WO2014020800A1 - 電気集塵装置 - Google Patents

電気集塵装置 Download PDF

Info

Publication number
WO2014020800A1
WO2014020800A1 PCT/JP2013/002644 JP2013002644W WO2014020800A1 WO 2014020800 A1 WO2014020800 A1 WO 2014020800A1 JP 2013002644 W JP2013002644 W JP 2013002644W WO 2014020800 A1 WO2014020800 A1 WO 2014020800A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
plate
particulate matter
gas
Prior art date
Application number
PCT/JP2013/002644
Other languages
English (en)
French (fr)
Inventor
貴誌 乾
一美 川上
将隆 吉田
康史 三塚
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380024136.XA priority Critical patent/CN104271248B/zh
Priority to KR1020147031135A priority patent/KR101574550B1/ko
Priority to EP13825156.6A priority patent/EP2881177B1/en
Priority to JP2014527949A priority patent/JP5761461B2/ja
Publication of WO2014020800A1 publication Critical patent/WO2014020800A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/15Centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles

Definitions

  • the present invention relates to an electrostatic precipitator configured to remove PM from a PM-containing gas such as an exhaust gas of an internal combustion engine that contains particulate matter (PM).
  • a PM-containing gas such as an exhaust gas of an internal combustion engine that contains particulate matter (PM).
  • Exhaust gas discharged from the internal combustion engine contains NOx, SOx, and harmful substances such as PM mainly composed of carbon. It is known that various human health hazards occur when a human breathes PM into the body, and development of a PM removal device that efficiently removes PM is desired. As such a PM removal device, there is a method of installing a filter in the exhaust duct, but there are problems such as the filter being easily clogged and a large pressure loss. On the other hand, the electrostatic precipitator is not clogged and has a small pressure loss. Therefore, the electrostatic precipitator is effective for attaching to the exhaust duct of the internal combustion engine.
  • an electric dust collection type PM removal device for example, as shown in FIG. 14, a discharge electrode 201 in a gas flow containing particulate matter, and a filtration device provided to face the discharge electrode 201. 202, a high-voltage power source 203 that applies a high voltage between the discharge electrode 201 and the filtration device 202, a bleed air blower 204 that adjusts a gas flow passing through the filtration device 202, and a main blower 205 that sucks exhaust gas.
  • a dust removal apparatus is known (see, for example, Patent Document 1).
  • the bleeder 204 is omitted, and instead of this, the gas outlet is divided into two, and the damper 210 for adjusting the pressure loss is provided at each gas outlet. Is also known (see, for example, Patent Document 1).
  • a dust removal apparatus including a high voltage power source 203 that applies a high voltage between 201 and a filtration device 202 and a closed space 208 that is closed in or on the back of the filtration means 202 is known (see, for example, Patent Document 2). .
  • the exhaust amount of gas passing through the filtration device 202 is adjusted by the extraction blower 204, but the filtration device 202 has a size of submicron order.
  • the filtration device 202 has a size of submicron order.
  • the pressure loss due to the filtration device 202 becomes large, and the bleed air blower 204 needs to have a large capacity.
  • the particulate matter 209 is clogged in the filtration device 202 and clogging occurs, making dust collection impossible. Therefore, the filtration device 202 is frequently replaced.
  • the extraction blower can be omitted, but the amount of extraction of the filtration device 202 is adjusted by the pressure loss adjustment damper 210.
  • the pressure loss due to the filtration device 202 becomes large, and the pressure loss adjusting damper 210 is enlarged. Must be closed. In this case, the pressure loss of the main gas flow caused by the pressure loss adjusting damper 210 becomes large, so that the blower 205 must have a large capacity. Further, as shown in FIG.
  • the secondary flow caused by the ion wind generated between the discharge electrode 201 and the counter electrode 207 has a maximum wind speed of about 2 m / s.
  • the filtration device 202 needs to be fine enough to filter the particulate matter having a size of the order of submicron. Since the pressure loss due to the filtration device 202 is large, only the secondary flow by the ion wind is used. It is difficult for the gas to sufficiently pass through the filtration device 202, and the particulate matter 209 is concentrated and collected near the surface of the filtration device 202 as shown in FIG.
  • the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and does not require a large-capacity bleeder and does not clog and re-scatters even under high wind speed conditions. It is an object of the present invention to provide an electrostatic precipitator that is difficult, exhibits high dust collection performance, and has a low possibility of failure.
  • a first aspect of the electrostatic precipitator according to the present invention is a plate electrode having a plurality of through-holes through which particulate matter passes, and is opposed to one surface of the plate electrode.
  • a discharge electrode arranged to generate a discharge that applies a voltage between the plate electrode and the discharge electrode to give a Coulomb force to the particulate matter, and the discharge of the plate electrode
  • a gas flow for allowing a particulate matter-containing gas formed between the plate-like electrode and the discharge electrode to flow, and a collecting region for collecting the particulate matter formed on the opposite side of the surface facing the electrode
  • the collected particulate matter is separated and collected by flowing the collection gas in the direction intersecting the flow direction of the particulate matter-containing gas to the collection region.
  • particulate matter recovery unit And a particulate matter recovery unit. Then, the particulate matter in the particulate matter-containing gas is charged by the discharge and collected in the collection region through the through-hole, and the particulate matter collected in the collection region is separated by the collected gas. to recover.
  • the particulate matter in the particulate matter-containing gas is charged by a discharge such as corona discharge or barrier discharge generated between the discharge electrode and the plate-like electrode, and the plate-like electrode is discharged through the through hole by Coulomb force. It moves in the collection space formed in the surface on the opposite side to an electrode, and makes it collect in the collection space.
  • the collected particulate matter is separated and recovered by the recovered gas flowing in the direction intersecting the flow direction of the particulate matter-containing exhaust gas, so that the particulate matter by the recovered gas is in the flow state of the particulate matter-containing exhaust gas. It is possible to reliably recover the material exfoliation recovery without re-mixing into the particulate matter-containing exhaust gas.
  • the discharge generator applies a DC voltage between the plate electrode and the discharge electrode to generate corona discharge.
  • the PM particles are charged by the corona discharge generated between the plate electrode and the discharge electrode, and the Coulomb force is applied.
  • the 3rd aspect of the electrostatic precipitator which concerns on this invention is a plate-shaped electrode part main body with which the said discharge electrode has a cross-sectional rectangle, and the long side of a cross section opposes the said plate-shaped electrode, and this plate-shaped electrode And a thorn-shaped discharge portion formed on the short side of the cross section of the main body.
  • the discharge part of the discharge electrode is formed by the thorn-like discharge part, it can be formed relatively thick. Therefore, processing and assembly are easy, the manufacturing cost can be suppressed, and the life can be extended.
  • the 4th aspect of the electrostatic precipitator which concerns on this invention WHEREIN:
  • the discharge generator applies an AC voltage between the plate electrode and the discharge electrode to generate a barrier discharge.
  • grains are charged with the barrier discharge generate
  • the 6th aspect of the electrostatic precipitator which concerns on this invention has a plate surface in which the said discharge electrode follows the flow direction of the said particulate matter containing gas by the metal electrode and the dielectric material which covers this metal electrode. It is formed in a plate shape. According to the sixth aspect, since the metal electrode is covered with the dielectric, a barrier discharge plasma column can be generated between the opposing plate-like electrodes, thereby generating silent discharge.
  • the discharge electrode is composed of a heating resistor connected between a pair of terminals, and is attached by applying a voltage between the pair of terminals. It operates as a heater that burns the particulate matter. According to the seventh aspect, the particulate matter adhering to the discharge electrode can be burned and removed.
  • two sets of the plate electrode and the discharge electrode are arranged in parallel so that the plate electrodes face each other, and the plate electrodes facing each other are arranged.
  • the collecting region is formed between them.
  • two sets of the plate electrode and the discharge electrode are combined to form a collecting space between the plate electrodes, so that the width is narrower than when the collecting space is provided individually. Can be configured.
  • the collecting region is parallel to the pair of plate electrodes facing each other and the flow direction of the recovered gas of the pair of plate electrodes. It is surrounded by a rectangular tube electrode body formed by a pair of end plate portions that close both ends. According to the ninth aspect, the collection region is surrounded by the rectangular tube electrode body, and the collection gas is allowed to flow through the collection region without affecting the flow state of the particulate matter-containing gas. Gas can flow through.
  • a tenth form of the electric dust collector according to the present invention is such that a cyclone dust collector is connected to one side of the collection region in the collected gas flow direction, a suction device is connected to the cyclone dust collector, A recovered gas flow is formed by suction force. According to the tenth aspect, since it is formed by sucking the recovered gas, it is possible to reliably prevent re-mixing of the particulate matter into the particulate matter-containing gas.
  • an eleventh form of the electric dust collector according to the present invention is such that a cyclone dust collector is individually connected to both sides of the collection region in the collected gas flow direction, and a suction device is connected to each cyclone dust collector, A two-way recovery gas flow is formed by the suction force of the suction device. According to the eleventh aspect, since the recovery gas is sucked from both sides of the collection region, it is possible to improve the recovery efficiency of the particulate matter.
  • a twelfth aspect of the electrostatic precipitator according to the present invention is a suction hood that sucks the collected gas only in the collecting area between the plurality of collecting areas formed between the counter electrodes and the cyclone dust collector.
  • the recovery gas can be allowed to flow only to the collection region by the suction hood, and the recovery gas is allowed to flow in a direction crossing the particulate matter-containing exhaust gas without affecting the particulate matter-containing exhaust gas. can do.
  • the suction location can be limited, the flow rate of the recovered gas can be suppressed, and the suction device can be downsized.
  • a plate electrode having a plurality of through holes and a discharge electrode are arranged to face each other, a dust collection region is formed on the opposite side of the plate electrode to the discharge electrode, and the plate electrode and the discharge electrode are formed.
  • the PM-containing gas is allowed to flow between the plate electrode and the discharge electrode by applying a voltage between the plate electrode and the discharge electrode to charge the PM.
  • PM is moved in the collection space through the through hole by Coulomb force, and PM is collected in the collection space.
  • the collected PM can be reliably recovered without being re-mixed with the PM-containing gas by the recovered gas flowing in the direction intersecting the flow direction of the PM-containing gas.
  • the PM collected in the collection region can be collected without providing a large capacity extraction fan.
  • FIG. 2 is a cross-sectional view of a separation suction hood taken along line BB in FIG. 1.
  • FIG. 1 It is a schematic diagram which shows schematic structure of an exhaust gas processing system. It is a schematic block diagram which shows other embodiment of this invention. It is sectional drawing of the principal part which shows further another embodiment in this invention. It is a longitudinal cross-sectional view which shows the 2nd Embodiment of this invention. It is sectional drawing on the CC line of FIG.
  • FIG. It is a side view of FIG. It is a figure which shows the discharge electrode which can be applied to 2nd Embodiment, (a) is a whole perspective view, (b) is a perspective view of the state which isolate
  • FIG. 1 is a perspective view showing a part of a housing showing a first embodiment of the present invention.
  • reference numeral 1 denotes, for example, particulate matter (PM) having a particle size of 100 ⁇ m or less, which is mainly contained in the exhaust gas of an internal combustion engine, particularly a marine diesel engine, in particular, suspended particles having a particle size of 10 ⁇ m or less.
  • PM particulate matter
  • It is an electrostatic precipitator that can collect suspended particulate matter (SPM).
  • the electrostatic precipitator 1 has, for example, a cubic housing 2, and a rectangular plate electrode 20 in the housing 2 and a predetermined interval L 1 on one surface of the plate electrode 20 as shown in FIG.
  • a plurality of dust collecting electrodes 40 configured with a pair of opposing discharge electrodes 30 are provided.
  • the plate-like electrode 20 is formed by a punching plate 22 having a plurality of circular through-holes 21 reaching the opposite surface from the surface facing the discharge electrode 30, for example, the plate surface is perpendicular to the vertical direction. It is arranged to be.
  • the discharge electrode 30 has a flat rectangular cross section, for example, a strip electrode body 31 that extends in the horizontal direction facing the plate electrode 20, and a cross section of the strip electrode body 31.
  • a number of barbed electrode portions 32 are formed on the upper and lower end surfaces on the end surface side at predetermined intervals in the horizontal direction.
  • belt-shaped electrode main body 31 opposes the plate-shaped electrode 20, and is arrange
  • a plurality of, for example, three discharge electrodes 30 are arranged in parallel in the vertical direction at a predetermined interval.
  • two sets of dust collecting electrodes 40 are arranged in such a relationship that the plate-like electrodes 20 face each other with a predetermined distance L2.
  • the upper and lower ends of the plate electrode 20 arranged opposite to each other are closed by the end plates 23a and 23b, and the rectangular electrode body 24 is formed in which the left and right ends are opened by the plate electrode 20 and the end plates 23a and 23b. ing.
  • the inside of the rectangular tube electrode body 24 is a PM collection region 25, and a plurality of discharge electrodes 30 are arranged at positions facing the plate-like electrode 20 on the outside of the rectangular tube electrode body 24.
  • the discharge electrode 30 is made common and the discharge electrode 30, the rectangular tube electrode body 24, the discharge electrode 30, and the rectangular tube electrode body 24 are arranged in parallel in this order.
  • the numbers of the discharge electrodes 30 and the rectangular tube electrode bodies 24 are set according to the flow rate of the PM-containing exhaust gas to be collected.
  • a high voltage power source for applying a high voltage of about 103 to 105 volts for example, having a positive electrode connected to the rectangular tube electrode body 24 and a negative electrode connected to the discharge electrode 30 is provided between the rectangular tube electrode body 24 and the discharge electrode 30. 45 is connected, and the positive side of the high-voltage power supply 45 is grounded. For this reason, corona discharge occurs between the rectangular tube electrode body 24 and the barbed electrode portion 32 of the discharge electrode 30, and the gas flow region 33 formed between the rectangular tube electrode body 24 and the discharge electrode 30 flows through the gas flow region 33. The PM of the PM-containing exhaust gas flowing through is charged by corona discharge.
  • a Coulomb force acts on the PM due to the electric field between the rectangular tube electrode body 24 and the discharge electrode 30, and starts to move toward the rectangular tube electrode body 24. Since PM has a mass, it passes through the through hole 21 of the rectangular tube electrode body 24 as it is due to inertial force and is guided to the collection region 25. In this collection region 25, the flow field is very gentle, so that PM is not easily affected by the flow field, and PM is an electric image force caused by a potential difference between its own charge and the plate electrode 20 of the rectangular tube electrode body 24. In response, they are collected by moving and adhering to the inner peripheral surface of the plate electrode 20 constituting the rectangular tube electrode body 24.
  • An exhaust gas inlet 3 and an exhaust gas outlet 4 through which PM-containing exhaust gas flows are formed on the lower surface and the upper surface of the housing 2, and the PM-containing exhaust gas introduced into the housing 2 from the exhaust gas inlet 3 is a rectangular tube.
  • the gas flows between the plate electrode 20 and the discharge electrode 30 of the electrode body 24 in the direction perpendicular to the extending direction of the discharge electrode 30 and is discharged from the exhaust gas discharge port 4.
  • a left end surface of the housing 2 is formed with a plurality of openings 5 facing the inner surface of the rectangular tube electrode body 24, and a PM recovery unit that sucks the recovered gas only from the inner surface side of the rectangular tube electrode body 24 on the right end surface.
  • a separate suction hood 50 is arranged.
  • the separation suction hood 50 has a separation suction passage 52 that communicates with the inner surface of the rectangular tube electrode body 24 and communicates with the suction port 51 at the other end.
  • the casing 2 and the right end surfaces of the rectangular tube electrode body 24 and the separation suction hood 50 are illustrated separately. However, in the configuration of the actual embodiment, as shown in FIG. 4, the right end surface of the housing 2 and the rectangular tube electrode body 24 and the separation suction hood 50 are not separated.
  • the separation suction hood 50 is disposed in contact with the right end surface of the housing 2 and the rectangular tube electrode body 24.
  • the recovery port 61 of the cyclone dust collector 60 communicates with the suction port 51 of the separation suction hood 50.
  • This cyclone dust collector 60 separates the mixed fluid of the suctioned collected PM and the collected gas into a solid gas, and a blower 64 as a suction device is connected to a suction port 63 formed in the upper part of the housing 60a. .
  • the blower 64 sucks gas from the suction port 63 of the cyclone dust collector 60, thereby sucking the mixed fluid of the collected PM and the collected gas from the recovery port 61 to form a solid gas.
  • the separated PM is dropped and collected in the lower PM collection unit 62, and the separated collected gas is passed from the upper suction port 63 to the exhaust gas inlet 3 on the lower surface side of the electrostatic precipitator 1 through the blower 64. Returned.
  • the blower 64 is operated to open the external part from the opening 5 of the housing 2. Air is sucked as a recovered gas, and this recovered gas passes through the collection region 25 in a direction orthogonal to the PM-containing exhaust gas. Therefore, the PM collected in the collection region 25 is peeled off and supplied to the cyclone dust collector 60 through the separation suction hood 50 together with the recovered gas.
  • the exhaust gas introduction port 3 of the housing 2 in the electrostatic precipitator 1 is connected to the PM-containing gas discharge device 70 such as a marine diesel engine via a gas flow portion 71 such as a duct.
  • the exhaust gas discharge port 4 of the housing 2 is connected to a gas discharge part 73 such as a chimney through a gas flow part 72 such as a duct.
  • the PM-containing exhaust gas is output from the PM-containing gas discharge device 70, and this PM-containing exhaust gas is supplied to the exhaust gas inlet 3 in the casing 2 of the electrostatic precipitator 1. be introduced.
  • the tip of the barbed electrode portion 32 of the discharge electrode 30 is directed toward the discharge electrode 30 constituting the rectangular tube electrode body 24. Corona discharge across the gas flow region 33 of the PM-containing gas occurs.
  • PM contained in the PM-containing gas is charged by corona discharge.
  • the Coulomb force acts on the PM due to the electric field between the rectangular tube electrode body 24 and the discharge electrode 30, and the PM starts to move toward the plate electrode 20 constituting the rectangular tube electrode body 24.
  • PM has a mass, it passes through the through-hole 21 of the plate electrode 20 as it is and is guided to the internal collection region 25 by the inertial force.
  • the flow field is very gentle, so that PM is not easily affected by the flow field, and PM is an electric image force caused by a potential difference between its own charge and the plate electrode 20 of the rectangular tube electrode body 24. As a result, they are collected by moving and adhering to the inner peripheral surface of the plate electrode 20.
  • the blower 64 when PM is collected on the inner peripheral surface of the plate-like electrode 20 and the blower 64 is operated every predetermined time, external air is sucked from the opening 5 of the housing 2 as a recovery gas, and this recovery is performed.
  • the gas passes through the collection region 25 in a direction orthogonal to the flow direction of the PM-containing exhaust gas. Therefore, the PM collected in the collection region 25 is peeled off and supplied to the cyclone dust collector 60 through the separation suction hood 50 together with the recovered gas.
  • the flow rate in the through hole 21 of the plate electrode 20 is set by setting the opening ratio of the through hole 21 of the plate electrode 20 to 20 to 40% and the opening ratio of the opening 5 to 90% or more.
  • the suction of the PM-containing exhaust gas by the recovered gas can be minimized. Therefore, even if the flow rate of the recovered gas is increased, the PM-containing exhaust gas is not sucked, and the PM collected on the inner peripheral surface of the plate electrode 20 is efficiently peeled and discharged to the separation suction hood 50. Can do.
  • the recovered gas suction passage (separation suction passage 52) is formed only at a position facing the inner peripheral surface of the rectangular tube electrode body 24. For this reason, since the recovery gas suction passage is not opened in the PM-containing exhaust gas flow path between the rectangular tube electrode bodies 24, it is possible to reliably prevent the PM-containing exhaust gas from being directly sucked. Further, the mixed fluid of the separated PM and the recovered gas that has reached the separation suction hood 50 is introduced into the cyclone dust collector 60 from the recovery port 61, and the mixed gas is solid-gas separated.
  • the separated PM is dropped and collected to the PM collecting unit 62 at the bottom, and the collected gas containing some of the separated PM is sucked into the blower 64 from the suction port 63 and is near the exhaust gas introduction port 3 of the housing 2. Is returned to the gas flow passage 71.
  • PM is collected in the collection region 25 formed on the opposite side of the plate-like electrode with respect to the flow path of the PM-containing exhaust gas.
  • the collected PM is peeled off without causing the collected PM to re-mix into the PM-containing exhaust gas by flowing the recovered gas in the direction intersecting with the flow direction of the PM-containing exhaust gas through the collecting region 25. Can be reliably recovered.
  • the exhaust gas only needs to be passed through the gas flow path between the plate electrode 20 and the discharge electrode 30 constituting the rectangular tube electrode body 24, and there is no need to provide a blower or the like as a bleeding means. Further, since it is not necessary to provide a damper or the like that obstructs the flow of exhaust gas, the pressure loss of the exhaust gas can be reduced. Furthermore, since the diameter of the through-hole 21 formed in the plate-like electrode 20 can be formed to a relatively large diameter regardless of the particle diameter of PM, the pressure loss corresponding to this can be suppressed to be small. Moreover, PM is collected on the inner peripheral surface of the plate electrode 20 of the rectangular tube electrode body 24 constituting the collection region 25. Therefore, it is possible to allow a large amount of PM to be collected according to the surface area of the plate-like electrode 20, and the through-hole 21 is extremely difficult to clog, and reliably prevents a collection failure due to clogging. be able to.
  • the plate-like electrode 20 can use punching metal, and does not require the sheet metal processing to be rounded or bent, and can form the rectangular tube electrode body 24 simply by connecting the upper and lower ends with the end plates 23a and 23b. And the processing cost can be greatly reduced.
  • the discharge electrode 30 and the plate electrode 20 is matched so that the two sets of plate electrodes face each other, and the collecting region 25 is formed between the plate electrodes 20, the discharge electrode 30 and the plate electrode Compared with the case where the collection area is provided for each of the 20 groups, only one collection space is required, so that the width direction interval can be shortened to form a narrow structure.
  • a plurality of strip-shaped electrode bodies 31 of the discharge electrode 30 are extended in the direction intersecting the flow direction of the PM-containing exhaust gas, and a plurality of parallel arrangements are arranged in the flow direction.
  • the discharge electrode 30 does not need to be formed with a thin needle-like electrode portion, and only needs to be formed with a relatively thick thorn-like electrode portion 32, the processing is easy and the life can be extended.
  • the discharge electrode has a rod-shaped portion and a large number of needle-shaped electrode portions formed on the outer periphery thereof, and a cylindrical electrode portion with a large number of through-holes is disposed around the discharge electrode. It is also possible to do.
  • the PM of the PM-containing exhaust gas flowing to the inner peripheral surface side of the cylindrical electrode portion is charged.
  • the PM collected in the collection space is recovered by blowing it with air blow in the same direction as the flow direction of the PM-containing exhaust gas, for example.
  • the dust collecting electrode can be formed with a simple configuration in which the plate electrode 20 and the discharge electrode 30 are juxtaposed. And since the collection
  • the separation suction hood 50 is provided in one opening of the rectangular tube electrode body 24 and the collected gas is sucked from one side of the rectangular tube electrode body 24 .
  • the invention is not limited to the above configuration. That is, as a modification of the first embodiment, as shown in FIG. 6, it extends along the end plates 23a and 23b to the upper and lower ends of the central portion in the axial direction of the rectangular tube electrode body 24 and communicates with the outside air.
  • a suction opening 80 is formed.
  • the cyclone dust collector 60 may be connected to the opening part of the both ends of the square tube electrode body 24 via the separate suction hood 50, respectively, and the blower 64 as a suction device may be connected to these cyclone dust collectors 60.
  • the collected gas suction portions are disposed at both ends of the collection region 25, the collected gas suction effect can be enhanced, and the collected PM can be separated and collected more efficiently.
  • the plate electrode 20 maintains the predetermined interval L2. Any cylindrical structure may be used as long as they face each other.
  • the square tube electrode body 24 was comprised combining 2 sets of dust collection electrodes 40 .
  • only PM collection rate provided only 1 set of dust collection electrodes 40.
  • it may be configured as shown in FIG. That is, the plate electrode 20 and the discharge electrode 30 are opposed to each other at a predetermined interval L1, and the closing plate 81 (housing 2) connecting the end portions of the end plates 23a and 23b to the opposite side of the plate electrode 20 from the discharge electrode 30.
  • the rectangular tube electrode body 24 in which the collecting region 25 is formed may be formed by arranging the side wall of the rectangular tube electrode).
  • the case where the flow direction of the PM-containing exhaust gas and the flow direction of the recovered gas are orthogonal to each other has been described. It suffices if the directions intersect.
  • the case where the PM-containing exhaust gas flows in the vertical direction from the bottom surface to the top surface of the electric dust collector 1 has been described.
  • the PM-containing exhaust gas may be allowed to flow in the horizontal direction with the hood 50 as the bottom side, and the flow direction of the PM-containing exhaust gas can be arbitrarily set.
  • casing 100 which has the electroconductivity of the electrostatic precipitator 1 is formed in the rectangular parallelepiped shape, as shown in FIG.9 and FIG.10. That is, the housing 100 includes a front plate portion 101a and a back plate portion 101b whose longitudinal direction is the left-right direction. Further, the housing 100 has a left side connecting the top plate 101c and the bottom plate 101d connecting the upper and lower ends of the front plate 101a and the back plate 101b and the left and right ends of the front plates 101a and 101b. It has a face plate portion 101e and a right side face plate portion 101f.
  • the front plate portion 101a and the back plate portion 101b for example, six rectangular openings 102a and 102b extending in the front-rear direction are formed at predetermined intervals L3 in the left-right direction, as shown in FIG.
  • the width L4 of the openings 102a and 102b is set to be narrower than the predetermined interval L3.
  • rectangular openings 102c and 102d surrounded by a front plate 101a, a back plate 101b, a left side plate 101e, and a right side plate 101f are formed in the top plate 101c and the bottom plate 101d. Is formed.
  • an exhaust gas flow duct 103a having a square cross section for example, connected to a PM-containing gas discharge device 70 such as a marine diesel engine such as the marine diesel engine described above. It is connected.
  • an exhaust gas flow duct 103b having a rectangular cross section connected to the gas discharge part 73 described above is connected to the opening 102b of the back plate part 101b.
  • the rectangular tube electrode body according to the first embodiment described above is provided in the housing 100 between the positions excluding the openings 102a and 102b of the front plate portion 101a and the back plate portion 101b.
  • Five rectangular tube electrode bodies 110 having the same configuration as 24 are arranged in parallel. Therefore, the rectangular tube electrode body 110 is arranged along the exhaust gas flow direction and at a predetermined interval equal to the width L4 of the openings 102a and 102b in a direction perpendicular to the exhaust gas flow direction.
  • These rectangular tube electrode bodies 110 are formed in a rectangular parallelepiped shape with the top and bottom surfaces open as shown in FIG. Further, the plate-like electrodes 112a and 112b are arranged on the left and right side surfaces of the rectangular tube electrode body 110 such that the distance between the outer surfaces thereof is the above-described predetermined distance L3.
  • Each of these plate-like electrodes 112a and 112b is formed of a punching plate 114 having a plurality of circular through holes 113 formed on the entire surface, for example, like the plate-like electrode 20 in the first embodiment described above. Is arranged extending in the front-rear direction, that is, in the exhaust gas flow direction so that is in the vertical direction.
  • a rectangular tube electrode 115 in which a plate-like electrode 112c is formed only on the surface facing the rectangular tube electrode body 110 is disposed outside the rectangular tube electrode body 110 at both left and right ends with a predetermined distance L4.
  • These rectangular tube electrode bodies 115 are also formed in a rectangular parallelepiped shape with the top and bottom surfaces open like the rectangular tube electrode body 110.
  • a recovery gas intake 116 is formed on each of the upper ends of the rectangular tube electrodes 110 and 115. .
  • Discharge electrodes 120 are arranged individually facing the plate-like electrodes 112a and 112b, 112c and 112a, 112b and 112c, respectively, in the center portions of the gas flow regions 117 in the left-right direction.
  • the discharge electrode 120 is formed in a rectangular plate shape along the exhaust gas flow direction. As shown in FIG. 11, the discharge electrode 120 has a structure of a ceramic heater having a heating resistor 122 meandering on a plane built in a ceramic 121 made of alumina or silicon nitride as a dielectric. In the heating resistor 122, terminal connection pads 123a and 123b are formed at the start and end in the front and rear positions above. Lead terminals 124a and 124b extending to the outside are joined to these terminal connection pads 123a and 123b by soldering or the like. That is, the discharge electrode 120 has a configuration in which the heating resistor 122 is covered with the ceramic 121 as a dielectric.
  • each discharge electrode 120 includes a heat-resistant insulating spacer 125 disposed on the opening 102 c side of the upper surface plate portion 101 c of the housing 2, a lower end of the rectangular tube electrode body 110, and a rectangular tube electrode body 115. , 110 and a heat-resistant insulating spacer 126 disposed between the lower ends of the rectangular tube electrode body 110 and the rectangular tube electrode body 115.
  • the lead terminals 124a and 124b of each discharge electrode 120 are arranged between the high-voltage support insulators 127a and 127b arranged on the left and right end portions of the upper surface plate portion 101c of the housing 2, respectively. Electrically connected in a state of being pressed downward by a pressing spring 129 to high-voltage power supply bars 128a and 128b that are bridged in parallel at predetermined intervals in the direction.
  • a barrier discharge generator 130 as a discharge generator is connected to the high-voltage power supply bars 128a and 128b.
  • the barrier discharge generator 130 is connected between the high-voltage power relay 131 connected between the high-voltage power supply bars 128a and 128b, and a connection point between one end of the high-voltage power relay 131 and the high-voltage power supply bar 128a and the ground.
  • a series circuit of a high voltage AC power source 133 that generates a high voltage AC of, for example, 10 kV.
  • the housing 100 is connected between the high voltage AC power supply 133 and the ground.
  • a heating control unit 135 is connected to the high-voltage power supply bars 128a and 128b.
  • the heating control unit 135 includes a low-voltage AC power source 138 that generates a low-voltage AC of about 54 V, for example, connected to the high-voltage power supply bars 128a and 128b via high-voltage power relays 136 and 137, respectively.
  • a high voltage alternating current is output from the high voltage alternating current power supply 133 and the high voltage power relays 131 and 132 are energized (on state), so that the high voltage alternating current is generated between the discharge electrode 120 and the plate-like electrodes 112a to 112c.
  • a barrier discharge plasma column is generated between the discharge electrode 120 and the plate-like electrodes 112a to 112c.
  • PM particle-containing exhaust gas is passed between the discharge electrode 120 and the plate electrodes 112a to 112c. For this reason, PM contained in the exhaust gas containing PM particles is charged when passing through the barrier discharge plasma column, and the Coulomb force is applied by the electric field generated by the barrier discharge sustaining voltage, toward the plate-like electrodes 112a to 112c serving as ground electrodes. . Note that not all of the PM to which Coulomb force is applied is directed toward the plate electrodes 112a to 112c, but a part of the PM may be directed toward the discharge electrode 120.
  • the PM directed toward the plate electrodes 112a to 112c is collected in the rectangular tube electrode body 110 from the through holes 111 formed in the plate electrodes 112a to 112c.
  • the PM adhering to the discharge electrode 120 periodically releases the energized state of the high voltage power relays 131 and 132 to stop the application of the high voltage alternating current to the discharge electrode 120, and instead replaces the high voltage power relay.
  • the discharge electrode 120 is operated as a ceramic heater. Thereby, the discharge electrode 120 is heated to about 800 ° C. in about 1 to 2 minutes, and PM adhering to the surface is completely burned and removed.
  • a suction hood 140 is connected to an opening 102 c formed in the bottom plate 101 d of the housing 100.
  • This suction hood 140 communicates only with the opening 118 at the bottom of the rectangular tube electrode bodies 110 and 115, and is separated from the gas flow region 117 by a heat-resistant insulating spacer 126.
  • a suction port 141 of the cyclone dust collector 60 communicates with the suction port 141 of the suction hood 140 as in the first embodiment described above.
  • a blower 64 as a suction device is connected to a suction port 63 formed in the upper part of the housing 60a.
  • the blower 64 sucks gas from the suction port 63 of the cyclone dust collector 60, thereby sucking the mixed fluid of the collected PM and the collected gas from the recovery port 61 to form a solid gas.
  • the separated PM falls to the lower PM collection unit 62 and is collected, and the separated collected gas passes through the upper suction port 63 via the blower 64 to the exhaust gas passage connected to the front side of the electrostatic precipitator 1. Returned to the flow duct 103a.
  • the exhaust gas flow duct 103 a connected to the housing 100 in the electrostatic precipitator 1 is connected to a PM-containing gas discharge device 70 such as a marine diesel engine.
  • the connected exhaust gas flow duct 103b is connected to a gas discharge part 73 such as a chimney.
  • the high-voltage AC power supply 133 of the barrier discharge generator 130 of the electrostatic precipitator 1 generates a high-voltage AC of, for example, 10 kV, and the high-voltage power relays 131 and 132 are energized.
  • a high voltage alternating current generated by the voltage alternating current power supply 133 is applied between the discharge electrode 120 and the rectangular tube electrodes 110 and 115 serving as the ground electrodes via the high voltage power supply bars 128a and 128b.
  • a barrier discharge plasma column is generated between the discharge electrode 120 and the plate-like electrodes 112a to 112c of the rectangular tube electrode bodies 110 and 115, thereby generating a Paria discharge.
  • This barrier discharge is a silent discharge in which no spark is generated because the heating resistor 122 whose discharge electrode 120 serves as an electrode is covered with the ceramic 121 serving as a dielectric.
  • the exhaust gas containing PM particles is caused to flow between the discharge electrode 120 and the plate electrodes 112a to 112c.
  • PM contained in the PM particle-containing exhaust gas is charged when passing through the barrier discharge plasma column, and is directed to the plate-like electrodes 112a to 112c serving as the ground electrodes by applying Coulomb force by the electric field generated by the barrier discharge sustaining voltage. Note that not all of the PM to which Coulomb force is applied is directed toward the plate electrodes 112a to 112c, but a part of the PM may be directed toward the discharge electrode 120.
  • PM directed to the plate electrodes 112a to 112c is guided from the through-holes 111 formed in the plate electrodes 112a to 112c to the collecting regions in the rectangular tube electrode bodies 110 and 115, as in the first embodiment. .
  • PM since the flow field is very gentle, PM is not easily affected by the flow field, and PM is caused by the electric charge between itself and the potential difference between the plate electrodes 112a to 112c of the rectangular tube electrode bodies 110 and 115.
  • they are collected by moving and adhering to the inner peripheral surfaces of the plate electrodes 112a to 112c.
  • the blower 64 when the blower 64 is intermittently operated every predetermined time in a state where PM is collected on the inner peripheral surfaces of the plate-like electrodes 112a to 112c, an external portion is provided from the recovered gas inlet 116 of the housing 100. Air is aspirated as the recovered gas. This recovered gas passes through the collection region of the rectangular tube electrode bodies 110 and 115 in a direction orthogonal to the flow direction of the PM-containing exhaust gas. Therefore, the PM collected in the collection region is peeled off and supplied to the cyclone dust collector 60 through the suction hood 140 together with the recovered gas.
  • the aperture ratio of the through-hole 113 of the plate electrodes 112a to 112c is set to 20 to 40%, and the aperture ratio of the recovered gas inlet 116 of the rectangular tube electrode bodies 110 and 115 is set to 90% or more.
  • the flow resistance at the through hole 21 of the plate electrode 20 can be increased to minimize the suction of the PM-containing exhaust gas by the recovered gas. Therefore, even if the flow rate of the recovered gas is increased, the PM-containing exhaust gas is not sucked, and the PM collected on the inner peripheral surfaces of the plate electrodes 112a to 112c is efficiently peeled and discharged to the suction hood 140. be able to.
  • the gas flow region 117 is closed by the heat-resistant insulating spacer 126, and only the bottom surfaces of the rectangular tube electrode bodies 110 and 115 are communicated. For this reason, it is possible to reliably prevent the PM-containing exhaust gas flowing through the gas flow region 117 from being directly sucked by the suction hood 140.
  • the mixed fluid of the separated PM and the recovered gas that has reached the suction hood 140 is introduced into the cyclone dust collector 60 from the suction port 141, and the mixed gas is solid-gas separated.
  • the separated PM falls to the bottom PM collecting section 62 and is collected, and the collected gas containing some of the separated PM is sucked into the blower 64 from the suction port 63 and connected to the casing 100. Returned to the vicinity of the opening 102a of the flow duct 103a.
  • the high voltage power relays 131 and 132 of the discharge generator 130 are returned from the energized state to the non-energized state every predetermined time, the supply of high voltage AC to the high voltage power supply bars 128a and 128b is stopped.
  • the high voltage power relays 136 and 137 of the heating control unit 135 are energized, and the low voltage AC output from the low voltage AC power source 138 is supplied to the high voltage power supply bars 128a and 128b.
  • the low-voltage alternating current supplied to the high-voltage power supply bars 128a and 128b is applied to the terminal connection pads 123a and 123b at both ends of the heating resistor 122 through the lead terminals 124a and 124b of the discharge electrodes 120. Therefore, when the discharge electrode 120 operates as a ceramic heater, the surface temperature is heated to 400 ° C. to 800 ° C. in 1 to 2 minutes.
  • a barrier discharge plasma column is formed between the discharge electrode 120 and the plate-like electrodes 112a to 112c to generate a barrier discharge.
  • the discharge electrode 120 is connected to the electrode.
  • the heating resistor 122 is covered with a ceramic 121 serving as a dielectric. For this reason, the discharge current flows from the heating resistor 122 through the ceramic 121 and becomes silent discharge that does not cause a spark until the ceramic 121 itself breaks down.
  • the heat resistance temperature of the ceramic 121 can withstand 400 to 800 ° C. operated as a heater, electric dust collection without spark can be performed even when the temperature of the PM-containing exhaust gas exceeds 300 ° C.
  • the discharge characteristics are as shown in FIG. In FIG. 13, the spark discharge voltage is represented by a characteristic line L11, the corona discharge start voltage is represented by a characteristic line L12, and the gas density ratio is represented by a characteristic line L13.
  • the spark discharge voltage does not decrease so much when the PM-containing exhaust gas temperature is 150 ° C. or less, but when it exceeds 150 ° C., the spark discharge voltage decreases with respect to the exhaust gas temperature increase.
  • the rate is high.
  • the voltage drop rate when the corona discharge start voltage exceeds 150 ° C. with respect to the voltage drop rate up to 150 ° C. is smaller, and the corona discharge start voltage with an exhaust gas temperature of about 250 ° C. Compared to the corona discharge start voltage at the time, the voltage drops to 2/3 or less.
  • the facing area between the discharge electrode 120 and the plate-like electrodes 112a to 112c can be increased, and the density of the barrier discharge plasma column generated as compared with the ion shower column generated in the case of the corona discharge in the first embodiment.
  • the dust collection efficiency can be improved.
  • the dielectric covering the plate electrode is, for example, a ferroelectric such as barium titanate.
  • the body can also be applied. In short, any dielectric material can be used as long as it has a high heat resistance.
  • the PM-containing exhaust gas and the recovered gas may be allowed to flow in directions intersecting each other.
  • the flow direction of the PM-containing exhaust gas is not limited to the horizontal direction, but can be any direction including the vertical direction.
  • a pair of suction hoods can be arranged to face each other as in FIG. 6 in the first embodiment described above, and a recovery gas intake port can be provided in the intermediate casing 100. .
  • the blower 64 is applied as the suction device.
  • the present invention is not limited to this, and other suction devices such as a vacuum ejector may be applied. it can.
  • the said 1st and 2nd embodiment although the case where PM contained in the exhaust gas discharged
  • an electric collector that does not require a large-capacity bleeder, does not clog, is difficult to rescatter even under high wind speed conditions, exhibits high dust collection performance, and has a low possibility of failure.
  • a dust device can be provided.
  • SYMBOLS 1 Electric dust collector, 2 ... Housing, 3 ... Gas introduction port, 4 ... Gas discharge port, 5 ... Opening part, 20 ... Plate-shaped electrode, 21 ... Through-hole, 22 ... Punching metal, 23a, 23b ... End Plate ... 24 ... Square tube electrode body, 30 ... Discharge electrode, 31 ... Strip electrode body, 32 ... Spike-like electrode part, 33 ... Gas flow area, 40 ... Dust collecting electrode, 50 ... Separation suction hood, 60 ... Cyclone dust collector 62 ... PM recovery unit, 64 ... blower, 100 ... housing, 103a, 103b ... exhaust gas flow duct, 110,115 ...

Landscapes

  • Electrostatic Separation (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 PMを補集する際に、容量の大きな抽気装置を必要とすることなく、目詰まりせずに、高風速条件下でも再飛散しにくく、高い集塵性能を発揮し、故障の可能性が低い電気集塵装置を提供する。PMを通過させる貫通孔を複数形成した板状電極(20)と、該板状電極の一方の面に対向して配置された放電電極(30)と、前記板状電極及び前記放電電極間に電圧を印加して前記粒子状物質にクーロン力を付与する放電を発生させる放電発生部と、前記板状電極の前記放電電極との対向面とは反対側に形成したPMを補集する補集領域と、前記板状電極と前記放電電極との間に形成したPM含有ガスを通流させるガス通流領域(33)と、前記PM含有ガスの通流状態で、前記補集領域に当該PMガスの通流方向と交差する方向に回収気体を通流して補集したPMを剥離回収するPM回収部(50)とを備えている。

Description

電気集塵装置
 本発明は、粒子状物質(PM:Particulate Matter)を含有する例えば内燃機関の排気ガス等のPM含有ガス中からPMを除去するようにした電気集塵装置に関する。
 内燃機関から排出される排気ガスには、NOx、SOxの他、炭素を主成分とするPMなどの有害物質が含まれている。人間が呼吸によりPMを体内に吸い込むと様々な健康被害が発生することが知られており、PMを効率良く除去するPM除去装置の開発が望まれている。
 このようなPM除去装置として、排気ダクト中に、フィルタを設置する方法があるが、フィルタは目詰まりし易く、圧力損失が大きいなどの課題がある。これに対して電気集塵装置は、目詰まりせず、圧力損失が小さいため、内燃機関の排気ダクトに取り付けるには有効である。
 このような電気集塵方式のPM除去装置としては、例えば図14に示すように、粒子状物質を含むガス流れの中に放電電極201と、この放電電極201と対向して設けられたろ過装置202と、放電電極201及びろ過装置202間に高電圧を印加する高圧電源203と、ろ過装置202を通過するガス流を調節する抽気用送風機204と、排気ガスを吸引する主送風機205とを備えた除じん装置が知られている(例えば、特許文献1参照)。同様に、図15に示すように、抽気用送風機204を省略し、これに代えてガス出口を2つに分流させて、各ガス出口に圧損調整用のダンパ210を設けるようにした除じん装置も知られている(例えば、特許文献1参照)。
 また、図16及び図17に示すように、粒子状物質を含むガス流の中に放電電極201と、この放電電極201と対向して設けられた対向電極207を持つろ過装置202と、放電電極201及びろ過装置202間に高電圧を印加する高圧電源203と、ろ過手段202内又はその背面に閉鎖された閉鎖空間208を備えた除じん装置が知られている(例えば、特許文献2参照)。
特開平2-63560号公報 特開平2-184357号公報
 しかしながら、上記特許文献1に記載の図14に示す従来例にあっては、抽気用送風機204によりろ過装置202を通るガスの排気量を調整するが、ろ過装置202はサブミクロンオーダーの大きさである粒子状物質をろ過するためには十分に目が細かいものを使用する必要があるので、ろ過装置202による圧損が大きくなり、抽気用送風機204として、容量が大きなものが必要となる。この場合には、ある程度の時間運転すると、図18に示すように、ろ過装置202に粒子状物質209が詰まって目詰まりが生じて、集塵不可能となるため、ろ過装置202の交換が頻繁に必要となるという未解決の課題がある。逆に、抽気用送風機204の容量が小さい場合には、ろ過装置202を通過する風量が小さいため、図19に示すように、粒子状物質209がろ過装置202の表面付近に集中して補集されることになり、その場合、補集された粒子状物質209が主ガス流に晒されてしまうために、主ガス流の風速が高い条件化では、主ガス流の抗力によってろ過装置202の表面に補集された粒子状物質が引き剥がされて再飛散してしまうという未解決の課題がある。
 同様に、特許文献1に記載されている図15に示す従来例にあっても、抽気用送風機を省略することができるが、圧損調整ダンパ210によりろ過装置202の抽気量を調整するので、ろ過装置202としてはサブミクロンオーダーの大きさである粒子状物質をろ過するためには十分に目が細かいものを使用する必要があるので、ろ過装置202による圧損が大きくなり、圧損調整ダンパ210を大きく閉じた状態にする必要がある。この場合、圧損調整ダンパ210による主ガス流の圧損が大きくなるため、送風機205に容量の大きなものが必要となる。また、図18に示すように、ある程度の時間運転すると、ろ過装置202に目詰まりが生じて、集塵不可能となるという未解決の課題がある。逆に、圧損調整ダンパ210の閉じ量が小さい場合には、送風機205の容量は小さくてよいが、ろ過装置202を通過する風量が小さいために、図19に示すように、ろ過装置202の表面に補集された粒子状物質209が引き剥がされ、再飛散が生じてしまうという未解決の課題がある。また、圧損調整ダンパ210のような可動機構は、高温の排ガス中においては、故障の危険性が非常に高いという未解決の課題もある。
 また、特許文献2に記載された図16に示す従来例にあっては、放電電極201と対向電極207との間に生じるイオン風による二次流れは、最大風速2m/s程度である。ろ過装置202はサブミクロンオーダーの大きさである粒子状物質をろ過するためには十分目が細かいものを使用する必要があり、ろ過装置202による圧損が大きいため、イオン風による二次流れのみで、ろ過装置202をガスが十分に通過することが困難であり、図20に示すように、粒子状物質209はろ過装置202の表面付近に集中して補集される。この場合、補集された粒子状物質が主ガス流に晒されてしまうために、主ガス流の風速が高い条件化では主ガス流の抗力によってろ過装置202の表面に補集された粒子状物質209が引き剥がされ、再飛散が生じてしまうという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、容量の大きな抽気装置を必要とすることなく、目詰まりせずに、高風速条件下でも再飛散しにくく、高い集塵性能を発揮し、故障の可能性が低い電気集塵装置を提供することを目的としている。
 上記目的を達成するために、本発明に係る電気集塵装置の第1の態様は、粒子状物質を通過させる貫通孔を複数形成した板状電極と、該板状電極の一方の面に対向して配置された放電電極と、前記板状電極及び前記放電電極間に電圧を印加して前記粒子状物質にクーロン力を付与する放電を発生させる放電発生部と、前記板状電極の前記放電電極との対向面とは反対側に形成した粒子状物質を補集する補集領域と、前記板状電極と前記放電電極との間に形成した粒子状物質含有ガスを通流させるガス通流領域と、前記粒子状物質含有ガスの通流状態で、前記補集領域に当該粒子状物質含有ガスの通流方向と交差する方向に回収気体を通流して補集した粒子状物質を剥離回収する粒子状物質回収部とを備えている。そして、前記放電によって粒子状物質含有ガス中の粒子状物質を帯電させて前記貫通孔を通じて前記補集領域に補集し、該補集領域に補集された粒子状物質を前記回収気体によって剥離回収する。
 この構成によると、放電電極と板状電極間に発生するコロナ放電、バリア放電等の放電によって、粒子状物質含有ガス中の粒子状物質を荷電させ、クーロン力によって貫通孔を通じて板状電極の放電電極とは反対側の面に形成される補集空間内に移動させて補集空間内に補集させる。補集した粒子状物質は粒子状物質含有排ガスの通流方向とは交差する方向に通流する回収気体によって剥離回収することにより、粒子状物質含有排ガスの通流状態で、回収気体による粒子状物質の剥離回収を粒子状物質含有排ガスに再混入することなく確実に回収することができる。
 また、本発明に係る電気集塵装置の第2の態様は、前記放電発生部が、前記板状電極及び前記放電電極間に直流電圧を印加してコロナ放電を発生させる。
 この第2の態様によると、板状電極及び放電電極間に発生するコロナ放電によって、PM粒子を帯電させて、クーロン力を付与する。
 また、本発明に係る電気集塵装置の第3の態様は、前記放電電極が、断面長方形を有し断面の長辺側が前記板状電極と対向する板状電極部本体と、該板状電極部本体の断面の短辺側に形成されたトゲ状放電部とを備えている。
 この第3の態様によると、放電電極の放電部をトゲ状放電部で構成するので、比較的太く形成することができる。そのため、加工及び組立が容易であり、製造コストも抑えることができ、さらに寿命を長期化することができる。
 また、本発明に係る電気集塵装置の第4の態様は、前記板状電極部本体の延長方向が、前記粒子状物質含有ガスの通流方向と交差している。
 この第4の態様によると、この構成によると、複数の放電電極でトゲ状放電部を位置が重ならないように配置することにより、コロナ放電領域を通流する粒子状物質含有排ガスに対して隈なく形成することができ、粒子状物質除去率を向上させることができる。
 また、本発明に係る電気集塵装置の第5の態様は、前記放電発生部が、前記板状電極及び前記放電電極間に交流電圧を印加してバリア放電を発生させる。
 この第5の態様によると、板状電極及び放電電極間に発生するバリア放電によって、PM粒子を荷電させて、クーロン力を付与する。
 また、本発明に係る電気集塵装置の第6の態様は、前記放電電極が、金属電極と該金属電極を覆う誘電体とで前記粒子状物質含有ガスの通流方向に沿う板面を有する板状に形成されている。
 この第6の態様によると、金属電極が誘電体で覆われているので、対向する板状電極との間でバリア放電プラズマ柱を発生して、無声放電とすることができる。
 また、本発明に係る電気集塵装置の第7の態様は、前記放電電極が、一対の端子間に接続された発熱抵抗体で構成され、当該一対の端子間に電圧を印加することにより付着した粒子状物質を燃焼させるヒータとして作動する。
 この第7の態様によると、放電電極に付着した粒子状物質を燃焼させて除去することができる。
 また、本発明に係る電気集塵装置の第8の態様は、前記板状電極と前記放電電極との組が前記板状電極同士を対面する関係で2組並列配置され、対向する板状電極間に前記補集領域を形成している。
 この第8の態様によると、板状電極及び放電電極の組を2組合わせて、板状電極間に補集空間を形成するので、個別に補集空間を設ける場合に比較して幅狭に構成することができる。
 また、本発明に係る電気集塵装置の第9の形態は、前記補集領域が、対面する前記一対の板状電極と、該一対の板状電極の前記回収気体と通流方向と平行な両端部を閉塞する一対の端板部とで形成される角筒電極体に囲まれている。
 この第9の態様によると、補集領域が角筒電極体で囲まれており、この中に回収気体を通流することにより、粒子状物質含有ガスの通流状態に影響を与えることなく回収気体を通流することができる。
 また、本発明に係る電気集塵装置の第10の形態は、前記補集領域の回収気体通流方向の片側にサイクロン集塵機を接続し、該サイクロン集塵機に吸引装置を接続し、当該吸引装置の吸引力によって回収気体流を形成するようにしている。
 この第10の態様によると、回収気体を吸引することにより形成するので、粒子状物質含有ガスへの粒子状物質の再混入を確実に防止することができる。
 また、本発明に係る電気集塵装置の第11の形態は、前記補集領域の回収気体通流方向の両側に個別にサイクロン集塵機を接続し、該各サイクロン集塵機に吸引装置を接続し、当該吸引装置の吸引力によって2方向の回収気体流を形成するようにしている。
 この第11の態様によると、補集領域の両側から回収気体を吸引するので、粒子状物質の回収効率を向上させることができる。
 また、本発明に係る電気集塵装置の第12の形態は、前記対向電極間に形成される複数の補集領域とサイクロン集塵機との間に当該補集領域のみの回収気体を吸引する吸引フードが配置されている。
 この構成によると、吸引フードによって、補集領域にのみ回収気体を通流させることができ、回収気体を粒子状物質含有排ガスに影響を与えることなく粒子状物質含有排ガスと交差する方向に通流することができる。さらに、吸引場所を限定できるので、回収気体の流量を抑えることができ、吸引装置を小型化することができる。
 本発明によれば、複数の貫通孔を有する板状電極と放電電極とを対向して配置し、板状電極の放電電極とは反対側に集塵領域を形成し、板状電極と放電電極との間にPM含有ガスを通流し、板状電極と放電電極との間に電圧を印加して放電を発生させて、PMを荷電させる。これにより、PMをクーロン力によって貫通孔を通じて補集空間内に移動させて、補集空間内でPMを補集する。補集したPMはPM含有ガスの通流方向と交差する方向に流れる回収気体でPM含有ガスに再混入することなく確実に回収することができる。また、容量の大きな抽出用送風機を設けることなく、補集領域で補集したPMを回収することができる。しかも、PMの回収時に高風速条件下でも再飛散しにくく、高い集塵性能を発揮することができ、故障が発生しにくい電気集塵装置を提供できる。
本発明に係る電気集塵装置の第1の実施形態を示す筐体の一部を切除して示す斜視図である。 図1のA-A線上の断面図である。 本発明に適用し得る放電電極を示す斜視図である。 図1のB-B線上の分離吸引フードの断面図である。 排ガス処理システムの概略構成を示す模式図である。 本発明の他の実施形態を示す概略構成図である。 本発明にさらに他の実施形態を示す要部の断面図である。 本発明の第2の実施形態を示す縦断面図である。 図8のC-C線上の断面図である。 図8の側面図である。 第2の実施形態に適用し得る放電電極を示す図であり、(a)は全体斜視図、(b)は誘電体板を分離した状態の斜視図である。 第2の実施形態を適用した排ガス処理システムの概略構成を示す模式図である。 コロナ放電特性を示す特性線図である。 従来例を示す説明図である。 他の従来例を示す説明図である。 さらに他の従来例を示す説明図である。 図14のろ過装置の詳細構成図である。 ろ過装置における粒子状物質の補集状態を示す模式図である。 ろ過装置における粒子状物質の再飛散状態を示す模式図である。 ろ過装置における粒子状物質の再飛散状態を示す模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明の第1の実施形態を示す筐体の一部を切除して示す斜視図である。
 図中、1は例えば内燃機関特に舶用ディーゼルエンジンの排気ガス中に含まれる炭素を主成分とする粒子径が100μm以下の粒子状物質(PM:Particulate Matter)、特に粒子径が10μm以下の浮遊粒子状物質(SPM:Suspended Particulate Matter)を補集可能な電気集塵装置である。
 この電気集塵装置1は、例えば立方体状の筐体2を有し、この筐体2内に例えば方形の板状電極20とこの板状電極20の一面に図2に示すように所定間隔L1を保って対向する放電電極30との組で構成される集塵電極40を複数組備えている。
 ここで、板状電極20は、放電電極30と対向する面から反対側の面に達する例えば円形の複数の貫通孔21を全面に形成したパンチングプレート22で形成され、例えば板面が垂直方向となるように配置されている。
 また、放電電極30は、図3に示すように、扁平な長方形断面を有し、例えば板状電極20に対向して水平方向に延長する帯状電極本体31と、この帯状電極本体31の断面における端面側となる上下端面にトゲ状電極部32が水平方向に所定間隔を保って多数形成されている。そして、帯状電極本体31の断面における長辺側が板状電極20に対向して平行に配置されている。
 ここで、放電電極30は垂直方向に所定間隔を保って複数例えば3本平行に配置されている。
 そして、集塵電極40は、2組がその板状電極20同士を、所定間隔L2を保って対向させる関係で配置されている。そして、対向配置された板状電極20の上下端部が端板23a及び23bによって閉塞されて板状電極20と端板23a及び23bとで左右端部を開放した角筒電極体24が形成されている。
 したがって、角筒電極体24の内側がPMの補集領域25とされ、角筒電極体24の外側における板状電極20と対向する位置に複数の放電電極30が配置されている。
 このため、隣接する集塵電極40では、放電電極30が共通化されて放電電極30、角筒電極体24、放電電極30、角筒電極体24の順で並列配置されている。これら放電電極30及び角筒電極体24の個数は集塵処理するPM含有排ガスの流量に応じて設定される。
 また、角筒電極体24と放電電極30との間には、角筒電極体24に正極を接続し、放電電極30に負極を接続した例えば103~105ボルト程度の高電圧を印加する高圧電源45が接続され、この高圧電源45の正極側が接地されている。
 このため、角筒電極体24と放電電極30のトゲ状電極部32との間でコロナ放電が発生し、角筒電極体24と放電電極30との間に形成されたガス通流領域33を通流するPM含有排ガスのPMがコロナ放電を浴びて帯電する。
 そして、PMに角筒電極体24と放電電極30との間の電界によりクーロン力が働き、角筒電極体24へ向けて運動を始める。PMは質量を持つために、慣性力によってそのまま角筒電極体24の貫通孔21を通過して補集領域25に導かれる。
 この補集領域25では、流れ場は非常に緩やかなため、PMは流れ場の影響を受けにくく、PMは自分自身の電荷と角筒電極体24の板状電極20間の電位差による電気影像力を受けて、角筒電極体24を構成する板状電極20の内周面に移動付着して補集される。
 そして、筐体2の下面及び上面にはPM含有排ガスを通流させる排ガス導入口3及び排ガス排出口4が形成され、排ガス導入口3から筐体2内に導入されたPM含有排ガスは角筒電極体24の板状電極20と放電電極30との間を放電電極30の延長方向と交差する方向に垂直方向に通流して排ガス排出口4から排出される。
 また、筐体2の例えば左端面に角筒電極体24の内面に対向する複数の開口部5が形成され、右端面に角筒電極体24の内面側からのみ回収気体を吸引するPM回収部としての分離吸引フード50が配置されている。この分離吸引フード50は、図4に示すように、角筒電極体24の内面に連通し、他端の吸引口51に連通する分離吸引通路52を有する。なお、実施例の説明を分かり易くするために、図1では筐体2及び角筒電極体24の右端面と分離吸引フード50とを離隔して描いている。しかし、実際の実施例の構成では、図4に示すとおり、筐体2及び角筒電極体24の右端面と分離吸引フード50とは離隔していない。分離吸引フード50は、筐体2及び角筒電極体24の右端面に接して配置されている。
 そして、分離吸引フード50の吸引口51にサイクロン集塵機60の回収口61が連通されている。このサイクロン集塵機60は、吸引した補集PMと回収気体との混合流体を固気分離するもので、筐体60aの上部に形成された吸引口63に吸引装置としてのブロワ64が接続されている。そして、ブロワ64を作動させることにより、このブロワ64によってサイクロン集塵機60の吸引口63から気体が吸引されることにより、回収口61から補集PMと回収気体との混合流体を吸引して固気分離する。分離されたPMは下方のPM回収部62に落下して回収され、分離された回収気体は、上方の吸引口63からブロワ64を介して電気集塵装置1の下面側の排ガス導入口3に戻される。
 さらに、サイクロン集塵機60が分離吸引フード50を介して角筒電極体24の内側の補集領域25に接続されているので、ブロワ64を作動させることにより、筐体2の開口部5から外部の空気が回収気体として吸引され、この回収気体がPM含有排ガスと直交する方向に補集領域25を通過する。このため、補集領域25に補集されているPMが剥離されて回収気体とともに分離吸引フード50を介してサイクロン集塵機60に供給される。
 次に、上記第1の実施形態の動作を説明する。
 先ず、図5で模式的に示すように、電気集塵装置1における筐体2の排ガス導入口3を舶用ディーゼルエンジン等のPM含有ガス排出装置70にダクト等のガス通流部71を介して接続し、筐体2の排ガス排出口4に同様にダクト等のガス通流部72を介して煙突等のガス排出部73に接続する。
 この状態で、PM含有ガス排出装置70を作動させると、このPM含有ガス排出装置70からPM含有排ガスが出力され、このPM含有排ガスが電気集塵装置1の筐体2における排ガス導入口3に導入される。
 高圧電源45から角筒電極体24と放電電極30との間に高電圧を印加することにより、放電電極30のトゲ状電極部32の先端から角筒電極体24を構成する放電電極30に向けてPM含有ガスのガス通流領域33を横切るコロナ放電が生じる。
 このため、PM含有ガスに含まれるPMはコロナ放電を浴びて帯電する。そして、角筒電極体24と放電電極30との間の電界によりPMにクーロン力が働き、PMが角筒電極体24を構成する板状電極20へ向けて運動を始める。PMは質量を持つために、慣性力によってそのまま板状電極20の貫通孔21を通過して内部の補集領域25に導かれる。
 この補集領域25では、流れ場は非常に緩やかなため、PMは流れ場の影響を受けにくく、PMは自分自身の電荷と角筒電極体24の板状電極20間の電位差による電気影像力を受けて、板状電極20の内周面に移動付着して補集される。
 このように、板状電極20の内周面にPMが補集され、所定時間毎にブロワ64を作動させると、筐体2の開口部5から外部の空気が回収気体として吸引され、この回収気体がPM含有排ガスの通流方向と直交する方向に補集領域25を通過する。このため、補集領域25に補集されているPMが剥離されて回収気体とともに分離吸引フード50を介してサイクロン集塵機60に供給される。ここで、板状電極20の貫通孔21の開口率を20~40%に設定し、開口部5の開口率を90%以上に設定することにより、板状電極20の貫通孔21での流路抵抗を大きくして回収気体によるPM含有排ガスの吸引を最小限にすることができる。このため、回収気体の流速を大きくしてもPM含有排ガスを吸引することがなく、板状電極20の内周面に補集されたPMを効率よく剥離して分離吸引フード50へ排出することができる。
 このとき、分離吸引フード50では、回収気体吸引通路(分離吸引通路52)が角筒電極体24の内周面に対向する位置だけに形成されている。このため、回収気体吸引通路が角筒電極体24間のPM含有排ガス流路には開口していないので、PM含有排ガスを直接吸引することを確実に阻止することができる。
 また、分離吸引フード50に達した剥離されたPMと回収気体との混合流体は回収口61からサイクロン集塵機60内に導入されて混合気体が固気分離される。そして、分離されたPMは底部のPM回収部62へ落下して回収され、分離されたPMを多少含む回収気体は、吸引口63からブロワ64に吸引されて筐体2の排ガス導入口3近傍のガス通流部71へ戻される。
 このように、上記第1の実施形態によれば、PM含有排ガスの流路とは板状電極を挟んで反対側に形成した補集領域25にPMを補集するので、PM含有排ガスの通流状態で、補集領域25にPM含有排ガスの通流方向と交差する方向に回収気体を流すことにより、補集したPMがPM含有排ガスに再混入することなく、補集したPMを剥離して確実に回収することができる。
 この際、単に角筒電極体24を構成する板状電極20と放電電極30との間のガス流路に排気ガスを通流させるだけで良く、抽気手段としての送風機等を設ける必要がない。また、排気ガスの流れを妨げるダンパ等を設ける必要もないので、排気ガスの圧力損失を少なくすることができる。
 さらに、板状電極20に形成した貫通孔21の径をPMの粒子径にかかわらず比較的大きな径に形成することができるので、この分の圧力損失も小さく抑制することができる。しかも、PMが補集領域25を構成する角筒電極体24の板状電極20の内周面に補集される。このため、板状電極20の表面積に応じた多量のPMの補集を許容することができるとともに、貫通孔21は極めて目詰まりしにくく、目詰まりによる補集障害を生じることを確実に防止することができる。
 さらにまた、補集領域25の流れ場が小さいために、一度補集したPMの排ガス流路への再飛散が生じにくい。また、電気集塵装置1内にダンパや送風機等の可動部が存在しないために、故障の可能性が極めて低いという種々の効果を得ることができる。
 しかも、板状電極20はパンチングメタルを利用することができ、丸めたり折り曲げたりする板金加工が不要で上端及び下端を端板23a及び23bで連結するだけで角筒電極体24を形成することができ、加工コストを大幅に低減することができる。
 また、放電電極30及び板状電極20の組を2組板状電極が対向するように合わせて、板状電極20間に補集領域25を形成しているので、放電電極30及び板状電極20の組毎に補集領域を設ける場合に比較して、補集空間が一つで済むことから幅方向の間隔を短縮して幅狭構成とすることができる。
 また、PM含有排ガスの通流方向に対して放電電極30の帯状電極本体31が交差する方向に延長して通流方向に複数並列配置されている。このため、各放電電極30のトゲ状放電部の配置位置をPM含有排ガスの通流方向と直交する方向にずらして配置することが可能となる。これにより、コロナ放電をPM含有排ガスの通量方向と直交する領域で全域に隈なく発生させることができ、PM含有排ガスのPM除去率を向上させることができる。
 また、放電電極30も細い針状電極部を形成する必要がなく比較的太いトゲ状電極部32を形成すればよいので、加工が容易で寿命も長期化することができる。
 因に、集塵電極構造として、放電電極を棒状部とその外周側に多数の針状電極部を形成した構成とし、この放電電極を囲むように多数の貫通孔を形成した円筒電極部を配置することも考えられる。この場合には、放電電極と円筒電極部との間に高電圧を印加してコロナ放電を発生させことにより、円筒電極部の内周面側に通流するPM含有排ガスのPMを帯電させて円筒電極の外側の補集空間に移動させる。この補集空間で補集したPMを例えばPM含有排ガスの通流方向と同じ方向にエアーブローで吹き飛ばして回収する。
 このような構成とする場合には、エアーブローによって補集空間に補集したPMを吹き飛ばすので、吹き飛ばしたPMの多くがエアーブローと対向する吸引口から吸引されることがない。このため、円筒電極の内側を流れるPM含有排ガスに再混入されて大気に放出される可能性があり、補集したPMの回収効率が低下する可能性がある。また、円筒電極等の加工コストが高くなるとともに、大量のPM含有排ガスを処理するには、複数の電気集塵部を組み合わせる必要があり、高い組付精度が要求される。さらに、放電電極に針状電極部を採用する場合にはトゲ状電極部に比較して寿命が短くなるという可能性がある。
 これに対して、上記第1の実施形態では、上述したように、板状電極20と放電電極30とを併置する簡易な構成で、集塵電極を形成することができる。そして、補集領域内に回収気体流をその外側のPM含有排ガスとは交差する方向に吸引によって形成するので、回収気体によって板状電極20の内周面から剥離されたPMがPM含有排ガスに再混入することを確実に防止することができる。
 なお、上記第1の実施形態においては、角筒電極体24の一方の開口部に分離吸引フード50を設けて角筒電極体24の一方側から回収気体を吸引する場合について説明したが、本発明は上記構成に限定されるものではない。すなわち、第1の実施形態の変形例としては、図6に示すように、角筒電極体24の軸方向中央部の上下端部に端板23a及び23bに沿って延長して外気に連通する吸引用開口部80を形成する。そして、角筒電極体24の両端の開口部にはそれぞれ分離吸引フード50を介してサイクロン集塵機60を接続し、これらサイクロン集塵機60に吸引装置としてのブロワ64を接続するようにしてもよい。
 この場合には、補集領域25の両端に回収気体吸引部が配置されるので、回収気体の吸引効果を増強することができ、補集したPMをより効率よく剥離回収することができる。
 また、上記第1の実施形態においては、2枚の板状電極20と端板23a,23bとで角筒電極体24を形成する場合について説明したが、板状電極20が所定間隔L2を保って対向していればよく任意の筒構造とすることができる。
 また、上記第1の実施形態においては、2組の集塵電極40を合わせて角筒電極体24を構成する場合について説明したが、PM除去率が1組の集塵電極40を設けるだけで済む場合には、図7に示すように構成してもよい。すなわち、板状電極20と放電電極30とを所定間隔L1で対向させ、板状電極20の放電電極30とは反対側に端板23a,23bの端部間を結ぶ閉塞板81(筐体2の側壁で兼ねることも可能)を配置することにより、内部に補集領域25を形成した角筒電極体24を構成するようにしても良い。
 さらに、上記第1の実施形態においては、PM含有排ガスの通流方向と回収気体の通流方向とが直交している場合について説明したが、これに限定されるものではなく、両者の通流方向が交差していればよいものである。
 また、上記第1の実施形態においては、PM含有排ガスが電気集塵装置1を底面から上面に向けて垂直方向に通流する場合について説明したが、これに限定されるものではなく、分離吸引フード50を底面側としてPM含有排ガスを水平方向に通流させるようにしてもよく、PM含有排ガスの通流方向は任意に設定することができる。
 次に、本発明の第2の実施形態について図8~図11を伴って説明する。
 この第2の実施形態では、放電電極と板状電極との間に発生させる放電をコロナ放電からバリア放電に変更したものである。
 すなわち、第2の実施形態では、電気集塵装置1の導電性を有する筐体100が、図9及び図10に示すように、直方体状に形成されている。すなわち、筐体100は、長手方向を左右方向とする正面板部101a及び背面板部101bを有する。また、筐体100は、正面板部101a及び背面板部101bの上下端部間を連結する上面板部101c及び底面板部101dと、正面板部101a及び101bの左右端部間を連結する左側面板部101e及び右側面板部101fとを有する。
 そして、正面板部101a及び背面板部101bは、図8に示すように、前後方向に延長する長方形の開口部102a及び102bが左右方向に所定間隔L3を保って例えば6個所形成されている。これら開口部102a及び102bの幅L4は所定間隔L3よりも狭く設定されている。
 また、上面板部101c及び底面板部101dには、図8に示すように、正面板部101a、背面板部101b、左側面板部101e及び右側面板部101fで囲まれる長方形の開口部102c及び102dが形成されている。
 正面板部101aの開口部102aには、図9に示すように、前述した舶用ディーゼルエンジン等の舶用ディーゼルエンジン等のPM含有ガス排出装置70に接続された例えば断面方形の排ガス通流ダクト103aが連結されている。
 また,背面板部101bの開口部102bには前述したガス排出部73に接続された同様に断面方形の排ガス通流ダクト103bが連結されている。
 筐体100内には、図8及び図9に示すように、正面板部101a及び背面板部101bの開口部102a及び102bを除く位置間に、前述した第1の実施形態における角筒電極体24と同様の構成を有する5個の角筒電極体110が並列配置されている。したがって、角筒電極体110は、排ガス通流方向に沿い且つ排ガス通流方向と直交する方向に開口部102a及び102bの幅L4と等しい所定間隔を保って配置されている。
 これら角筒電極体110は、図8に示すように上面及び底面を開放した直方体状に形成されている。また、角筒電極体110の左右側面には板状電極112a及び112bがその外側表面間が前述した所定間隔L3となるように配置されている。これら板状電極112a及び112bのそれぞれは、前述した第1の実施形態における板状電極20と同様に、例えば円形の複数の貫通孔113を全面に形成したパンチングプレート114で形成され、例えば板面が垂直方向となるように前後方向すなわち排ガス通流方向に延長して配置されている。
 また、左右両端の角筒電極体110の外側には所定間隔L4を保って角筒電極体110に対向する面にのみ板状電極112cを形成した角筒電極体115が配置されている。これら角筒電極体115についても角筒電極体110と同様に上面及び底面を開放した直方体状に形成されている。
 これら角筒電極体110及び115の上端側にそれぞれ、図8に示すように、外気に直接通じて回収気体を取り入れる開口率が90%以上に設定された回収気体取入口116が形成されている。
 そして、角筒電極体110間と角筒電極体110及び角筒電極体115間とが、排ガス通流ダクト103aから供給される排ガスが後方に向けて通流されるガス通流領域117とされている。このガス通流領域117のそれぞれの左右方向の中央部に放電電極120が板状電極112a及び112b、112c及び112a、112b及び112cに個別に対面して配置されている。
 放電電極120は、排ガス通流方向に沿う長方形板状に形成されている。この放電電極120は、図11に示すように、誘電体としてのアルミナや窒化珪素のセラミックス121に内蔵された平面上に蛇行して形成された発熱抵抗体122を有するセラミックヒータの構成を有する。発熱抵抗体122には、その上方の前後位置における始端及び終端に端子接続パッド123a及び123bが形成されている。これら端子接続パッド123a及び123bには外部に延長するリード端子124a及び124bが半田付け等によって接合されている。つまり、放電電極120は、発熱抵抗体122が誘電体としてのセラミックス121に覆われた構成を有する。
 各放電電極120は、図8に示すように、筐体2の上面板部101cの開口部102c側に配置された耐熱絶縁スペーサ125と、角筒電極体110の下端間、角筒電極体115及び110の下端間並びに角筒電極体110及び角筒電極体115間の下端間に配置された耐熱絶縁スペーサ126とによって支持されている。
 そして、各放電電極120のリード端子124a及び124bが図8及び図9に示すように、筐体2の上面板部101cの左右端部側に配置された高電圧支持碍子127a及び127b間に前後方向に所定間隔を保って平行に橋架された高圧給電バー128a及び128bに押圧バネ129によって下方に押圧された状態で電気的に接続されている。
 高圧給電バー128a及び128bには、図9に示すように、放電発生部としてのバリア放電発生部130が接続されている。このバリア放電発生部130は、高圧給電バー128a及び128b間に接続された高耐圧パワーリレー131と、この高耐圧パワーリレー131の一端と高圧給電バー128aとの接続点と接地との間に接続された高耐圧パワーリレー132及び例えば10kVの高電圧交流を発生する高電圧交流電源133の直列回路とを有する。さらに、高電圧交流電源133と接地との間が筐体100に接続されている。
 また、高圧給電バー128a及び128bには、図9に示すように、加熱制御部135が接続されている。この加熱制御部135は、高圧給電バー128a及び128bに、高耐圧パワーリレー136及び137を個別に介して接続された例えば54V程度の低電圧交流を発生する低電圧交流電源138を有する。
 そして、高電圧交流電源133から高電圧交流を出力し、高耐圧パワーリレー131及び132を付勢状態(オン状態)とすることにより、高電圧交流が放電電極120と板状電極112a~112cとの間に印加される。これによって、放電電極120と板状電極112a~112cとの間にバリア放電プラズマ柱が発生する。
 この放電電極120と板状電極112a~112cとの間には、PM粒子含有排ガスが通流されている。このため、PM粒子含有排ガスに含まれるPMがバリア放電プラズマ柱の通過時に荷電されて、バリア放電維持電圧が作る電界でクーロン力を付与されて接地電極となる板状電極112a~112c側に向かう。なお、クーロン力が付与されたPMの全部が板状電極112a~112cに向かうものではなく、PMの一部は放電電極120に向かう場合がある。
 板状電極112a~112cに向かうPMは板状電極112a~112cに形成された貫通孔111から角筒電極体110内に補集される。
 また、放電電極120に付着したPMは、定期的に高耐圧パワーリレー131及び132の付勢状態を解除して放電電極120への高電圧交流の印加を停止し、これに代えて高耐圧パワーリレー136及び137を付勢状態として放電電極120のリード端子124a及び124bに低電圧交流を印加することにより、放電電極120をセラミックヒータとして動作させる。これにより、放電電極120が1~2分程度で800℃程度まで加熱され、表面に付着したPMを完全燃焼させて除去する。
 また、筐体100の底面板部101dに形成された開口部102cに吸引フード140が連結されている。この吸引フード140は角筒電極体110及び115の底部の開口部118にのみ連通しており、ガス通流領域117とは耐熱絶縁スペーサ126で分離されている。
 この吸引フード140の吸引口141には図示しないが前述した第1の実施形態と同様にサイクロン集塵機60の回収口61が連通されている。このサイクロン集塵機60には、筐体60aの上部に形成された吸引口63に吸引装置としてのブロワ64が接続されている。そして、ブロワ64を作動させることにより、このブロワ64によってサイクロン集塵機60の吸引口63から気体が吸引されることにより、回収口61から補集PMと回収気体との混合流体を吸引して固気分離する。分離されたPMは下方のPM回収部62に落下して回収され、分離された回収気体は、上方の吸引口63からブロワ64を介して電気集塵装置1の正面側に接続された排ガス通流ダクト103aに戻される。
 次に、上記第2の実施形態の動作を説明する。
 先ず、図12で模式的に示すように、電気集塵装置1における筐体100に連結された排ガス通流ダクト103aを舶用ディーゼルエンジン等のPM含有ガス排出装置70に接続し、筐体100に連結された排ガス通流ダクト103bを煙突等のガス排出部73に接続する。
 この状態で、電気集塵装置1のバリア放電発生部130の高電圧交流電源133で例えば10kVの高電圧交流を発生させるとともに、高耐圧パワーリレー131及び132を付勢状態とすることにより、高電圧交流電源133で発生された高電圧交流が高圧給電バー128a及び128bを介して放電電極120と接地電極となる角筒電極体110及び115との間に印加される。
 このため、放電電極120と角筒電極体110,115の板状電極112a~112c間にバリア放電プラズマ柱が発生してパリア放電が発生する。このバリア放電は、放電電極120が電極となる発熱抵抗体122が誘電体となるセラミックス121で被覆されているので、スパークの発生しない無声放電となる。
 このバリア放電が発生している状態で、放電電極120と板状電極112a~112cとの間に、PM粒子含有排ガスを通流させる。すると、PM粒子含有排ガスに含まれるPMがバリア放電プラズマ柱の通過時に荷電されて、バリア放電維持電圧が作る電界でクーロン力を付与されて接地電極となる板状電極112a~112c側に向かう。なお、クーロン力が付与されたPMの全部が板状電極112a~112cに向かうものではなく、PMの一部は放電電極120に向かう場合がある。
 板状電極112a~112cに向かうPMは前述した第1の実施形態と同様に、板状電極112a~112cに形成された貫通孔111から角筒電極体110及び115内の補集領域に導かれる。
 この補集領域では、流れ場は非常に緩やかなため、PMは流れ場の影響を受けにくく、PMは自分自身の電荷と角筒電極体110及び115の板状電極112a~112c間の電位差による電気影像力を受けて、板状電極112a~112cの内周面に移動付着して補集される。
 このように、板状電極112a~112cの内周面にPMが補集された状態で、所定時間毎に間欠的にブロワ64を作動させると、筐体100の回収気体取入口116から外部の空気が回収気体として吸引される。この回収気体はPM含有排ガスの通流方向と直交する方向に角筒電極体110及び115の補集領域を通過する。このため、補集領域に補集されているPMが剥離されて回収気体とともに吸引フード140を介してサイクロン集塵機60に供給される。
 ここで、板状電極112a~112cの貫通孔113の開口率を20~40%に設定し、角筒電極体110及び115の回収気体取入口116の開口率を90%以上に設定することにより、板状電極20の貫通孔21での流路抵抗を大きくして回収気体によるPM含有排ガスの吸引を最小限にすることができる。このため、回収気体の流速を大きくしてもPM含有排ガスを吸引することがなく、板状電極112a~112cの内周面に補集されたPMを効率よく剥離して吸引フード140へ排出することができる。
 このとき、吸引フード140では、ガス通流領域117が耐熱絶縁スペーサ126で閉塞され、角筒電極体110及び115の底面のみが連通している。このため、吸引フード140によってガス通流領域117を通流するPM含有排ガスを直接吸引することを確実に阻止することができる。
 また、吸引フード140に達した剥離されたPMと回収気体との混合流体は吸引口141からサイクロン集塵機60内に導入されて混合気体が固気分離される。そして、分離されたPMは底部のPM回収部62へ落下して回収され、分離されたPMを多少含む回収気体は、吸引口63からブロワ64に吸引されて筐体100に連結された排ガス通流ダクト103aの開口部102a近傍へ戻される。
 一方、所定時間毎に放電発生部130の高耐圧パワーリレー131及び132が付勢状態から非付勢状態に復帰させられることにより、高圧給電バー128a及び128bへの高電圧交流の供給が停止される。
 この状態で、加熱制御部135の高耐圧パワーリレー136及び137は付勢状態とされ、低電圧交流電源138から出力される低電圧交流が高圧給電バー128a及び128bに供給される。これら高圧給電バー128a及び128bに供給された低電圧交流は、各放電電極120のリード端子124a及び124bを通じて発熱抵抗体122の両端の端子接続パッド123a及び123bに印加される。このため、放電電極120がセラミックヒータとして動作することにより、1~2分で表面温度が400℃~800℃に加熱される。
 このため、放電電極120のセラミックス121の表面に付着したPMが完全燃焼されて除去される。
 このように、上記第2の実施形態によると、放電電極120と板状電極112a~112cとの間にバリア放電プラズマ柱を形成してバリア放電を発生させ、この際に放電電極120が電極となる発熱抵抗体122を誘電体となるセラミックス121で被覆している。このため、放電電流は発熱抵抗体122からセラミックス121を透過して流れることになり、セラミックス121自体が絶縁破壊するまではスパークを生じない無声放電となる。
 しかも、セラミックス121の耐熱温度はヒータとして動作させる400℃~800℃に耐えるので、PM含有排ガスの温度が300℃を超えてもスパーク無しの電気集塵を行うことができる。
 ちなみに、第1実施形態のように、放電電極30と板状電極20との間にコロナ放電を発生させる場合には、放電特性が図13に示すようになる。この図13では、スパーク放電電圧を特性線L11で表し、コロナ放電開始電圧を特性線L12で表し、ガス密度比を特性線L13で表している。
 この図13から明らかなように、コロナ放電を使用する場合には、スパーク放電電圧はPM含有排ガス温度が150℃以下ではさほど低下しないが、150℃を超えると排ガス温度上昇に対するスパーク放電電圧の低下率が高くなる。
 一方、コロナ放電開始電圧は逆に150℃までの電圧降下率に対して150℃を超えたときの電圧降下率が小さくなり、排ガス温度が250℃程度のコロナ放電開始電圧は、排ガス温度が常温時のコロナ放電開始電圧と比べて2/3以下に低下する。
 このため、コロナ放電を使用する場合には、排ガス温度が250℃を超えるとスパーク放電電圧が低下していることから、スパークが生じるのを避けるためにコロナ放電電圧を高くすることに制限が生じるとともに、コロナ放電開始電圧が低下することになり、PMに付与するクーロン力が弱まり、集塵性能が低下する。
 しかしながら、上記第2の実施形態のようにバリア放電を採用すると、放電電極120の電極部が誘電体であるセラミックス121に覆われているので、スパーク放電が生じ難く、PM含有排ガス温度が300℃を超えても集塵性能が低下することはなく、良好な集塵効果を得ることができる。
 また、放電電極120と板状電極112a~112cとの対向面積を広くすることができ、第1の実施形態におけるコロナ放電の場合に生じるイオンシャワー柱に比較して発生するバリア放電プラズマ柱の密度を高くすることができ、集塵効率を向上させることができる。
 なお、上記第2の実施形態においては、放電電極120としてセラミックヒータを適用した場合について説明したが、これに限定されるものではなく、平板電極を覆う誘電体として例えばチタン酸バリウムなどの強誘電体を適用することもできる。要は耐熱性の高い誘電体であれば、任意の誘電体を適用することができる。
 また、上記第2の実施形態においては、PM含有排ガスの通流方向に対して、補集したPMを回収する回収気体の通流方向が直交する場合について説明したが、これに限定されるものではなく、PM含有排ガスと回収ガスとを互いに交差する方向に通流させるようにすればよいものである。
 また、上記第2の実施形態においては、PM含有排ガスの通流方向は水平方向に限らず、垂直方向を含む任意の方向とすることができる。さらに、上記第2の実施形態においても前述した第1の実施形態における図6と同様に一対の吸引フードを対向させて配置し、中間部の筐体100に回収気体取り入れ口を設けることもできる。
 また、上記第1及び第2の実施形態においては、吸引装置としてブロワ64を適用した場合について説明したが、これに限定されるものではなく、真空エジェクタ等の他の吸引装置を適用することができる。
 また、上記第1及び第2の実施形態においては、ディーゼルエンジンから排出される排気ガスに含まれるPMを除去する場合について説明したが、これに限定されるものではなく、任意のPM含有ガスからPMを除去することができる。
 本発明によれば、容量の大きな抽気装置を必要とすることなく、目詰まりせずに、高風速条件下でも再飛散しにくく、高い集塵性能を発揮し、故障の可能性が低い電気集塵装置を提供することができる。
 1…電気集塵装置、2…筐体、3…ガス導入口、4…ガス排出口、5…開口部、20…板状電極、21…貫通孔、22…パンチングメタル、23a,23b…端板、24…角筒電極体、30…放電電極、31…帯状電極本体、32…トゲ状電極部、33…ガス通流領域、40…集塵電極、50…分離吸引フード、60…サイクロン集塵機、62…PM回収部、64…ブロワ、100…筐体、103a,103b…排ガス通流ダクト、110,115…角筒電極体、112a~112c…板状電極、117…ガス通流領域、120…放電電極、121…セラミックス、122…発熱抵抗体、124a,124b…リード端子、128a,128b…高圧給電バー、130…バリア放電発生部、131,132…高耐圧パワーリレー、133…高電圧交流電源、135…加熱制御部、136,137…高耐圧パワーリレー、138…低電圧交流電源

Claims (12)

  1.  粒子状物質を通過させる貫通孔を複数形成した板状電極と、該板状電極の一方の面に対向して配置された放電電極と、
     前記板状電極及び前記放電電極間に電圧を印加して前記粒子状物質にクーロン力を付与する放電を発生させる放電発生部と、
     前記板状電極の前記放電電極との対向面とは反対側に形成した粒子状物質を補集する補集領域と、
     前記板状電極と前記放電電極との間に形成した粒子状物質含有ガスを通流させるガス通流領域と、
     前記粒子状物質含有ガスの通流状態で、前記補集領域に当該粒子状物質含有ガスの通流方向と交差する方向に回収気体を通流して補集した粒子状物質を剥離回収する粒子状物質回収部とを備え、
     前記放電によって粒子状物質含有ガス中の粒子状物質を帯電させて前記貫通孔を通じて前記補集領域に補集し、該補集領域に補集された粒子状物質を前記回収気体によって剥離回収する
     ことを特徴とする電気集塵装置。
  2.  前記放電発生部は、前記板状電極及び前記放電電極間に直流電圧を印加してコロナ放電を発生させることを特徴とする請求項1に記載の電気集塵装置。
  3.  前記放電電極は、断面長方形を有し断面の長辺側が前記板状電極と対向する板状電極部本体と、該板状電極部本体の断面の短辺側に形成されたトゲ状放電部とを備えていることを特徴とする請求項2に記載の電気集塵装置。
  4.  前記板状電極部本体の延長方向は、前記粒子状物質含有ガスの通流方向と交差していることを特徴とする請求項3に記載の電気集塵装置。
  5.  前記放電発生部は、前記板状電極及び前記放電電極間に交流電圧を印加してバリア放電を発生させることを特徴とする請求項1に記載の電気集塵装置。
  6.  前記放電電極は、金属電極と該金属電極を覆う誘電体とで前記粒子状物質含有ガスの通流方向に沿う板面を有する板状に形成されていることを特徴とする請求項5に記載の電気集塵装置。
  7.  前記放電電極は、一対の端子間に接続された発熱抵抗体で構成され、当該一対の端子間に電圧を印加することにより付着した粒子状物質を燃焼させるヒータとして作動することを特徴とする請求項6に記載の電気集塵装置。
  8.  前記板状電極と前記放電電極との組が前記板状電極同士を対面する関係で複数組並列配置され、対向する板状電極間に前記補集領域を形成したことを特徴とする請求項1に記載の電気集塵装置。
  9.  前記補集領域は、対面する前記一対の板状電極と、該一対の板状電極の前記回収気体の通流方向と平行な両端部を閉塞する一対の端板部とを少なくとも有する角筒状に形成されていることを特徴とする請求項1に記載の電気集塵装置。
  10.  前記補集領域の回収気体通流方向の片側にサイクロン集塵機を接続し、当該サイクロン集塵機に吸引装置を接続し、当該吸引装置の吸引力によって回収気体流を形成するようにしたことを特徴とする請求項9に記載の電気集塵装置。
  11.  前記補集領域の回収気体通流方向の両側に個別にサイクロン集塵機を接続し、該各サイクロン集塵機に吸引装置を接続し、当該吸引装置の吸引力によって2方向の回収気体流を形成するようにしたことを特徴とする請求項9に記載の電気集塵装置。
  12.  前記対向電極間に形成される複数の補集領域とサイクロン集塵機との間に当該補集領域のみの回収気体を吸引する吸引フードが配置されていることを特徴とする請求項10又は11に記載の電気集塵装置。 
PCT/JP2013/002644 2012-07-31 2013-04-18 電気集塵装置 WO2014020800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380024136.XA CN104271248B (zh) 2012-07-31 2013-04-18 电除尘装置
KR1020147031135A KR101574550B1 (ko) 2012-07-31 2013-04-18 전기 집진 장치
EP13825156.6A EP2881177B1 (en) 2012-07-31 2013-04-18 Electrostatic precipitator
JP2014527949A JP5761461B2 (ja) 2012-07-31 2013-04-18 電気集塵装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012169093 2012-07-31
JP2012-169093 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020800A1 true WO2014020800A1 (ja) 2014-02-06

Family

ID=50027518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002644 WO2014020800A1 (ja) 2012-07-31 2013-04-18 電気集塵装置

Country Status (5)

Country Link
EP (1) EP2881177B1 (ja)
JP (1) JP5761461B2 (ja)
KR (1) KR101574550B1 (ja)
CN (1) CN104271248B (ja)
WO (1) WO2014020800A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205952A (ja) * 2015-04-21 2016-12-08 日本特殊陶業株式会社 微粒子検知システム
JP6150001B1 (ja) * 2016-12-28 2017-06-21 富士電機株式会社 粒子状物質燃焼装置
CN111346734A (zh) * 2018-12-21 2020-06-30 罗伯特·博世有限公司 静电充电空气净化装置
CN111714677A (zh) * 2020-06-02 2020-09-29 四川大学 一种用于气溶胶传播病毒灭活的扇轮电极结构

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596872B1 (ko) * 2015-05-06 2016-02-23 한국산업기술시험원 전기집진장치
KR101707802B1 (ko) * 2016-02-23 2017-02-17 주식회사 신한이엔지 가스정화장치 및 가스정화방법
JP6617833B2 (ja) * 2016-06-15 2019-12-11 富士電機株式会社 粒子状物質燃焼装置
WO2018148948A1 (zh) * 2017-02-17 2018-08-23 白三妮 空气颗粒沉积吸附装置
KR101931341B1 (ko) * 2017-03-31 2018-12-20 카페24 주식회사 진공 흡입을 이용한 전기식 집진기 및 집진방법
JP7109194B2 (ja) 2018-01-15 2022-07-29 三菱重工パワー環境ソリューション株式会社 電気集塵装置
KR102089859B1 (ko) * 2018-07-12 2020-05-25 한국기계연구원 먼지 분리 장치
CN109173535A (zh) * 2018-10-22 2019-01-11 肇庆学院 一种用于田间制炭尾气处理的可移动式系统及使用该系统处理制炭尾气的方法
CN110642059B (zh) * 2019-08-28 2021-01-15 合肥中汇睿能能源科技有限公司 一种聚酰亚胺薄膜用除尘设备
JP2022035345A (ja) * 2020-08-20 2022-03-04 富士電機株式会社 電気集塵機
KR20230043449A (ko) * 2021-09-24 2023-03-31 삼성전자주식회사 전기집진장치 및 전기집진장치의 제어방법
KR102682107B1 (ko) * 2021-12-10 2024-07-08 한국에너지기술연구원 전기집진장치 및 이를 이용한 집진방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118258A (ja) * 1983-11-30 1985-06-25 Fuji Electric Co Ltd 電気集じん装置
JPH0263560A (ja) 1988-08-30 1990-03-02 Mitsubishi Heavy Ind Ltd 除じん装置
JPH02184357A (ja) 1989-01-12 1990-07-18 Mitsubishi Heavy Ind Ltd 除じん装置
JPH0531399A (ja) * 1991-08-02 1993-02-09 Keiichi Hara 電気集塵装置
JP2000140691A (ja) * 1998-11-06 2000-05-23 Mitsubishi Heavy Ind Ltd 乾式除塵装置
JP2000354788A (ja) * 1999-06-15 2000-12-26 Tadao Totsuka 空気清浄装置
JP2001129433A (ja) * 1999-11-05 2001-05-15 Fuji Electric Co Ltd 空気浄化装置
JP2005224693A (ja) * 2004-02-12 2005-08-25 Chugoku Electric Power Co Inc:The 電気集じん器の清掃方法
JP2011245429A (ja) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd 電気集塵装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077752U (zh) * 1990-11-22 1991-05-29 石家庄铁路分局石家庄电力机务段 静电烟尘净化装置
KR930017626A (ko) * 1992-02-28 1993-09-20 강진구 전기집진기
CN2184487Y (zh) * 1994-03-18 1994-12-07 浙江大学 空气净化器复合收尘板静电集尘装置
CN2281843Y (zh) * 1996-11-25 1998-05-20 声宝股份有限公司 高压集尘电板
US6544317B2 (en) * 2001-03-21 2003-04-08 Energy & Environmental Research Center Foundation Advanced hybrid particulate collector and method of operation
JP4339049B2 (ja) * 2003-08-29 2009-10-07 日新電機株式会社 排ガス処理方法及び排ガス処理装置
JP4529013B2 (ja) * 2004-10-01 2010-08-25 いすゞ自動車株式会社 ガス処理装置
CN1911526B (zh) * 2005-08-10 2010-08-18 金烈水 一种高效率静电除尘器
JP2007100635A (ja) * 2005-10-06 2007-04-19 Mitsubishi Heavy Ind Ltd 排気ガス浄化装置
JP2008019853A (ja) * 2006-06-16 2008-01-31 Denso Corp 内燃機関の排気処理装置
JP4957923B2 (ja) * 2006-07-25 2012-06-20 株式会社トルネックス 電気集塵装置
US8092768B2 (en) * 2010-02-11 2012-01-10 Energy & Environmental Research Center Foundation Advanced particulate matter control apparatus and methods
US8414687B2 (en) * 2010-09-23 2013-04-09 Chevron U.S.A. Inc. Method to control particulate matter emissions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118258A (ja) * 1983-11-30 1985-06-25 Fuji Electric Co Ltd 電気集じん装置
JPH0263560A (ja) 1988-08-30 1990-03-02 Mitsubishi Heavy Ind Ltd 除じん装置
JPH02184357A (ja) 1989-01-12 1990-07-18 Mitsubishi Heavy Ind Ltd 除じん装置
JPH0531399A (ja) * 1991-08-02 1993-02-09 Keiichi Hara 電気集塵装置
JP2000140691A (ja) * 1998-11-06 2000-05-23 Mitsubishi Heavy Ind Ltd 乾式除塵装置
JP2000354788A (ja) * 1999-06-15 2000-12-26 Tadao Totsuka 空気清浄装置
JP2001129433A (ja) * 1999-11-05 2001-05-15 Fuji Electric Co Ltd 空気浄化装置
JP2005224693A (ja) * 2004-02-12 2005-08-25 Chugoku Electric Power Co Inc:The 電気集じん器の清掃方法
JP2011245429A (ja) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd 電気集塵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881177A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205952A (ja) * 2015-04-21 2016-12-08 日本特殊陶業株式会社 微粒子検知システム
JP6150001B1 (ja) * 2016-12-28 2017-06-21 富士電機株式会社 粒子状物質燃焼装置
CN111346734A (zh) * 2018-12-21 2020-06-30 罗伯特·博世有限公司 静电充电空气净化装置
CN111714677A (zh) * 2020-06-02 2020-09-29 四川大学 一种用于气溶胶传播病毒灭活的扇轮电极结构

Also Published As

Publication number Publication date
EP2881177B1 (en) 2020-03-18
JPWO2014020800A1 (ja) 2016-07-21
EP2881177A1 (en) 2015-06-10
CN104271248B (zh) 2016-10-05
KR20140144271A (ko) 2014-12-18
CN104271248A (zh) 2015-01-07
EP2881177A4 (en) 2016-05-18
JP5761461B2 (ja) 2015-08-12
KR101574550B1 (ko) 2015-12-04

Similar Documents

Publication Publication Date Title
JP5761461B2 (ja) 電気集塵装置
US7585352B2 (en) Grid electrostatic precipitator/filter for diesel engine exhaust removal
TWI470173B (zh) 增強空氣純化效率之裝置、系統及方法
JP5705461B2 (ja) 電気集塵装置
US3271932A (en) Electrostatic precipitator
JP4856139B2 (ja) 電気集塵装置
KR20180072749A (ko) 공기 정화 디바이스 및 장치
KR101577340B1 (ko) 복합형 집진 장치
EP2892653B1 (en) Method for collecting fine particles from flue gases, and a corresponding device and arrangement
JP2007100635A (ja) 排気ガス浄化装置
CN103313795A (zh) 使用多交叉针离子产生器的感应式静电集尘器
KR101334927B1 (ko) 고온 전기집진장치
JPH0910625A (ja) 電気集じん装置
JP2006297182A (ja) 空気清浄装置及び空気清浄装置を組込んだキッチンユニット
JP5556325B2 (ja) 清浄空気製造装置および換気機能付清浄空気製造装置
JP2965952B2 (ja) トンネル用電気集塵装置
JP5380212B2 (ja) 電気集塵機
JP2011240292A (ja) 電気集じん器
JP2010207676A (ja) 電気集塵装置
US7377957B2 (en) Method and construction of filters and pre-filters for extending the life cycle of the filter bodies therein
JP2010131540A (ja) 集塵セルおよびエアクリーナ
CN112154032B (zh) 静电除尘器和送风设备
KR20160088703A (ko) 복합형 집진 장치
JP5816807B2 (ja) 電気集塵装置
WO2017090086A1 (ja) 放電デバイス及びこれを備えた空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013825156

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031135

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014527949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE