WO2019138922A1 - 電気集塵装置 - Google Patents

電気集塵装置 Download PDF

Info

Publication number
WO2019138922A1
WO2019138922A1 PCT/JP2018/048401 JP2018048401W WO2019138922A1 WO 2019138922 A1 WO2019138922 A1 WO 2019138922A1 JP 2018048401 W JP2018048401 W JP 2018048401W WO 2019138922 A1 WO2019138922 A1 WO 2019138922A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust collection
electrode
dust
collection electrode
ion wind
Prior art date
Application number
PCT/JP2018/048401
Other languages
English (en)
French (fr)
Inventor
一隆 富松
加藤 雅也
上田 泰稔
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Priority to CN201880086536.6A priority Critical patent/CN111655378A/zh
Priority to EP18899145.9A priority patent/EP3725412A4/en
Priority to RU2020122679A priority patent/RU2020122679A/ru
Priority to KR1020207020133A priority patent/KR102451222B1/ko
Priority to BR112020014230-1A priority patent/BR112020014230B1/pt
Priority to MX2020007386A priority patent/MX2020007386A/es
Priority to US16/961,772 priority patent/US11484890B2/en
Publication of WO2019138922A1 publication Critical patent/WO2019138922A1/ja
Priority to PH12020500599A priority patent/PH12020500599A1/en
Priority to ZA2020/04322A priority patent/ZA202004322B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/78Cleaning the electrodes by washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Definitions

  • the present disclosure relates to an electrostatic precipitator.
  • an electrostatic precipitator including a flat dust collecting electrode arranged in parallel along a gas flow and a discharge electrode having a sharp shape arranged at the center thereof.
  • a high DC voltage is applied between the dust collection electrode and the discharge electrode to perform stable corona discharge on the discharge electrode, thereby charging dust in the gas flow.
  • charged dust is collected at the dust collection electrode by the action of the Coulomb force acting on the dust under an electric field between the discharge electrode and the dust collection electrode.
  • the electrostatic precipitator of patent documents 1 and 2 is provided with a plurality of penetration holes for letting dust pass, and is provided with a dust collection pole which had a closed space for collecting dust inside.
  • trapped dust is less likely to be scattered again by confining the dust in the closed space via the through holes.
  • the electrostatic precipitator of Patent Document 3 includes a dust collection electrode including an earth electrode having an opening ratio of 65% to 85%, and a dust collection filter layer for collecting dust.
  • a dust collection electrode including an earth electrode having an opening ratio of 65% to 85%
  • a dust collection filter layer for collecting dust.
  • Patent No. 5761461 gazette Patent No. 5705461 gazette Patent No. 4823691
  • the dust collection efficiency ⁇ in the electrostatic precipitator can be calculated by the well-known German equation (equation (1)) below.
  • w a dust collection index (moving speed of particulate matter)
  • f a dust collection area per unit gas amount.
  • 1-exp (-w ⁇ f) (1)
  • the moving speed w of the dust is determined to be determined by the relationship between the Coulomb force and the viscous drag of the gas.
  • dust is said to move from the discharge electrode in the electric field, and the ion wind is not directly considered in the influence on performance.
  • the dust concentration which is the premise of its performance design, has the precondition that it is always uniform in the dust collection space between the discharge electrode and the dust collection electrode, and the ion wind causes gas turbulence, It is considered as one of the factors that make the dust concentration uniform.
  • the ion wind generates negative ions by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, it is generated by positive ions in the case of a positive voltage.
  • a negative voltage is described in order to consider the industrial electrostatic precipitator as a base, but the same is true even if it is positive.
  • the ion wind generated by the discharge electrode flows across the gas flow toward the dust collection electrode.
  • the ion wind that has reached the collecting electrode is reversed at the collecting electrode to change the flow direction. This causes a helical turbulence between the electrodes.
  • the flow from the discharge electrode to the dust collection electrode has an effect of carrying dust to the vicinity of the dust collection electrode.
  • the dust carried to the vicinity of the dust collection electrode is finally collected by the Coulomb force.
  • Patent Document 3 describes an electrostatic precipitator in consideration of the effect of ion wind.
  • the structure is such that the ion wind is sent to the filter layer behind the dust collection electrode having the opening, and the structure is complicated in order to collect dust in a region not affected by the main gas. In some cases, it was difficult to separate and collect dust attached to the filter layer in the dry state.
  • the present disclosure has been made in view of such circumstances, and it is an object of the present invention to provide an electrostatic precipitator capable of suppressing the separation effect of ion wind which reduces the dust collection effect and enhancing the dust collection efficiency. To aim.
  • An electrostatic precipitator has a plurality of dust collection poles which are formed in a columnar shape and which are disposed at predetermined intervals in an orthogonal direction orthogonal to the longitudinal direction, and the dust collection electrode side A plurality of discharge parts protruding and arranged in parallel with the orthogonal direction are provided, and the equivalent diameter of the cross section of the dust collection electrode is 30 mm or more and 80 mm or less.
  • the equivalent diameter of the cross section of the dust collection electrode was 30 mm or more. When the equivalent diameter is reduced, the concentration of the electric field is increased and the dust collection property is enhanced. However, if the equivalent diameter is too small, the peak value of the electric field strength becomes large and spark discharge occurs while maintaining the current necessary for dust collection. For this reason, the lower limit as an equivalent diameter is 30 mm.
  • the equivalent diameter of the cross section of the dust collection electrode was 80 mm or less.
  • equivalent diameter When the equivalent diameter is too large, the lifting of the electric field intensity in the vicinity of the dust collection electrode is hardly caused, and the average electric field intensity of the flat plate electrode will be about. In addition, if the equivalent diameter is large, a swirl is generated to the gas flow. For this reason, the upper limit as an equivalent diameter is 80 mm.
  • equivalent diameter is meant a circular diameter equivalent to the cross section of a given shape. Thus, if the cross-section is circular, this corresponds to its diameter.
  • the dust collection electrode for example, a pipe-shaped member having a circular cross section can be mentioned. However, as the cross-sectional shape, in addition to the circular shape, an oval, an oval, a polygon or the like is used.
  • not only hollow but also solid may be used as a dust collection electrode.
  • the flow direction of the gas flowing through the electrostatic precipitator may be an orthogonal direction in which the dust collection electrodes are arranged, or may be a longitudinal direction of the dust collection electrodes.
  • the dust collection electrode can be separated and recovered from dust due to beating, a method of moving the dust collection electrode and scraping the dust with a brush, or wet cleaning.
  • the aperture ratio of the dust collection electrode disposed at a predetermined interval is set to 10% or more and 70% or less.
  • the one and the other discharge parts are respectively disposed on both sides of the dust collection electrode arranged in the orthogonal direction, and the discharge part from the one discharge part It is arrange
  • FIG. 1 is a perspective view showing an electrostatic precipitator according to an embodiment of the present disclosure. It is the top view which looked at the electrostatic precipitator of FIG. 1 from upper direction. It is the front view which looked at the electrostatic precipitator of FIG. 1 from the gas flow direction. It is the front view which showed the modification of FIG. It is a cross-sectional view which showed the positional relationship of a dust collection pole and a projection part. It is a cross-sectional view which showed the electric line of force between a projection part and a dust collection pole. It is a graph which shows a ground which set the lower limit of the equivalent diameter of a dust collection pole to 30 mm. It is a graph which shows the ground which made the upper limit of the equivalent diameter of a dust collection pole 80 mm.
  • the electrostatic precipitator 1 is used, for example, in a thermal power plant using coal as a fuel, and recovers dust (particulate matter) in combustion exhaust gas led from a boiler.
  • the electrostatic precipitator 1 includes, for example, a plurality of conductive dust collectors 4 made of metal or the like.
  • the dust collection electrode 4 is a hollow column shaped circular pipe having a circular cross section, and is arranged at a predetermined interval in the orthogonal direction (the gas flow G direction) orthogonal to the longitudinal direction.
  • a plurality of dust collection electrode 4 rows arranged in the gas flow G direction are provided in parallel at predetermined intervals.
  • a discharge electrode 5 is disposed between each row of dust collection electrodes 4. In FIG. 1, the position where the discharge electrode 5 is disposed is indicated by a broken line.
  • the dust collection electrode 4 is grounded.
  • the discharge electrode 5 is connected to a power supply having a negative polarity (not shown).
  • the power supply connected to the discharge electrode 5 may have positive polarity.
  • the discharge electrode 5 is provided with a plurality of protruding portions (discharge portions) 5 a in the form of spikes.
  • the protruding portion 5 a is provided so as to protrude toward the dust collecting electrode 4 with its tip end. Corona discharge is generated in the protrusion 5a, and ion wind is generated from the tip of the protrusion 5a toward the dust collection electrode 4 side.
  • FIG. 1 The front view which looked at FIG. 1 from the gas flow G direction is shown by FIG.
  • the protrusions 5a are provided so that the directions of the protrusions are different (directions different in the left and right directions in the figure). Then, the protrusions 5a corresponding to the same height sandwich the dust collection electrode 4 and project in the same direction.
  • the protrusions 5a By arranging the protrusions 5a in this manner, the ion wind directed from the protrusions 5a toward the dust collection electrode 4 is directed in substantially the same direction in the height direction. This makes it possible to avoid ion wind interference.
  • the direction of the ion wind may be aligned by directing all the protrusions 5a in the same direction (right direction in the same drawing).
  • FIG. 5 is a cross-sectional view shown by cutting at the position of the protrusion 5 a at a certain height position in the configuration shown in FIG. 2. Therefore, as shown in FIG. 2 in plan view, the protrusions 5a do not appear on both sides, and only the protrusions 5a facing only one side are shown.
  • Reference symbol D shown in FIG. 5 is a distance in the orthogonal direction (vertical direction in FIG. 5) between the dust collection electrode 4 and the protrusion 5a, and is, for example, 125 mm to 250 mm.
  • the opening ratio ⁇ when the dust collection electrode 4 is viewed in front from the protrusion 5 a side is represented as follows, considering that the lines of electric force reach the depth of the dust collection electrode 4 as described above.
  • 1 ⁇ ((d ⁇ 3.14 ⁇ 2) ⁇ Pc) ⁇ 100 [%]
  • d is the equivalent diameter of the dust collection electrode 4.
  • equivalent diameter is meant the diameter of a circle (having the same area) equivalent to the cross section of a given shape. Therefore, in the case where the cross section of the dust collection electrode 4 is circular as in the present embodiment, this corresponds to the diameter thereof.
  • the aperture ratio ⁇ is set to 10% or more and 70% or less. The ground will be described later with reference to FIG.
  • the equivalent diameter d of the dust collection electrode 4 is 30 mm or more and 80 mm or less.
  • the reason why the equivalent diameter d of the cross section of the dust collection electrode 4 is 30 mm or more is as follows.
  • the equivalent diameter d is reduced, the concentration of the electric field is increased and the dust collection property is enhanced.
  • the equivalent diameter d becomes too small, as shown in FIG. 7, the peak value of the electric field strength becomes large and the spark electric field strength if the current density (for example, 0.3 mA / m 2 ) necessary for dust collection is maintained. Spark discharge occurs over 10kV / cm of Therefore, the lower limit of the equivalent diameter d is 30 mm.
  • the equivalent diameter d of the cross section of the dust collection electrode 4 is 80 mm or less is as follows.
  • the equivalent diameter d becomes too large, the lifting of the electric field strength in the vicinity of the dust collection electrode 4 (described later with reference to FIG. 9) is almost eliminated, and the average electric field strength (2 kV / cm) of the flat plate electrode without holes become.
  • the upper limit of the equivalent diameter d is 80 mm.
  • the average electric field strength when the equivalent diameter d is 30 mm calculated under the same conditions as described above is about 5.7 kV / cm.
  • the average electric field strength is the electric field strength averaged over the surface area of the dust collection electrode 4. This average electric field strength is different from the peak electric field strength on the vertical axis of FIG.
  • the peak electric field strength is the electric field strength at the position of the highest electric field strength on the surface of the dust collection electrode 4.
  • the horizontal axis indicates the position, and it is assumed that the protrusion 5a is located at the position corresponding to the y axis.
  • the vertical axis is the electric field strength.
  • the electric field strength is highest at the position of the protrusion 5 a and, after having a local minimum value with the dust collection electrode 4, increases toward the dust collection electrode 4 again.
  • the region B where the rate of increase (inclination) of the electric field strength is large. This is because the electric field strength in the vicinity of the dust collection electrode 4 becomes high due to the space charge of dust and negative ions.
  • the increase of the electric field strength in the region B is referred to as "lift of the electric field strength".
  • the Coulomb force is dominant, and dust collection in the dust collection electrode 4 is effectively performed.
  • the region A closer to the protrusion 5 a than the region B is considered as the dominant region of the ion wind.
  • the dust P in the gas is guided to the dust collection electrode 4 mainly along with the ion wind while receiving Coulomb force.
  • FIG. 10 shows, as a reference example, the electric field strength in the case of using a flat plate electrode 7 without holes as a conventional collection electrode as a dust collection electrode.
  • the absolute value of the electric field intensity in the vicinity of the flat plate electrode 7 is smaller than that of the dust collection electrode 4 in the form of a circular pipe shown in FIG. Therefore, it is understood that the dust collection performance is inferior to that of the dust collection electrode 4 which is a circular pipe.
  • FIG. 11 shows the dust collection area ratio to the opening ratio ⁇ .
  • the dust collection area ratio indicates the dust collection area when the same dust collection performance is exhibited when the dust collection performance when the opening ratio is 0% (when there is no gap) is 1. Therefore, the smaller the dust collection area ratio, the higher the collection efficiency.
  • the dust collection area ratio is 0.8 or less when the opening ratio ⁇ is 10% or more and 70% or less. Therefore, the aperture ratio ⁇ is preferably 10% to 70% (application range).
  • the operation of the electrostatic precipitator 1 of the present embodiment will be described.
  • the electrostatic precipitator 1 by applying a negative voltage to the discharge electrode 5 from the power supply, corona discharge occurs at the tip of the protrusion 5a.
  • the dust contained in the gas stream G is charged by corona discharge.
  • charged dust is attracted to the grounded collection electrode 4 by the Coulomb force, and is collected on the collection electrode 4, but in practice The effect of the ion wind is greatly acting.
  • the dust collection electrode 4 in the form of a circular pipe at a predetermined interval, a part of the ion wind flowing from the projection 5 a toward the collection electrode 4 is dropped to the back side of the collection electrode 4 Allow As a result, the flow of ion wind reversed and separated at the dust collection electrode 4 can be suppressed, so that the collection efficiency is improved.
  • a part of the ion wind flowing toward the dust collection electrode 4 including dust passes through between the dust collection electrodes 4.
  • the ion wind is directed in one direction and does not interfere with each other.
  • the dust collected by the dust collection electrode 4 is separated and recovered by striking.
  • a method of moving the dust collection electrode and scraping off the dust with a brush, or wet cleaning may be employed.
  • the following effects are achieved.
  • a part of the ion wind flowing from the protrusion 5 a toward the collection electrode 4 is allowed to escape to the back side of the collection electrode 4 Do.
  • the flow which ion wind reverses and separates by the dust collection pole 4 can be suppressed.
  • the equivalent diameter d of the cross section of the dust collection electrode 4 was 30 mm or more and 80 mm or less. Thereby, the dust collection performance of the dust collection electrode 4 can be improved.
  • the aperture ratio ⁇ is set to 10% or more and 70% or less. Thereby, an effective dust collection area can be ensured and dust collection performance can be improved.
  • the ion wind generated from the projections 5a installed at the same height is directed in one direction so as not to interfere with the ion wind generated from the projections 5a set at other heights (FIG. 3). reference). Thereby, it can suppress that dust collection is inhibited by ion wind.
  • the direction of the gas flow G is orthogonal to the longitudinal direction of the dust collection electrode 4, but as shown in FIG. 12, the direction of the gas flow G may be the longitudinal direction of the dust collection electrode 4 good.
  • the pitch Pc of the dust collection electrode 4 and the pitch Pd of the protrusion 5a are described to be equal, but as shown in FIG. 13, the pitch Pc of the dust collection electrode 4 is greater than the pitch Pd of the protrusion 5a It may be small. In this case, it is preferable to arrange the dust collection electrodes 4 so that the electric lines of force are equally distributed as much as possible.
  • the dust collection electrode 4 has been described as a circular pipe, but the cross sectional shape of the dust collection electrode 4 may be an oval, an oval, or a polygon other than a circle. Also, the dust collection electrode 4 may be a solid instead of a hollow such as a pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrostatic Separation (AREA)

Abstract

イオン風における集塵効果を低減する作用を抑制し、集塵効率を高めることのできる電気集塵装置を提供することを目的とする。円形パイプとされ、その長手方向に対して直交する直交方向に所定の間隔をあけて配置された複数の集塵極(4)と、集塵極(4)側に突出し、直交方向と平行にオフセットされて配置された複数の突起部(5a)とを備えている。集塵極(4)の横断面の等価直径は、30mm以上80mm以下とされている。また、所定の間隔をあけて配置された集塵極(4)の開口率が、10%以上70%以下とされている。

Description

電気集塵装置
 本開示は、電気集塵装置に関するものである。
 従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列された鋭利な形状を有する放電極とを備えたものが知られている。
 電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極に安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。従来の集じん理論では、帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると説明されている。
 ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。
 特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ダストを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、ダストを主として集じんフィルタ層に捕集させることを目的としている。
特許第5761461号公報 特許第5705461号公報 特許第4823691号公報
 電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
  η=1-exp(-w×f)・・・(1)
 上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの式(上記式(1))では、ダストが放電極から電界中を移動するとされおり、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度は、常に放電極と集塵極との間の集じん空間内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。
 イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。
 放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。
 乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。
 しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。
 なお、特許文献3には、イオン風の効果も考慮した電気集塵装置を記載している。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない領域で集塵することを目的としていて、構造も複雑であること、及び、乾式ではフィルタ層に付着したダストの剥離回収が困難であった。
 本開示は、このような事情に鑑みてなされたものであって、集塵効果を低減するイオン風の離反作用を抑制し、集塵効率を高めることのできる電気集塵装置を提供することを目的とする。
 本開示の一態様に係る電気集塵装置は、柱状とされ、その長手方向に対して直交する直交方向に所定の間隔をあけて配置された複数の集塵極と、前記集塵極側に突出し、前記直交方向と平行に並んで配置された複数の放電部と、を備え、前記集塵極の横断面の等価直径は、30mm以上80mm以下とされている。
 柱状の集塵極を所定の間隔をあけて配置することで、放電部から集塵極へ向けて流れるイオン風の一部が集塵極の裏側へ抜けることを許容する。これにより、イオン風が集塵極で反転されて離反する流れを抑制できる。
 集塵極の横断面の等価直径を30mm以上とした。等価直径を小さくすると電界集中が大きくなり集塵性は高まる。しかし、等価直径が小さくなりすぎると、集塵に必要な電流を確保したままでは電界強度のピーク値が大きくなり火花放電が生じる。このため、等価直径としての下限は30mmである。
 集塵極の横断面の等価直径を80mm以下とした。等価直径が大きくなりすぎると、集塵極近傍における電界強度の持ち上がりが殆どなくなり、平板電極の平均電界強度程度になってしまう。また、等価直径が大きいとガス流れに対して渦を発生させてしまう。このため、等価直径としての上限は80mmである。
 等価直径とは、所定形状の横断面と等価な円形の直径を意味する。したがって、横断面が円形の場合は、その直径に相当する。
 集塵極としては、例えば円形断面とされたパイプ形状の部材が挙げられる。ただし、横断面形状としては、円形以外には、長円形、楕円形、多角形などが用いられる。また、集塵極としては中空だけでなく中実としても良い。
 電気集塵装置を流れるガスの流れ方向は、集塵極が並べられた直交方向でも良いし、集塵極の長手方向でも良い。
 集塵極は、槌打によるダストの剥離回収や、集塵極を移動させてブラシでダストを掻き落とす方式や、湿式洗浄も可能である。
 さらに、本開示の一態様に係る電気集塵装置は、所定の間隔をあけて配置された前記集塵極の開口率が、10%以上70%以下とされている。
 開口率が10%未満となるとイオン風の離反抑制効果が低くなる。開口率が70%を超えると有効な集塵面積が少なくなり集塵性を低下させる。
 開口率αは、等価直径をd、集塵極の中心間ピッチをPcとすると、以下のように表される。
   α=1-((d×3.14÷2)÷Pc)×100 [%]
 さらに、本開示の一態様に係る電気集塵装置は、一方と他方の前記放電部が、前記直交方向に並べられた前記集塵極の両側にそれぞれ配置され、前記一方の前記放電部から前記集塵極に向かうイオン風が、前記他方の放電部から前記集塵極に向かうイオン風と対向しないように配置されている。
 一方と他方の放電部が、直交方向に並べられた集塵極の両側にそれぞれ配置されている場合に、一方の放電部から集塵極に向かうイオン風が、他方の放電部から集塵極に向かうイオン風と対向しないように配置するようにした。これにより、イオン風が干渉して集塵を阻害することを抑制することができる。
 所定間隔をあけて配置した柱状の集塵極を用いることとしたので、イオン風が集塵極から離反するのを抑制して集塵効率を高めることができる。
本開示の一実施形態に係る電気集塵装置を示した斜視図である。 図1の電気集塵装置を上方から見た平面図である。 図1の電気集塵装置をガス流れ方向から見た正面図である。 図3の変形例を示した正面図である。 集塵極と突起部との位置関係を示した横断面図である。 突起部と集塵極との間の電気力線を示した横断面図である。 集塵極の等価直径の下限を30mmとした根拠を示すグラフである。 集塵極の等価直径の上限を80mmとした根拠を示すグラフである。 集塵極の電界強度の持ち上がりを示したグラフである。 平板電極の電界強度の持ち上がりを示したグラフである。 集塵面積比を開口率に対して示したグラフである。 図1の変形例を示した斜視図である。 図5の変形例を示した横断面図である。
 以下に、本開示に係る電気集塵装置の一実施形態について、図面を参照して説明する。
 電気集塵装置1は、例えば石炭等を燃料とする火力発電プラントに用いられ、ボイラから導かれた燃焼排ガス中のダスト(粒子状物質)を回収する。
 電気集塵装置1は、例えば金属製等の導電性とされた複数の集塵極4を備えている。集塵極4は、円形の横断面を有する中空の柱状とされた円形パイプとされており、長手方向に直交する直交方向(ガス流れG方向)に所定の間隔をあけて配列されている。ガス流れG方向に配列された集塵極4列は、所定間隔をあけて平行に複数列設けられている。集塵極4の各列の間に、放電極5が配置されている。図1では、放電極5が配置される位置が破線で示されている。
 集塵極4は接地されている。放電極5は、図示しない負の極性を有する電源に接続されている。あるいは、放電極5に接続する電源は正の極性を有していても良い。
 図2に示すように、放電極5には、トゲ状とされた複数の突起部(放電部)5aが設けられている。突起部5aは、集塵極4側に先端を向けて突出するように設けられている。突起部5aにおいてコロナ放電が発生し、突起部5aの先端から集塵極4側に向けてイオン風が発生する。
 図3には、図1をガス流れG方向から見た正面図が示されている。同図に示されているように、突起部5aは、高さ方向において、突起の向きが互い違い(同図において左右の方向に異なる向き)になるように設けられている。そして、集塵極4を挟んで、同じ高さに対応する突起部5a同士は、同じ方向に突起している。このような突起部5aの配置とすることによって、突起部5aから集塵極4側に向かうイオン風が高さ方向において略同じ方向を向くようにする。これにより、イオン風の干渉を避けることができるようになっている。
 なお、図4に示すように、すべての突起部5aを同一方向(同図では右方向)に向くようにして、イオン風の方向を揃えるようにしても良い。
 図5には、集塵極4と突起部5aとの位置関係が示されている。図5は、図2に示した構成において、ある高さ位置の突起部5aの位置で切断して示した横断面図となっている。したがって、平面視した図2のように両側に突起部5aが現れておらず、一方のみに向いた突起部5aのみが示されている。図5に示すように、集塵極4の中心間ピッチPcと突起部5aの中心間ピッチPdとを等しくすることが好ましい。そして、隣り合う集塵極4間に対向するように突起部5aを千鳥状に配置することが好ましい。このように配置することで、図6に示すように、電気力線が各集塵極4に均等に分配され、かつ、集塵極4の円形とされた横断面の突起部5aから見て奥行き側まで電気力線を到達させることができる。なお、図5に示した符号Dは、集塵極4と突起部5aとの直交方向(同図において上下方向)における距離であり、例えば125mm~250mmとされている。
 このように集塵極4の奥行きまで電気力線が到達することを考慮して、突起部5a側から集塵極4を正面視したときの開口率αは以下のように表される。
   α=1-((d×3.14÷2)÷Pc)×100 [%]
 ここで、dは集塵極4の等価直径である。等価直径とは、所定形状の横断面と等価な(同一面積を有する)円形の直径を意味する。したがって、本実施形態のように集塵極4の横断面が円形の場合は、その直径に相当する。
 開口率αは、10%以上70%以下とされている。その根拠については、後に図11を用いて説明する。
 集塵極4の等価直径dは、30mm以上80mm以下とされている。
 集塵極4の横断面の等価直径dを30mm以上とした理由は以下の通りである。等価直径dを小さくすると電界集中が大きくなり集塵性は高まる。しかし、等価直径dが小さくなりすぎると、図7に示すように、集塵に必要な電流密度(例えば0.3mA/m)を確保したままでは電界強度のピーク値が大きくなり火花電界強度の10kV/cmを超えて火花放電が生じる。このため、等価直径dとしての下限は30mmである。
 集塵極4の横断面の等価直径dを80mm以下とした理由は以下の通りである。等価直径dが大きくなりすぎると、集塵極4の近傍における電界強度の持ち上がり(後に図9を用いて説明する。)が殆どなくなり、穴のない平板電極の平均電界強度(2kV/cm)程度になってしまう。また、等価直径dが大きいとガス流れに対して影響を及ぼし渦を発生させてしまう。このため、等価直径dとしての上限は80mmである。例えば、上記と同じ条件で算出される等価直径dが30mmのときの平均電界強度は約5.7kV/cmである。
 なお、図8の縦軸は平均電界強度とされており、集塵極4の表面積で平均化した電界強度である。この平均電界強度は、図7の縦軸のピーク電界強度とは異なる。ピーク電界強度は、集塵極4の表面のうち最も電界強度が高い位置における電界強度である。
 次に、図9を用いて、集塵極4の近傍の電界強度の持ち上がりについて説明する。同図に示すように、横軸が位置を示しており、y軸に相当する位置に突起部5aが位置しているものとする。縦軸は電界強度である。電界強度は、突起部5aの位置で最も高くなり、集塵極4との間で極小値をとった後に、再び集塵極4に向かいながら増大する。集塵極4の近傍では、電界強度の増加率(傾き)が大きい領域Bが存在する。これは、集塵極4の近傍はダストやマイナスイオンが有する空間電荷の影響で電界強度が高くなるからである。この領域Bにおける電界強度の増大を“電界強度の持ち上がり”という。領域Bではクーロン力が支配的となる領域となり、集塵極4におけるダストPの集塵が効果的に行われる。
 領域Bよりも突起部5a側の領域Aは、イオン風の支配領域とされる。領域Aでは、ガス中のダストPは、クーロン力も受けつつ、主としてイオン風に伴って集塵極4へと導かれる。
 図10には、参考例として、集塵極として従来のような穴なしの平板電極7を用いた場合の電界強度が示されている。同図から分かるように、平板電極7近傍における電界強度の絶対値は、図9に示した円形パイプとされた集塵極4よりも小さく、電界強度の持ち上がりも小さい。したがって、円形パイプとされた集塵極4よりも集塵性能が劣ることが分かる。
 図11には、開口率αに対する集塵面積比が示されている。集塵面積比は、開口率0%(隙間がない場合)のときの集塵性能を1とした場合に、同じ集塵性能を発揮する場合の集塵面積を示すものである。したがって、集塵面積比は、小さいほど捕集効率が高いことを示す。
 図11に示されているように、開口率αが10%以上70%以下の場合に集塵面積比が0.8以下となる。したがって、開口率αは10%以上70%以下(適用範囲)が好ましい。
 次に、本実施形態の電気集塵装置1の動作を説明する。
 電気集塵装置1では、放電極5に電源から負電圧を印加することで、突起部5aの先端でコロナ放電が発生する。ガス流れGに含まれるダストは、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電されたダストは、クーロン力により接地された集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
 コロナ放電が発生すると、突起部5a近くでマイナスイオンが発生し、そのマイナスイオンが電界によって集塵極4に向けて移動し、イオン風が生じる。そのためクーロン力がダストに作用すると同時に、集塵極4に向かって流れるイオン風が、ガス流れGに含まれるダストを集塵極4の近傍まで移動させるように作用する。そして、集塵極4の近傍の領域B(図9参照)では、電界強度の持ち上がりが大きいので効果的にダストを集塵する。また、円形パイプとされた集塵極4を所定の間隔をあけて配置することで、突起部5aから集塵極4へ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できるため、捕集効率が向上する。
 ダストを含んで集塵極4に向かって流れるイオン風の一部は、集塵極4の間を通り抜ける。図3及び図4に示したように、同一高さにおける突起部5aの全てが同一方向に向けられているので、イオン風は一方向に向けられ、互いに干渉することがない。
 集塵極4に捕集されたダストは、槌打によって剥離回収される。あるいは、集塵極を移動させてブラシでダストを掻き落とす方式や、湿式洗浄を採用しても良い。
 本実施形態によれば、以下の作用効果を奏する。
 円形パイプとされた集塵極4を所定の間隔をあけて配置することで、突起部5aから集塵極4へ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できる。
 集塵極4の横断面の等価直径dを30mm以上80mm以下とした。これにより、集塵極4の集塵性能を向上させることができる。
 開口率αを10%以上70%以下とした。これにより、有効な集塵面積を確保して集塵性能を向上させることができる。
 同一の高さに設置された突起部5aから発生するイオン風が一方向を向くようにして、他の高さに設定された突起部5aから発生するイオン風と干渉しないようにした(図3参照)。これにより、イオン風によって集塵が阻害されることを抑制することができる。
 なお、上述した実施形態は、以下のように変形することができる。
 図1では、ガス流れGの方向が、集塵極4の長手方向に直交するようになっていたが、図12に示すように、ガス流れGの方向を集塵極4の長手方向としても良い。
 また、図5では、集塵極4のピッチPcと突起部5aのピッチPdを同等として説明したが、図13に示すように、集塵極4のピッチPcを突起部5aのピッチPdよりも小さくしても良い。この場合には、各集塵極4に電気力線が可及的に均等に分配されるように整列させて配置することが好ましい。
 また、本実施形態では、集塵極4として円形パイプとして説明したが、集塵極4の横断面形状としては、円形以外に、長円形、楕円形、多角形などを用いても良い。また、集塵極4としてはパイプのような中空に代えて中実としても良い。
1 電気集塵装置
4 集塵極
5 放電極
5a 突起部(放電部)
7 平板電極
α 開口率
d 等価直径

Claims (3)

  1.  柱状とされ、その長手方向に対して直交する直交方向に所定の間隔をあけて配置された複数の集塵極と、
     前記集塵極側に突出し、前記直交方向と平行に並んで配置された複数の放電部と、
    を備え、
     前記集塵極の横断面の等価直径は、30mm以上80mm以下とされている電気集塵装置。
  2.  所定の間隔をあけて配置された前記集塵極の開口率が、10%以上70%以下とされている請求項1に記載の電気集塵装置。
  3.  一方と他方の前記放電部が、前記直交方向に並べられた前記集塵極の両側にそれぞれ配置され、
     前記一方の前記放電部から前記集塵極に向かうイオン風が、前記他方の放電部から前記集塵極に向かうイオン風と対向しないように配置されている請求項1又は2に記載の電気集塵装置。
PCT/JP2018/048401 2018-01-15 2018-12-28 電気集塵装置 WO2019138922A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201880086536.6A CN111655378A (zh) 2018-01-15 2018-12-28 电集尘装置
EP18899145.9A EP3725412A4 (en) 2018-01-15 2018-12-28 ELECTROSTATIC SEPARATOR
RU2020122679A RU2020122679A (ru) 2018-01-15 2018-12-28 Электростатический осадитель
KR1020207020133A KR102451222B1 (ko) 2018-01-15 2018-12-28 전기 집진 장치
BR112020014230-1A BR112020014230B1 (pt) 2018-01-15 2018-12-28 Precipitador eletrostático
MX2020007386A MX2020007386A (es) 2018-01-15 2018-12-28 Precipitador electrostatico.
US16/961,772 US11484890B2 (en) 2018-01-15 2018-12-28 Electrostatic precipitator
PH12020500599A PH12020500599A1 (en) 2018-01-15 2020-07-09 Electrostatic precipitator
ZA2020/04322A ZA202004322B (en) 2018-01-15 2020-07-14 Electrostatic precipitator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004364 2018-01-15
JP2018004364A JP7109194B2 (ja) 2018-01-15 2018-01-15 電気集塵装置

Publications (1)

Publication Number Publication Date
WO2019138922A1 true WO2019138922A1 (ja) 2019-07-18

Family

ID=67218668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048401 WO2019138922A1 (ja) 2018-01-15 2018-12-28 電気集塵装置

Country Status (11)

Country Link
US (1) US11484890B2 (ja)
EP (1) EP3725412A4 (ja)
JP (1) JP7109194B2 (ja)
KR (1) KR102451222B1 (ja)
CN (1) CN111655378A (ja)
MX (1) MX2020007386A (ja)
PH (1) PH12020500599A1 (ja)
RU (1) RU2020122679A (ja)
TW (1) TWI701079B (ja)
WO (1) WO2019138922A1 (ja)
ZA (1) ZA202004322B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358216B2 (ja) * 2019-11-29 2023-10-10 三菱重工パワー環境ソリューション株式会社 電気集塵装置
KR102187115B1 (ko) * 2020-05-18 2020-12-04 주식회사 케네스 양방향 집진이 가능한 전기집진장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823691B1 (ja) 1968-06-20 1973-07-16
JPS575461B2 (ja) 1977-05-31 1982-01-30
JPS5761461B2 (ja) 1975-03-14 1982-12-24 Sanyo Electric Co
JPS627456A (ja) * 1985-07-04 1987-01-14 Takahide Ono 電気集塵装置
JP2011161329A (ja) * 2010-02-05 2011-08-25 Nippon Steel Corp 焼結機排ガスの処理装置
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1773835A (en) 1926-06-12 1930-08-26 Research Corp Electrical-precipitator construction
CH215135A (de) 1940-10-09 1941-06-15 Ventilator A G Elektrofilter.
JPS4221440B1 (ja) * 1964-02-08 1967-10-23
US4056372A (en) * 1971-12-29 1977-11-01 Nafco Giken, Ltd. Electrostatic precipitator
JPS4989962A (ja) * 1972-12-30 1974-08-28
JPS524790B2 (ja) * 1974-05-08 1977-02-07
JPS5235376A (en) * 1975-09-13 1977-03-17 Keiichi Hara Electric dust collector
US4126434A (en) * 1975-09-13 1978-11-21 Hara Keiichi Electrostatic dust precipitators
US4092134A (en) * 1976-06-03 1978-05-30 Nipponkai Heavy Industries Co., Ltd. Electric dust precipitator and scraper
JPS57192731A (en) * 1981-05-20 1982-11-26 Misawa Homes Co Ltd Ventialting system for hot air type floor heater
AU581647B2 (en) 1984-04-02 1989-03-02 Mitsubishi Jukogyo Kabushiki Kaisha Two-stage electrostatic precipitator
JPS61164660A (ja) 1985-01-18 1986-07-25 Mitsubishi Heavy Ind Ltd 湿式電気集塵装置
JP3211032B2 (ja) 1991-08-02 2001-09-25 株式会社エルデック 電気集塵装置
JPH07328475A (ja) * 1994-06-07 1995-12-19 Keiichi Hara 電気集塵装置
JP4077994B2 (ja) 1999-08-02 2008-04-23 日本メッシュ工業株式会社 電気集塵装置
US7122070B1 (en) 2002-06-21 2006-10-17 Kronos Advanced Technologies, Inc. Method of and apparatus for electrostatic fluid acceleration control of a fluid flow
DK1658901T3 (en) 2003-08-29 2017-04-03 Mitsubishi Hitachi Power Systems Env Solutions Ltd DUST COLLECTOR
JP5705461B2 (ja) 2010-05-27 2015-04-22 富士電機株式会社 電気集塵装置
DE102011012011A1 (de) 2011-02-22 2012-08-23 Eisenmann Ag Vorrichtung zum Abscheiden von Overspray
WO2014006736A1 (ja) * 2012-07-06 2014-01-09 三菱重工メカトロシステムズ株式会社 集塵装置
WO2014020800A1 (ja) 2012-07-31 2014-02-06 富士電機株式会社 電気集塵装置
US9808809B2 (en) 2013-02-07 2017-11-07 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Dust collector, electrode selection method for dust collector, and dust collection method
US10071384B2 (en) 2013-02-07 2018-09-11 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Dust collector, dust collection system, and dust collection method
DE102013113334A1 (de) 2013-12-02 2015-06-03 Jochen Deichmann Vorrichtung zum Reinigen von Gasen
JP6837192B2 (ja) 2015-02-27 2021-03-03 パナソニックIpマネジメント株式会社 電気集塵装置
CN204583481U (zh) 2015-04-30 2015-08-26 南京中电节能有限公司 一种能清洁集尘电极的湿式除尘器
JP2017217572A (ja) 2016-06-02 2017-12-14 保雄 寺谷 空気清浄機
JP6862207B2 (ja) 2017-02-10 2021-04-21 三菱パワー環境ソリューション株式会社 電気集塵装置及び湿式電気集塵装置
JP6752736B2 (ja) 2017-02-10 2020-09-09 三菱日立パワーシステムズ環境ソリューション株式会社 電気集塵装置
CN112512695B (zh) * 2018-08-01 2023-08-11 三菱重工动力环保有限公司 电集尘装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823691B1 (ja) 1968-06-20 1973-07-16
JPS5761461B2 (ja) 1975-03-14 1982-12-24 Sanyo Electric Co
JPS575461B2 (ja) 1977-05-31 1982-01-30
JPS627456A (ja) * 1985-07-04 1987-01-14 Takahide Ono 電気集塵装置
JP2011161329A (ja) * 2010-02-05 2011-08-25 Nippon Steel Corp 焼結機排ガスの処理装置
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725412A4

Also Published As

Publication number Publication date
JP7109194B2 (ja) 2022-07-29
PH12020500599A1 (en) 2021-05-17
KR102451222B1 (ko) 2022-10-06
CN111655378A (zh) 2020-09-11
MX2020007386A (es) 2020-10-05
BR112020014230A2 (pt) 2020-12-01
US20210060578A1 (en) 2021-03-04
TWI701079B (zh) 2020-08-11
KR20200094210A (ko) 2020-08-06
RU2020122679A (ru) 2022-02-17
EP3725412A1 (en) 2020-10-21
EP3725412A4 (en) 2021-01-20
ZA202004322B (en) 2021-09-29
JP2019122909A (ja) 2019-07-25
TW201932193A (zh) 2019-08-16
RU2020122679A3 (ja) 2022-02-17
US11484890B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2019138922A1 (ja) 電気集塵装置
CN103298562A (zh) 具有蜂巢状充电部的感应电压电集尘器
CN204866198U (zh) 从废气中收集微粒的设备及其中使用的装置
CN100418637C (zh) 泛比电阻电除尘器及除尘方法
CN113813732B (zh) 超细颗粒物的强化聚并与高效颗粒层过滤装置
CN108067354A (zh) 一种综合式静电除尘器
JP6953605B2 (ja) 電気集塵装置
JP7139120B2 (ja) 電気集塵装置
WO2020026369A1 (ja) 電気集塵装置
JP2018162689A (ja) 凝集装置及びこれを備えた排ガス処理装置
JP7225019B2 (ja) 電気集塵装置
CN102896044A (zh) 静电除尘器
CN206701499U (zh) 静电装置和油烟机
JP7358216B2 (ja) 電気集塵装置
BR112020014230B1 (pt) Precipitador eletrostático
CN109513528A (zh) 一种静电除尘器
TWI742415B (zh) 電集塵裝置
CN214811725U (zh) 利用离子风辅助收尘的电除尘器及极板
CN103920591A (zh) 一种微通道高效湿式电除尘器
CN213792207U (zh) 一种湿式电除尘器限位调节固定装置
EP0144521B1 (en) Electrostatic precipitator apparatus having an improved ion generating means
KR20240078429A (ko) 초미세입자의 합체가 강화된 고효율 입자층 여과장치
KR200178301Y1 (ko) 전기집진기용 방전봉
CN112337650A (zh) 一种湿式电除尘器阴极限位防摆调节装置
JPH02307550A (ja) 乾式電気集塵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899145

Country of ref document: EP

Effective date: 20200714

WWE Wipo information: entry into national phase

Ref document number: 2020122679

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020014230

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020014230

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200712