WO2019144253A1 - Méthode de préparation d'un tamis moléculaire beta monocristallin creux - Google Patents

Méthode de préparation d'un tamis moléculaire beta monocristallin creux Download PDF

Info

Publication number
WO2019144253A1
WO2019144253A1 PCT/CN2018/000193 CN2018000193W WO2019144253A1 WO 2019144253 A1 WO2019144253 A1 WO 2019144253A1 CN 2018000193 W CN2018000193 W CN 2018000193W WO 2019144253 A1 WO2019144253 A1 WO 2019144253A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
single crystal
beta molecular
sio
hollow single
Prior art date
Application number
PCT/CN2018/000193
Other languages
English (en)
Chinese (zh)
Inventor
徐龙伢
赵东璞
辛文杰
刘盛林
楚卫锋
朱向学
谢素娟
陈福存
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019144253A1 publication Critical patent/WO2019144253A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the invention belongs to the technical field of catalytic chemistry; in particular, to a preparation method of a hollow single crystal Beta molecular sieve.
  • Beta molecular sieve is a medium pore zeolite with a unique cage-free three-dimensional 12-membered ring large pore system, good catalytic stability, thermal stability and hydrothermal stability.
  • the linear channels along the [100] and [010] orientations have a pore size of about 0.77 x 0.67 nm; the [001] direction is a curved channel through the straight channel, and the aperture is about 0.56 x 0.56 nm.
  • Beta molecular sieve has a wide range of industrial applications, mainly for the catalytic conversion process of hydrocarbons, such as: alkylation of benzene with olefins (production of ethylbenzene, cumene), transalkylation of heavy aromatics, hydrocarbon cracking, Hydroisomerization and the like.
  • Beta molecular sieve has many potential catalytic functions, due to its small pore size distribution, the reactant molecules are not easy to access the active site of the molecular sieve and affect its utilization. The larger product molecules are not easy to get rid of the active sites and cause side reactions. It is easy to cause problems such as carbon deposition, low catalytic efficiency, and rapid deactivation of the catalyst.
  • two approaches have been adopted. One is to shorten the pore length of the molecular sieve, that is, synthesize the nano molecular sieve. Nanomolecular sieves have a short diffusion path length and a large specific surface area, which greatly change their catalytic performance and thermal stability.
  • the second is to broaden the pore size of the molecular sieve, that is, to introduce a mesoporous or macroporous into the microporous molecular sieve to form a multistage pore molecular sieve.
  • Multistage pore molecular sieves improve the diffusion properties of macromolecular reactants and products, thereby increasing the reaction rate and selectivity of the target product.
  • a Pt-coated hollow Beta molecular sieve was prepared by a two-step method using a Pt-loaded carbon sphere as a hard template.
  • Fan et al. (Fan Feng, Ling Fengxiang, Wang Shaojun, et al. The 19th National Molecular Sieve Conference) used a solid Beta molecular sieve as a precursor to prepare a Beta molecular sieve with a hollow structure by secondary crystallization in an alkaline aluminum solution.
  • the object of the present invention is to develop a preparation method of a hollow single crystal Beta molecular sieve, which has the advantages of hollow structure, high crystallinity, specific surface area and large pore volume.
  • the present invention mainly solves the above technical problems by adopting a suitable raw material, a molar composition of the finely tuned raw material, and a one-step hydrothermal crystallization method.
  • a method for preparing a hollow single crystal Beta molecular sieve the specific steps are as follows:
  • the high-temperature crystallization is: dynamic crystallization for 10 to 240 hours at 100 to 180 ° C, and hydrothermal synthesis of a hollow single crystal Beta molecular sieve.
  • the dynamic crystallization treatment is carried out in a reactor of a rotary oven having a rotational speed of 10 to 100 rpm.
  • the selected silicon source is one or more of white carbon black, tetraethyl orthosilicate, water glass, silica sol, chromatography silica gel, and coarse pore silica gel, and preferably white carbon black is a silicon source.
  • the selected aluminum source is one or more of sodium aluminate, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum acetate, aluminum powder, and pseudoboehmite, and preferably sodium aluminate is an aluminum source;
  • the selected alkali source is one or more of sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, preferably sodium hydroxide is an alkali source;
  • the selected templating agent is one or more of tetraethylammonium hydroxide, tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium fluoride, preferably tetraethylammonium hydroxide;
  • the alkalinity of the raw material mixture is adjusted by adding an inorganic base or a templating agent.
  • the selected organic additive lactam R is one of 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, preferably N-methyl- 2-Pyrrolidone is an organic additive.
  • the hollow single crystal Beta molecular sieve synthesized by the method of the invention can synthesize a submicron hollow single crystal Beta molecular sieve which is formed by orderly stacking 10-30 nm primary particles by adjusting the ratio of raw materials and crystallization conditions, and the sample has Hollow, high crystallinity, specific surface area and large pore volume.
  • the aluminum source is combined with a part of the inorganic base and the templating agent to form a solution B 1
  • the silicon source is combined with a part of the inorganic base, the templating agent and the organic additive to form a solution B 2
  • B 1 is added dropwise to the B 2 to form a solution B. Stir well to mix the ingredients evenly.
  • the aluminum source is combined with a part of the inorganic base and the templating agent to form a solution B 1
  • the silicon source is combined with a part of the inorganic base, the templating agent and the organic additive to form a solution B 2
  • the B 2 is added dropwise to the B 1 to form a solution C. Stir well to mix the ingredients evenly.
  • the A, B or C solution after being uniformly stirred is dynamically crystallized at 100 to 180 ° C for 10 to 240 hours, and the hollow single crystal Beta molecular sieve is hydrothermally synthesized.
  • the hollow single crystal Beta molecular sieve synthesized by the invention can be used for alkylation of benzene with olefin (production of ethylbenzene, cumene), transalkylation of heavy aromatic hydrocarbons, hydrocarbon cracking, hydroisomerization and the like.
  • the invention obtains a hollow single by a one-step method using inexpensive N-methyl-2-pyrrolidone or its homologues 2-pyrrolidone, N-ethyl-2-pyrrolidone and N-isopropyl-2-pyrrolidone as organic additives.
  • Crystal Beta molecular sieve is an economical, efficient and simple preparation method, and it is expected to be commercialized on a large scale.
  • the hollow single crystal Beta molecular sieve prepared by the invention has the advantages of hollowness, high crystallinity, large specific surface area and large pore volume, and is expected to have broad application prospects in the fields of nanoreactor, macromolecular catalysis, gas adsorption and separation.
  • Example 1 is an X-ray diffraction (XRD) pattern of a hollow single crystal Beta molecular sieve prepared in Example 1.
  • Example 2 is a field emission scanning electron microscope (FESEM) image of the hollow single crystal Beta molecular sieve prepared in Example 1.
  • FESEM field emission scanning electron microscope
  • FIG. 3 is a transmission electron microscope (TEM) and a selected area electron diffraction (SAED) picture of the hollow single crystal Beta molecular sieve prepared in Example 1, wherein FIG. 3a is a low power TEM photograph, FIG. 3b is a high power TEM photograph, and FIG. 3c is a corresponding FIG. Selected area electron diffraction (SAED) photos.
  • TEM transmission electron microscope
  • SAED selected area electron diffraction
  • Example 4 is a N 2 adsorption-desorption curve of the hollow single crystal Beta molecular sieve prepared in Example 1.
  • Figure 5 is a transmission electron microscope (TEM) image of a solid Beta molecular sieve prepared in Comparative Example 1.
  • Figure 1 is a powder X-ray diffraction pattern of the obtained molecular sieve raw powder. As can be seen from the figure, it is a pure phase Beta molecular sieve and has good crystallinity.
  • Fig. 2 is a field emission scanning electron microscope (FESEM) image. The morphology of the sample is a uniform four-square shape with a particle size of about 300-500 nm, which is formed by sequential stacking of primary particles with a size of about 10-30 nm.
  • Figure 3 is a transmission electron micrograph. The low-power transmission electron microscope (Fig. 3a) shows that the obtained Beta molecular sieve is a four-square crystal with a hollow structure; the high-power transmission electron micrograph (Fig.
  • FIG. 3b shows a uniformly oriented lattice fringe, indicating that the sample is The single crystal structure; in addition, the corresponding selected area electron diffraction (SAED) point of Fig. 3b exhibits a highly discrete state, further indicating that the sample as a whole is a hollow single crystal molecular sieve.
  • Figure 4 is a N 2 adsorption and desorption curve with a BET surface area of 737 m 2 /g (micropore surface area 590 m 2 /g, external surface area 147 m 2 /g), and a total pore volume of 0.52 cm 3 /g (microporous pore volume). It was 0.23 cm 3 /g, and the mesoporous pore volume was 0.29 cm 3 /g).
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shown in Figure 5 shows that it is a solid Beta molecular sieve with a particle size of about 322 nm and a N 2 adsorption-desorption test with a BET surface area of 527 m 2 /g.
  • the total pore volume is 0.35 cm 3 /g.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 342 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 711 m 2 /g, and the total pore volume. It is 0.53 cm 3 /g.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 312 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 682 m 2 /g, and the total pore volume. It is 0.75 cm 3 /g.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 352 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 725 m 2 /g, and the total pore volume. It is 0.78 cm 3 /g.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 364 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 730 m 2 /g, and the total pore volume. It is 0.573 cm 3 /g.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 373 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 736 m 2 /g, and the total pore volume. It is 0.59 cm 3 /g.
  • the molecular sieve raw powder was obtained by drying overnight at 80 °C.
  • the XRD spectrum of the obtained Beta product is similar to that of Figure 1.
  • the transmission electron microscopy (TEM) image shows that it is a hollow single crystal structure with a particle size of about 305 nm.
  • the N 2 adsorption and desorption test has a BET surface area of 782 m 2 /g, and the total pore volume. It is 0.85 cm 3 /g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

L'invention concerne une méthode de préparation d'un tamis moléculaire Beta monocristallin creux. Selon la méthode, le tamis moléculaire peut être préparé directement au moyen d'une cristallisation hydrothermique en une étape d'un gel formé par mélange complet d'une source de silicium, d'une source d'aluminium, d'une base inorganique, d'un agent structurant microporeux et d'un additif organique d'un lactame R, et le produit synthétisé est formé par empilement ordonné et connexion de nanoparticules primaires ayant une taille de particule primaire de 10 à 30 nm. Dans la méthode, la N-méthyl-2-pyrrolidone peu coûteuse ou la 2-pyrrolidone homologue, la N-éthyl-2-pyrrolidone ou la N-isopropyl-2-pyrrolidone de celle-ci est utilisée en tant qu'additif organique pour synthétiser un tamis moléculaire Beta monocristallin creux au moyen d'une méthode en une étape, ce qui permet de remplacer le traitement classique à base d'acide en deux étapes pour obtenir une structure creuse, et elle est une méthode économique, efficace et simple.
PCT/CN2018/000193 2018-01-26 2018-05-25 Méthode de préparation d'un tamis moléculaire beta monocristallin creux WO2019144253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810077012.2 2018-01-26
CN201810077012.2A CN108217675A (zh) 2018-01-26 2018-01-26 一种中空单晶Beta分子筛的制备方法

Publications (1)

Publication Number Publication Date
WO2019144253A1 true WO2019144253A1 (fr) 2019-08-01

Family

ID=62669112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000193 WO2019144253A1 (fr) 2018-01-26 2018-05-25 Méthode de préparation d'un tamis moléculaire beta monocristallin creux

Country Status (2)

Country Link
CN (1) CN108217675A (fr)
WO (1) WO2019144253A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441175A (zh) * 2020-03-26 2021-09-28 中国石油天然气股份有限公司 一种分子筛负载型金属催化剂及其制备方法
CN114192185A (zh) * 2021-11-22 2022-03-18 泰兴市凌飞化学科技有限公司 一种烷基转移制备壬基酚用催化剂及其制备方法
CN114479909A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种烃转化的方法及催化剂和催化剂制法
CN114477225A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种β分子筛的合成方法
CN114804140A (zh) * 2021-01-22 2022-07-29 中国科学院大连化学物理研究所 一种片状交错结构丝光沸石分子筛的合成方法及分子筛
CN114835136A (zh) * 2022-05-24 2022-08-02 天津大学 一种具有有序介孔结构的多级孔β分子筛及制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759127A (zh) * 2019-02-27 2019-05-17 中国科学院大连化学物理研究所 一种用于异丁烯和苯液相烷基化的中空单晶Beta分子筛催化剂的制备方法
CN110054200A (zh) * 2019-04-17 2019-07-26 中国科学院大连化学物理研究所 一种中空Beta分子筛的制备方法
CN110127715B (zh) * 2019-04-17 2022-08-09 中国科学院大连化学物理研究所 一种加速Beta分子筛合成的方法
CN112939008B (zh) * 2019-11-26 2022-09-16 中国科学院大连化学物理研究所 一种粒径可控Beta分子筛的快速合成方法
CN112939018A (zh) * 2019-11-26 2021-06-11 中国科学院大连化学物理研究所 一种无氟水热体系制备高硅铝比Beta分子筛的方法及高硅铝比Beta分子筛
CN111001435B (zh) * 2019-12-23 2022-12-27 中国科学院青岛生物能源与过程研究所 一种中空Cu-SSZ-13分子筛催化剂及应用
CN111589467A (zh) * 2020-06-02 2020-08-28 陕西延长石油(集团)有限责任公司 一种中空zsm-5分子筛催化剂的制备及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686800A (zh) * 2005-04-25 2005-10-26 中国科学院大连化学物理研究所 一种zsm-22/zsm-23复合分子筛及制法
CN101311117A (zh) * 2007-05-21 2008-11-26 北京化工大学 纳米复合中微孔分子筛及制备方法
CN103288098A (zh) * 2013-05-28 2013-09-11 辽宁工业大学 纳米β沸石分子筛的制备方法
CN104261423A (zh) * 2014-09-29 2015-01-07 吉林大学 一种单晶性多级孔Beta分子筛的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686800A (zh) * 2005-04-25 2005-10-26 中国科学院大连化学物理研究所 一种zsm-22/zsm-23复合分子筛及制法
CN101311117A (zh) * 2007-05-21 2008-11-26 北京化工大学 纳米复合中微孔分子筛及制备方法
CN103288098A (zh) * 2013-05-28 2013-09-11 辽宁工业大学 纳米β沸石分子筛的制备方法
CN104261423A (zh) * 2014-09-29 2015-01-07 吉林大学 一种单晶性多级孔Beta分子筛的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441175A (zh) * 2020-03-26 2021-09-28 中国石油天然气股份有限公司 一种分子筛负载型金属催化剂及其制备方法
CN114479909A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种烃转化的方法及催化剂和催化剂制法
CN114477225A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种β分子筛的合成方法
CN114477225B (zh) * 2020-10-26 2023-04-07 中国石油化工股份有限公司 一种β分子筛的合成方法
CN114479909B (zh) * 2020-10-26 2023-05-05 中国石油化工股份有限公司 一种烃转化的方法及催化剂和催化剂制法
CN114804140A (zh) * 2021-01-22 2022-07-29 中国科学院大连化学物理研究所 一种片状交错结构丝光沸石分子筛的合成方法及分子筛
CN114804140B (zh) * 2021-01-22 2024-03-22 中国科学院大连化学物理研究所 一种片状交错结构丝光沸石分子筛的合成方法及分子筛
CN114192185A (zh) * 2021-11-22 2022-03-18 泰兴市凌飞化学科技有限公司 一种烷基转移制备壬基酚用催化剂及其制备方法
CN114835136A (zh) * 2022-05-24 2022-08-02 天津大学 一种具有有序介孔结构的多级孔β分子筛及制备方法和应用
CN114835136B (zh) * 2022-05-24 2023-12-26 天津大学 一种具有有序介孔结构的多级孔β分子筛及制备方法和应用

Also Published As

Publication number Publication date
CN108217675A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019144253A1 (fr) Méthode de préparation d'un tamis moléculaire beta monocristallin creux
US10822242B2 (en) ZSM-35 molecular sieve and preparation method thereof
TWI490167B (zh) 使用奈米結晶質zsm-5晶種製備zsm-5沸石之方法
WO2015043114A1 (fr) Tamis moléculaire, son procédé de préparation et ses utilisations
Zhang et al. Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction
WO2013154086A1 (fr) Zéolite bêta et son procédé de production
CN108002396B (zh) 一种以TPABr为模板剂合成Silicalite-1分子筛的方法
WO2015024379A1 (fr) Procédé de préparation d'un tamis moléculaire bêta ayant un canal combiné mésoporeux/microporeux
KR101950552B1 (ko) 개선된 모폴로지를 갖는 zsm-5 결정의 합성
CN113135578B (zh) 一种硅锗isv沸石分子筛的制备方法
CN114229864A (zh) 一种薄片状丝光沸石分子筛的合成方法
CN107954437B (zh) Itq-24沸石分子筛的制备方法
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
CN102463135B (zh) Eu-1/mor复合分子筛及其制备方法
CN114014335B (zh) 一种硅锗utl型大孔分子筛及其制备方法
KR101902694B1 (ko) 전이금속이 이온 교환된 제올라이트의 제조 방법
CN111689505A (zh) 一种介-微多级孔结构zsm-5分子筛的制备方法
WO2018218736A1 (fr) Tamis moléculaire de zéolite d'aluminosilicate ayant une structure de bog et sa méthode de préparation
CN111017942A (zh) 一种合成l型分子筛的晶种及其制备方法和应用
CN110844919A (zh) NaY分子筛的制备方法及其制备的NaY分子筛
Shah et al. Synthesis and characterization of isomorphously zirconium substituted Mobil Five (MFI) zeolite
CN114160192A (zh) 一种氢型ZSM-5@Beta复合型分子筛催化剂及其制备方法和应用
CN113559920A (zh) 一种zsm-5分子筛/二氧化钛复合材料及其制备方法
CN109133089B (zh) 一种纳米级的t型分子筛的合成方法
CN109835913B (zh) 一种稀土eu-1多级孔分子筛的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902378

Country of ref document: EP

Kind code of ref document: A1