WO2019139312A1 - 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서 - Google Patents

핵산 검출용 형광핵산나노구조체-그래핀 바이오센서 Download PDF

Info

Publication number
WO2019139312A1
WO2019139312A1 PCT/KR2019/000202 KR2019000202W WO2019139312A1 WO 2019139312 A1 WO2019139312 A1 WO 2019139312A1 KR 2019000202 W KR2019000202 W KR 2019000202W WO 2019139312 A1 WO2019139312 A1 WO 2019139312A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
fluorescent
graphene oxide
complementary
probe
Prior art date
Application number
PCT/KR2019/000202
Other languages
English (en)
French (fr)
Inventor
엄숭호
신승원
육지수
안명주
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to EP19737984.5A priority Critical patent/EP3739063A4/en
Priority to CN201980018054.1A priority patent/CN111836902A/zh
Priority to US16/961,634 priority patent/US20200370100A1/en
Publication of WO2019139312A1 publication Critical patent/WO2019139312A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/155Particles of a defined size, e.g. nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/101Interaction between at least two labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a graphene oxide complex with attached structures consisting of single strand probes comprising a nucleic acid complementary to the target nucleic acid and a fluorescent material.
  • Graphene has a planar monolayer structure of carbon atoms filled in a two-dimensional lattice, which is the basic structure of graphite with all other dimensional structures. That is, the graphene may be a basic structure of fullerene as a zero-dimensional structure, carbon nanotubes as a one-dimensional structure, or graphite stacked in a three-dimensional structure.
  • graphene has unique physical properties such as a hexagonal crystal structure of graphene, a sublattice structure of two interpenetrating triangular shapes, and a thickness corresponding to one atomic size, And the like.
  • Graphene also has unique electron transfer properties, which makes graphene a unique phenomenon that has not been observed in the past.
  • Graphene oxide an oxidized form of graphene, can quench the fluorescence signal of an organic fluorescent dye through fluorescence resonance energy transfer (FRET).
  • FRET fluorescence resonance energy transfer
  • a typical molecular diagnostic technology is a PCR technique that amplifies DNA within a short time (Saiki, R., et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239, 487-91.
  • electrophoresis should be used to identify amplified DNA. In order to perform such electrophoresis, it has been troublesome to make agarose gel and to confirm DNA by staining with EtBr or the like.
  • PCR Nucleic Acid Lateral Flow Assay
  • the present invention aims at simultaneously detecting and quantifying various biomarkers with high sensitivity in a short time in vitro without PCR analysis, and effectively diagnosing most diseases involved in multiple biomarkers and using them for patient-customized treatment .
  • the present invention also provides a method for detecting a nucleic acid.
  • graphene oxide having a structure composed of single-stranded probes comprising a nucleic acid complementary to a target nucleic acid and a fluorescent material is used to detect and quantify various biomarkers (target nucleic acids) in real time at low cost and with high sensitivity Therefore, it is easy to check the diagnosis of most diseases involved in multiple biomarkers and the effects of drug use.
  • FIG. 1 is a development model diagram of a tetrahedral fluorescent nucleic acid nanostructure combined with a target sequence.
  • FIG. 2 is a view for confirming the synthesis result of a tetrahedral fluorescent nucleic acid nanostructure:
  • a to G lanes the result of heat treatment mixed with possible combinations from one single strand probe to three strands;
  • H-lane (t-DNA): The result of the heat treatment of all four single-strand probes mixed together (tetrahedral fluorescent nucleic acid nanostructure).
  • FIG. 3 is a developed model diagram of a triangular prism nanoparticle coupled with a target sequence.
  • FIG. 4 is a diagram showing the design and simulation results of a tetrahedral fluorescent nucleic acid nanostructure
  • FIG. 5 is a diagram showing the design and simulation results of a triangular prismatic fluorescent nanonucleic acid probe:
  • FIG. 6 is a diagram showing the result of producing a tetrahedral fluorescent nucleic acid nanostructure by mixing with a tetrahedral fluorescent nucleic acid nanostructure and a result of synthesis and a target sequence:
  • a to C lanes a combination of four probes
  • D-lane (t-DNA) a result of heat treatment (tetrahedral fluorescent nucleic acid nanostructure) in which all four probes are mixed;
  • E to G lanes The result obtained by mixing tetrahedral fluorescent nucleic acid nanostructures with target sequences (c1, c2 and c3) and heat-treating them.
  • FIG. 7 is a diagram showing a target nucleic acid biomarker detection range of a tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex prepared by adding together a target sequence:
  • a to c The target sequences (c1, c2 and c3) were added at a molar ratio (5, 10, 20, and 100 pmol) of 0 to 5 times in the synthesis of tetrahedral fluorescent nanosized nucleic acid constructs to synthesize fluorescent nucleic acid nanostructures Fluorescence measurements corresponding to the absorption / emission wavelengths of FAM (485 nm / 525 nm), Cy3 (540 nm / 570 nm) and Cy5 (640 nm / 670 nm) for the tetrahedral fluorescent nanonucleic acid structure / graphene oxide complex; And
  • d to f a graph obtained by enlarging a to c to a constant value.
  • FIG. 8 is a diagram showing the range of biomarker detection when a target sequence is added after formation of a tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex:
  • a to c 20 pmol / 10 ⁇ l of target sequence (c-DNA) in 20 pmol / 50 ⁇ l of tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex fluorescence measurement result in reaction;
  • d to f 200 pmol / 10 ⁇ l of target sequence (c-DNA) in 20 pmol / 50 ⁇ l of tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex fluorescence measurement result;
  • FAM (485 nm / 525 nm);
  • c and f Cy5 (640 nm / 670 nm).
  • FIG. 9 is a graph showing a target nucleic acid biomarker detection ability of a tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex according to a salt (NaCl) concentration.
  • FIG. 10 is a graph showing the target nucleic acid biomarker detection ability of a triangular prismatic fluorescent nucleic acid nanostructure / graphene oxide complex according to salt concentration (NaCl) in the manufacture of a triangular prismatic fluorescent nucleic acid nanostructure.
  • Figure 11 shows the ability of the tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex to detect target nucleic acid biomarkers according to the amount of graphene oxide:
  • t-DNA tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex to which no target is added;
  • t-DNA + cl tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex prepared by adding target sequence c1 (L858R);
  • t-DNA + c2 tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex prepared by adding target sequence c2 (T790M);
  • t-DNA + c3 a tetrahedral fluorescent nucleic acid nanoparticle / graphene oxide complex prepared by adding a target sequence c3 (Del Ex19 (E746-A750)); And
  • t-DNA + c1,2,3 tetrahedral fluorescent nucleic acid nanostructure / graphene oxide complex prepared by adding target sequences c1, c2 and c3.
  • FIG. 12 is a diagram showing the target nucleic acid biomarker detection ability of a triangular prismatic fluorescent nucleic acid nanostructure / graphene oxide complex according to an amount of graphene oxide:
  • T.P . triangle prism fluorescent nucleic acid nanostructure / graphene oxide complex without target addition.
  • FIG. 13 is a graph showing the fluorescence values of the triangular prism nanoparticle / graphene oxide complex according to the amount of the target nucleic acid biomarker.
  • FIG. 14 is a graph showing the detection ability of triangular columnar fluorescent nucleic acid nanostructure / graphene oxide for the entire miRNA extracted from lung cancer cell line A549.
  • FIG. 14 is a graph showing the detection ability of triangular columnar fluorescent nucleic acid nanostructure / graphene oxide for the entire miRNA extracted from lung cancer cell line A549.
  • Fig. 15 is a graph showing the detection ability of triangular-pillar fluorescent nucleic acid nanostructure / graphene oxide for the entire miRNA extracted from PC-9, a lung cancer cell.
  • nucleic acids are recorded in a 5 'to 3' orientation from left to right.
  • the numerical ranges recited in the specification include numerals defining the ranges and include each integer or any non-integral fraction within a defined range.
  • fluorescent nanonucleic acid structure includes single-stranded probes comprising a nucleic acid and a fluorescent material complementary to the target nucleic acid, a construct made of the probes, or the probes combined with the target nucleic acid.
  • fluorescent nucleic acid nanostructure / graphene oxide complex or “graphene fluorescent nucleic acid nanostructure” refers to a structure or complex in which the fluorescent nucleic acid nanostructure is attached to graphene oxide.
  • probe in the present invention means a nucleic acid fragment such as RNA or DNA corresponding to a few nucleotides or hundreds of nucleotides, which can specifically bind to a target nucleic acid biomarker including miRNA, mRNA and DNA So that the presence or absence of a specific nucleic acid can be confirmed.
  • the probe may be prepared in the form of an oligonucleotide probe, a single stranded DNA probe, a double stranded DNA probe or an RNA probe, but the present invention means a single stranded nucleic acid.
  • sample (s) in the context of the present invention includes tissues, cells, blood, serum, urine, saliva, plasma or body fluids obtained from a subject or patient and sources of tissue or cell samples are fresh, frozen and / Solid tissue from preserved organ or tissue samples or biopsies or aspirates; Blood or any blood components; It may be a cell at any point in the pregnancy or development of the subject. Tissue samples can also be primary or cultured cells or cell lines.
  • detection means to quantify the concentration of a detected or measured subject.
  • the present invention provides a single stranded probe comprising a nucleic acid complementary to a target nucleic acid and a fluorescent material; And graphene oxide. ≪ Desc / Clms Page number 2 >
  • the single stranded probe may be DNA, RNA, or DNA and RNA.
  • one or more single strand probes comprising a nucleic acid complementary to the target nucleic acid may be included, and if there are three or more single strand probes comprising a nucleic acid complementary to the target nucleic acid, the target nucleic acid of each single strand probe Stranded probe consisting of complementary sequences complementary to some sequence except for the complementary nucleic acid region. Furthermore, by including one or more types of single-stranded probes each containing a nucleic acid complementary to a target nucleic acid that is different from each other and different fluorescent materials from each other, it is possible to detect multiple target nucleic acids that are different from each other, and the detection result is stably maintained And there is an advantage that various target nucleic acids can be quantified individually.
  • the fluorescent nanonucleic acid construct of the present invention comprises a sequence portion complementary to the target sequences (c1, c2 and c3 / c1 ', c2' and c3 '); Fluorescent material; (S1, S2 and S3 / S1 ', S2' and S3 ') composed of a sequence part constituting a structure and a double-stranded probe (U1 / U1') complementary to the three probes, Lt; / RTI >
  • tetrahedral and triangular prism-shaped fluorescent nanonucleic acid structures capable of detecting three target nucleic acids were prepared.
  • One surface of the tetrahedron was double-stranded, and a part of the side surface (target sequence complementarily joined (The portion to be complementarily joined with the target sequence) and the bottom surface to which the graphene oxide is attached are single-stranded, the upper surface of the triangular pillar is double-stranded, Lt; / RTI > Specifically, when there is no target nucleic acid (sequence), i.e., c1, c2 and c3, in the tetrahedral fluorescent nanosaccharide structure, the portion complementary to the target of S1, S2 and S3 in the structure and the portion of the poly A tail to be attached to the graphene oxide And all of them form a double bond to form a three-dimensional structure (bonding portion); When the fluorescent nanonucleic acid structure is formed including the target nucleic acids c1, c2 and c3, the target nucleic acids c1, c2 and c3 bind to the single strand
  • the triangular prismatic fluorescent nanonucleic acid structure When there is no target nucleic acid (sequence), namely c1 ', c2' and c3 'in the triangular prismatic fluorescent nanonucleic acid structure, it is bonded to graphene oxide with a portion complementary to the target of S1', S2 'and S3'
  • the three-dimensional structure is formed by the junctions forming the double bonds except for one side of the triangular bottom of the triangular column;
  • the fluorescent nanonucleic acid structure is formed including the target nucleic acids c1 ', c2' and c3 ', the target nucleic acids c1', c2 'and c3' bind to the complementary sequence to each of S1 ', S2' and S3 ' Except for one triangular face of the triangular pillar to be attached to the pin oxide (see Fig. 3).
  • the target nucleic acid complementary site sequence of each probe may be changed, so that nucleic acid specific to a specific disease can be selected as a target and used for diagnosis thereof.
  • the c1 ', c2' and c3 'miRNAs which are the EGFR mRNA variant sequences specific for lung cancer, are used as the target sequences. Therefore, the diagnosis of lung cancer and the use of anticancer drugs Effects and so on.
  • the probes of the present invention can be chemically synthesized using the phosphoramidite solid support method, or other well-known methods.
  • Such nucleic acid sequences may also be modified using many means known in the art. Non-limiting examples of such modifications include, but are not limited to, methylation, capping, substitution of one or more natural nucleotides with one or more homologues, and modifications between nucleotides, such as uncharged linkers such as methylphosphonate, phosphotriester, Amidates, carbamates, etc.) or charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.).
  • one or more single strand probes comprising a nucleic acid complementary to a different target nucleic acid and a different fluorescent material from each other may be assembled into a fluorescent nanonucleic acid structure through a specific heat treatment process.
  • the heat treatment may be different depending on the structure of the fluorescent nanonucleic acid structure, and in the case of the tetrahedron, at 95 ° C for 2 minutes; Cooling at 60 ⁇ for 1 minute at 60 ⁇ ; Heat treatment can be performed at 20 ° C for 5 minutes and 4 ° C, for a triangular column, 95 ° C for 5 minutes; 85 DEG C 5 min; It can be heat treated at 20 ° C for 5 minutes and at 4 ° C by 0.5 ° C per minute.
  • Graphene Oxide is a universal quencher (UQ) capable of selectively blocking fluorescence by fluorescence resonance energy transfer, and the target nucleic acid and the single stranded probe of the present invention When the double bond is formed by binding, the probe (or the fluorescent nanosaccharide structure) is distanced from the graphene oxide, and luminescence of the fluorescent material can be detected.
  • UQ universal quencher
  • graphene oxide has inherent characteristics that are more easily attached to the single stranded nucleotide sequence than the double stranded nucleotide sequence, and the distance between the graphene oxide and the fluorescent material of the fluorescent nanosaccharide structure The fluorescence is blocked when the probe is near to the probe and the fluorescence can be detected again when the probe is distant from the probe.
  • the probe containing the fluorescent material multiple target sequences are combined with sequences complementary to each probe, , The complex was designed so that multiple targets could be recognized and quantified at one time by emitting fluorescence away from the graphene oxide.
  • the invention features a first single stranded probe comprising a nucleic acid complementary to a first target nucleic acid and a fluorescent material, wherein a portion of the single strand is attached to the graphene oxide;
  • a second single-stranded probe comprising a nucleic acid complementary to the second target nucleic acid and a fluorescent material;
  • a third single stranded probe comprising a nucleic acid complementary to the third target nucleic acid and a fluorescent material;
  • a fourth single-stranded probe complementary to the first single-stranded probe, a second single-stranded probe complementary to the first single-stranded probe, and a fourth single-stranded probe complementary to the third single-stranded probe are present in graphene oxide
  • a composition for detecting nucleic acid comprising a nucleic acid complementary to a first target nucleic acid and a fluorescent material, wherein a portion of the single strand is attached to the graphene oxide
  • a second single-stranded probe
  • the fluorescent materials included in the single strand probes may be fluorescent materials of different wavelengths.
  • the fluorescent material is selected from the group consisting of fluorescein (FAM), Texas red, rhodamine, alexa, cyanine, Cy, BODIPY, Acetoxymethyl ester and coumarin.
  • FAM fluorescein
  • Texas red Texas red
  • rhodamine rhodamine
  • alexa cyanine
  • Cy Cy
  • BODIPY Acetoxymethyl ester
  • the present invention is not limited thereto. Any known phosphor capable of attaching a single strand of nucleic acid can be used.
  • the target nucleic acid may be c1, c2 and c3 represented by the nucleotide sequences of SEQ ID NOS: 9, 10 and 11;
  • the first single strand probe to the third single strand probe may be S1, S2 and S3 labeled with a fluorescent substance and represented by the nucleotide sequences of SEQ ID NOS: 2, 3 and 4, including a sequence complementary to the target nucleic acid;
  • the fourth single-stranded probe may be U1 represented by the nucleotide sequence of SEQ ID NO: 1 consisting of a sequence complementary to a part of S1, S2 and S3 (see FIG. 1).
  • the target nucleic acid may be c1 ', c2' and c3 'represented by the nucleotide sequences of SEQ ID NOS: 12, 13 and 14;
  • the first single strand probe to the third single strand probe are labeled with a fluorescent substance and S1 ', S2', and S3 'represented by the nucleotide sequences of SEQ ID NOS: 6, 7, and 8, each of which contains a sequence complementary to the target nucleic acid, Connected single strand;
  • the fourth single-stranded probe may be U1 'represented by the nucleotide sequence of SEQ ID NO: 5 consisting of a sequence complementary to a part of S1', S2 'and S3' (see FIG.
  • the sequence of the site complementary to the target nucleic acid in each probe may be changed.
  • the constructs comprising the sequences, c1, c2 and c3, which are the EGFR mRNA variant sequences specific for lung cancer, and the miRNAs c1 ', c2' and c3 ' Diagnosis of cancer and use of anticancer drug can be monitored.
  • one side of the tetrahedron formed by the fourth single-stranded probe may be present furthest away from the graphene oxide.
  • the invention provides a probe comprising: a first single stranded probe comprising a nucleic acid complementary to a first target nucleic acid and a fluorescent material; A second single-stranded probe comprising a nucleic acid complementary to the second target nucleic acid and a fluorescent material; A third single stranded probe comprising a nucleic acid complementary to the third target nucleic acid and a fluorescent material; And a fourth single-stranded probe comprising a sequence complementary to a portion of the first single-stranded probe, the second single-stranded probe and the third single-stranded probe attached to the graphene oxide. ≪ / RTI >
  • the opposite surface (single-stranded portion) of the double stranded surface of the triangular surface of the triangular pillar formed by the fourth single-stranded probe and the first to third single-stranded probes may be attached to the graphene oxide.
  • the present invention provides a method comprising: separating a nucleic acid from a sample; Mixing a single-stranded probe comprising a nucleic acid complementary to the target nucleic acid and a fluorescent substance with the separated nucleic acid, and heat-treating the fluorescent nanosized nucleic acid construct; Attaching the fluorescent nanonucleic acid structure to graphene oxide; And detecting the fluorescence by a fluorescence resonance energy transfer phenomenon.
  • the concentration of the salt (NaCl) in the step of preparing the fluorescent nanonucleic acid structure and attaching the fluorescent nanonucleic acid structure to the graphene oxide may be 50 to 300 mM.
  • the present invention provides a method comprising: separating a nucleic acid from a sample; Reacting the separated nucleic acid with a composition for detecting nucleic acid of the present invention; And detecting the fluorescence by a fluorescence resonance energy transfer phenomenon.
  • the composition for detecting nucleic acids of the present invention comprises: a first single stranded probe comprising a nucleic acid complementary to a first target nucleic acid and a fluorescent material; A second single-stranded probe comprising a nucleic acid complementary to the second target nucleic acid and a fluorescent material; A third single stranded probe comprising a nucleic acid complementary to the third target nucleic acid and a fluorescent material; And a fourth single-stranded probe comprising a sequence complementary to a portion of the first single-stranded probe, the second single-stranded probe, and the third single-stranded probe, wherein the fluorescent nucleic acid nanostructure comprises graphene- May be a nanostructure.
  • the present invention provides a method comprising: separating a nucleic acid from a sample; Preparing a fluorescent nanosaccharide structure by mixing at least one kind of single strand probe comprising a nucleic acid complementary to a different target nucleic acid and a fluorescent material with a nucleic acid separated from the nucleic acid and heat-treating the mixture; Attaching the fluorescent nanonucleic acid structure to graphene oxide; And detecting fluorescence by a fluorescence resonance energy transfer phenomenon.
  • a triangular prismatic fluorescent nanosaccharide structure consisting of a single strand consisting of a double strand on the upper surface of the triangular column and a single strand on the other side to be connected to the side surface and graphene oxide was synthesized.
  • a single strand of a total of four strands has the sequence U1 of the upper surface (one portion of the bottom of the triangular column) of the structure constituting the double strand;
  • S1 ', S2' and S3 ' that contain a sequence complementary to the target sequences c1', c2 'and c3' (miRNA) (Table 2).
  • the fluorescence-labeled nucleic acid single strands S1 ', S2' and S3 ', and U1' were quantitated by measuring the absorbance at 260 nm wavelength band, and then analyzed in various combinations in the same number of moles so that the molar ratio of all sequences was 1: Combination of three strands and all four strands)
  • the optimal salt concentration was obtained by conducting additional salt concentration optimization experiment with longer sequence and complexity than the slope type, (See Example 5-2) and put into PCR equipment. Thereafter, the temperature was raised to 95 ⁇ , held for 5 minutes, lowered to 85 ⁇ and held for 5 minutes.
  • Example 20 pmol of the tetrahedral fluorescent nucleic acid nanostructure prepared in Example 2-1 was mixed with 3 ⁇ g of the graphene oxide prepared in Example 1, and water and salt (NaCl) were added to give a total volume of 50 ⁇ l, and the salt concentration was 200 mM Respectively. And then reacted at 25 DEG C for 30 minutes to prepare a graphene tetrahedron fluorescent nanosaccharide structure.
  • This structure is composed of a single strand complementary to the target on the side surface and a polynucleotide sequence of the S1 strand adenine sequence (poly A) And is attached to the graphen oxide.
  • Simulations were performed using the oxDNA program to confirm the formation of the fluorescent nucleotide nanoparticle / graphene oxide complex, the shape of the fluorescent nanoparticle complex, and the change of fluorescence position according to the final shape and presence of the target. Specifically, as a result of assembling target sequences one by one to tetrahedral fluorescent nucleic acid nanostructures, it was found that double bonds were formed at predetermined positions without kinking (FIGS. 4A and 4B).
  • the target sequences were assembled one by one in a triangular prism model fluorescence nucleic acid nanostructure, resulting in formation of a double bond at a predetermined position without twist (FIGS. 5A and 5B).
  • VMD visual molecular dynamics
  • the mixture was placed in a 96-well plate and fluorescence values were measured using absorbance / emission wavelengths of 485 nm / 525 nm (FAM), 540 nm / 570 nm (Cy3) and 640 nm / 670 nm (Cy5) using a plate reader. As a result, it was confirmed that when the salt concentration was high, the fluorescence values corresponding to the target were increased, and the difference in the fluorescence values could be easily distinguished (FIG. 9).
  • the surface of graphene oxide is negatively charged and the backbone of the nucleic acid nanostructure shows a negative charge. Therefore, the higher the salt concentration, the easier the formation of the fluorescent nucleic acid nanostructure / graphene oxide complex, It can be deduced that the blocking of attached fluorescence is further facilitated.
  • the target sequences c1 ', c2', and c3 ' were put together and synthesized into a triangular prismatic fluorescent nanonucleic acid structure in the same manner, And the salt concentration was adjusted to 150 to 300 mM.
  • the synthesized fluorescent nanosaccharide structure sample and graphene oxide were mixed and maintained at a salt concentration of 200 mM to synthesize a graphene triangular prism fluorescent nucleic acid nanostructure.
  • the fluorescent nucleotide nano-structure was prepared in the same manner as in Example 2-2, except that c1, c2 and c3, which are the target sequences, were added together in the synthesis of the fluorescent nanonucleic acid structure. Thereafter, the fluorescence nucleic acid nanostructure / graphene oxide was prepared by varying the amounts of the synthesized 20 pmol of the fluorescent nanonucleic acid structure and the amount of the graphene oxide. Here, salt and water were further added so that the salt concentration became 200 mM, so that a total volume of 50 ⁇ l was obtained.
  • the prepared reaction product was placed in a 96-well plate and fluorescence values were measured using a plate reader with FAM (485 nm / 525 nm), Cy3 (540 nm / 570 nm) and Cy5 (640 nm / 670 nm) absorption / emission wavelengths.
  • FAM 485 nm / 525 nm
  • Cy3 540 nm / 570 nm
  • Cy5 640 nm / 670 nm
  • Example 2-2 After the target sequences c1 ', c2' and c3 'were put together in the synthesis of the fluorescent nanonucleic acid structure in Example 2-2, a triangular prismatic fluorescent nanosaccharide structure was synthesized in the same manner, and 20 pmol of the fluorescent nanonucleic acid structure Samples were added and the amount of graphene oxide was changed to 3, 6 and 9 ⁇ g to prepare fluorescent nucleic acid nanostructure / graphene oxide complex (graphene fluorescent nanosaccharide structure).
  • the reaction mixture was loaded into a 96-well plate and the absorbance / emission wavelength was measured using a plate reader using FAM (485 nm / 525 nm), Cy3 (540 nm / 570 nm), Cy5 (640 nm / 670 nm), it was confirmed that there was no significant difference in fluorescence depending on the amount of graphene oxide when the amount of graphene was 3 ⁇ g or more (FIG. 12).
  • the amounts of target sequences c1 ', c2', and c3 ' were set to 0 to 300 nM and the same heat treatment protocol was performed to prepare fluorescent nucleic acid nanostructures.
  • the fluorescence value of the triangular prismatic fluorescent nucleic acid nanostructure / graphene oxide complex can be converted into the concentration of the target nucleic acid biomarker present in the sample.
  • the triangular prismatic fluorescent nucleic acid nanostructure / The detection limits of the graphene oxide complexes were calculated. Specifically, it was calculated by the guidelines EP17 published by the Clinical and Laboratory Standards Institute (CLSI). As a result, the limit of detection of the construct was 49.16 nM when the target sequence was miR-21 (c1 '), 48.86 nM when let-7f (c2') and miR -200b-3p (c3 ') was 43.43 nM (expressed as the number of moles and grams)
  • Example 8 Identification of the function of a triangular prismatic fluorescent nucleic acid nanostructure / graphene oxide complex on lung cancer cell-derived miRNA
  • the detection effect of miRNA extracted from lung cancer cells was confirmed in order to confirm whether the triangular prismatic fluorescent nucleic acid / graphene oxide complex of the present invention can be complementarily bound to a target sequence in an actual sample to show fluorescence.
  • whole miRNA was extracted from lung cancer cell line A549, and its concentration was found to be 499.68 ng / ⁇ l.
  • synthesizing a fluorescent nucleic acid nanostructure 0 to 10 ⁇ g of the total miRNA extracted from the lung cancer cell was added to prepare a 200 nM fluorescent nucleic acid nanostructure, and then a graphene oxide complex was prepared.
  • As a result of measuring the fluorescence value of the triangular prism type fluorescent nanoparticle / graphene oxide complex it was confirmed that the intensity of fluorescence increases linearly with the amount of miRNA derived from lung cancer cells added (FIG. 14).
  • the detection effect of miRNA extracted from lung cancer cells was confirmed in order to confirm whether the triangular prismatic fluorescent nucleic acid / graphene oxide complex of the present invention can be complementarily bound to a target sequence in an actual sample to show fluorescence.
  • whole miRNA extracted from PC-9, a lung cancer cell was extracted and its concentration was found to be 312.16ng / ⁇ l.
  • synthesizing fluorescent nucleic acid nanostructures 0 to 6.24 ⁇ g of the total miRNA extracted from the lung cancer cells was added to prepare a 200 nM fluorescent nucleic acid nanostructure, and then a graphene oxide complex was prepared.
  • As a result of measuring the fluorescence value of the triangular prism type fluorescent nanoparticle / graphene oxide complex it was confirmed that the intensity of fluorescence linearly increases according to the amount of miRNA extracted from PC-9 (FIG. 15).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브들로 이루어진 구조체가 부착된 그래핀 옥사이드 복합체에 관한 것으로, 여러 바이오마커 (타겟 핵산)들을 PCR없이 실시간으로 저비용 및 고감도로 검출 및 정량할 수 있으므로, 다중의 바이오마커들이 관여하는 대부분의 질병의 진단 및 약물의 사용 효과 등을 확인하는데 이용될 수 있다.

Description

핵산 검출용 형광핵산나노구조체-그래핀 바이오센서
본 발명은 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브들로 이루어진 구조체가 부착된 그래핀 옥사이드 복합체에 관한 것이다.
그래핀은 탄소원자가 2 차원 격자 내로 채워진 평면 단일층 구조를 가지며, 이것은 모든 다른 차원구조를 가지는 흑연의 기본 구조이다. 즉, 상기 그래핀은 0차원 구조인 풀러렌, 1 차원 구조인 탄소나노튜브, 또는 3 차원 구조로 적층된 흑연의 기본 구조가 될 수 있다. 최근 많은 연구에서 그래핀이 가지는 육각형의 결정구조, 두 개의 상호침투하는 삼각 형태의 하위 격자 구조, 및 하나의 원자 크기에 해당하는 두께 등에 의하여 그래핀이 특이한 물리적 특성, 예를 들면, 제로 밴드갭을 보이는 점을 주목하고 있다. 또한 그래핀은 특이한 전자 전달 특성을 갖는데, 이로 인하여 그래핀은 종래에는 관찰되지 않았던 독특한 현상을 보여준다. 예를 들면, 반정수 양자 홀 효과 및 바이폴라 초전류 트랜지스터 효과 등이 그 예이며, 이 또한 상기 그래핀의 특유한 구조에 기인하는 것으로 여겨진다. 이러한 그래핀의 산화된 형태인 산화그래핀(graphene oxide, GO)은 형광 공명 에너지전달(FRET, Fluorescence resonance energy transfer)현상을 통해 유기형광염료의 형광 신호를 소광시킬 수 있다.
한편, 특정한 핵산(DNA 또는 RNA) 또는 단백질을 검출하는 방법은 과학연구 분야에서 기본적으로 중요한 기술이다. 특정한 핵산 또는 단백질을 검출하고 동정할 수 있게 됨으로써, 연구자들은 어떤 유전적, 생물학적 표지가 사람의 건강상태를 나타내는 지표가 되는지를 판정할 수 있게 되었다. 이러한 핵산과 단백질을 검출하는 방법을 이용하면 시료에 존재하는 병원체 유전자의 변형, 또는 특정 유전자의 발현 등을 발견할 수 있다. 이와 같은 분자 진단은 DNA 또는 RNA 등 질병의 근본을 진단하는 것으로 감염질환, 암진단, 유전질환 및 맞춤 진단 등 다양한 분야에서 사용되고 있다. 대표적인 분자진단 기술로는 단시간 내에 DNA를 증폭시키는 PCR 기술이 있다 (Saiki, R., et. al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-91. 1998). 그러나, 일반적인 PCR 기술은 증폭된 DNA를 확 인하기 위해서 전기 영동 방법을 사용하여야 한다. 이러한 전기 영동을 수행하기 위해서는 아가로즈 젤 (Agarose gel)을 만들고 DNA를 EtBr 등으로 염색하여 확인해야 하는 번거로움이 있어왔다. 또한, 최근에 사용되고 있는 real-time PCR 방법은 형광을 사용하기 때문에 전기 영동이 불필요하나, 고가의 사용 기기와 고가의 형광시약을 사용해야 한다 (Higuchi, R., et. al., Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions. Nature Biotechnology 11, 1026 - 1030, 1993)는 문제점이 있다. 최근에 현장 진단 개념의 PCR 제품인 Cepheid사의 GeneXprt system과 시약이 개발되어 판매되고 있으나, 장비와 시약이 매우 고가이므로 일반적인 검사에서 사용하는 데는 어려움이 있다 (Helb, D., et. al., Rapid Detection of Mycobacterium tuberculosis and Rifampin Resistance by Use of On-Demand, Near-Patient Technology. J. Clin. Microbiol. 48, 229-237, 2010). 다른 방법으로, PCR 후에 젤 전기 영동 대신에 멤브 레인을 사용하여 확인하는 핵산 측면 흐름 어세이 (Nucleic Acid Lateral Flow Assay)가 있다 (Aveyard, J., et. al., One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun., 41, 4251-4253, 2007). 그러나, 젤 전기 영동 기술에 비해 복잡하여 실험실에서 제조하여 사용하기는 불가능하며, 멤브 레인에 부착된 프로브의 시퀀스는 PCR 증폭 산물에 따라서 특이적으로 결합할 수 있도록 사용하여야 하는 기술의 한계 때문에 범용으로 사용하는 데는 한계점이 있다. 특히, 이와 같은 PCR 기반의 연기서열분석법은 특정 오류에 극히 취약하고 데이터 해석과정에서 문제가 생겨 자주 심각한 오진이 있어, 혈액 속 특정 핵산 바이오마커를 이와 상보적인 서열을 만났을 때 변화를 형광, 전위차, 색변화 등으로 표현하고자 하는 연구들이 진행되고 있으나, 하지만 이 연구들의 경우는 대부분 한 번에 하나의 바이오마커를 검출해 내기 때문에 다중의 바이오마커들이 관여하는 대부분의 질병들을 효과적으로 진단하는데 어려움이 있다.
아울러, 인체질환은 하나의 유전자 이상이라기보다 여러 유전자의 문제로 인해 발병되는 경우가 훨씬 많기 때문에 일회 검사에 여러 개의 유전자를 확인할 수 있다면 진단의 정확성과 유용성을 향상시킬 수 있다. 그러므로 민감도와 재현성을 높혀 진단에 적용할 수 있는 다중분석(multiplex assay) 플랫폼에 대한 요구가 증가되고 있다.
본 발명에서는 여러 바이오마커들을 PCR 분석 과정 없이 체외에서 짧은 시간 내에 고감도로 동시 다발적으로 검출하고 정량화화여 다중의 바이오마커들이 관여하는 대부분의 질병들을 효과적으로 진단하고, 환자 맞춤형 치료에 이용하는 것을 목적으로 한다.
상기 목적의 달성을 위해, 본 발명은 핵산 검출용 조성물을 제공한다.
또한, 본 발명은 다중 핵산 검출용 조성물을 제공한다.
또한, 본 발명은 핵산의 검출 방법을 제공한다.
아울러, 본 발명은 다중 핵산의 검출 방법을 제공한다.
본 발명에 따르면, 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브들로 이루어진 구조체가 부착된 그래핀 옥사이드는 여러 바이오마커 (타겟 핵산)들을 PCR없이 실시간으로 저비용 및 고감도로 검출 및 정량할 수 있으므로, 다중의 바이오마커들이 관여하는 대부분의 질병의 진단 및 약물의 사용 효과 등을 확인하기에 용이한 효과가 있다.
도 1은 타겟 서열과 결합된 사면체형 형광핵산나노구조체의 전개도 모형을 나타낸 도이다.
도 2는 사면체형 형광핵산나노구조체의 합성 결과를 확인한 도이다:
A 내지 G 레인: 1개의 단일가닥 프로브부터 3개의 가닥까지 가능한 조합으로 섞어 열처리한 결과물; 및
H 레인 (t-DNA): 4개의 모든 단일가닥 프로브를 섞어 열처리한 결과물 (사면체형 형광핵산나노구조체).
도 3은 타겟 서열과 결합된 삼각기둥형 형광핵산나노구조체의 전개도 모형을 나타낸 도이다.
도 4는 사면체형 형광핵산나노구조체의 디자인과 시뮬레이션 결과를 나타낸 도이다:
a: 사면체형 형광핵산나노구조체의 디자인; 및
b: 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체 및 타겟 서열과의 결합시 형광 방출 모형.
도 5는 삼각기둥형 형광나노핵산프로브의 디자인 및 시뮬레이션 결과를 나타낸 도이다:
a: 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 서열과의 결합시 형광 방출 모형;
b: oxDNA 프로그램을 이용한 시뮬레이션 결과; 및
c: 형광과 그래핀 옥사이드의 거리 예측 결과.
도 6은 사면체형 형광핵산나노구조체와 합성 결과 및 타겟 서열과 혼합하여 사면체형 형광핵산나노구조체를 제조한 결과를 나타낸 도이다:
A 내지 C 레인: 4가지 프로브들의 조합;
D 레인 (t-DNA): 4가지 프로브들을 모두 섞어 열처리한 결과물 (사면체형 형광핵산나노구조체); 및
E 내지 G 레인: 사면체형 형광핵산나노구조체와 타겟 서열 (c1, c2 및 c3)을 혼합하여 열처리한 결과물.
도 7은 타겟 서열을 함께 첨가하여 제조한 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 핵산 바이오마커 검출 범위를 나타낸 도이다:
a 내지 c: 사면체 형광나노핵산구조체 합성시 타겟 서열들 (c1, c2 및 c3)을 0 내지 5배의 몰비율 (5, 10, 20 및 100pmol)로 첨가하여 형광핵산나노구조체를 합성하여 제조된 사면체 형광나노핵산구조체/그래핀 옥사이드 복합체에 대한 FAM(485 nm/525 nm), Cy3(540 nm/570 nm) 및 Cy5(640 nm/670 nm)의 흡수/방출 파장에 해당하는 형광 측정 결과; 및
d 내지 f: a 내지 c를 일정 값으로 확대한 그래프.
도 8은 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체 형성 이후 타겟 서열을 첨가할 시의 바이오마커 검출 범위를 나타낸 도이다:
a 내지 c: 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체 20pmol/50μl에 타겟 서열(c-DNA) 20pmol/10μl 반응시 형광 측정 결과;
d 내지 f: 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체 20pmol/50μl에 타겟 서열(c-DNA) 200 pmol/10 μl 반응시 형광 측정 결과;
a 및 d: FAM(485 nm/525 nm);
b 및 e: Cy3(540 nm/570 nm); 및
c 및 f: Cy5(640 nm/670 nm).
도 9는 염(NaCl)농도에 따른 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 핵산 바이오마커 검출능을 나타낸 도이다.
도 10은 삼각기둥형 형광핵산나노구조체 제조시 염(NaCl)농도에 따른 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 핵산 바이오마커 검출능을 나타낸 도이다.
도 11은 그래핀 옥사이드 양에 따른 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 핵산 바이오마커 검출능을 나타낸 도이다:
t-DNA: 타겟이 첨가되지 않은 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체;
t-DNA+c1: 타겟 서열 c1 (L858R)이 첨가되어 제조된 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체;
t-DNA+c2: 타겟 서열 c2 (T790M)가 첨가되어 제조된 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체;
t-DNA+c3: 타겟 서열 c3 (Del Ex19 (E746-A750))가 첨가되어 제조된 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체; 및
t-DNA+c1, 2, 3: 타겟 서열 c1, c2 및 c3들이 첨가되어 제조된 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체.
도 12는 그래핀 옥사이드 양에 따른 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 타겟 핵산 바이오마커 검출능을 나타낸 도이다:
T.P.: 타겟이 첨가되지 않은 삼각기둥형(Triangle Prism) 형광핵산나노구조체/그래핀 옥사이드 복합체.
도 13은 타겟 핵산 바이오마커의 양에 따른 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 형광값을 나타낸 그래프이다.
도 14는 폐암세포인 A549에서 추출한 전체 miRNA에 대한 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드의 검출능을 확인한 그래프이다.
도 15는 폐암세포인 PC-9에서 추출한 전체 miRNA에 대한 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드의 검출능을 확인한 그래프이다.
이하, 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
달리 지시되지 않는 한, 핵산은 좌측에서 우측으로 5'→3' 배향으로 기록된다. 명세서 내에서 열거된 수치 범위는 범위를 정의하는 숫자를 포함하고, 정의된 범위 내의 각각의 정수 또는 임의의 비-정수 분획을 포함한다.
달리 정의되지 않는 한, 본원에서 사용된 모든 기술적 및 과학적 용어는 본 발명이 속하는 분야의 당업자가 통상적으로 이해하는 것과 동일한 의미를 갖는다. 본원에 기술된 것들과 유사하거나 등가인 임의의 방법 및 재료가 본 발명을 테스트하기 위한 실행에서 사용될 수 있지만, 바람직한 재료 및 방법이 본원에서 기술된다.
본 발명에서 사용된 용어, "형광나노핵산구조체"는 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브, 상기 프로브들로 이루어진 구조체 또는 타겟 핵산과 결합된 상기 프로브들을 포함한다.
본 발명에서 용어, "형광핵산나노구조체/그래핀 옥사이드 복합체" 또는 "그래핀 형광핵산나노구조체"는 상기 형광핵산나노구조체가 그래핀 옥사이드 상에 부착된 구조체 또는 복합체를 말한다.
본 발명에서 용어, "프로브"란 miRNA, mRNA, DNA를 비롯한 타겟 핵산 바이오마커와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 라벨링 되어 있어서 특정 핵산의 존재 유무를 확인할 수 있다. 프로브는 올리고 뉴클레오타이드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있으나, 본 발명에서는 단일가닥 핵산을 의미한다.
본 발명의 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 발명에서 용어, "시료(샘플)"는 대상 또는 환자로부터 얻은 조직, 세포, 혈액, 혈청, 소변, 타액, 혈장 또는 체액을 포함하며, 조직 또는 세포 샘플의 공급원은 신선한, 동결된 및/또는 보존된 장기 또는 조직 샘플 또는 생검 또는 흡인물로부터의 고형 조직; 혈액 또는 임의의 혈액 구성분; 대상의 임신 또는 발생의 임의의 시점의 세포일 수 있다. 조직 샘플은 또한 1차 또는 배양 세포 또는 세포주일 수 있다.
본 발명에서 용어 "검출" 또는 "측정"은 검출 또는 측정된 대상의 농도를 정량하는 것을 의미한다.
일 측면에서, 본 발명은 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브; 및 그래핀 옥사이드를 포함하는, 핵산 검출용 조성물에 관한 것이다.
일 구현예에서, 상기 단일가닥 프로브는 DNA, RNA, 또는 DNA 및 RNA일 수 있다.
일 구현예에서, 타겟 핵산에 상보적인 핵산을 포함하는 단일가닥 프로브를 하나 이상 포함할 수 있으며, 타겟 핵산에 상보적인 핵산을 포함하는 단일가닥 프로브가 3개 이상이면, 각 단일가닥 프로브의 타겟 핵산에 상보적인 핵산 부위를 제외한 일부 서열과 상보적인 서열들로 이루어진 단일가닥 프로브를 추가로 포함함으로써 입체 구조를 이룰 수 있다. 또한, 각각 서로 상이한 타겟 핵산에 상보적인 핵산 및 서로 상이한 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브를 포함함으로써 서로 상이한 타겟 핵산의 다중 검출이 가능하고, 입체 구조를 이룸으로써 검출 결과가 안정적으로 유지되고, 여러 타겟 핵산들을 각각 정량할 수 있는 장점이 있다.
일 구현예에서, 본 발명의 형광나노핵산구조체는 타겟 서열 (c1, c2 및 c3/c1', c2' 및 c3')에 상보적인 서열 부분; 형광물질; 및 구조체를 이루는 서열 부분으로 이루어진 단일가닥 프로브 3개 (S1, S2 및 S3/S1', S2' 및 S3'), 상기 프로브 3개와 상보적으로 결합해 이중가닥을 이루는 프로브 (U1/U1')로 이루어져 있다. 본 발명의 일 실시예에서, 3가지 타겟 핵산을 검출할 수 있는 사면체 및 삼각기둥 형태의 형광나노핵산구조체를 제조하였으며, 사면체의 한 면은 이중가닥, 옆면의 일부 (타겟 서열이 상보적으로 결합할 부분) 및 그래핀 옥사이드 연결 부분은 단일가닥으로 이루어지고, 삼각기둥의 윗 면은 이중가닥, 옆면의 일부 (타겟 서열이 상보적으로 결합할 부분) 및 그래핀 옥사이드와 부착되는 바닥면은 단일가닥으로 이루어진다. 구체적으로, 사면체 형광나노핵산구조체에서 타겟 핵산(서열), 즉 c1, c2 및 c3가 없을 때는, 구조체에서 S1, S2 및 S3의 타겟에 상보적인 부분과 그래핀 옥사이드에 부착될 poly A 꼬리 부분을 제외하고 모두 이중결합을 형성하여 입체 구조를 형성하고 있고 (접합부); 타겟 핵산 c1, c2 및 c3을 포함하여 형광나노핵산구조체가 형성되면, 타겟 핵산 c1, c2 및 c3이 S1, S2 및 S3 중 각각에 상보적인 단일가닥 서열 부분에 결합하므로 그래핀 옥사이드에 부착될 poly A 꼬리 부분을 제외하고 모두 이중결합을 형성한다 (도 1 참조). 삼각기둥형 형광나노핵산구조체에서 타겟 핵산(서열), 즉 c1', c2' 및 c3'가 없을 때는, 구조체에서 S1', S2' 및 S3'의 타겟에 상보적인 부분과 그래핀 옥사이드에 결합되는 삼각기둥의 삼각 바닥면 한 면을 제외하고 모두 이중결합을 형성하고 있는 접합부에 의해 입체 구조를 형성하고 있고; 타겟 핵산 c1', c2' 및 c3'을 포함하여 형광나노핵산구조체가 형성되면, 타겟 핵산 c1', c2' 및 c3'이 S1', S2' 및 S3' 중 각각에 상보적인 서열에 결합하므로 그래핀 옥사이드에 부착될 삼각기둥의 삼각면 한 면을 제외하고 모두 이중결합을 형성한다 (도 3 참조).
일 구현예에서, 타겟에 따라, 각각의 프로브의 타겟 핵산 상보적 부위 서열이 변경될 수 있으므로, 특정 질병에 특이적인 핵산들을 타겟으로 선정하여 이의 진단 등에 이용할 수 있다. 본 발명의 일 실시예에서는, 타겟 서열로 폐암에 특이적인 EGFR mRNA 변형 서열인 c1, c2 및 c3과 miRNA인 c1', c2' 및 c3'를 이용하였으므로, 이를 이용하여 폐암의 진단 및 항암제의 사용 효과 등을 모니터링할 수 있다.
본 발명의 프로브는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, 캡화, 천연 뉴클레오타이드 하나 이상의 동족체로의 치환및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체 (예: 메틸 포스포네이트, 포스소트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체 (예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.
일 구현예에서, 서로 상이한 타겟 핵산에 상보적인 핵산 및 서로 상이한 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브들은 특정 열처리 과정을 통해 형광나노핵산구조체로 조립될 수 있다.
일 구현예에서, 상기 열처리는 형광나노핵산구조체의 구조에 따라 상이할 수 있으며, 사면체의 경우, 95℃, 2분; 60℃에서 1분에 1℃씩 냉각; 20℃ 5분 및 4℃로 열처리할 수 있고, 삼각기둥의 경우, 95℃ 5분; 85℃ 5분; 1분에 0.5℃씩 낮춰 20℃에서 5분 및 4℃로 열처리할 수 있다.
일 구현예에서, 그래핀 옥사이드(Graphene Oxide: GO)는 형광제한화학물질(Universal Quencher: UQ)로서 형광공명에너지 전이에 의한 형광을 선택적으로 차단할 수 있으며, 타겟 핵산과 본 발명의 단일가닥 프로브가 결합하여 이중결합을 형성하면 프로브 (또는 형광나노핵산구조체)가 그래핀 옥사이드로부터 거리가 멀어져 형광물질의 발광이 검출될 수 있다. 즉, 본 발명의 일 실시예에서는 그래핀 옥사이드는 이중가닥 염기서열보다 단일가닥 염기서열과 더 쉽게 부착되는 고유한 특성과 형광공명에너지전이에 따라 그래핀 옥사이드와 형광나노핵산구조체의 형광물질의 거리가 가까워지면 형광이 차단되며, 거리가 멀어지면 다시 형광이 검출될 수 있는 특성을 이용하여, 형광 물질이 포함된 프로브들에 다중의 타겟 염기서열들이 프로브들의 각각에 상보적인 서열과 결합해 이중결합을 형성하면 그래핀 옥사이드로부터 거리가 멀어지게 되어 형광을 발광함으로써, 다중 타겟을 한 번에 인식하고 정량할 수 있도록 복합체를 디자인하였다.
일 측면에서, 본 발명은 제 1 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하며, 단일가닥의 일부가 그래핀 옥사이드에 부착되는 제 1 단일가닥 프로브; 제 2 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 2 단일가닥 프로브; 제 3 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 3 단일가닥 프로브; 및 상기 제 1 단일가닥 프로브와 상보적인 서열, 제 2 단일가닥 프로브와 상보적인 서열 및 제 3 단일가닥 프로브와 상보적인 서열로 이루어진 제 4 단일가닥 프로브를 포함하는 형광핵산나노구조체가 그래핀 옥사이드에 부착된, 핵산 검출용 조성물에 관한 것이다.
일 구현예에서, 상기 단일가닥 프로브들에 포함된 형광물질들은 서로 다른 파장대의 형광물질일 수 있다.
일 구현예에서, 형광물질은 플루오레신(fluorescein, FAM), 텍사스레드(TexasRed), 로다민(rhodamine), 알렉사(alexa), 시아닌(cyanine, Cy), 보디피(BODIPY), 아세톡시메틸 에스터(Acetoxymethyl ester) 및 쿠마린(coumarin)으로부터 선택될 수 있으나, 이에 한정되는 것은 아니며, 핵산 단일가닥 부착이 가능한 공지의 형광체라면 모두 사용 가능하다.
일 구현예에서, 타겟 핵산은 서열번호 9, 10 및 11의 염기서열로 표시되는 c1, c2 및 c3일 수 있으며; 제 1 단일가닥 프로브 내지 제 3 단일가닥 프로브는 형광물질로 표지되고, 타겟 핵산에 상보적인 서열을 포함하는, 서열번호 2, 3 및 4의 염기서열로 표시되는 S1, S2 및 S3일 수 있고; 제 4 단일가닥 프로브는 상기 S1, S2 및 S3의 일부와 상보적인 서열로 이루어진 서열번호 1의 염기서열로 표시되는 U1일 수 있다 (도 1 참조). 또한, 일 구현예에서, 타겟 핵산은 서열번호 12, 13 및 14의 염기서열로 표시되는 c1', c2' 및 c3'일 수 있으며; 제 1 단일가닥 프로브 내지 제 3 단일가닥 프로브는 형광물질로 표지되고 타겟 핵산에 상보적인 서열을 포함하는, 서열번호 6, 7 및 8의 염기서열로 표시되는 S1', S2' 및 S3'가 각각 연결된 단일가닥일 수 있고; 제 4 단일가닥 프로브는 상기 S1', S2' 및 S3'의 일부와 상보적인 서열로 이루어진 서열번호 5의 염기서열로 표시되는 U1'일 수 있다 (도 3 참조). 또한, 타겟에 따라, 각각의 프로브 내의 타겟 핵산에 상보적인 부위의 서열이 변경될 수 있다. 본 발명의 일 실시예에서, 상기 서열들로 이루어진 구조체에서, 타겟 서열로 폐암에 특이적인 EGFR mRNA 변형 서열인 c1, c2 및 c3과 miRNA인 c1', c2' 및 c3'를 이용하였으므로, 이용하여 암의 진단 및 항암제의 사용 효과 등을 모니터링할 수 있다.
일 구현예에서, 제 4 단일가닥 프로브가 이루는 사면체의 한 면이 그래핀 옥사이드와 가장 먼쪽으로 존재할 수 있다.
일 측면에서, 본 발명은 제 1 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 1 단일가닥 프로브; 제 2 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 2 단일가닥 프로브; 제 3 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 3 단일가닥 프로브; 및 상기 제 1 단일가닥 프로브, 제 2 단일가닥 프로브 및 제 3 단일가닥 프로브의 일부와 상보적인 서열로 이루어진 제 4 단일가닥 프로브를 포함하는 형광핵산나노구조체가 그래핀 옥사이드에 부착된, 핵산 검출용 조성물에 관한 것이다.
일 구현예에서, 삼각기둥의 삼각 면 중 제 4 단일가닥 프로브와 제 1 내지 제 3 단일가닥 프로브가 이루는 이중가닥 면의 반대 면 (단일가닥 부분)이 그래핀 옥사이드에 부착될 수 있다.
일 측면에서, 본 발명은 시료로부터 핵산을 분리하는 단계; 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브를 상기 분리한 핵산과 혼합하고 열처리하여 형광나노핵산구조체를 제조하는 단계; 형광나노핵산구조체를 그래핀 옥사이드에 부착하는 단계; 및 형광공명에너지전이(fluorescence resonance energy transfer) 현상으로 형광을 검출하는 단계를 포함하는, 핵산의 검출 방법에 관한 것이다.
일 구현예에서, 형광나노핵산구조체를 제조하는 단계 및 형광나노핵산구조체를 그래핀 옥사이드에 부착하는 단계의 염(NaCl)의 농도는 50 내지 300mM일 수 있다.
일 측면에서, 본 발명은 시료로부터 핵산을 분리하는 단계; 분리한 핵산과 본 발명의 핵산 검출용 조성물을 반응시키는 단계; 및 형광공명에너지전이(fluorescence resonance energy transfer) 현상으로 형광을 검출하는 단계를 포함하는, 핵산의 검출 방법에 관한 것이다.
일 구현예에서, 본 발명의 핵산 검출용 조성물은 제 1 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 1 단일가닥 프로브; 제 2 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 2 단일가닥 프로브; 제 3 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 3 단일가닥 프로브; 및 상기 제 1 단일가닥 프로브, 제 2 단일가닥 프로브 및 제 3 단일가닥 프로브의 일부와 상보적인 서열로 이루어진 제 4 단일가닥 프로브를 포함하는 형광핵산나노구조체가 그래핀 옥사이드에 부착된 그래핀 형광핵산나노구조체일 수 있다.
일 측면에서, 본 발명은 시료로부터 핵산을 분리하는 단계; 서로 상이한 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브를 상기에서 분리한 핵산과 혼합하고 열처리하여 형광나노핵산구조체를 제조하는 단계; 형광나노핵산구조체를 그래핀 옥사이드에 부착하는 단계; 및 형광공명에너지전이(fluorescence resonance energy transfer) 현상으로 형광을 검출하는 단계를 포함하는, 다중 핵산의 검출 방법에 관한 것이다.
일 측면에서, 본 발명은 서로 상이한 타겟 핵산에 상보적인 핵산 및 서로 상이한 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브들을 혼합하고 열처리하여 형광나노핵산구조체를 제조하는 단계; 및 형광나노핵산구조체를 그래핀 옥사이드에 부착하는 단계를 포함하는 형광핵산나노구조체/그래핀 옥사이드 복합체 제조 방법에 관한 것이다.
일 구현예에서, 서로 상이한 타겟 핵산에 상보적인 핵산 및 서로 상이한 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브들은 제 1 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 1 단일가닥 프로브; 제 2 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 2 단일가닥 프로브; 제 3 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 3 단일가닥 프로브; 및 상기 제 1 단일가닥 프로브, 제 2 단일가닥 프로브 및 제 3 단일가닥 프로브의 일부와 상보적인 서열로 이루어진 제 4 단일가닥 프로브일 수 있다.
일 측면에서, 본 발명은 타겟 핵산에 상보적인 핵산, 형광물질 및 다른 단일가닥 프로브에 상보적인 핵산을 포함하는 하나 이상의 단일가닥 프로브 및 그래핀 옥사이드를 포함하는 조성물의 핵산 검출 용도에 관한 것이다.
일 측면에서, 본 발명은 타겟 핵산에 상보적인 핵산, 형광물질 및 다른 단일가닥 프로브에 상보적인 핵산을 포함하는 하나 이상의 단일가닥 프로브 및 그래핀 옥사이드를 포함하는 조성물을 이용하여 바이오마커를 검출하는 방법에 관한 것이다.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 그래핀 옥사이드 합성
1g의 그래파이트와 50g의 염(NaCl)을 막자사발을 이용해 15분간 갈아주었다. 이후, 염을 제거하기 위하여 갈려진 그래파이트와 염을 물에 넣은 뒤 6시간 이상 교반하였다. 뷰흐너 깔때기를 이용해 그래파이트를 걸러내고 80℃의 오븐에서 건조하였다. 건조된 그래파이트에 23ml의 98% 황산을 넣고 12시간 동안 교반시켰다. 3g의 과망간산칼륨을 넣은 뒤 35℃에서 30분간 교반시킨 뒤, 온도를 70℃로 올려준 후 45분간 교반시켰다. 46ml의 물을 첨가한 뒤 98℃에서 30분간 교반시킨 후, 140ml의 물과 10ml의 30% 과산화수소를 첨가해준 후 1시간 동안 교반하였다. 모든 반응 종료 후 50ml 튜브에 30ml를 담고, 20분간 11000rpm에서 원심분리하여 한번은 5% 염산에서, 3번은 물을 이용해 워싱하였다. 크기를 선별하기 위하여 5000g에서 10분간 원심분리 한 후 상층액을 얻고, 이후 11000rpm에서 60분간 원심분리 한 후 하층부분을 얻었다.
실시예 2. 형광나노핵산구조체 합성
2-1. 사면체 형광나노핵산구조체 합성
사면체의 바닥면이 이중가닥을 이루고, 옆면과 그래핀 옥사이드에 연결될 부분은 단일가닥으로 이루어진 사면체형 형광나노핵산구조체를 합성하였다. 구체적으로, 총 4가닥의 단일가닥은 이중가닥을 이룰 구조체의 윗면 (사면체의 바닥 부분)의 서열 U1 (S1, S2 및 S3 각각에 상보적인 서열들로 이루어짐); 및 각각의 타겟 서열 c1, c2 및 c3 (EGFR mRNA의 변형)에 상보적인 서열을 포함하는 S1, S2 및 S3로 이루어진다 (표 1). 형광 표지된 핵산 단일가닥 S1, S2 및 S3, 및 U1을 260nm 파장대에서 흡광도를 측정하여 정량한 뒤 모든 서열의 몰비율이 1 : 1 이 되도록 같은 몰수만큼 다양한 조합으로 (1개 내지 3개의 가닥의 조합 및 4개 모든 가닥 조합) 염 농도를 150 mM로 맞춘 뒤, 중합효소 연쇄반응(PCR) 장비에 넣어주었다. 그 후, 95℃로 온도를 높이고 2분간 유지하고, 60℃로 온도를 낮춘 뒤 1분에 1℃씩 온도를 20℃까지 낮추었다. 5분간 20℃를 유지한 후, 4℃로 온도를 낮추는 열처리를 수행하였다. 그 후 제조된 사면체 형광나노핵산구조체의 합성 결과를 아가로스 겔 전기영동을 통해 확인하였다. 또한, 사면체 형광나노핵산 구조체의 구체적인 전개도 모형을 도 1에 나타냈다.
Figure PCTKR2019000202-appb-T000001
1개의 가닥부터 3개의 가닥까지 가능한 모든 조합으로 가닥들을 섞은 형광나노핵산구조체 (A 내지 G) 및 4개의 모든 가닥을 섞어 제작한 사면체 형광나노핵산구조체 (H)를 아가로스 겔 전기영동을 통해 확인한 결과, 단일가닥들이 서로 결합하여 전기영동 상의 밴드 위치가 점차 높아지는 것이 나타났으며, 4가닥이 함께 열처리된 경우 나노구조체 (H)가 형성되었음을 확인할 수 있었다 (도 2).
2-2. 삼각기둥 형광나노핵산구조체 합성
삼각기둥의 윗면은 이중가닥으로 구성되어 있고, 옆면과 그래핀 옥사이드에 연결될 다른 바닥 부분은 단일가닥으로 이루어진 삼각기둥형 형광나노핵산구조체를 합성하였다. 구체적으로, 총 4가닥의 단일가닥은 이중가닥을 이룰 구조체의 윗면 (삼각기둥의 바닥 중 한 부분)의 서열 U1; 및 타겟 서열 c1', c2' 및 c3' (miRNA)에 상보적인 서열을 포함하는 S1', S2' 및 S3'로 이루어진다 (표 2). 형광 표지된 핵산 단일가닥 S1', S2' 및 S3', 및 U1'을 260nm 파장대에서 흡광도를 측정하여 정량한 뒤 모든 서열의 몰비율이 1 : 1이 되도록 같은 몰수만큼 다양한 조합으로 (1개 내지 3개의 가닥의 조합 및 4개 모든 가닥 조합) 염 농도를 200mM로 맞춘 뒤 (삼각기둥형의 경우 사면체형보다 서열이 길고 복잡하여 염 농도 최적화 실험을 추가로 진행한 결과 도출된 최적 염농도, 하기 실시예 5-2 참조), 중합효소 연쇄반응(PCR) 장비에 넣어주었다. 그 후, 95℃로 온도를 높이고 5분간 유지하고, 85℃로 온도를 낮춘 뒤 5분간 유지하였다. 그 후, 1분에 0.5℃씩 온도를 20℃까지 낮춰 5분간 유지한 후, 4℃로 온도를 낮추는 열처리를 수행하였다. 그 후 제조된 삼각기둥 형광나노핵산구조체의 합성 결과를 아가로스 겔 전기영동을 통해 확인하였다 (데이터 미도시). 또한, 삼각기둥형 형광나노핵산 구조체의 구체적인 전개도 모형을 도 3에 나타냈다.
Figure PCTKR2019000202-appb-T000002
실시예 3. 형광핵산나노구조체/그래핀 옥사이드 복합체 형성
3-1. 사면체 형광핵산나노구조체/그래핀 옥사이드 복합체 제조
상기 실시예 2-1에서 제조한 사면체 형광핵산나노구조체 20pmol을 실시예 1에서 제조한 그래핀 옥사이드 3μg과 섞고 물과 염(NaCl)을 첨가하여 총 부피가 50μl가 되고, 염 농도가 200mM이 될 수 있도록 조정하였다. 그 후 30분 동안 25℃에서 반응시켜 그래핀 사면체 형광나노핵산구조체를 제조하였으며, 이는 사면체의 바닥이 위로 올라간 구조에서 옆면의 타겟에 상보적인 단일가닥 부분과, S1 가닥의 아데닌 서열 (poly A)이 길게 빠져나와 그래핀 옥사이드에 부착된 형태를 이룬다.
3-2. 삼각기둥 형광핵산나노구조체/그래핀 옥사이드 복합체 제조
상기 실시예 2-2에서 제조한 삼각기둥 형광핵산나노구조체 10pmol을 실시예 1에서 제조한 그래핀 옥사이드 3μg과 섞고 물과 염을 첨가하여 총 부피가 50μl가 되고, 염 농도가 200mM이 될 수 있도록 조정하였다. 그 후 30분 동안 25℃에서 반응시켜 그래핀 삼각기둥 형광나노핵산구조체를 제조하였으며, 이의 옆면은 단일가닥으로 이루어진 타겟에 상보적인 부분을 포함하고, 삼각기둥의 두 면의 바닥 중 단일가닥으로 이루어진 아랫면이 그래핀 옥사이드 위에 부착된 구조를 이룬다.
3-3. 형광핵산나노구조체/그래핀 옥사이드 복합체의 구조체 시뮬레이션
3-3-1. 사면체형
상기에서 제조된 형광핵산나노구조체/그래핀 옥사이드 복합체의 구조체 형성 여부, 최종 모양 및 타겟의 유무에 따른 형광의 위치변화를 확인하기 위하여 oxDNA 프로그램을 이용하여 시뮬레이션을 수행하였다. 구체적으로, 사면체 형광핵산나노구조체에 하나씩 타겟 서열들을 조립한 결과, 꼬임 없이 정해진 위치에서 이중결합을 형성하는 것으로 나타났다 (도 4a 및 b).
3-3-3. 삼각기둥형
상기에서 제조된 형광핵산나노구조체/그래핀 옥사이드 복합체(그래핀 삼각기둥 형광핵산나노구조체)의 구조체 형성 여부, 최종 모양 및 타겟의 유무에 따른 형광의 위치변화를 확인하기 위하여 oxDNA 프로그램을 이용하여 시뮬레이션을 수행하였다. 구체적으로, 삼각기둥모형 형광핵산나노구조체에 하나씩 타겟 서열들을 조립한 결과, 꼬임 없이 정해진 위치에서 이중결합을 형성하는 것으로 나타났다 (도 5a 및 b). 또한, VMD(Visual molecular dynamics)를 이용해 oxDNA 시뮬레이션으로 얻어진 데이터를 분석하여 형광과 그래핀옥사이드의 거리를 예측한 결과, 타겟 서열이 부착하는 경우 형광과 그래핀옥사이드 간의 거리가 멀어지는 것을 확인하였다 (도 5c).
실시예 4. 타겟 서열의 첨가 순서에 따른 구조체의 검출 능력 확인
4-1. 타겟서열과 함께 형광핵산나노구조체 합성
상기 실시예 2-1에서 사면체 형광나노핵산구조체 합성시 타겟 서열인 c1, c2 및 c3들을 추가적으로 0 내지 5배의 몰비율로 넣어준 뒤 같은 프로토콜로 형광핵산나노구조체를 합성하고 제조된 사면체 형광나노핵산구조체의 합성 결과를 아가로스 겔 전기영동을 통해 확인하였다 (도 6). 그 후, 20pmol의 형광핵산나노구조체에 그래핀 옥사이드를 3μg 넣고 염 농도가 200 mM 되도록 물과 염을 첨가해 총 50μl의 용액을 만들어 이 후 30분 동안 반응시켰다. 반응물을 96 웰 플레이트에 넣고 플레이트 리더 (plate-reader)를 사용해 흡수/방출 파장이 FAM(485 nm/525 nm), Cy3(540 nm/570 nm) 및 Cy5(640 nm/670 nm)일 때의 형광 값을 측정하였다.
사면체형 형광핵산나노구조체가 일정한 농도 (20pmol/50μl)일 때, 타겟 서열(c-DNA)의 농도에 따라 형광 값의 변화를 측정한 결과, 높은 농도의 타겟 서열과 함께 합성한 경우 절대적인 형광 값이 크게 증가하였으나, 적은 양의 타겟 서열과 함께 합성한 경우에도 타겟이 있을 때와 없을 때의 형광의 상대적 차이가 나타났다 (도 7).
4-2. 형광핵산나노구조체/그래핀 옥사이드 복합체 합성 후 타겟 서열 첨가
형광핵산나노구조체/그래핀 옥사이드 복합체를 합성한 뒤 타겟 서열을 첨가했을 경우 검출능을 확인하였다. 구체적으로, 상기 실시예 2-1에서와 같이 사면체 형광나노핵산구조체를 제조한 뒤 실시예 3-1에서와 같이 그래핀 옥사이드와 복합체를 합성하였다. 제조된 사면체의 그래핀 형광핵산나노구조체 20pmol/50μl에 2μM, 20μM로 준비된 타겟 서열 c1, c2 및 c3 (EGFR의 L858R, T790M 및 E746-A750)을 각각 10μl씩 넣고난 뒤, 시간에 따라 형광 값이 어떻게 증가하는지 확인하였다.
그 결과, 도 8에 나타난 바와 같이, 10배의 타겟을 넣어준 경우 (도 8d 내지 f), 타겟이 구조체의 상보적인 서열 부위에 결합함으로써, 해당하는 형광값이 높아진 것을 확인 할 수 있었다. 그러나, 도 8f에서, 타겟 서열 c3의 경우 10배 첨가하여도 c2보다 형광값이 낮게 나타났다. 따라서, 형광핵산나노구조체/그래핀 옥사이드 복합체를 형성한 후에 타겟 서열과 반응하는 경우에는 타겟 서열과 함께 복합체를 형성하는 경우보다 더욱 많은 농도의 타겟 서열이 필요한 것을 알 수 있었다.
실시예 5. 염 농도에 따른 구조체의 검출 능력 확인
5-1. 염 농도에 따른 사면체형 형광핵산나노구조체의 검출 능력 확인
상기 실시예 2-1에서 형광나노핵산구조체 합성시 타겟 서열 c1, c2 및 c3들을 함께 넣어 형광나노핵산구조체를 합성하였다. 합성된 20pmol의 형광나노핵산구조체 샘플과 그래핀 옥사이드 3μg을 섞고, 염 농도가 0 내지 200mM이 되도록 염과 물을 더 첨가하여 총 50μl가 되도록 부피를 조정하였다. 96웰 플레이트에 혼합물을 넣고, 플레이트 리더기를 사용해 흡수/방출 파장이 485nm/525nm(FAM), 540nm/570nm(Cy3) 및 640nm/670nm(Cy5)일 때의 형광 값을 측정하였다. 그 결과, 염 농도가 높을 때 각각 타겟에 맞는 형광 값이 오르며 그 형광 값의 차이를 구분하기 용이한 것을 확인할 수 있었다 (도 9).
이를 통해, 그래핀 옥사이드의 표면이 음 전하를 띄고, 핵산나노구조체의 백본(backbone)이 음 전하를 보이기 때문에, 염농도가 높을수록 형광핵산나노구조체/그래핀 옥사이드 복합체 형성을 쉽게 함으로써 단일가닥 DNA에 붙어있는 형광의 차단을 더욱 용이하게 하는 것으로 유추할 수 있다.
5-2. 염 농도에 따른 삼각기둥형 형광핵산나노구조체의 검출 능력 확인
상기 실시예 2-2에서 형광나노핵산구조체 합성시 타겟 서열인 c1', c2', c3'들을 함께 넣어준 뒤 동일한 방법으로 삼각기둥형 형광나노핵산구조체를 합성하면서, 사면체형보다 서열이 길고 복잡하여 염농도를 150~300 mM가 되도록 조절하였다. 합성된 형광나노핵산구조체 샘플과 그래핀 옥사이드를 섞고, 염 농도가 200 mM이 되도록 유지하여 그래핀 삼각기둥 형광핵산나노구조체를 합성하였다. 합성된 그래핀 삼각기둥 형광핵산나노구조체 50μl를 96웰 플레이트(96 well plate)에 넣고, 플레이트 리더기를 사용해 흡수/방출 파장이 485nm/525nm(FAM), 540nm/570nm(Cy3) 및 640nm/670nm(Cy5)일 때의 형광 값을 측정하였다. 그 결과, 150mM의 염농도를 사용하여 형광핵산나노구조체를 합성한 경우, c2서열이 아닌 경우에도 FAM 형광 값이 많이 올라가는 것을 확인할 수 있었으나, 200mM의 염농도로 핵산나노구조체를 합성한 경우에는 각각의 타겟에 대한 감도가 좋은 것으로 나타났다 (도 10). 또한, 더 많은 양의 염농도를 사용하여도 200 mM과 비슷한 정도의 타겟 검출 능력을 나타냈다.
실시예 6. 그래핀 옥사이드의 양에 따른 구조체의 검출 능력 확인
6-1. 그래핀 옥사이드 양에 따른 사면체형 형광핵산나노구조체/그래핀 옥사이드 복합체의 검출 능력 확인
상기 실시예 2-2에서 형광나노핵산구조체 합성시 타겟 서열인 c1, c2 및 c3들을 함께 넣어준 뒤 동일한 방법으로 형광핵산나노구조체를 제조하였다. 그 후, 합성된 20pmol의 형광나노핵산구조체 샘플과 그래핀 옥사이드의 양을 달리하여 형광핵산나노구조체/그래핀 옥사이드를 제조하였다. 여기서, 염 농도가 200mM이 되도록 염과 물을 더 첨가하여 부피가 총 50μl가 되도록 하였다. 제조된 반응물을 96웰 플레이트에 넣고 플레이트 리더기를 사용해 흡수/방출 파장이 FAM(485nm/525nm), Cy3(540nm/570nm), Cy5(640nm/670nm)일 때의 형광 값을 측정하였다. 그 결과, 그래핀 옥사이드의 양이 2.5 내지 3.5μg일 때의 형광 차이는 크지 않았으나, 그래핀 옥사이드가 많아질수록 FAM 형광 신호 구분이 점차 어려웠으며, 그래핀 옥사이드가 적을 수록 Cy3 형광 신호 구분이 어렵게 나타나, 그래핀 옥사이드의 양이 3μg일 때 모든 형광신호를 구분하기에 적절한 양임을 확인할 수 있었다 (도 11).
6-2. 그래핀 옥사이드 양에 따른 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 검출 능력 확인
상기 실시예 2-2에서 형광나노핵산구조체 합성시 타겟 서열인 c1', c2', c3'들을 함께 넣어준 뒤 동일한 방법으로 삼각기둥형 형광나노핵산구조체를 합성한 후, 20pmol의 형광나노핵산구조체 샘플을 넣고 그래핀 옥사이드의 양을 3, 6 및 9㎍으로 달리하여 형광핵산나노구조체/그래핀 옥사이드 복합체(그래핀 형광나노핵산구조체)를 제조하였다. 반응물을 96 웰 플레이트(96 well plate)에 넣고 플레이트 리더(plate-reader)를 사용해 흡수/방출 파장이 FAM(485 nm/525 nm), Cy3(540 nm/570 nm), Cy5(640 nm/670 nm)일 때의 형광 값을 측정한 결과, 그래핀의 양이 3μg 이상인 경우 그래핀 옥사이드 양에 따라 형광에 큰 차이가 없음을 확인하였다 (도 12).
실시예 7. 타겟 서열의 양에 따른 형광핵산나노구조체/그래핀 옥사이드 복합체의 검출 능력 및 검출 한계
삼각기둥형 형광나노핵산구조체를 합성할 때 타겟 서열 c1', c2', c3'의 양을 0 내지 300nM로 넣어준 뒤 동일한 열처리 프로토콜을 진행하여 형광핵산나노구조체를 제조하였다. 그 후, 상기 실시예 3에서와 같이 형광핵산나노구조체 10pmol에 그래핀 옥사이드 3μg를 넣고 염 농도가 200 mM 되도록 물과 염을 첨가해 총 50μl의 용액을 만들어 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체를 제조한 뒤, 각각의 형광 값을 확인하고 첨가한 타겟 서열의 양에 따른 표준곡선(standard curve)을 도출하였다. 그 결과, 타겟 바이오마커의 농도에 따라서 형광 세기가 선형적으로 증가한 것을 알 수 있었다 (도 13). 또한, 이를 통해, 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 형광 값을 측정하면, 샘플 내 존재하는 타겟 핵산 바이오마커의 농도로 환산이 가능하므로, 이를 통해 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 검출한계를 계산하였다. 구체적으로, Clinical and Laboratory Standards Institute (CLSI)사에서 출시한 가이드라인 EP17에 의해 계산하였다. 그 결과, 구조체의 검출한계(Limit of Detection)는 하기 표 3에 기재한 바와 같이, 타겟 서열이 miR-21(c1')인 경우 49.16nM, let-7f(c2')인 경우 48.86nM 및 miR-200b-3p(c3')인 경우 43.43nM로 나타났다 (몰수 및 그램수로 표기)
Figure PCTKR2019000202-appb-T000003
실시예 8. 폐암세포 유래 miRNA에 대한 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 기능 확인
8-1. 폐암세포 A549 유래 miRNA에 대한 검출능 확인
본 발명의 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체가 실제 시료에서 타겟 서열과 상보적으로 결합하여 형광을 나타낼 수 있는지 확인하기 위하여, 폐암세포에서 추출한 miRNA에 대한 검출 효과를 확인하였다. 구체적으로, 폐암세포인 A549에서 전체 miRNA를 추출하였으며, 이의 농도를 확인한 결과, 499.68 ng/μl로 나타났다. 형광핵산나노구조체 합성시 상기 폐암세포에서 추출한 전체 miRNA를 0 내지 10㎍으로 첨가하여 200nM의 형광핵산나노구조체를 합성한 뒤, 그래핀 옥사이드 복합체를 제조하였다. 제조한 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 형광값을 측정한 결과, 첨가한 폐암세포 유래 miRNA의 양에 따라 선형적으로 형광의 세기가 증가하는 것을 확인할 수 있었다 (도 14).
8-2. 폐암세포 PC-9 유래 miRNA에 대한 검출능 확인
본 발명의 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체가 실제 시료에서 타겟 서열과 상보적으로 결합하여 형광을 나타낼 수 있는지 확인하기 위하여, 폐암세포에서 추출한 miRNA에 대한 검출 효과를 확인하였다. 구체적으로, 폐암세포인 PC-9에서 추출한 전체 miRNA를 추출하였으며, 이의 농도를 확인한 결과, 312.16ng/μl로 나타났다. 형광핵산나노구조체 합성시 상기 폐암세포에서 추출한 전체 miRNA를 0 내지 6.24㎍으로 첨가하여 200nM의 형광핵산나노구조체를 합성한 뒤, 그래핀 옥사이드 복합체를 제조하였다. 제조한 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 형광값을 측정한 결과, PC-9에서 추출한 miRNA의 양에 따라 선형적으로 형광의 세기가 증가함을 확인할 수 있었다 (도 15).
이를 통해, 폐암세포의 전체 miRNA에 존재하는, c1', c2' 및 c3' miRNA들과 이에 상보적인 본 발명의 삼각기둥형 형광핵산나노구조체/그래핀 옥사이드 복합체의 기둥부분의 단일가닥 핵산들이 결합하였고, 타겟서열의 농도에 의존적으로 형광의 세기가 나타나는 것을 알 수 있었다.

Claims (15)

  1. 타겟 핵산에 상보적인 핵산, 형광물질 및 다른 단일가닥 프로브에 상보적인 핵산을 포함하는 하나 이상의 단일가닥 프로브 및 그래핀 옥사이드를 포함하는, 핵산 검출용 조성물.
  2. 제 1항에 있어서, 상기 단일가닥 프로브는 DNA 및/또는 RNA인, 핵산 검출용 조성물.
  3. 제 1항에 있어서, 단일가닥 프로브가 3개 이상이면, 단일가닥 프로브들 각각에 상보적인 핵산으로만 이루어진 단일가닥 프로브를 추가로 포함하는, 핵산 검출용 조성물.
  4. 제 1항에 있어서, 서로 상이한 타겟 핵산의 다중 검출을 위해, 각각의 단일가닥 프로브들이 서로 다른 타겟에 대한 상보적인 핵산을 포함하는, 핵산 검출용 조성물.
  5. 제 1항에 있어서, 타겟 핵산과 단일가닥 프로브가 결합하여 이중결합을 형성하면 프로브가 그래핀 옥사이드로부터 거리가 멀어져 형광물질의 발광이 검출되는, 핵산 검출용 조성물.
  6. 하기를 포함하는 형광핵산나노구조체 및 그래핀 옥사이드를 포함하는, 핵산 검출용 조성물:
    제 1 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 1 단일가닥 프로브;
    제 2 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 2 단일가닥 프로브;
    제 3 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 제 3 단일가닥 프로브; 및
    상기 제 1 단일가닥 프로브와 상보적인 서열, 제 2 단일가닥 프로브와 상보적인 서열 및 제 3 단일가닥 프로브와 상보적인 서열로 이루어진 제 4 단일가닥 프로브.
  7. 제 6항에 있어서, 형광핵산나노구조체의 제 1 단일가닥 프로브, 제 2 단일가닥 프로브 및 제 3 단일가닥 프로브 중 어느 하나가 그래핀 옥사이드에 부착된, 핵산 검출용 조성물.
  8. 제 7항에 있어서, 형광핵산나노구조체는 그래핀 옥사이드 상에서 역사면체형 구조인, 핵산 검출용 조성물.
  9. 제 6항에 있어서, 형광핵산나노구조체의 제 1 단일가닥 프로브, 제 2 단일가닥 프로브 및 제 3 단일가닥 프로브가 그래핀 옥사이드에 부착된, 핵산 검출용 조성물.
  10. 제 9항에 있어서, 형광핵산나노구조체는 그래핀 옥사이드 상에서 삼각기둥형 구조인, 핵산 검출용 조성물.
  11. 시료로부터 핵산을 분리하는 단계;
    타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 단일가닥 프로브를 분리한 핵산과 혼합하고 열처리하여 형광나노핵산구조체를 제조하는 단계;
    형광나노핵산구조체를 그래핀 옥사이드에 부착하는 단계; 및
    형광공명에너지전이(fluorescence resonance energy transfer) 현상으로 형광을 검출하는 단계를 포함하는, 핵산의 검출 방법.
  12. 제 11항에 있어서, 서로 상이한 타겟 핵산에 상보적인 핵산 및 형광물질을 포함하는 한 종류 이상의 단일가닥 프로브들을 이용하여 다중 핵산을 검출하는, 핵산의 검출 방법.
  13. 시료로부터 핵산을 분리하는 단계;
    분리한 핵산과 제 1항의 핵산 검출용 조성물을 반응시키는 단계; 및
    형광공명에너지전이(fluorescence resonance energy transfer) 현상으로 형광을 검출하는 단계를 포함하는, 핵산의 검출 방법.
  14. 타겟 핵산에 상보적인 핵산, 형광물질 및 다른 단일가닥 프로브에 상보적인 핵산을 포함하는 하나 이상의 단일가닥 프로브 및 그래핀 옥사이드를 포함하는 조성물의 핵산 검출 용도.
  15. 타겟 핵산에 상보적인 핵산, 형광물질 및 다른 단일가닥 프로브에 상보적인 핵산을 포함하는 하나 이상의 단일가닥 프로브 및 그래핀 옥사이드를 포함하는 조성물을 이용하여 바이오마커를 검출하는 방법.
PCT/KR2019/000202 2018-01-12 2019-01-07 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서 WO2019139312A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19737984.5A EP3739063A4 (en) 2018-01-12 2019-01-07 FLUORESCENT BIO-SENSOR GRAPHENE AND NUCLEIC ACID NANOSTRUCTURE FOR NUCLEIC ACID DETECTION
CN201980018054.1A CN111836902A (zh) 2018-01-12 2019-01-07 用于核酸检测的荧光核酸纳米结构-石墨烯生物传感器
US16/961,634 US20200370100A1 (en) 2018-01-12 2019-01-07 Fluorescent nucleic acid nanostructure-graphene biosensor for nucleic acid detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180004571A KR102026096B1 (ko) 2018-01-12 2018-01-12 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서
KR10-2018-0004571 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019139312A1 true WO2019139312A1 (ko) 2019-07-18

Family

ID=67219064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000202 WO2019139312A1 (ko) 2018-01-12 2019-01-07 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서

Country Status (5)

Country Link
US (1) US20200370100A1 (ko)
EP (1) EP3739063A4 (ko)
KR (1) KR102026096B1 (ko)
CN (1) CN111836902A (ko)
WO (1) WO2019139312A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982900A (zh) * 2019-12-13 2020-04-10 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210102241A1 (en) * 2019-09-10 2021-04-08 Seoul National University R&Db Foundation Method for confirming introduction of foreign gene into cells and method for manufacturing introduction foreign gene into cells
WO2021066464A2 (ko) * 2019-10-04 2021-04-08 프로지니어 주식회사 핵산 검출 시스템
KR102408378B1 (ko) * 2019-10-15 2022-06-14 프로지니어 주식회사 다중 바이오마커 검출 방법
KR102373532B1 (ko) 2020-07-31 2022-03-14 주식회사 제노헬릭스 그래핀 처리를 포함하는 표적 rna 검출 방법
KR102424143B1 (ko) * 2020-09-01 2022-07-25 프로지니어 주식회사 표적핵산 자체로 만들어지는 입체적 핵산나노구조체를 이용한 표적핵산 검출 방법
CN112345507B (zh) * 2020-11-06 2022-07-05 济南大学 一种基于dna三棱柱结构构象变化靶向癌细胞的生物传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124196A (ko) * 2012-04-24 2013-11-13 서울대학교산학협력단 핵산 검출용 조성물 및 이를 이용한 핵산 검출 방법
KR20150128612A (ko) * 2014-05-08 2015-11-18 서울대학교산학협력단 핵산의 검출 방법 및 핵산 검출용 키트

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846648A (zh) * 2010-04-20 2010-09-29 上海大学 石墨烯量子点修饰的电化学生物传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124196A (ko) * 2012-04-24 2013-11-13 서울대학교산학협력단 핵산 검출용 조성물 및 이를 이용한 핵산 검출 방법
KR20150128612A (ko) * 2014-05-08 2015-11-18 서울대학교산학협력단 핵산의 검출 방법 및 핵산 검출용 키트

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ABI, ALIREZA ET AL.: "Electrochemical Switching with 3D DNA Tetrahedral Nanostructures Self-Assembled at Gold Electrodes", ACS APPL. MATER. INTERFACES, vol. 6, no. 11, 11 June 2014 (2014-06-11), pages 8928 - 8931, XP055626419 *
AVEYARD, J.: "One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device", CHEM. COMMUN., vol. 41, 2007, pages 4251 - 4253, XP009123200, DOI: 10.1039/b708859k
HELB, D.: "Rapid Detection of Mycobacterium tuberculosis and Rifampin Resistance by Use of On-Demand, Near-Patient Technology", J. CLIN. MICROBIOL., vol. 48, 2010, pages 229 - 237, XP055156504, DOI: 10.1128/JCM.01463-09
HIGUCHI, R.: "Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions", NATURE BIOTECHNOLOGY, vol. 11, 1993, pages 1026 - 1030, XP000197685, DOI: 10.1038/nbt0993-1026
HUANG, P. J.: "DNA Adsorption, Desorption, and Fluorescence Quenching by Graphene Oxide and Related Analytical Application. University of Waterloo", MASTER'S THESIS, 2011, XP055626422 *
PEI, H ET AL.: "Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors", ANGEW. CHEM. INT. ED. ENGL., vol. 51, no. 36, 3 September 2012 (2012-09-03), pages 9020 - 9024, XP055580889 *
SAIKI, R.: "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase", SCIENCE, vol. 239, 1998, pages 487 - 91, XP002057159, DOI: 10.1126/science.2448875
See also references of EP3739063A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982900A (zh) * 2019-12-13 2020-04-10 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
CN110982900B (zh) * 2019-12-13 2023-10-03 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用

Also Published As

Publication number Publication date
KR20190086259A (ko) 2019-07-22
US20200370100A1 (en) 2020-11-26
EP3739063A4 (en) 2021-10-13
KR102026096B1 (ko) 2019-10-01
EP3739063A1 (en) 2020-11-18
CN111836902A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2019139312A1 (ko) 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서
CN103502468A (zh) 用于单分子全基因组分析的方法和相关装置
WO2013168851A1 (ko) 실시간 중합효소 연쇄반응과 dna 칩이 통합된 검사 시스템 및 이를 이용한 통합 분석방법
WO2021066464A2 (ko) 핵산 검출 시스템
CN104254617A (zh) 通过单分子杂交和操作进行的dna检测和定量的方法
CN106399517A (zh) 一种多交叉恒温扩增结合金纳米生物传感的核酸检测技术
CN105555971A (zh) 用于在核酸测定中改善熔链分辨和多重性的探针
WO2016190585A1 (ko) 표적핵산 검출방법 및 키트
CN108531627A (zh) 一种用于检测b族链球菌的rpa荧光定量引物对、探针、试剂盒及检测方法
Suwannin et al. Heat-enhancing aggregation of gold nanoparticles combined with loop-mediated isothermal amplification (HAG-LAMP) for Plasmodium falciparum detection
WO2013122319A1 (ko) 리가제 반응과 절단효소 증폭반응을 이용한 표적 유전자 또는 이의 돌연변이 검출방법
KR20210113932A (ko) 신종 코로나바이러스 검출용 고감도 다중 루프매개등온증폭 프라이머 세트
CN115992273A (zh) 用于检测肺炎链球菌的核酸分子、试剂盒及检测方法
KR20230016230A (ko) 표적 물질의 검출용 키트 및 이를 이용하여 표적 물질을 검출하는 방법
WO2021075764A1 (ko) 다중 바이오마커 검출 방법
KR102334343B1 (ko) 결핵균 및 비결핵항산균을 동시에 감별하여 검출할 수 있는 고감도 다중 등온증폭반응용 프라이머 세트
WO2021075912A1 (ko) 결핵균 및 비결핵항산균을 동시에 감별하여 검출할 수 있는 고감도 다중 등온증폭반응용 프라이머 세트
WO2012070863A2 (ko) 핵산효소-분자비콘을 이용한 핵산의 검출방법
EP2999798A1 (en) Method for simultaneous detection of bacteria and fungi in a biological preparation by pcr, primers as well as bacteria and fungi detection kit
KR102149373B1 (ko) 리프트밸리열바이러스 검출용 프라이머 세트 및 이의 용도
CN114438238A (zh) 检测感染性心内膜炎病原体的引物及数字pcr试剂盒
KR102424143B1 (ko) 표적핵산 자체로 만들어지는 입체적 핵산나노구조체를 이용한 표적핵산 검출 방법
NL2034274B1 (en) DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT
CN111235290B (zh) 一种厌氧菌液相芯片检测方法
KR102526656B1 (ko) 핵산 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19737984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019737984

Country of ref document: EP

Effective date: 20200812