth connecting portion 38 and a second axial through hole communicating with the second radial through hole. The first axial through hole is in communication with the second axial through hole.
  • the throttling device of the fourth embodiment differs from the first embodiment in that the structure of the first aeration structure 331 is different.
  • the first ventilation structure 331 is a recess that is spirally disposed along the axis of the connecting post 33.
  • the gas entering the accommodating chamber 23 can enter the vent hole 41 through the recess and be discharged from the vent hole 41.
  • the above structure has a simple structure and is easy to process and realize.
  • the throttle structure is movably disposed in the accommodating cavity, the first throttle portion of the throttle structure may extend into the air inlet hole to reduce the gas entering the air inlet hole, and the second throttle portion may protrude into the vent hole
  • the gas that enters the vent hole is reduced, and the first throttle portion and the second throttle portion can adjust the flow rate of the gas entering the accommodating cavity of the fixed seat until the first throttle portion and the second throttle portion are in the accommodating chamber
  • the force balance is reached within the flow so that the flow of gas through the throttling device reaches a preset value.
  • the common adjustment of the first throttle portion and the second throttle portion enables the throttle device to control the flow value flowing through it to meet different production processing requirements, thereby solving the problem that the throttle device cannot be controlled in the prior art.
  • the problem of the flow value flowing through it is movably disposed in the accommodating cavity, the first throttle portion of the throttle structure may extend into the air inlet hole to reduce the gas entering the air inlet hole, and the second throttle portion may protrude into the vent hole
  • the throttle device of the present embodiment includes a pipe body 10, a fixing base 20, and a throttle structure 30.
  • the tubular body 10 has an internal cavity 11. Fixedly disposed in the inner cavity 11, the fixing base 20 has an air inlet hole 21, an exhaust hole 22, and a receiving cavity 23 communicating with both the air inlet hole 21 and the exhaust hole 22, and the air inlet hole 21 and the air outlet hole 22 are both It is in communication with the inner chamber 11.
  • the throttle structure 30 is movably disposed within the accommodating chamber 23.
  • the pipe body 10 and the fixing base 20 are provided with mutually matching limiting portions, so that the pipe body 10 and the fixing base 20 are fixed to each other, and a circulation passage is arranged between the pipe body 10 and the fixing base 20, and both ends of the circulation passage are inside and outside.
  • the chambers 11 are in communication.
  • the fluid pressure is small enough to push the throttle structure 30 to open, in which case the fluid passes through the circulation passage between the pipe body 10 and the fixed seat 20. .
  • the technical solution of the embodiment effectively solves the problem that the throttle device in the prior art has no flow when the throttle structure is in the blocking position during use.
  • the intake hole 21, the exhaust hole 22 and the accommodating chamber 23 pass not only gas but also a liquid or a gas-liquid mixture.
  • the limiting portion includes a concave ring 101 disposed on the pipe body 10 and a fitting groove 201 disposed on the outer wall surface of the fixing base 20, and the inner concave ring 101 Sealedly embedded in the mating recess 201.
  • the structure in which the concave ring 101 and the fitting groove 201 are matched is simple to set up, and the manufacturing cost is low.
  • the tube body 10 and the fixing base 20 are made of copper or stainless steel.
  • the inner recessed ring 101 is formed as an extruded tubular body 10.
  • the outer wall surface of the fixing base 20 is processed to fit the groove 201, and the inner tube 10 has not processed the inner concave ring 101, and the fixing seat 20 is placed in the tube body 10, and is pressed and matched with the matching groove 201.
  • the portion of the tube 10 is such that the tube body 10 and the holder 20 are fixed together.
  • the inner concave ring 101 and the fitting groove 201 are both closed and annular.
  • the above structure is easy to process and the mixing effect is good.
  • the matching groove 201 is also a plurality of segments that cooperate with the inner concave ring 101.
  • the inner concave ring 101 may be plural, and each inner concave ring 101 is disposed at intervals along the axial direction of the pipe body 10, and the matching groove 201 is disposed corresponding to the inner concave ring 101.
  • the inner wall surface of the pipe body 10 and/or the outer wall surface of the fixing base 20 are provided with a fluid groove 202, and the fluid groove 202 forms a flow passage.
  • the fluid groove 202 is provided on the outer wall surface of the fixing base 20.
  • the fluid grooves 202 can be of various configurations, and Figures 12 through 15 respectively represent the structure of the different fluid grooves 202.
  • the fluid groove 202 is disposed on the fixing seat 20, the fluid groove 202 includes a first fluid groove on one side of the fitting groove and a second fluid groove on the other side of the fitting groove, the first fluid groove And the second fluid groove is in communication with the mating groove.
  • the seal between the inner concave ring 101 and the fitting groove 201 is formed by the top of the side wall of the fitting groove 201 and the inner wall surface of the inner concave ring 101, and the inner wall surface and the fitting concave of the inner concave ring 101.
  • the first fluid groove and the second fluid groove may be offset, and only one case in which the first fluid groove and the second fluid groove are correspondingly disposed is shown. As shown in FIG. 13, the first fluid groove penetrates from the fitting groove to the end of the fixing seat 20, and the second fluid groove penetrates from the fitting groove to the end of the fixing seat 20. As shown in FIG.
  • both the first fluid groove and the second fluid groove are penetrated.
  • the first fluid groove and the second fluid groove are both slits disposed on both sides of the fitting groove.
  • the first fluid groove and the second fluid groove extend in the same direction as the axial direction of the pipe body 10.
  • the first fluid groove is a slit
  • the second fluid groove extends in the same direction as the axial direction of the tube body.
  • the embodiment also provides a heat exchange system comprising a heat exchange body and a throttling device disposed on the heat exchange body.
  • the throttling device is the above-described throttling device.
  • a throttle valve according to an embodiment of the present invention includes a valve seat 1-2 installed in the valve tube 1-1, and both ends of the valve tube 1-1 pass through a shrinkage port to fix the valve.
  • the seat 1-2 is located in the valve tube 1-1, and the outer side wall of the valve seat 1-2 is further provided with at least two grooves 1-201 having a rectangular cross section, and the valve tube 1-1 is in the groove 1-201. The corresponding outer diameter is further reduced by the diameter or the dot to fix the position of the valve seat 1-2.
  • the valve seat 1-2 is provided with a valve chamber 1-202, an inlet 1-204 and a valve port 1-203.
  • the valve chamber 1-202 is used for the medium (gas or liquid) to pass through the valve seat 1-2, the inlet 1-204 is used to guide the medium into the valve chamber 1-202, and the inlet 1-204 is flared, which can effectively reduce the noise generated by the medium.
  • the port 1-02 communicates with the valve chamber 1-202 and the inlet 1-204 to guide the medium.
  • the medium can flow in the direction of the valve chamber 1-202 along the inlet 1-204, and the medium can also flow in the direction of the inlet 1-204 along the valve chamber 1-202.
  • the valve chamber 1-202 is provided with a guiding member 1-3, a valve needle 1-4 and an elastic member 1-5.
  • the guiding member 1-3 is welded inside the valve chamber 1-202, and the valve needle 1-4 passes through the guiding member.
  • the center hole 1-301 of 1-3 extends into the valve port 1-203, and the valve needle 1-4 is provided with a guiding section 1-401 passing through the guiding member 1-3, and the length of the guiding member 1-3 is smaller than the guiding section
  • the length of 1-401 can reduce the phenomenon that the valve needle 1-4 is stuck due to the excessive length and deformation of the guide member 1-3.
  • the elastic member 1-5 is a compression spring (i.e., the spring described above), and the elastic member 1-5 drives the valve needle 1-4 to move toward the closing valve port 1-203 to adjust the flow rate in the valve.
  • the guiding member 1-3 is provided with a connecting passage 1-302 for connecting the two ends of the guiding member 1-3, an opening of one end of the connecting passage 1-302 is located on one end surface of the guiding member 1-3, and an opening at the other end of the connecting passage 1-302 is located The other end face of the guide member 1-3.
  • the circumferential side wall of the valve needle 1-4 is provided with a protrusion 1-402, and the diameter of the protrusion 1-402 is larger than the diameter of other parts of the valve needle 1-4, which is the maximum diameter of the valve needle 1-4.
  • the protrusion 1-402 is located on the side of the guide member 1-3 facing away from the valve port 1-203, and when the valve port 1-203 is closed, that is, the sealing portion of the valve needle 1-4 is in contact with the valve port 1-203, the elastic member 1-5 is in a free state, and the elastic member 1-5 is located at the original long position or the stretched position, so that the elastic member 1-5 does not apply a force toward the valve needle 1-4 toward the closing valve port 1-203, the valve needle 1 4 closing the valve port 1-203 under the action of the medium pressure on both sides, and the gap between the protrusion 1-402 and the end surface of the guiding member 1-3 facing each other, on the one hand, the force of the elastic member 1-5 can be ensured. There is a gap between the lower
  • the connecting passage 1-302 includes an outer venting groove provided on the outer side wall of the guiding member 1-3, and the outer venting groove and the side wall of the valve chamber 1-202 enclose a complete passage for the passage of the medium, and the openings of the outer venting groove are respectively located
  • the guide member 1-3 faces the end surface on one side of the valve port 1-203 and the end surface on the side away from the valve port 1-203, and the outer vent groove extends in the axial direction of the valve needle 1-4, and the flow direction of the medium Corresponding to facilitate the passage of the medium through the guides 1-3 in the shortest path, thereby increasing the speed of the passage of the medium and reducing the noise generated by the medium.
  • connection passage 1-302 extends in the axial direction of the valve needle 1-4, the valve needle 1-4 does not contact the connecting passage 1-302 during the movement of the valve needle 1-4, thereby ensuring the connection passage 1-
  • the flow area of 302 remains unchanged and is not affected by the valve pins 1-4, which in turn allows the medium to remain unobstructed as it passes through the port 1-202 and the connection channel 1-302.
  • the connecting channel 1-302 includes a vent hole provided in the guiding member 1-3, and the opening of the vent hole is located at the guiding member 1-3 toward the valve.
  • the vent hole extends in the axial direction of the valve needle 1-4.
  • the direction in which the vent hole extends corresponds to the flow direction of the medium to facilitate the passage of the medium through the guide members 1-3 in the shortest path, thereby increasing the speed at which the medium passes and reducing the noise generated by the medium.
  • the flow area that can be connected to the channel 1-302 remains unchanged, and is not affected by the valve needles 1-4.
  • the side wall of the valve port 1-203 is provided with a communication slot 1-205 connecting the valve chamber 1-102 and the inlet 1-204, and the opening at one end of the communication slot 1-205 is located at one end of the valve port 1-203, and the communication slot 1-205 The other end of the opening is located at the other end of the valve port 1-203.
  • the communication groove 1-205 and the outer side wall of the valve needle 1-4 enclose a complete passage for the passage of the medium, and the communication groove 1-205 extends in the axial direction of the valve port 1-203 to facilitate the passage of the medium through the guide in the shortest path. 1-3, thereby increasing the speed at which the medium passes and reducing the noise generated by the medium.
  • the medium flows into the valve chamber 1-202 from the inlet 1 -204 through the communication tank 1-205, ensuring that the valve port 1-203 is always in an open state, so that the medium can pass through the throttle valve from both forward and reverse flow directions.
  • Example 6 Other undescribed structures are referred to Example 6.
  • the connecting channel 1-302 includes an inner venting groove provided on the inner side wall of the guiding member 1-3, and the inner venting groove and the valve needle 1-4.
  • the outer side wall encloses a complete passage for the passage of the medium, and the opening of the inner venting groove is respectively located on the end face of the side of the guide member 1-3 facing the valve port 1-203 and the side away from the valve port 1-203. On the end face.
  • the venting groove extends in the axial direction of the valve needle 1-4, and corresponds to the flow direction of the medium to facilitate the passage of the medium through the guiding members 1-3 in the shortest path, thereby increasing the speed of the medium passing and reducing the noise generated by the medium. And the flow area that can be connected to the channel 1-302 remains unchanged, and is not affected by the valve needles 1-4.
  • the valve needle 1-4 is provided with an adjustment passage 1-404, and the opening at one end of the adjustment passage 1-404 is located at the top end of the flow regulating section 1-403 and is in communication with the inlet 1-204, and the two openings at the other end of the passage 1-404 are adjusted.
  • the flow regulating section 1-403 of the valve needle 1-4 is always located in the valve port 1-203, and the medium can flow from the inlet 1-204 through the regulating passage 1-404 into the valve chamber 1-202.
  • the medium in the throttle valve can also remain in circulation, thereby ensuring that the medium can pass through the throttle valve from both forward and reverse flow directions.
  • Example 6 Other undescribed structures are referred to Example 6.
  • valve chamber 1-202 is adjacent to the valve port 1-203, and the communication member 1-6 for opening the valve port 1-203 is provided.
  • -6 abuts the valve needle 1-4 and separates the valve needle 1-4 from the valve port 1-203 so that the valve needle 1-4 and the valve port 1-203 are always separated.
  • the connecting member 1-6 is provided with a communication port 1-601 connecting the valve chamber 1-102 and the inlet 1-204, the communication port 1-601 is penetrated through the peripheral side wall of the communicating member 1-6, and the communicating member 1-6 is along the valve port 1
  • the circumferential extension of -203, the connecting member 1-6 is provided with a through hole 1-602 for the passage of the valve needle 1-4, the through hole 1-602 is aligned with the valve port 1-203, and the medium passes through the through hole 1- 602 and the communication port 1-601 flow into the valve chamber 1-202, ensuring that the valve port 1-203 is always open, so that the medium can pass through the throttle valve from both forward and reverse flow directions.
  • Example 6 Other undescribed structures are referred to Example 6.
  • the present invention discloses a throttle valve in which a guide member is mounted, and the length of the guide member is shorter than the length of the guide portion on the valve needle, which can effectively prevent deformation due to deformation of the guide member or inaccurate size.
  • the valve pin is stuck or slipped, which improves the reliability and stability of the throttle valve.
  • valve tube 1-1 is also called the tube body 10
  • valve seat 1-2 is also called the fixing seat 20
  • the groove 1-201 is also called the fitting groove 201
  • valve chamber 1-202 is also called the accommodating chamber 23
  • valve port 1-203 is also called valve port 24, and inlet 1-204 is also called intake port 21.
  • the guiding member divides the valve chamber into two parts, and the connecting passage opened on the guiding member communicates the two parts of the valve chamber, so that the medium flows smoothly during operation, and the flow area of the connecting passage is larger than the flow area of the valve port, so that the medium flows
  • the flow rate is completely dependent on the size of the valve port, ensuring the effectiveness of the valve port work.
  • a communication member or a communication groove for keeping the valve port open state is provided, and the valve port is kept open so that the throttle valve can smoothly pass through the medium at a low pressure, thereby ensuring the throttle valve at a low pressure.
  • the valve needle is also provided with an adjustment passage. When the pressure is low or the valve port is fully closed, the medium also passes through the throttle valve to ensure that the throttle valve has a flow when it is fully closed.
  • the elastic member pushes the valve needle to move toward the valve port and closes the valve port.
  • the elastic member has a gap between the valve needle and the valve port in the original long state, which facilitates the passage of the medium in the throttle valve; when the valve port is closed, the elastic member is stretched. In the state, the elastic member drives the valve needle to move in the direction of opening the valve port, and a gap is formed between the valve needle and the valve port, thereby ensuring that the medium in the throttle valve can also pass through the throttle valve when flowing in the reverse direction, without causing a section.
  • the system in which the flow valve is located collapses, thereby improving the stability of the throttle operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Safety Valves (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

一种节流装置及具有其的换热系统,其中,节流装置,包括:固定座(20),固定座(20)具有进气孔(21)和容纳腔(23),且进气孔(21)与容纳腔(23)连通;节流结构(30),可移动地设置在容纳腔(23)内。该节流装置及具有其的换热系统有效地解决了现有技术中的节流装置控制流体的流量的问题。

Description

节流装置及具有其的换热系统 技术领域
本发明涉及阀门的技术领域,具体而言,涉及一种节流装置及具有其的换热系统。
背景技术
在换热系统中需要使用节流装置,现多采用毛细管节流作为节流装置,或者使用电子膨胀阀作为节流装置。现有的节流装置多是阀开度根据冷凝器侧(一次侧)的制冷剂的压力与蒸发器侧(二次侧)的制冷剂的压力的差压发生变化的节流阀,并安装有抵抗该差压引起的力而对阀针向闭阀方向施力的弹簧。
发明内容
本发明的主要目的在于提供一种节流装置及具有其的换热系统,以解决现有技术中的节流装置控制流体的流量的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种节流装置,包括:固定座,固定座具有进气孔和容纳腔,且进气孔与容纳腔连通;节流结构,可移动地设置在容纳腔内。
进一步地,节流装置还包括管体,具有内腔;固定座固定设置在内腔中,固定座还具有排气孔,排气孔与容纳腔相连通,且进气孔和排气孔均与内腔连通;节流结构包括第一节流部和第二节流部;其中,第一节流部可伸入进气孔内以减少进入进气孔的气体,第二节流部可伸入排气孔内以减少进入排气孔的气体,直至进入容纳腔内的气体的流量达到预设值。
进一步地,节流装置还包括:堵头,设置在排气孔处以对排气孔进行封堵,堵头具有通气孔,通气孔与容纳腔及内腔均连通,第二节流部可伸入通气孔内以对进入通气孔的气体进行节流;弹性结构,设置在堵头与节流结构之间,弹性结构给节流结构提供朝向进气孔一侧运动的弹性力。
进一步地,节流结构还包括连接柱,第一节流部和第二节流部分别设置在连接柱的两端,连接柱具有供气体通过的第一通气结构;其中,气体进入进气孔内并经由第一通气结构后从通气孔排出至内腔中。
进一步地,第一通气结构为沿连接柱的轴向延伸的通槽或通孔,或第一通气结构为沿连接柱的轴线螺旋设置的凹部。
进一步地,弹性结构为弹簧,堵头朝向节流结构的表面具有突出结构,弹簧的一端套设在突出结构上,弹簧的另一端与连接柱抵接,以向连接柱提供弹性力。
进一步地,节流装置还包括:限位件,设置在排气孔处,限位件具有对节流结构的轴向运动进行限位的限位部,限位部位于弹性结构与容纳腔的腔壁之间。
进一步地,限位件包括与限位部连接的连接部,连接部夹设在固定座与堵头之间且与固定座限位止挡,限位部为板状结构或弧形结构。
进一步地,节流结构还包括:连接套筒;与第一节流部连接的第一连接段,第一连接段伸入连接套筒的一端以与连接套筒连接;与第二节流部连接的第二连接段,第二连接段伸入连接套筒的另一端以与连接套筒连接;其中,第一连接段上具有第二通气结构,第二连接段上具有与第二通气结构相连通的第三通气结构,气体进入进气孔内并依次经由第三通气结构和第二通气结构后从通气孔排出至内腔中。
进一步地,节流结构还包括:与第一节流部连接的第三连接段,第三连接段具有容纳槽,第三连接段具有与容纳槽和容纳腔均连通的第四通气结构;与第二节流部连接的第四连接段,第四连接段伸入容纳槽内且与容纳槽固定连接,第四连接段具有与容纳槽和容纳腔均连通的第五通气结构,且第四通气结构与第五通气结构相连通;其中,气体进入进气孔内并依次经由第四通气结构和第五通气结构后从通气孔排出至内腔中。
进一步地,第一节流部为第一锥状结构,在进气孔至排气孔的方向上,至少部分第一锥状结构的尺寸逐渐增大,第二节流部为第二锥状结构,在进气孔至排气孔的方向上,至少部分第二锥状结构的尺寸逐渐减小。
进一步地,节流装置包括:管体,具有内腔;固定座,固定设置在内腔中,固定座具有进气孔、排气孔及与进气孔和排气孔均连通的容纳腔,且进气孔和排气孔均与内腔连通;节流结构,节流结构可移动地设置在容纳腔内;管体和固定座设置有相互配合的限位部,以使管体与固定座相互固定,管体与固定座之间设置有流通通道,流通通道的两端均与内腔相连通。
进一步地,限位部包括设置在管体上的内凹环和设置在固定座的外壁面上的配合凹槽,内凹环密封地嵌在配合凹槽内。
进一步地,内凹环为挤压管体形成。
进一步地,内凹环和配合凹槽均为封闭地环形。
进一步地,管体的内壁面和/或固定座的外壁面上设置有流体凹槽,流体凹槽形成流通通道。
进一步地,流体凹槽设置在固定座上,流体凹槽包括位于配合凹槽的一侧的第一流体凹槽和位于配合凹槽的另一侧的第二流体凹槽,第一流体凹槽和第二流体凹槽均与配合凹槽相连通。
进一步地,第一流体凹槽从配合凹槽贯通至固定座的端部。
进一步地,第二流体凹槽从配合凹槽贯通至固定座的端部。
进一步地,第一流体凹槽和第二流体凹槽的延伸方向均与管体的轴向方向相同,或者第一流体凹槽和第二流体凹槽均为设置在配合凹槽两侧的豁口。
进一步地,节流装置包括阀座,阀座设有阀腔、进口、阀口,阀口连通阀腔与进口,阀腔内设有导向件、阀针、弹性件,阀针穿过导向件,弹性件驱动阀针向闭合阀口方向移动,其特征在于:导向件设有连通导向件两端的阀腔的连接通道,连接通道一端的开口位于导向件的一个端面上,连接通道另一端的开口位于导向件的另一个端面上。
进一步地,阀针设有穿过导向件的导向段,导向件的长度小于导向段的长度。
进一步地,阀针的周侧壁设有凸起,凸起位于导向件背离阀口的一端,阀口闭合时,弹性件处于自由状态,且凸起与导向件相互面对的端面之间具有间隙。
进一步地,连接通道包括设于导向件外侧壁的外通气槽;或者,连接通道包括设于导向件的通气孔;或者,连接通道包括设于导向件内侧壁的内通气槽。
进一步地,连接通道沿阀针的轴向延伸。
进一步地,连接通道的流通面积不小于阀口的流通面积,且连接通道的流通面积保持不变。
进一步地,阀腔位于阀口处设有保持阀口开启的连通件,连通件与阀针抵接并分隔阀针与阀口,连通件设有连通阀腔与进口的连通口。
进一步地,连通件沿阀口的周向延伸,连通口贯穿连通件的周侧壁,连通件还设有用于阀芯穿过的通孔,通孔与阀口对齐连通。
进一步地,阀口的侧壁设有连通阀腔与进口的连通槽,连通槽一端的开口位于阀口的一端,连通槽另一端的开口位于阀口的另一端。
进一步地,阀针设有调节通道,调节通道一端的开口位于阀针的顶端并与进口保持连通,调节通道另一端的开口位于阀针的侧壁并与阀腔保持连通。
根据本发明的另一方面,提供了一种换热系统,换热系统包括上述的节流装置。
根据本发明的另一方面,提供了一种换热系统,包括换热主体和设置在换热主体上的节流装置,节流装置为上述的节流装置。
应用本发明的技术方案,流体从节流装置的进气孔进入容纳腔,节流结构可移动地设置在容纳腔,这样节流装置可以控制流体的流量。本发明的技术方案有效地解决了现有技术中的节流装置控制流体的流量的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的节流装置的实施例一的剖视图;
图2示出了图1中的节流装置的节流结构的主视图;
图3示出了图2中的节流结构的俯视图;
图4示出了根据本发明的节流装置的实施例二的剖视图;
图5示出了图4中的节流装置的另一角度的剖视图;
图6示出了图4中的节流装置的俯视图;
图7示出了根据本发明的节流装置的实施例三的剖视图;
图8示出了图7中的节流装置的另一角度的剖视图;以及
图9示出了根据本发明的节流装置的实施例四的节流结构的主视图;
图10示出了根据本发明的节流装置的实施例五的结构示意图;
图11示出了图10的节流装置的A处放大示意图;
图12示出了图10的节流装置的固定座第一种结构的结构示意图;
图13示出了图10的节流装置的固定座的第二种结构的结构示意图;
图14示出了图10的节流装置的固定座的第三种结构的结构示意图;
图15示出了图10的节流装置的固定座的第四种结构的结构示意图;
图16示出了图10的节流装置的节流结构的封头的第一种结构的结构示意图;
图17示出了图16的节流结构的封头的另一角度的结构示意图;
图18示出了图10的节流装置的节流结构的阀针的第一种结构的结构示意图;
图19示出了图18的节流结构的阀针的另一角度的结构示意图;
图20示出了图10的节流装置的节流结构的封头的第二种结构的结构示意图;
图21示出了图20的节流装置的节流结构的阀针的第二种结构的结构示意图;
图22示出了图10的节流装置的节流结构的封头的第三种结构的结构示意图;以及
图23示出了图22的节流结构的封头的剖视示意图;
图24是本发明实施例六的剖视图;
图25是本发明实施例六中导向件的立体图;
图26是本发明实施例六和实施例七中阀针的示意图;
图27是本发明实施例七中阀座的立体图;
图28是本发明实施例七的剖视图;
图29是本发明实施例七中导向件的立体图;
图30是本发明实施例八的立体图;
图31是本发明实施例八中导向件的立体图;
图32是本发明实施例八中阀针的透视图;
图33是本发明实施例九的立体图;
图34是本发明实施例九中连通件的立体图。
其中,上述附图包括以下附图标记:
10、管体;11、内腔;101、内凹环;20、固定座;21、进气孔;22、排气孔;23、容纳腔;24、阀口;201、配合凹槽;202、流体凹槽;30、节流结构;31、第一节流部;32、第二节流部;33、连接柱;331、第一通气结构;34、连接套筒;35、第一连接段;351、第二通气结构;36、第二连接段;361、第三通气结构;37、第三连接段;371、容纳槽;372、第四通气结构;38、第四连接段;381、第五通气结构;40、堵头;41、通气孔;42、突出结构;50、弹性结构;60、限位件;61、限位部;62、连接部;
1-1、阀管;1-2、阀座;1-201、凹槽;1-202、阀腔;1-203、阀口;1-204、进口;1-205、连通槽;1-3、导向件;1-301、中心孔;1-302、连接通道;1-4、阀针;1-401、导向段;1-402、凸起;1-403、流量调节段;1-404、调节通道;1-5、弹性件;1-6、连通件;1-601、连通口;1-602、通孔。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是针对附图所示的方向而言的,或者是针对竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中节流装置不能够控制流过其的流量值的问题,本申请提供了一种及具有其的换热系统。
实施例一
如图1所示,节流装置包括管体10、固定座20及节流结构30。其中,管体10具有内腔11。固定座20固定设置在内腔11中,固定座20具有进气孔21、排气孔22及与进气孔21和排气孔22均连通的容纳腔23,且进气孔21和排气孔22均与内腔11连通。节流结构30可移动地设置在容纳腔23内,节流结构30包括第一节流部31和第二节流部32;其中,第一节流部31可伸入进气孔21内以减少进入进气孔21的气体,第二节流部32可伸入排气孔22内以减少进入排气孔22的气体,直至进入容纳腔23内的气体的流量达到预设值。
应用本实施例的技术方案,节流结构30可移动地设置在容纳腔23内,节流结构30的第一节流部31可伸入进气孔21内以减少进入进气孔21的气体,第二节流部32可伸入排气孔22内以减少进入排气孔22的气体,则第一节流部31和第二节流部32能够对进入固定座20的容纳腔23内的气体进行流量调节,直至第一节流部31和第二节流部32在容纳腔23内达到受力平衡,以使经过节流装置的气体的流量达到预设值。这样,通过第一节流部31和第二节流部32的共同调节以使节流装置能够控制流过其的流量值,以满足不同生产加工需求,进而解决了现有技术中节流装置不能够控制流过其的流量值的问题。
如图1所示,节流装置还包括堵头40及弹性结构50。其中,堵头40设置在排气孔22处以对排气孔22进行封堵,堵头40具有通气孔41,通气孔41与容纳腔23及内腔11均连通,第二节流部32伸入通气孔41内以对进入通气孔41的气体进行节流。弹性结构50设置在堵头40与节流结构30之间,弹性结构50给节流结构30提供朝向进气孔21一侧运动的弹性力。这样,在节流装置运行过程中,节流结构30的第一节流部31和第二节流部32在气体的作用下在容纳腔23内移动,以实现节流结构30对进气孔21和通气孔41的节流作用,直至节流结构30的受力达到平衡,则从通气孔41排出的气体流量值达到预设值,以实现节流装置对流量(最大流量)的控制。
具体地,在节流结构运行过程中,气体从进气孔21进入容纳腔23内且推动节流结构30朝向排气孔22运动,则节流结构30将弹性结构50压缩,弹性结构50对节流结构30施加弹性力,以使节流结构30朝向进气孔21运动,以实现节流结构30在容纳腔23内的移动,直至节流结构30在气体推力和弹性力的共同作用下受力平衡,则从通气孔41排出的气体流量值达到预设值。
如图1至图3所示,节流结构30还包括连接柱33,第一节流部31和第二节流部32分别设置在连接柱33的两端,连接柱33具有供气体通过的第一通气结构331。其中,气体进入进气孔21内并经由第一通气结构331后从通气孔41排出至内腔11中。这样,气体从进气孔21进入至容纳腔23内,在节流结构30移动过程中,以使从通气孔41排出的气体流量值达到预设值。在上述过程中,进入容纳腔23内的气体经由第一通气结构331从通气孔41排出,以确保气体在节流结构30内的气体流畅性。
如图3所示,第一通气结构331为沿连接柱33的轴向延伸的通槽。这样,进入容纳腔23的气体能够通过通槽进入通气孔41内并从通气孔41排出。上述结构的结构简单,容易加工、实现。
需要说明的是,第一通气结构331的结构不限于此。可选地,第一通气结构331为沿连接柱33的轴向延伸的通孔。上述结构的结构简单,容易加工、实现。
在本实施例中,第一通气结构331的横截面积大于或等于阀口24的横截面积。
如图1所示,弹性结构50为弹簧,堵头40朝向节流结构30的表面具有突出结构42,弹簧的一端套设在突出结构42上,弹簧的另一端可与连接柱33抵接,以向连接柱33提供弹性力。这样,上述设置使得弹簧在堵头40上的安装更加稳固,不会与堵头脱离,以保证弹簧能够对节流结构30施加弹性力。
具体地,在节流装置运行过程中,节流结构30在弹簧的弹性力和气体的推动力的共同作用下在容纳腔23内移动,直至节流结构30受力平衡,则从通气孔41排出的气体的流量达到预设值。在进入进气孔21的气体的推动力(流量)不变的情况下,可以通过更换弹簧(改变弹簧的弹性系数),以使节流结构30在不同的平衡力作用下达到平衡,以改变经节流装置节流后的气体的流量值,以满足不同流量值的生产需求,扩大节流装置的使用范围。
如图1所示,节流装置还包括限位件60。其中,限位件60设置在排气孔22处,限位件60具有对节流结构30的轴向运动进行限位的限位部61,限位部61位于弹性结构50与容纳腔23的腔壁之间。这样,当从进气孔21进入的气体流量较大时,气体推动节流结构30朝向通气孔41运动,以使节流结构30压缩弹簧,则限位件60能够对节流结构30进行限位止挡,以防止节流结构30对弹簧产生超过弹簧本身最大弹力而使弹簧压并(并圈)甚至断裂失效,进而提升节流装置的结构可靠性。
如图1所示,限位件60包括与限位部61连接的连接部62,连接部62夹设在固定座20与堵头40之间且与固定座20限位止挡,限位部61为弧形结构。这样,上述安装方式使得限位件60与固定座20的安装更加稳固,以保证限位部61能够对节流结构30进行限位止挡。
具体地,限位部61朝向连接柱33的表面与连接柱33限位止挡,以实现限位件60对节流结构30的限位止挡,防止节流结构30对弹簧产生过压缩。
需要说明的是,限位部61的结构不限于此。可选地,限位部61为板状结构。上述结构的结构简单,容易加工、实现。
如图1和图2所示,第一节流部31为第一锥状结构,在进气孔21至排气孔22的方向上,全部第一锥状结构的尺寸逐渐增大,第二节流部32为第二锥状结构,在进气孔21至排气孔22的方向上,全部第二锥状结构的尺寸逐渐减小。这样,上述结构设置保证第一节流部31和第二节流部32既能够对进气孔21和通气孔41进行节流,还能够使得气体经由进气孔21和通气孔41,进而使得节流装置能够正常运行。
本申请还提供了一种换热系统(未示出),换热系统包括上述的节流装置。可选地,换热系统为空调器。
实施例二
实施例二中的节流装置与实施例一的区别在于:节流结构30的结构不同。
如图4至图6所示,节流结构30还包括连接套筒34、第一连接段35及第二连接段36。其中,第一连接段35与第一节流部31连接,第一连接段35伸入连接套筒34的一端以与连接套筒34连接。第二连接段36与第二节流部32连接,第二连接段36伸入连接套筒34的另一端以与连接套筒34连接。其中,第一连接段35上具有第二通气结构351,第二连接段36上具有与第二通气结构351相连通的第三通气结构361,气体进入进气孔21内并依次经由第三通气结构361和第二通气结构351后从通气孔41排出至内腔11中。这样,上述设置使得节流结构30的结构更加简单,容易加工、实现。
具体地,第一连接段35伸入连接套筒34的上端内且与该端固定连接,第二连接段36伸入连接套筒34的上端内且与该端固定连接,以将第一连接段35和第二连接段36固定在连接套筒34上,进而将第一节流部31和第二节流部32与连接套筒34连接在一起。其中,第一连接段35朝向第二连接段36的端部与第二连接段36朝向第一连接段35的端部之间具有过气间隙,以使从进气孔21进入容纳腔23的气体依次经由第二通气结构351、过气间隙及第三通气结构361后从通气孔41排出。
可选地,第二通气结构351为沿第一连接段35的轴向延伸的通槽。上述结构的结构简单,容易加工、实现。
可选地,第三通气结构361为沿第一连接段35的轴向延伸的通槽。上述结构的结构简单,容易加工、实现。
实施例三
实施例三中的节流装置与实施例一的区别在于:节流结构30的结构不同。
如图7和图8所示,节流结构30还包括第三连接段37和第四连接段38。其中,第三连接段37与第一节流部31连接,第三连接段37具有容纳槽371,且第三连接段37具有与容纳槽371和容纳腔23均连通的第四通气结构372。第四连接段38与第二节流部32连接,第四连接段38伸入容纳槽371内且与容纳槽371固定连接,第四连接段38具有与容纳槽371和容纳腔23均连通的第五通气结构381,且第四通气结构372与第五通气结构381相连通。其中,气体进入进气孔21内并依次经由第四通气结构372和第五通气结构381后从通气孔41排出至内腔11中。这样,上述设置使得节流结构30的结构更加简单,容易加工、实现。
具体地,第四连接段38伸入第三连接段37的容纳槽371内且与容纳槽371的槽壁固定连接,以实现第三连接段37与第四连接段38的连接。之后,从进气孔21进入容纳腔23的气体依次经由第四通气结构372及第五通气结构381后从通气孔41排出至内腔11中。
可选地,第四连接段38与容纳槽371过盈配合。
可选地,第四连接段38与容纳槽371的槽壁焊接。这样,上述连接方式使得第三连接段37与容纳槽371的连接更加稳固,提升节流结构30的结构稳定性。
在本实施例中,第四通气结构372包括沿第三连接段37的径向延伸的第一径向通孔和与第一径向通孔相连通的第一轴向通孔。可选地,第五通气结构381包括沿第四连接段38的径向延伸的第二径向通孔和与第二径向通孔相连通的第二轴向通孔。其中,第一轴向通孔与第二轴向通孔相连通。
实施例四
实施例四中的节流装置与实施例一的区别在于:第一通气结构331的结构不同。
如图9所示,第一通气结构331为沿连接柱33的轴线螺旋设置的凹部。这样,进入容纳腔23的气体能够通过凹部进入通气孔41内并从通气孔41排出。上述结构的结构简单,容易加工、实现。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
节流结构可移动地设置在容纳腔内,节流结构的第一节流部可伸入进气孔内以减少进入进气孔的气体,第二节流部可伸入排气孔内以减少进入排气孔的气体,则第一节流部和第二节流部能够对进入固定座的容纳腔内的气体进行流量调节,直至第一节流部和第二节流部在容纳腔内达到受力平衡,以使经过节流装置的气体的流量达到预设值。这样,通过第一节流部和第二节流部的共同调节以使节流装置能够控制流过其的流量值,以满足不同生产加工需求,进而解决了现有技术中节流装置不能够控制流过其的流量值的问题。
如图10至图23所示,本实施例的节流装置包括:管体10、固定座20和节流结构30。管体10具有内腔11。固定设置在内腔11中,固定座20具有进气孔21、排气孔22及与进气孔21和排气孔22均连通的容纳腔23,且进气孔21和排气孔22均与内腔11连通。节流结构30可移动地设置在容纳腔23内。管体10和固定座20设置有相互配合的限位部,以使管体10与固定座20相互固定,管体10与固定座20之间设置有流通通道,流通通道的两端均与内腔11相连通。
应用本实施例的技术方案,当流体通过节流装置时,流体压力较小不足以推动节流结构30打开,在这种情况下,流体从管体10和固定座20之间的流通通道通过。本实施例的技术方案有效地解决了现有技术中的节流装置在使用过程中,节流结构处于封堵位置时无流量的问题。
需要说明的是,进气孔21、排气孔22和容纳腔23通过的不仅仅是气体,可以为液体,或者气液混合物。
如图11所示,在本实施例的技术方案中,限位部包括设置在管体10上的内凹环101和设置在固定座20的外壁面上的配合凹槽201,内凹环101密封地嵌在配合凹槽201内。内凹环 101和配合凹槽201相配合的结构设置简单,制作成本较低。具体地,管体10和固定座20均由铜或者不锈钢材质制成。内凹环101为挤压管体10形成。制作时,固定座20的外壁面上加工好配合凹槽201,管体10还没有加工内凹环101,将固定座20放入管体10内,通过挤压与配合凹槽201相对应的管体10的部分,使得管体10和固定座20固定在一起。
如图10至图23所示,在本实施例的技术方案中,内凹环101和配合凹槽201均为封闭地环形。上述结构加工容易,配合效果较好。当然,在同一高度上,内凹环101位多段也是可以的,当然配合凹槽201也为与内凹环101相配合的多段。需要说明的是,内凹环101可以为多个,各个内凹环101沿管体10的轴向相间隔地设置,配合凹槽201与内凹环101相对应地设置。
如图12至图15所示,在本实施例的技术方案中,管体10的内壁面和/或固定座20的外壁面上设置有流体凹槽202,流体凹槽202形成流通通道。在本实施例中流体凹槽202设置在固定座20的外壁面上。流体凹槽202的结构形式可以有多种,图12至图15分别代表了不同的流体凹槽202的结构。流体凹槽202设置在固定座20上,流体凹槽202包括位于配合凹槽的一侧的第一流体凹槽和位于配合凹槽的另一侧的第二流体凹槽,第一流体凹槽和第二流体凹槽均与配合凹槽相连通。需要说明的是,内凹环101和配合凹槽201之间的密封是通过配合凹槽201的侧壁的顶部与内凹环101的内壁面形成的,内凹环101的内壁面和配合凹槽201的外壁面之间具有间隙,流体可以从上述的间隙通过。当然,第一流体凹槽和第二流体凹槽可以错位设置,图中仅给出了第一流体凹槽和第二流体凹槽相对应设置的一种情况。如图13所示,第一流体凹槽从配合凹槽贯通至固定座20的端部,第二流体凹槽从配合凹槽贯通至固定座20的端部。如图14所示,第一流体凹槽和第二流体凹槽均贯通。如图15所示,第一流体凹槽和第二流体凹槽均为设置在配合凹槽两侧的豁口。第一流体凹槽和第二流体凹槽的延伸方向均与管体10的轴向方向相同。当然,第一流体凹槽为豁口,第二流体凹槽的延伸方向为与管体轴向方向相同的长槽结构也是可以的。
本实施例还提供了一种换热系统,包括换热主体和设置在换热主体上的节流装置。节流装置为上述的节流装置。
实施例6
如图24至图26所示,本发明实施例所述一种节流阀,包括安装在阀管1-1里的阀座1-2,阀管1-1两端通过缩口以固定阀座1-2在阀管1-1内的位置,阀座1-2的外侧壁还设有至少两处截面为矩形的凹槽1-201,阀管1-1在与凹槽1-201对应的外径通过缩径或打点以进一步固定阀座1-2的位置,阀座1-2设有阀腔1-202、进口1-204和阀口1-203。阀腔1-202用于介质(气体或者液体)通过阀座1-2,进口1-204用于引导介质进入阀腔1-202,进口1-204呈喇叭状,能够有效减少介质产生的噪音,阀口1-203连通阀腔1-202与进口1-204,以对介质进行引导。介质可以沿进口1-204向阀腔1-202方向流动,介质也可以沿阀腔1-202向进口1-204方向流动。
阀腔1-202内设有导向件1-3、阀针1-4和弹性件1-5,导向件1-3焊接在阀腔1-202的内部,阀针1-4穿过导向件1-3的中心孔1-301并伸入阀口1-203内,阀针1-4设有穿过导向件1-3的导向段1-401,导向件1-3的长度小于导向段1-401的长度,能够减少由于导向件1-3过长和和变形导致阀针1-4卡死的现象。弹性件1-5采用压簧(即上述的弹簧),弹性件1-5驱动阀针1-4向闭合阀口1-203方向移动,以实现对阀内流量的调节。导向件1-3设有连通导向件1-3两端的连接通道1-302,连接通道1-302一端的开口位于导向件1-3的一个端面上,连接通道1-302另一端的开口位于导向件1-3的另一个端面上。
所述阀针1-4的周侧壁设有凸起1-402,凸起1-402的直径大于阀针1-4其他部位的直径,是阀针1-4直径的最大处。凸起1-402位于导向件1-3背离阀口1-203的一侧,阀口1-203闭合时,即阀针1-4的密封段与阀口1-203抵住时,弹性件1-5处于自由状态,弹性件1-5位于原长位置或者拉伸位置,从而弹性件1-5未向阀针1-4施加朝向闭合阀口1-203方向的力,阀针1-4在两侧介质压力作用下闭合阀口1-203,且凸起1-402与导向件1-3相互面对的端面之间具有间隙,一方面能够保证在弹性件1-5力的作用下阀针1-4与阀口1-203之间具有间隙,保持阀口1-203开启,另一方面能够保证连接通道1-302的通畅,避免阀针1-4卡死。
连接通道1-302包括设于导向件1-3外侧壁的外通气槽,外通气槽与阀腔1-202的侧壁围成用于介质通过的完整的通道,外通气槽的开口分别位于导向件1-3朝向阀口1-203的一侧的端面上和远离阀口1-203的一侧的端面上,外通气槽沿阀针1-4的轴向延伸,与介质的流动方向对应便于介质以最短的路径通过导向件1-3,从而提高介质通过的速度,减少介质产生的噪音。并且由于连接通道1-302沿阀针1-4的轴向延伸,在阀针1-4的运动过程中,阀针1-4与连接通道1-302不接触,从而能够保证连接通道1-302的流通面积保持不变,不会受阀针1-4的影响,进而使得介质在通过阀口1-203和连接通道1-302时保持畅通。
实施例7
如图27至图29所示,本发明实施例与实施例6的区别在于连接通道1-302包括设于导向件1-3的通气孔,通气孔的开口分别位于导向件1-3朝向阀口1-203的一侧的端面上和远离阀口1-203的一侧的端面上,通气孔沿阀针1-4的轴向延伸。通气孔的延伸方向与介质的流动方向对应便于介质以最短的路径通过导向件1-3,从而提高介质通过的速度,减少介质产生的噪音。并且能够连接通道1-302的流通面积保持不变,不会受阀针1-4的影响。
阀口1-203的侧壁设有连通阀腔1-202与进口1-204的连通槽1-205,连通槽1-205一端的开口位于阀口1-203的一端,连通槽1-205另一端的开口位于阀口1-203的另一端。连通槽1-205与阀针1-4的外侧壁围成用于介质通过的完整的通道,连通槽1-205沿阀口1-203的轴向延伸,便于介质以最短的路径通过导向件1-3,从而提高介质通过的速度,减少介质产生的噪音。介质经过连通槽1-205从进口1-204流入阀腔1-202,保证阀口1-203始终处于开启状态,从而使得介质从正反两个流向均能通过节流阀。
其他未描述结构参照实施例6。
实施例8
如图30至图32所示,本发明实施例与实施例6的区别在于连接通道1-302包括设于导向件1-3内侧壁的内通气槽,内通气槽与阀针1-4的外的侧壁围成用于介质通过的完整的通道,内通气槽的开口分别位于导向件1-3朝向阀口1-203的一侧的端面上和远离阀口1-203的一侧的端面上。通气槽沿阀针1-4的轴向延伸,与介质的流动方向对应便于介质以最短的路径通过导向件1-3,从而提高介质通过的速度,减少介质产生的噪音。并且能够连接通道1-302的流通面积保持不变,不会受阀针1-4的影响。
阀针1-4设有调节通道1-404,调节通道1-404一端的开口位于流量调节段1-403的顶端并与进口1-204保持连通,调节通道1-404另一端的两个开口位于阀针1-4的侧壁并与阀腔1-202保持连通。在节流阀的工作过程中,阀针1-4的流量调节段1-403始终位于阀口1-203内,介质能够经过调节通道1-404从进口1-204流入阀腔1-202。使得阀口1-203在闭合的情况下,节流阀内的介质也能够保持流通,从而保证介质从正反两个流向均能通过节流阀。
其他未描述结构参照实施例6。
实施例9
如图33和图34所示,本发明实施例与实施例6的区别在于阀腔1-202靠近阀口1-203处设有开启阀口1-203的连通件1-6,连通件1-6与阀针1-4抵接并分隔阀针1-4与阀口1-203,使得阀针1-4与阀口1-203之间始终保持分隔。连通件1-6设有连通阀腔1-202与进口1-204的连通口1-601,连通口1-601贯穿连通件1-6的周侧壁,连通件1-6沿阀口1-203的周向延伸,连通件1-6设有用于阀针1-4穿过的通孔1-602,通孔1-602与阀口1-203对齐连通,介质依次经过通孔1-602与连通口1-601流入阀腔1-202,保证阀口1-203始终处于开启状态,从而使得介质从正反两个流向均能通过节流阀。
其他未描述结构参照实施例6。
综上所述本发明公开一种节流阀,节流阀内安装有导向件,导向件的长度比阀针上的导向段的长度短,能够有效防止由于导向件变形或者尺寸不准确造成的阀针卡死或者滑动不畅,从而提高了节流阀工作时的可靠性和稳定性。
需要说明的是,实施例6至9和实施例1至5中的名称不同但是指的相同的零部件。具体地,阀管1-1也叫做管体10,阀座1-2也叫做固定座20,凹槽1-201也叫做配合凹槽201,阀腔1-202也叫做容纳腔23,阀口1-203也叫做阀口24,进口1-204也叫做进气孔21。
导向件将阀腔分为两部分,导向件上开设的连接通道对两部分阀腔进行连通,便于在工作时介质顺畅流动,并且连接通道的流通面积大于阀口的流通面积,使得介质流动时的流量完全取决于阀口的大小,保证了阀口工作的有效性。
在阀座的阀口处,设有保持阀口开启状态的连通件或者连通槽,阀口保持开启使得节流阀能够在低压力时也能够顺畅的通过介质,保证了节流阀在低压力时的流量;相应的,阀针内也开设有调节通道,在低压力或者阀口全关闭时,节流阀内也有介质通过,保证了节流阀在全关闭时有流量。
弹性件推动阀针向阀口运动并关闭阀口,弹性件在原长状态下,阀针与阀口之间具有间隙,便于节流阀内介质通过;在阀口闭合时,弹性件为拉伸状态,弹性件驱动阀针向开启阀口的方向运动,阀针与阀口之间也会形成间隙,保证了节流阀内介质在反向流动时也能够通过节流阀,不会造成节流阀所在的系统崩溃,从而提高了节流阀工作的稳定性。
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (32)

  1. 一种节流装置,其特征在于,包括:
    固定座(20),所述固定座(20)具有进气孔(21)和容纳腔(23),且所述进气孔(21)与所述容纳腔(23)连通;
    节流结构(30),可移动地设置在所述容纳腔(23)内。
  2. 根据权利要求1所述的节流装置,其特征在于,所述节流装置还包括管体(10),具有内腔(11);
    所述固定座(20)固定设置在所述内腔(11)中,所述固定座(20)还具有排气孔(22),所述排气孔(22)与所述容纳腔(23)相连通,且所述进气孔(21)和所述排气孔(22)均与所述内腔(11)连通;
    所述节流结构(30)包括第一节流部(31)和第二节流部(32);其中,所述第一节流部(31)可伸入所述进气孔(21)内以减少进入所述进气孔(21)的气体,所述第二节流部(32)可伸入所述排气孔(22)内以减少进入所述排气孔(22)的气体,直至进入所述容纳腔(23)内的所述气体的流量达到预设值。
  3. 根据权利要求2所述的节流装置,其特征在于,所述节流装置还包括:
    堵头(40),设置在所述排气孔(22)处以对所述排气孔(22)进行封堵,所述堵头(40)具有通气孔(41),所述通气孔(41)与所述容纳腔(23)及所述内腔(11)均连通,所述第二节流部(32)可伸入所述通气孔(41)内以对进入所述通气孔(41)的所述气体进行节流;
    弹性结构(50),设置在所述堵头(40)与所述节流结构(30)之间,所述弹性结构(50)给所述节流结构(30)提供朝向所述进气孔(21)一侧运动的弹性力。
  4. 根据权利要求3所述的节流装置,其特征在于,所述节流结构(30)还包括连接柱(33),所述第一节流部(31)和所述第二节流部(32)分别设置在所述连接柱(33)的两端,所述连接柱(33)具有供所述气体通过的第一通气结构(331);其中,所述气体进入所述进气孔(21)内并经由所述第一通气结构(331)后从所述通气孔(41)排出至所述内腔(11)中。
  5. 根据权利要求4所述的节流装置,其特征在于,所述第一通气结构(331)为沿所述连接柱(33)的轴向延伸的通槽或通孔,或所述第一通气结构(331)为沿所述连接柱(33)的轴线螺旋设置的凹部。
  6. 根据权利要求4所述的节流装置,其特征在于,所述弹性结构(50)为弹簧,所述堵头(40)朝向所述节流结构(30)的表面具有突出结构(42),所述弹簧的一端套设在所述突出结构(42)上,所述弹簧的另一端与所述连接柱(33)抵接,以向所述连接柱(33)提供所述弹性力。
  7. 根据权利要求3所述的节流装置,其特征在于,所述节流装置还包括:
    限位件(60),设置在所述排气孔(22)处,所述限位件(60)具有对所述节流结构(30)的轴向运动进行限位的限位部(61),所述限位部(61)位于所述弹性结构(50)与所述容纳腔(23)的腔壁之间。
  8. 根据权利要求7所述的节流装置,其特征在于,所述限位件(60)包括与所述限位部(61)连接的连接部(62),所述连接部(62)夹设在所述固定座(20)与所述堵头(40)之间且与所述固定座(20)限位止挡,所述限位部(61)为板状结构或弧形结构。
  9. 根据权利要求3所述的节流装置,其特征在于,所述节流结构(30)还包括:
    连接套筒(34);
    与所述第一节流部(31)连接的第一连接段(35),所述第一连接段(35)伸入所述连接套筒(34)的一端以与所述连接套筒(34)连接;
    与所述第二节流部(32)连接的第二连接段(36),所述第二连接段(36)伸入所述连接套筒(34)的另一端以与所述连接套筒(34)连接;
    其中,所述第一连接段(35)上具有第二通气结构(351),所述第二连接段(36)上具有与所述第二通气结构(351)相连通的第三通气结构(361),所述气体进入所述进气孔(21)内并依次经由所述第三通气结构(361)和第二通气结构(351)后从所述通气孔(41)排出至所述内腔(11)中。
  10. 根据权利要求3所述的节流装置,其特征在于,所述节流结构(30)还包括:
    与所述第一节流部(31)连接的第三连接段(37),所述第三连接段(37)具有容纳槽(371),所述第三连接段(37)具有与所述容纳槽(371)和所述容纳腔(23)均连通的第四通气结构(372);
    与所述第二节流部(32)连接的第四连接段(38),所述第四连接段(38)伸入所述容纳槽(371)内且与所述容纳槽(371)固定连接,所述第四连接段(38)具有与所述容纳槽(371)和所述容纳腔(23)均连通的第五通气结构(381),且所述第四通气结构(372)与所述第五通气结构(381)相连通;
    其中,所述气体进入所述进气孔(21)内并依次经由所述第四通气结构(372)和所述第五通气结构(381)后从所述通气孔(41)排出至所述内腔(11)中。
  11. 根据权利要求3所述的节流装置,其特征在于,所述第一节流部(31)为第一锥状结构,在所述进气孔(21)至所述排气孔(22)的方向上,至少部分所述第一锥状结构的尺寸逐渐增大,所述第二节流部(32)为第二锥状结构,在所述进气孔(21)至所述排气孔(22)的方向上,至少部分所述第二锥状结构的尺寸逐渐减小。
  12. 根据权利要求1所述的节流装置,其特征在于,包括:
    管体(10),具有内腔(11);
    固定座(20),固定设置在所述内腔(11)中,所述固定座(20)具有进气孔(21)、排气孔(22)及与所述进气孔(21)和所述排气孔(22)均连通的容纳腔(23),且所述进气孔(21)和所述排气孔(22)均与所述内腔(11)连通;
    节流结构(30),所述节流结构(30)可移动地设置在所述容纳腔(23)内;
    所述管体(10)和所述固定座(20)设置有相互配合的限位部,以使所述管体(10)与所述固定座(20)相互固定,所述管体(10)与所述固定座(20)之间设置有流通通道,所述流通通道的两端均与所述内腔(11)相连通。
  13. 根据权利要求12所述的节流装置,其特征在于,所述限位部包括设置在所述管体(10)上的内凹环(101)和设置在所述固定座(20)的外壁面上的配合凹槽(201),所述内凹环(101)密封地嵌在所述配合凹槽(201)内。
  14. 根据权利要求13所述的节流装置,其特征在于,所述内凹环(101)为挤压所述管体(10)形成。
  15. 根据权利要求13所述的节流装置,其特征在于,所述内凹环(101)和所述配合凹槽(201)均为封闭地环形。
  16. 根据权利要求13所述的节流装置,其特征在于,所述管体(10)的内壁面和/或所述固定座(20)的外壁面上设置有流体凹槽(202),所述流体凹槽(202)形成所述流通通道。
  17. 根据权利要求16所述的节流装置,其特征在于,所述流体凹槽(202)设置在所述固定座(20)上,所述流体凹槽(202)包括位于配合凹槽的一侧的第一流体凹槽和位于所述配合凹槽的另一侧的第二流体凹槽,所述第一流体凹槽和所述第二流体凹槽均与所述配合凹槽(201)相连通。
  18. 根据权利要求17所述的节流装置,其特征在于,所述第一流体凹槽从所述配合凹槽(201)贯通至所述固定座(20)的端部。
  19. 根据权利要求17或18所述的节流装置,其特征在于,所述第二流体凹槽从所述配合凹槽(201)贯通至所述固定座(20)的端部。
  20. 根据权利要求17所述的节流装置,其特征在于,所述第一流体凹槽和所述第二流体凹槽的延伸方向均与所述管体(10)的轴向方向相同,或者所述第一流体凹槽和所述第二流体凹槽均为设置在所述配合凹槽(201)两侧的豁口。
  21. 根据权利要求1所述的节流装置,其特征在于,包括阀座,阀座设有阀腔、进口、阀口,阀口连通阀腔与进口,阀腔内设有导向件、阀针、弹性件,阀针穿过导向件,弹性件驱动阀针向闭合阀口方向移动,其特征在于:所述导向件设有连通导向件两端的阀腔的连接通道,连接通道一端的开口位于导向件的一个端面上,连接通道另一端的开口位于导向件的另一个端面上。
  22. 根据权利要求21所述的节流装置,其特征在于,所述阀针设有穿过导向件的导向段,导向件的长度小于导向段的长度。
  23. 根据权利要求21所述的节流装置,其特征在于,所述阀针的周侧壁设有凸起,凸起位于导向件背离阀口的一端,阀口闭合时,弹性件处于自由状态,且凸起与导向件相互面对的端面之间具有间隙。
  24. 根据权利要求21所述的节流装置,其特征在于,所述连接通道包括设于导向件外侧壁的外通气槽;或者,连接通道包括设于导向件的通气孔;或者,连接通道包括设于导向件内侧壁的内通气槽。
  25. 根据权利要求24所述的节流装置,其特征在于,所述连接通道沿阀针的轴向延伸。
  26. 根据权利要求24所述的节流装置,其特征在于,所述连接通道的流通面积不小于阀口的流通面积,且连接通道的流通面积保持不变。
  27. 根据权利要求21所述的节流装置,其特征在于,所述阀腔位于阀口处设有保持阀口开启的连通件,连通件与阀针抵接并分隔阀针与阀口,连通件设有连通阀腔与进口的连通口。
  28. 根据权利要求27所述的节流装置,其特征在于,所述连通件沿阀口的周向延伸,连通口贯穿连通件的周侧壁,连通件还设有用于阀芯穿过的通孔,通孔与阀口对齐连通。
  29. 根据权利要求21所述的节流装置,其特征在于,所述阀口的侧壁设有连通阀腔与进口的连通槽,连通槽一端的开口位于阀口的一端,连通槽另一端的开口位于阀口的另一端。
  30. 根据权利要求21所述的节流装置,其特征在于,所述阀针设有调节通道,调节通道一端的开口位于阀针的顶端并与进口保持连通,调节通道另一端的开口位于阀针的侧壁并与阀腔保持连通。
  31. 一种换热系统,其特征在于,所述换热系统包括权利要求2至11中任一项所述的节流装置。
  32. 一种换热系统,包括换热主体和设置在所述换热主体上的节流装置,其特征在于,所述节流装置为权利要求12至20中任一项所述的节流装置。
PCT/CN2019/072832 2018-01-25 2019-01-23 节流装置及具有其的换热系统 WO2019144884A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207021598A KR102376051B1 (ko) 2018-01-25 2019-01-23 스로틀 장치 및 이를 구비한 열교환시스템

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201820130099.0U CN208012180U (zh) 2018-01-25 2018-01-25 一种节流阀
CN201820130099.0 2018-01-25
CN201811005057.5A CN110873226B (zh) 2018-08-30 2018-08-30 节流装置及具有其的换热系统
CN201811005057.5 2018-08-30
CN201920089146.6U CN209856454U (zh) 2019-01-18 2019-01-18 节流装置及具有其的换热系统
CN201920089146.6 2019-01-18

Publications (1)

Publication Number Publication Date
WO2019144884A1 true WO2019144884A1 (zh) 2019-08-01

Family

ID=67395200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072832 WO2019144884A1 (zh) 2018-01-25 2019-01-23 节流装置及具有其的换热系统

Country Status (2)

Country Link
KR (1) KR102376051B1 (zh)
WO (1) WO2019144884A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413059A (zh) * 2022-01-19 2022-04-29 佛山市美的清湖净水设备有限公司 节流阀和净水机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE422833B (sv) * 1975-12-24 1982-03-29 Keystone Int Ventilaggregat med adapter
GB2327742A (en) * 1997-07-25 1999-02-03 Denso Corp Valve member; flange for mounting
CN201152364Y (zh) * 2008-01-22 2008-11-19 农贤昌 气体减压阀的流量控制装置
JP2012127505A (ja) * 2012-03-09 2012-07-05 Kyb Co Ltd 移動絞り弁、流体圧状態保持システム、流体圧免震システム
CN202580144U (zh) * 2012-05-31 2012-12-05 浙江盾安禾田金属有限公司 一种组合式截止阀
CN202973684U (zh) * 2012-11-06 2013-06-05 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN203442227U (zh) * 2013-08-23 2014-02-19 宁波诺华工业自动化有限公司 两位五通高精度板式节流阀
CN203442216U (zh) * 2013-08-23 2014-02-19 宁波诺华工业自动化有限公司 两位三通高精度板式节流阀
CN105546346A (zh) * 2014-10-28 2016-05-04 株式会社捷太格特 节流阀

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232196A (ja) * 2007-03-16 2008-10-02 Fuji Seiko Kk 定流量制御装置
US10088207B2 (en) * 2014-04-17 2018-10-02 Saginomiya Seisakusho, Inc. Throttle device, and refrigeration cycle system including same
KR20170092219A (ko) * 2016-02-03 2017-08-11 염정향 릴리프 밸브

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE422833B (sv) * 1975-12-24 1982-03-29 Keystone Int Ventilaggregat med adapter
GB2327742A (en) * 1997-07-25 1999-02-03 Denso Corp Valve member; flange for mounting
CN201152364Y (zh) * 2008-01-22 2008-11-19 农贤昌 气体减压阀的流量控制装置
JP2012127505A (ja) * 2012-03-09 2012-07-05 Kyb Co Ltd 移動絞り弁、流体圧状態保持システム、流体圧免震システム
CN202580144U (zh) * 2012-05-31 2012-12-05 浙江盾安禾田金属有限公司 一种组合式截止阀
CN202973684U (zh) * 2012-11-06 2013-06-05 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN203442227U (zh) * 2013-08-23 2014-02-19 宁波诺华工业自动化有限公司 两位五通高精度板式节流阀
CN203442216U (zh) * 2013-08-23 2014-02-19 宁波诺华工业自动化有限公司 两位三通高精度板式节流阀
CN105546346A (zh) * 2014-10-28 2016-05-04 株式会社捷太格特 节流阀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413059A (zh) * 2022-01-19 2022-04-29 佛山市美的清湖净水设备有限公司 节流阀和净水机

Also Published As

Publication number Publication date
KR102376051B1 (ko) 2022-03-18
KR20200103770A (ko) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2013000389A1 (zh) 一种流量调节阀
US20100327205A1 (en) Control ball valve
WO2018036106A1 (zh) 节流装置及空调器
US10054343B2 (en) Throttle device
JP2009259136A (ja) 流体圧機器に用いられる絞り構造
CN100378385C (zh) 调节阀
WO2019144884A1 (zh) 节流装置及具有其的换热系统
WO2022012537A1 (zh) 节流阀及换热系统
CN106170670A (zh) 节流装置
JPWO2019059136A1 (ja) シーケンス弁付きシリンダ装置
CN111998577A (zh) 双向节流阀
CN103711964A (zh) 自对准阀塞
RU191387U1 (ru) Шаровой кран
CN103411357A (zh) 带三次节流及减振功能的空调双向节流阀
JPH05322381A (ja) 膨張弁装置
JP2007292278A (ja) 等差圧制御パイロット弁
CN109931409B (zh) 电子膨胀阀
CN114215960A (zh) 节流阀
CN219868611U (zh) 电子膨胀阀
JP3465126B2 (ja) 流量調整弁
CN110873226B (zh) 节流装置及具有其的换热系统
CN109185501B (zh) 一种单向节流阀
CN110939781A (zh) 一种双向节流阀
US2278004A (en) Pressure regulating valve
CN203454487U (zh) 一种带三次节流及减振功能的空调双向节流阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207021598

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743683

Country of ref document: EP

Kind code of ref document: A1