WO2019138613A1 - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell Download PDF

Info

Publication number
WO2019138613A1
WO2019138613A1 PCT/JP2018/036419 JP2018036419W WO2019138613A1 WO 2019138613 A1 WO2019138613 A1 WO 2019138613A1 JP 2018036419 W JP2018036419 W JP 2018036419W WO 2019138613 A1 WO2019138613 A1 WO 2019138613A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lift
semiconductor layer
type semiconductor
solar cell
Prior art date
Application number
PCT/JP2018/036419
Other languages
French (fr)
Japanese (ja)
Inventor
良太 三島
足立 大輔
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201880086006.1A priority Critical patent/CN111566825A/en
Priority to JP2019564287A priority patent/JPWO2019138613A1/en
Publication of WO2019138613A1 publication Critical patent/WO2019138613A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a solar cell.
  • a common solar cell is a double-sided electrode type in which electrodes are disposed on both main surfaces (light receiving surface and back surface) of a semiconductor substrate, but these days, electrodes are disposed only on the back surface as a solar cell without shielding loss by the electrodes.
  • a back contact (back electrode) type solar cell has been developed.
  • semiconductor layer patterns such as a p-type semiconductor layer and an n-type semiconductor layer have to be formed with high precision on the back surface, and the manufacturing method becomes complicated compared to a double-sided electrode type solar cell.
  • Patent Document 1 there is a technique for forming a semiconductor layer pattern by a lift-off method.
  • silicon oxide (SiOx) or silicon nitride is used as a lift-off layer (also referred to as a mask layer or a sacrificial layer), and the lift-off layer is removed to remove the semiconductor layer formed thereon, thereby removing the semiconductor layer pattern.
  • a lift-off layer also referred to as a mask layer or a sacrificial layer
  • the present invention has been made to solve the above-mentioned problems. And the purpose is to manufacture a back contact type solar cell efficiently.
  • a third step of leaving the first conductive type semiconductor layer, the first lift off layer, and the second lift off layer in the remaining portion of the one main surface Forming a second conductive type semiconductor layer on the remaining second lift-off layer and the non-forming region, and forming a fourth step;
  • Including The etching rates of the first conductive semiconductor layer, the first lift-off layer, and the second lift-off layer with respect to the first etching solution satisfy the following relational expression. Etching rate of first conductive type semiconductor layer ⁇ etching rate of second lift-off layer ⁇ etching rate of first lift-off layer ... [Relational equation 1]
  • a back contact type solar cell is efficiently manufactured.
  • the solar cell 10 will be described in detail below.
  • the schematic cross-sectional view of FIG. 2 shows a configuration diagram of a solar cell 10 using a crystal substrate 11 made of silicon.
  • This solar cell 10 has two main surfaces 11S (11SU, 11SB), and the main surface [front side main surface] 11SU of the crystal substrate 11 corresponding to one side on which light is incident is the front side, opposite to this The side of the other main surface [back side main surface] 11SB corresponding to the side is referred to as the back side.
  • the front side will be described as a side (light receiving side) that is to receive light more positively than the back side, and the back side not actively receiving light will be described as a non-light receiving side.
  • this solar cell is a so-called heterojunction crystalline silicon solar cell, and is a back contact type (back electrode type) solar cell 10 in which an electrode layer is disposed only on one side (back side) of the main surface.
  • the solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal) An electrode layer 18) is included.
  • p / “n” may be added to the end of the member numbers for members individually associated with the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
  • first conductivity type the conductivity type of the conductivity types
  • second conductivity type the conductivity type of the conductivity types
  • the crystal substrate 11 may be a substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon.
  • a single crystal silicon substrate will be described as an example.
  • the conductivity type of the crystal substrate 11 is an impurity for introducing holes to silicon atoms (even an n-type single crystal silicon substrate containing an impurity (for example, phosphorus atom) for introducing electrons to silicon atoms).
  • an impurity for example, phosphorus atom
  • a p-type single crystal silicon substrate having a boron atom may be used, but in the following, an n-type crystal substrate which is said to have a long carrier life will be described as an example.
  • the crystal substrate 11 has a texture structure TX [first texture structure] formed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of closing the received light. It is preferable if it exists.
  • the texture structure TX (concave and convex surface) is formed, for example, by anisotropic etching applying the difference between the etching rate of the (100) plane and the etching rate of the (111) plane in the crystal substrate.
  • the thickness of the crystal substrate 11 is preferably 250 ⁇ m or less.
  • the measurement direction in the case of measuring the thickness is perpendicular to the average surface of the crystal substrate 11 (the average surface means the surface of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is referred to as the thickness direction.
  • the thickness of the crystal substrate 11 is 250 ⁇ m or less, the amount of silicon used is reduced, so that the silicon substrate can be easily secured, and cost reduction can also be achieved.
  • a back contact structure in which holes and electrons generated by photoexcitation in the silicon substrate are collected only on the back side is preferable from the viewpoint of efficiently collecting each carrier.
  • the thickness of the crystal substrate 11 is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the thickness of the crystal substrate is represented by the average value of the distance between straight lines connecting the opposing convex apexes of the concave and convex structures on the light receiving side and the back side. Be done.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) covers both main surfaces 11S (11SU, 11SB) of the crystal substrate 11 to perform surface passivation while suppressing impurity diffusion into the crystal substrate 11.
  • intrinsic (i-type) is not limited to completely intrinsic ones that do not contain a conductive impurity, and a very small amount of n-type impurities or p-types can be used as long as the silicon-based layer can function as an intrinsic layer.
  • weak n-type or "weak p-type” substantially intrinsic layers that contain impurities.
  • the material of the intrinsic semiconductor layer 12 is not particularly limited, but is preferably an amorphous silicon-based thin film, and is preferably a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen. It is more preferable that
  • the thickness of the intrinsic semiconductor layer 12 is not particularly limited, but is preferably 2 nm or more and 20 nm or less. When the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, it is possible to suppress a decrease in conversion characteristics caused by the increase in resistance.
  • the method for forming the intrinsic semiconductor layer 12 is not particularly limited, but is preferably the plasma CVD (Chemical Vapor Deposition) method. This is because the substrate surface can be effectively passivated while suppressing the diffusion of impurities into single crystal silicon.
  • the plasma CVD method an energy gap profile that is effective for carrier recovery can also be formed by changing the hydrogen concentration in the intrinsic semiconductor layer in the film thickness direction.
  • a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / cm 2 are preferable. is there.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is preferable.
  • a thin film is suitably formed by adding a gas containing different elements such as CH 4 , NH 3 , GeH 4 to the above gas to form a silicon alloy such as silicon carbide, silicon nitride, or silicon germanium. You may change the energy gap of a gas containing different elements such as CH 4 , NH 3 , GeH 4 to the above gas to form a silicon alloy such as silicon carbide, silicon nitride, or silicon germanium. You may change the energy gap of
  • Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 2, the p-type semiconductor layer 13 p is formed on a part of the back side of the crystal substrate 11 via the intrinsic semiconductor layer 12 p, and the n-type semiconductor layer 13 n is other than the back side of the crystal substrate 11. It is formed in part via the intrinsic semiconductor layer 12n. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n and the crystal substrate 11 as an intermediate layer which plays a role of passivation.
  • the film thickness of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n is not particularly limited, but is preferably 2 nm or more and 20 nm or less. When the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, it is possible to suppress a decrease in conversion characteristics caused by the increase in resistance.
  • the p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n are patterned and arranged so that the p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n are electrically separated on the back side of the crystal substrate 11. Ru.
  • the width of the conductive semiconductor layer 13 (e.g., a short pattern in the case of a linear pattern) is preferably 50 ⁇ m to 3000 ⁇ m, more preferably 65 ⁇ m to 1000 ⁇ m, and still more preferably 80 ⁇ m to 500 ⁇ m. .
  • the holes have a larger effective mass than the electrons, and thus the p-type semiconductor layer 13 p is n from the viewpoint of reducing the transport loss. It is preferable that the width is narrower than that of the semiconductor layer 13n.
  • the width of the p-type semiconductor layer 13p is preferably 0.5 times to 0.9 times the width of the n-type semiconductor layer 13n, and more preferably 0.6 times to 0.8 times .
  • the p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (such as boron) is added, and is preferably made of amorphous silicon from the viewpoint of suppressing impurity diffusion or suppressing series resistance.
  • the n-type semiconductor layer 13n is a silicon layer to which an n-type dopant (phosphorus or the like) is added, and is preferably formed of an amorphous silicon layer as well as the p-type semiconductor layer 13p.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixed gas of a silicon-based gas and H 2 is preferably used.
  • the dopant gas B 2 H 6 or the like is preferably used to form the p-type semiconductor layer 13 p, and PH 3 or the like is preferably used to form the n-type semiconductor layer.
  • a mixed gas obtained by diluting the dopant gas with the source gas may be used.
  • a gas containing a different element such as CH 4 , CO 2 , NH 3 or GeH 4 is added.
  • the n-type semiconductor layer 13 n may be alloyed.
  • the low reflective layer 14 is a layer that suppresses the reflection of light received by the solar cell 10.
  • the material of the low reflective layer 14 is not particularly limited as long as it is a light transmitting material that transmits light, and examples thereof include silicon oxide, silicon nitride, zinc oxide, and titanium oxide. Further, as a method of forming the low reflection layer, for example, a resin material in which nanoparticles of an oxide such as zinc oxide or titanium oxide are dispersed may be used.
  • the electrode layer 15 is electrically connected to the semiconductor layer 13 by being formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
  • the electrode layer 15 functions as a transport layer for guiding carriers passing through the p-type semiconductor layer 13p or the n-type semiconductor layer 13n to the outside of the solar cell 10.
  • the electrode layer 15 may be formed of only a metal having high conductivity, but the viewpoint of electrical connection with the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or both of the metals that are electrode materials. From the viewpoint of suppressing atomic diffusion into the semiconductor layers 13p and 13n, the electrode layer 15 formed of a transparent conductive oxide is formed between the metal electrode layer and the p-type semiconductor layer 13p and the n-type semiconductor layer 13n. It is preferable to provide it.
  • the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17 and the electrode layer 15 made of metal is referred to as a metal electrode layer 18.
  • the electrode layer formed on the comb back is a bus bar portion
  • the electrode layer formed on the portion may be referred to as a finger portion.
  • the material of the transparent electrode layer 17 is not particularly limited.
  • zinc oxide or indium oxide, or indium oxide, or various metal oxides such as titanium oxide, tin oxide, tungsten oxide, or molybdenum oxide Etc. may be added in an amount of 0.5% by weight or more and 15% by weight or less, preferably 1% by weight or more and 10% by weight or less.
  • the thickness of the transparent electrode layer 17 is preferably 20 nm or more and 200 nm or less.
  • a method of forming a transparent electrode layer suitable for such a film thickness for example, physical vapor deposition (PVD) such as sputtering, or And a chemical vapor deposition (MOCVD) method utilizing a reaction of an organometallic compound with oxygen or water.
  • PVD physical vapor deposition
  • MOCVD chemical vapor deposition
  • the material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver, copper, aluminum, and nickel.
  • the thickness of the metal electrode layer 18 is preferably 1 ⁇ m to 80 ⁇ m, and as a method of forming the metal electrode layer 18 suitable for such a film thickness, a printing method of inkjet or screen printing material paste, or a plating method Can be mentioned.
  • the present invention is not limited to this, and in the case of employing a vacuum process, vapor deposition or sputtering may be employed.
  • the width of the comb teeth of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n is preferably substantially the same as the width of the metal electrode layer 18 formed thereon.
  • the present invention is not limited to this, and the width of the metal electrode layer 18 may be narrower than the width of the comb teeth.
  • the width of the metal electrode layer 18 may be wider than the width of the comb-tooth portion as long as the leak of the metal electrode layers 18 is prevented.
  • the conductive semiconductor layer 13, the low reflective layer 14, and the electrode layer 15 are stacked on the crystal substrate 11, passivation of each bonding interface, the semiconductor layer 13 and the interface thereof are performed. Annealing is performed for the purpose of suppressing the generation of defect levels, reducing the resistance of the transparent electrode layer 17, and the like.
  • a heat treatment may be performed by introducing a crystal substrate on which each layer is disposed into an oven heated to 150 ° C. or more and 200 ° C. or less.
  • the atmosphere in the oven may be the atmosphere, more effective annealing can be performed by using hydrogen or nitrogen.
  • the annealing process may be RTA (Rapid Thermal Annealing) process in which the crystal substrate on which each layer is arranged is irradiated with infrared light using an infrared heater.
  • This manufacturing method includes the following first to fifth steps.
  • a crystal substrate 11 having a textured structure is prepared.
  • an intrinsic semiconductor 12U is formed on the main surface 11SU on the front side of the crystal substrate 11, and an antireflection layer 14 is formed on the layer 12U.
  • the antireflection layer 14 is formed of a material having a light absorption coefficient and a refractive index suitable from the viewpoint of light confinement.
  • Such materials include silicon nitride, silicon oxide, or silicon oxynitride.
  • an intrinsic semiconductor layer 12p is formed of, for example, an i-type amorphous silicon layer. Then, next, the p-type semiconductor layer 13p is formed on the intrinsic semiconductor layer 12p. That is, the p-type semiconductor layer 13p is formed on the main surface 11SB side which is the one main surface of the crystal substrate 11 [first step].
  • a multilayer liftoff layer LF [first liftoff layer LF1, second liftoff layer LF2] is formed on the p-type semiconductor layer 13p.
  • the first lift-off layer LF1 and the second lift-off layer LF2 containing, for example, a silicon-based thin film material are stacked in this order on the p-type semiconductor layer 13p [second step]. That is, the first lift-off layer LF1 is formed on the p-type semiconductor layer 13p, and the second lift-off layer LF2 is formed on the first lift-off layer LF1.
  • the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p are removed at a part of the main surface 11SB of the crystal substrate 11, thereby the p-type semiconductor While the non-forming region NA without the layer 13p is produced, at least the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2 are left in the remaining part of the main surface 11SB [third step].
  • Such a patterning process is realized by a photolithography method, for example, a resist film (not shown) is partially formed and a portion not covered with the resist film is etched.
  • a resist film (not shown) is partially formed and a portion not covered with the resist film is etched.
  • FIG. 1D by patterning these layers of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2, a part of the main surface 11SB of the crystal substrate 11 To form the non-forming region NA (details of the non-forming region NA will be described later).
  • etching solution [second etching solution] used in such a third step for example, a mixed solution of hydrofluoric acid and an oxidizing solution (for example, hydrofluoric nitric acid) or ozone may be used as the hydrofluoric acid.
  • a dissolved solution hereinafter, ozone / hydrofluoric acid solution
  • the etchant contributing to the etching of the lift-off layer LF is hydrogen fluoride.
  • patterning is not limited to wet etching using a resist film and an etching solution.
  • the patterning may be, for example, dry etching or pattern printing using an etching paste or the like.
  • the non-forming area NA on the main surface 11SB of the crystal substrate 11 and the surface LF2s (see FIG. 1D) of the second lift-off layer LF2 are stacked and remain (second lift-off layer LF2).
  • An n-type semiconductor layer 13n is formed on the intrinsic semiconductor layer 12n and further on the layer 12n so as to cover the side surface SE of the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p).
  • the surface LF2s and the side surface SE are also referred to as the remaining surface). That is, the n-type semiconductor layer 13n is formed by being stacked on the remaining second lift-off layer LF2 and the non-formation region NA of the one main surface 11SB of the crystal substrate 11 [fourth step].
  • the multilayer liftoff layer LF is removed using an etching solution [first etching solution] to form a layer (intrinsic semiconductor layer 12 n, The n-type semiconductor layer 13 n) is also removed from the crystal substrate 11. That is, using the etching solution, the first lift-off layer LF1 and the second lift-off layer LF2 are removed, and the n-type semiconductor layer 13n stacked on the second lift-off layer LF2 is also removed [the fifth step].
  • a hydrofluoric acid is mentioned, for example.
  • the etching rates of the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2 with respect to the etching solution satisfy the following relational expression 1.
  • transparent electrode layers 17 (17p, 17n) are formed on the back side of the crystal substrate 11 by, for example, a sputtering method using a mask so as to form the separation grooves 25.
  • a film made of a transparent conductive oxide is formed without using a mask, and then a photolithographic method is performed on the p-type semiconductor layer 13p n-type semiconductor layer 13n. It may be formed by etching so as to leave only the transparent conductive oxide film.
  • the separation groove 25 makes it difficult to generate a leak current. Furthermore, on the transparent electrode layer 17, for example, a linear metal electrode layer 18 (18p, 18n) is formed using a mesh screen (not shown) having an opening. Thus, the formation of each layer in the back contact solar cell 10 is completed.
  • the lift-off layer LF is formed of two or more layers, and a layer having a faster etching rate is provided on the crystal substrate 11 side (see Relational Expression 1). This is to simplify the patterning step while improving the etching accuracy in the third and fifth steps by utilizing the difference in the etching rate in the lift-off layer LF.
  • the etching accuracy that is, the accurate formation of the conductive semiconductor layer 13 or the electrode layer 15 is important in order to prevent undesired short circuit or leak current in the solar cell 10.
  • a part of the lift-off layer LF plays a role of a mask that prevents the deposition of the etching solution on the p-type semiconductor layer [first conductive semiconductor layer] 13p of the desired part. Therefore, the width of the patterned p-type semiconductor layer 13p depends on the width of the remaining lift-off layer LF.
  • the etching rate of the lift-off layer LF with respect to the etching solution is too fast, the lift-off layer LF is likely to be etched excessively in the width direction (because the width becomes narrower than desired). It may decrease. For this reason, it is not preferable that the etching rate of the lift-off layer with respect to the etching solution [second etching solution] is too fast.
  • the n-type semiconductor layer [second conductivity type semiconductor layer] 13n covers not only the lift-off layer LF left in the third step but also a desired position (remaining p-type semiconductor layer 13p Is also formed next to the non-molding area NA).
  • the etching rate of the lift-off layer LF with respect to the etchant [first etching solution] should be fast preferable. Also, from the viewpoint of productivity, a faster etching rate is preferable because the processing time is shortened.
  • the lift-off layer LF is required to have opposite etching characteristics in the third step and the fifth step, but this characteristic is realized if the lift-off layer LF satisfies [relational formula 1].
  • the first lift-off layer LF1 is dissolved most quickly, and the second lift layer LF2 thereabove is also separated from the crystal substrate 11 This becomes easy (of course, the second lift layer LF2 may be dissolved as well as the separation), and the p-type semiconductor layer 13p exposed from the first lift-off layer LF1 also dissolves.
  • the third step for example, as shown in FIG. 1D, through the side surface SE of the stacked and remaining layers (the second lift-off layer LF2, the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p)
  • the first lift-off layer LF1 under the second lift-off layer LF2 is eroded by etching, the first lift-off layer LF1 which has not been eroded remains, so that the second lift-off layer LF2 linked to it also remains. Therefore, the remaining second lift-off layer LF2 functions as the lift-off layer LF in the fifth step.
  • the etching rate is slower than the first lift-off layer LF1 and the second lift-off layer LF2 because the p-type semiconductor layer 13p of the desired portion must remain.
  • the n-type semiconductor layer 13n is also removed even if the second lift-off layer LF2 on the layer LF1 remains. . That is, the second conductivity type semiconductor layer LF2, and by extension, the n-type semiconductor layer 13n thereon is lifted off.
  • the multilayer lift-off layer LF is a layer which aims to be almost completely removed in the fifth step, but is etched because it is not excessively etched in the steps up to here (for example, the third step).
  • the rate is designed such that the etching rate of the p-type semiconductor layer 13p ⁇ the etching rate of the second lift-off layer LF2 ⁇ the etching rate of the first lift-off layer LF1 [relation equation 1].
  • the p-type semiconductor layer 13p of the desired portion must remain in the fifth step, so the p-type semiconductor layer 13 is p-type more than the etching rate of the first lift-off layer LF1 and the second lift-off layer LF2.
  • the etching rate of the semiconductor layer 13p is slow.
  • the n-type semiconductor layer 13n is patterned without performing etching using a resist film, for example, in the fifth step. . That is, with the method of manufacturing the solar cell 10 described above, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured. Moreover, since the pattern accuracy is also increased, short circuit or leak in the solar cell 10 is also prevented, and a high output can be obtained from the solar cell 10.
  • the lift-off layer LF of multiple layers is formed on the p-type semiconductor layer 13p formed in the first step. Then, such lift-off layer LF is patterned (for example, etched) in the third step, and is removed together with the n-type semiconductor layer 13n in the fifth step. Therefore, the lift-off layer LF is made to contain a material to be dissolved, for example, a metal-based thin film material, a metal oxide-based thin film material, or a silicon-based thin film material with respect to the etching solution used in the third and fifth steps. Is preferably formed. Among such materials, a silicon-based thin film material is preferable. For example, a multilayer lift-off layer LF mainly containing silicon oxide is preferable.
  • the etching solution in the fifth step is preferably hydrofluoric acid.
  • the etchant for etching the lift-off layer LF is hydrogen fluoride.
  • the number of stacked lift-off layers LF may be two or more, two layers are preferable from the viewpoint of productivity.
  • the main component of the p-type semiconductor layer 13p is silicon, and the main components of the first lift-off layer LF1 and the second lift-off layer LF2 are silicon oxide.
  • the etching rate is increased.
  • the height of the refractive index of each layer changes depending on the density of the density, for example, the following is preferable (the higher the density, the higher the refractive index and the lower the etching rate, and the density is If it is low, the refractive index will also be low, and the etching rate will increase.
  • first lift-off layer LF1 and the second lift-off layer LF2 be layers containing silicon oxide as a main component, and the refractive index measured at a wavelength of 550 nm satisfy the following relational expression.
  • the second lift-off layer LF2 having a refractive index higher than that of the first lift-off layer LF1 may be formed after the first lift-off layer LF1.
  • the value of x when the main component is expressed as SiOx satisfy the following relational expression .
  • the value of x is preferably in the range of 0.5 or more and 2.2 or less, more preferably 1.2 or more and 2.0 or less, and particularly preferably 1.4 or more and 1.9 or less. Within each range, it is preferable that the magnitude relationship be designed.
  • the film thickness of the lift-off layer LF is preferably 50 nm or more and 600 nm or less as a whole, and particularly preferably 100 nm or more and 450 nm or less. Within this range, it is preferable that the second lift-off layer LF2 be thicker than the first lift-off layer LF1.
  • the texture structure TX is also formed on the back side of the crystal substrate 11 Can improve the light capture efficiency.
  • the intrinsic semiconductor layer 12 may be etched to expose a part of the crystal substrate 11. By doing this, a decrease in carrier lifetime generated by photoelectric conversion may be suppressed.
  • the n-type semiconductor layer 13n is formed.
  • the n-type semiconductor layer 13 n is formed on the entire back surface of the crystal substrate 11. That is, it is formed not only on part of the surface of the crystal substrate 11 without the p-type semiconductor layer 13p but also on the lift-off layer LF.
  • the intrinsic semiconductor layer 12n may be formed between the crystal substrate 11 and the n-type semiconductor layer 13n.
  • the cleaning step is intended to remove defects or impurities generated on the surface of the crystal substrate 11 in the third step, and is treated with, for example, hydrofluoric acid.
  • the etching solution is easily infiltrated into the semiconductor layer 13 due to the unevenness, so that the layers 13 are easily removed, that is, patterned It will be easier.
  • FIG. 1D in the non-formation region NA, a part of the main surface 11SB of the crystal substrate 11 is exposed, but the present invention is not limited to this.
  • the intrinsic semiconductor layer 12p may remain.
  • the p-type semiconductor layer 13p is removed from a part of the main surface 11SB of the crystal substrate 11, so that the region without the layer 13p (disappeared) may be the non-formation region NA.
  • the process of forming the intrinsic semiconductor layer 12 n can be reduced before the n-type semiconductor layer 13 n is formed by stacking with respect to the remaining second lift-off layer LF 2 and the non-formation area NA.
  • the opening is formed in the second lift-off layer LF2, and the etching solution [the second etching solution] is attached to the first lift-off layer LF1 through the opening to form the first lift-off layer LF1.
  • the first lift layer LF1 is removed, and the etching solution is also attached to the p-type semiconductor layer 13p, and the p-type semiconductor layer is removed. You may remove 13p.
  • a method of forming the opening for example, using a resist having an opening by a photolithography method, eliminating by a laser or the like, or generating a crack may be mentioned.
  • the entire lift-off layer LF is efficiently removed in order to ensure that the etching solution adheres to the second lift-off layer LF2 and further to the first lift-off layer LF1. Ru.
  • the removal of the lift-off layer LF ensures that the etching solution also adheres to and is removed from the p-type semiconductor layer 13p covered with the layer LF. That is, the unmelted residue of the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p is suppressed.
  • the concentration of the etching agent contained in the etching solution [first etching solution] used in the fifth step is higher than the concentration of the etching agent contained in the etching solution [second etching solution] used in the third step High is preferable.
  • the lift-off layer is removed in the fifth step while leaving a part of the lift-off layer LF, and desired patterning can be easily performed.
  • the semiconductor layer used in the first step is a p-type semiconductor layer, but is not limited to this, and may be an n-type semiconductor layer.
  • the conductivity type of the crystal substrate is not particularly limited, and may be p-type or n-type.
  • Crystal substrate First, as a crystal substrate, a single crystal silicon substrate having a thickness of 200 ⁇ m was adopted. Then, anisotropic etching was performed on both sides of the single crystal silicon substrate. This formed a pyramidal texture structure on the crystal substrate.
  • the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (film thickness 8 nm) made of silicon was formed on the main surfaces on both sides of the crystal substrate.
  • the film forming conditions were such that the substrate temperature was 150 ° C., the pressure was 120 Pa, the SiH 4 / H 2 flow ratio was 3/10, and the power density was 0.011 W / cm 2 .
  • P-type semiconductor layer (first conductivity type semiconductor layer)
  • a crystal substrate having an intrinsic semiconductor layer formed on both principal surfaces was introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon-based thin film (10 nm in film thickness) was formed on the intrinsic semiconductor layer on the principal surface on the back side 1 step].
  • the film forming conditions were such that the substrate temperature was 150 ° C., the pressure was 60 Pa, the SiH 4 / B 2 H 6 flow ratio was 1/3, and the power density was 0.01 W / cm 2 .
  • the B 2 H 6 gas flow rate is a flow rate of a dilution gas in which B 2 H 6 is diluted to 5000 ppm with H 2 .
  • the deposition conditions for the first lift-off layer were a substrate temperature of 180 ° C., a pressure of 50 Pa, a SiH 4 / CO 2 flow ratio of 1/7, and a power density of 0.3 W / cm 2 .
  • the deposition conditions for the second lift-off layer were the same as those for the first lift-off layer except that the SiH 4 / CO 2 flow ratio was 1 ⁇ 5. Then, the film formation time was adjusted so that both lift-off layers had a predetermined film thickness.
  • the value of x indicates that the first lift-off layer is larger than the second lift-off layer. confirmed.
  • a photosensitive resist film was formed on the main surfaces on both sides of the crystal substrate on which the p-type semiconductor layer was formed.
  • the second lift-off layer, the first lift-off layer, and the p-type semiconductor layer were removed by photolithography on a part of the backside main surface by photolithography to form a non-formed area where the p-type semiconductor layer disappeared.
  • at least the p-type semiconductor layer, the first lift-off layer, and the second lift-off layer were left in the remaining part of the back side main surface [the third step].
  • the crystal substrate on which various layers were formed was immersed in hydrofluorinated nitric acid containing 1% by weight of hydrogen fluoride as an etchant to remove the first lift-off layer and the second lift-off layer. Thereafter, the p-type semiconductor layer exposed by the removal of the first lift-off layer and the second lift-off layer and the intrinsic semiconductor layer immediately below it were removed. That is, in the non-forming region, the back principal surface of the crystal substrate was exposed.
  • Example 4 a hydrofluorinated nitric acid containing 5% by weight of hydrogen fluoride was used, and the immersion time was made shorter than in the other examples.
  • the crystal substrate having the exposed back main surface washed with 2 wt% hydrofluoric acid is introduced into a CVD apparatus, and the intrinsic semiconductor layer (film thickness 8 nm) is formed on the back main surface in the same manner.
  • an n-type hydrogenated amorphous silicon-based thin film (film thickness 10 nm) was formed on the layer [step 4].
  • the substrate temperature was 150 ° C.
  • the pressure was 60 Pa
  • the PH 3 gas flow rate is a flow rate of a dilution gas in which PH 3 is diluted to 5000 ppm by H 2 .
  • Electrode layer, low reflective layer Using a magnetron sputtering apparatus, a film (film thickness 100 nm) as a base of the transparent electrode layer was formed on the conductive semiconductor layer in the crystal substrate. In addition, as a low reflection layer, a silicon nitride layer was formed on the light receiving surface side of the crystal substrate.
  • a transparent conductive oxide indium oxide (ITO) containing 10% by weight of tin oxide is used as a target, a mixed gas of argon and oxygen is introduced into the chamber of the apparatus, and the pressure in the chamber is introduced.
  • ITO indium oxide
  • argon and oxygen is introduced into the chamber of the apparatus, and the pressure in the chamber is introduced.
  • the mixing ratio of argon and oxygen was set to a condition where the resistivity is lowest (so-called bottom).
  • film formation was performed at a power density of 0.4 W / cm 2 using a DC power supply.
  • a transparent electrode layer was formed by etching so as to leave only a film made of a transparent conductive oxide on the p-type semiconductor layer and n-type semiconductor layer by photolithography.
  • the transparent electrode layer completed by this etching prevented conduction between the film made of the transparent conductive oxide on the p-type semiconductor layer and the film made of the transparent conductive oxide on the n-type semiconductor layer.
  • silver paste Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.
  • the metal electrode layer was formed.
  • the refractive index of a thin film formed under the same conditions on a glass substrate was determined by spectroscopic ellipsometry (trade name M2000, manufactured by J. A. Woolam). From the fitting results, the refractive index at a wavelength of 550 nm was extracted.
  • the conversion efficiency (Eff (%)) of the solar cell was measured by irradiating standard sunlight of AM (air mass) 1.5 with a light quantity of 100 mW / cm 2 by a solar simulator.
  • the conversion efficiency of Example 1 was 1.00, and the relative value was described in Table 1.
  • the etching rate of the first lift-off layer was 6.5 nm / sec and the etching rate of the second lift-off layer was 0.3 nm / sec with respect to 3 wt% hydrofluoric acid.
  • Examples 1 to 4 were both excellent in pattern accuracy and solar cell characteristics.
  • the time required for the removal of the lift-off layer in the fifth step was shorter in the case of Example 2 in which the film thickness of the first lift-off layer was thicker, and the productivity was more excellent.
  • Example 3 in which the thickness of the first lift-off layer was the thinnest and the first lift-off layer was thinner than the second lift-off layer, the pattern accuracy was particularly excellent.
  • Example 4 The pattern accuracy of Example 4 was somewhat lower than that of Example 1 in terms of the uniformity in the cell, but it did not adversely affect the solar cell characteristics.
  • the result is that the solar cell characteristics become better by laminating the lift-off layer.
  • both the third step and the fifth step are patterned and etched uniformly and accurately, so that an electrical contact with the array of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer or the electrode layer ( This is considered to be due to the fact that it is possible to improve the series resistance rise suppression).

Abstract

The present invention is for efficiently manufacturing a back-contact solar cell. A manufacturing method for a solar cell 10 that includes a crystal substrate 11 includes first through fifth steps. In the second step, a first lift-off layer LF1 and a second lift-off layer LF2 are formed on a p-type semiconductor layer 13p so as to be layered in that order. In the fourth step, an n-type semiconductor layer 13n is formed layered onto the second lift-off layer LF2 remaining after the third step and onto a non-formation region where no p-type semiconductor layer 13p has been formed. In the fifth step, a first etching solution is used to remove the first lift-off layer LF1 and the second lift-off layer LF2 so that the n-type semiconductor layer 13n layered onto the second lift-off layer LF2 is also removed. The etching speeds of the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2 by the first etching solution fulfil a specific relational expression.

Description

太陽電池の製造方法Method of manufacturing solar cell
 本発明は、太陽電池の製造方法に関する。 The present invention relates to a method of manufacturing a solar cell.
 一般的な太陽電池は、半導体基板の両主面(受光面・裏面)に電極を配置させた両面電極型であるが、昨今、電極による遮蔽損のない太陽電池として、裏面のみに電極を配置させたバックコンタクト(裏面電極)型太陽電池が開発されている。 A common solar cell is a double-sided electrode type in which electrodes are disposed on both main surfaces (light receiving surface and back surface) of a semiconductor substrate, but these days, electrodes are disposed only on the back surface as a solar cell without shielding loss by the electrodes. A back contact (back electrode) type solar cell has been developed.
 バックコンタクト型太陽電池は、裏面にp型半導体層およびn型半導体層等の半導体層パターンを高精度で形成せねばならず、両面電極型の太陽電池に比べて製造方法が煩雑になる。製造方法を簡略にするための技術として、特許文献1に示されるように、リフトオフ法による半導体層パターンの形成技術が挙げられる。 In the back contact type solar cell, semiconductor layer patterns such as a p-type semiconductor layer and an n-type semiconductor layer have to be formed with high precision on the back surface, and the manufacturing method becomes complicated compared to a double-sided electrode type solar cell. As a technique for simplifying the manufacturing method, as shown in Patent Document 1, there is a technique for forming a semiconductor layer pattern by a lift-off method.
 すなわち、酸化ケイ素(SiOx)または窒化ケイ素をリフトオフ層(マスク層または犠牲層ともいう)として用い、そのリフトオフ層を除去することで、その上に形成された半導体層を除去し、半導体層パターンを形成するパターニング技術の開発が進められている。 That is, silicon oxide (SiOx) or silicon nitride is used as a lift-off layer (also referred to as a mask layer or a sacrificial layer), and the lift-off layer is removed to remove the semiconductor layer formed thereon, thereby removing the semiconductor layer pattern. Development of patterning technology to be formed is in progress.
特開2013-120863号公報JP, 2013-120863, A
 しかしながら、高精度の半導体層パターンをリフトオフ法により形成するためには、リフトオフ層を除去する前にリフトオフ層自体のパターニング等を実施する必要があるなど、生産性が必ずしも高くないといった課題がこれまであった。 However, in order to form a semiconductor layer pattern with high accuracy by the lift-off method, it is necessary to perform patterning etc. of the lift-off layer itself before removing the lift-off layer, and so on. there were.
 本発明は、上記の課題を解決するためになされたものである。そして、その目的は、バックコンタクト型の太陽電池を、効率よく製造することにある。 The present invention has been made to solve the above-mentioned problems. And the purpose is to manufacture a back contact type solar cell efficiently.
 本発明に係る結晶基板を含む太陽電池の製造方法では、
前記結晶基板の一方主面の側に、第1導電型半導体層を形成する第1工程と、
前記第1導電型半導体層に対して、シリコン系薄膜材料を含む、第1リフトオフ層および第2リフトオフ層を、この順で積み重ねて形成する第2工程と、
前記一方主面の一部にて、前記第2リフトオフ層、前記第1リフトオフ層、および前記第1導電型半導体層を除去することで、前記第1導電型半導体層の非形成領域を生じさせる一方、前記一方主面の残部にて、前記第1導電型半導体層、前記第1リフトオフ層、および前記第2リフトオフ層を残す第3工程と、
前記の残った前記第2リフトオフ層、および、前記非形成領域に対して、第2導電型半導体層を、積み重ねて形成する第4工程と、
第1エッチング溶液を用いて、前記第1リフトオフ層および前記第2リフトオフ層を除去して、前記第2リフトオフ層に積み重なる前記第2導電型半導体層をも除去する第5工程と、
を含み、
前記第1エッチング溶液に対する第1導電型半導体層、第1リフトオフ層、および、第2リフトオフ層のエッチング速度が、以下の関係式を満たす。
  第1導電型半導体層のエッチング速度 < 第2リフトオフ層のエッチング速度 < 第1リフトオフ層のエッチング速度 …[関係式1]
In a method of manufacturing a solar cell including a crystal substrate according to the present invention,
A first step of forming a first conductive type semiconductor layer on the side of one main surface of the crystal substrate;
A second step of forming a first lift-off layer and a second lift-off layer, which include a silicon-based thin film material, on the first conductive type semiconductor layer in the order of stacking;
By removing the second lift-off layer, the first lift-off layer, and the first conductive semiconductor layer on a part of the one main surface, a non-formation region of the first conductive semiconductor layer is generated. On the other hand, a third step of leaving the first conductive type semiconductor layer, the first lift off layer, and the second lift off layer in the remaining portion of the one main surface;
Forming a second conductive type semiconductor layer on the remaining second lift-off layer and the non-forming region, and forming a fourth step;
A fifth step of removing the first lift-off layer and the second lift-off layer using a first etching solution and also removing the second conductive type semiconductor layer stacked on the second lift-off layer;
Including
The etching rates of the first conductive semiconductor layer, the first lift-off layer, and the second lift-off layer with respect to the first etching solution satisfy the following relational expression.
Etching rate of first conductive type semiconductor layer <etching rate of second lift-off layer <etching rate of first lift-off layer ... [Relational equation 1]
 本発明によれば、バックコンタクト型の太陽電池が、効率よく製造される。 According to the present invention, a back contact type solar cell is efficiently manufactured.
太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a solar cell. 太陽電池を示す断面図である。It is sectional drawing which shows a solar cell. 太陽電池の電極層を示す平面図である。It is a top view which shows the electrode layer of a solar cell.
 本発明の一実施形態について説明すると以下の通りであるが、これに限定されるものではない。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。 An embodiment of the present invention will be described as follows, but is not limited thereto. In addition, although hatching, a member code | symbol, etc. may be abbreviate | omitted for convenience, in this case, another drawing shall be referred. Also, the dimensions of the various members in the drawings have been adjusted for the sake of convenience.
 以下、太陽電池10について詳細に説明する。図2の模式的な断面図は、シリコン製の結晶基板11を用いた太陽電池10の構成図を示す。この太陽電池10には2つの主面11S(11SU,11SB)があり、光が入射する一方側に相当する結晶基板11の主面[表側主面]11SUの側を表側、これに対して反対側にあたる他方の主面[裏側主面]11SBの側を裏側と称する。そして、便宜上、表側は裏側よりも積極的に受光させようとする側(受光側)とし、積極的に受光させない裏側を非受光側として説明する。 The solar cell 10 will be described in detail below. The schematic cross-sectional view of FIG. 2 shows a configuration diagram of a solar cell 10 using a crystal substrate 11 made of silicon. This solar cell 10 has two main surfaces 11S (11SU, 11SB), and the main surface [front side main surface] 11SU of the crystal substrate 11 corresponding to one side on which light is incident is the front side, opposite to this The side of the other main surface [back side main surface] 11SB corresponding to the side is referred to as the back side. Then, for convenience, the front side will be described as a side (light receiving side) that is to receive light more positively than the back side, and the back side not actively receiving light will be described as a non-light receiving side.
 また、この太陽電池は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を主面の一方側(裏側)のみに配置させたバックコンタクト型(裏面電極型)太陽電池10である。 Further, this solar cell is a so-called heterojunction crystalline silicon solar cell, and is a back contact type (back electrode type) solar cell 10 in which an electrode layer is disposed only on one side (back side) of the main surface.
 太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p,n型半導体層13n)、低反射層14、および、電極層15(透明電極層17,金属電極層18)を含む。 The solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal) An electrode layer 18) is included.
 なお、以降では、便宜上、p型半導体層13pまたはn型半導体層13nに個別に対応付けされる部材には、部材番号の末尾に「p」/「n」を付すことがある。また、p型、n型のように、導電型は相違することから、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称しても構わない。 In the following, for convenience, “p” / “n” may be added to the end of the member numbers for members individually associated with the p-type semiconductor layer 13p or the n-type semiconductor layer 13n. Further, as in the p-type and n-type, since the conductivity types are different, one conductivity type may be referred to as “first conductivity type”, and the other conductivity type may be referred to as “second conductivity type”.
 結晶基板11は、単結晶シリコンで形成された基板であっても多結晶シリコンで形成された半導体基板であっても構わない。以下では、単結晶シリコン基板を例に挙げて説明する。 The crystal substrate 11 may be a substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon. Hereinafter, a single crystal silicon substrate will be described as an example.
 結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン原子)を含有するn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素原子)を有するp型単結晶シリコン基板であっても構わないが、以下では、キャリア寿命の長いといわれるn型の結晶基板を例に挙げて説明する。 The conductivity type of the crystal substrate 11 is an impurity for introducing holes to silicon atoms (even an n-type single crystal silicon substrate containing an impurity (for example, phosphorus atom) for introducing electrons to silicon atoms). For example, a p-type single crystal silicon substrate having a boron atom may be used, but in the following, an n-type crystal substrate which is said to have a long carrier life will be described as an example.
 また、結晶基板11は、受けた光を閉じこめておく観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とで形成されるテクスチャ構造TX[第1テクスチャ構造]が有ると好ましい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板における(100)面のエッチングレートと(111)面のエッチングレートとの差異を応用した異方性エッチングによって形成される。 In addition, the crystal substrate 11 has a texture structure TX [first texture structure] formed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of closing the received light. It is preferable if it exists. The texture structure TX (concave and convex surface) is formed, for example, by anisotropic etching applying the difference between the etching rate of the (100) plane and the etching rate of the (111) plane in the crystal substrate.
 また、結晶基板11の厚みは、250μm以下であると好ましい。なお、厚みを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。そこで、以降、この垂直方向、すなわち厚みを測定する方向を厚み方向とする。 The thickness of the crystal substrate 11 is preferably 250 μm or less. The measurement direction in the case of measuring the thickness is perpendicular to the average surface of the crystal substrate 11 (the average surface means the surface of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is referred to as the thickness direction.
 結晶基板11の厚みは、250μm以下であると、シリコンの使用量が減少するため、シリコン基板が確保し易くなり、低コスト化も図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏側のみで回収するバックコンタクト構造では、各キャリアの回収を効率的に行う観点からも好ましい。 When the thickness of the crystal substrate 11 is 250 μm or less, the amount of silicon used is reduced, so that the silicon substrate can be easily secured, and cost reduction can also be achieved. In addition, a back contact structure in which holes and electrons generated by photoexcitation in the silicon substrate are collected only on the back side is preferable from the viewpoint of efficiently collecting each carrier.
 一方で、結晶基板11の厚みが過度に薄いと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりしかねない。そのため、結晶基板の厚みは、50μm以上が好ましく、70μm以上がより好ましい。なお、結晶基板の主面にテクスチャ構造が形成されている場合、結晶基板の厚みは、受光側および裏側のそれぞれの凹凸構造における対向する凸の頂点を結んだ直線間の距離の平均値で表される。 On the other hand, if the thickness of the crystal substrate 11 is excessively thin, mechanical strength may be reduced, external light (sunlight) may not be sufficiently absorbed, and the short circuit current density may be reduced. Therefore, the thickness of the crystal substrate is preferably 50 μm or more, and more preferably 70 μm or more. In the case where the texture structure is formed on the main surface of the crystal substrate, the thickness of the crystal substrate is represented by the average value of the distance between straight lines connecting the opposing convex apexes of the concave and convex structures on the light receiving side and the back side. Be done.
 真性半導体層12(12U,12p,12n)は、結晶基板11の両主面11S(11SU,11SB)を覆うことで、結晶基板11への不純物拡散を抑えつつ表面パッシベーションを行う。なお、「真性(i型)」との用語は、導電型不純物を含まない完全に真性であるものに限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物またはp型不純物を含む「弱n型」または「弱p型」の実質的に真性な層も包含する。 The intrinsic semiconductor layer 12 (12U, 12p, 12n) covers both main surfaces 11S (11SU, 11SB) of the crystal substrate 11 to perform surface passivation while suppressing impurity diffusion into the crystal substrate 11. Note that the term "intrinsic (i-type)" is not limited to completely intrinsic ones that do not contain a conductive impurity, and a very small amount of n-type impurities or p-types can be used as long as the silicon-based layer can function as an intrinsic layer. Also included are "weak n-type" or "weak p-type" substantially intrinsic layers that contain impurities.
 真性半導体層12の材料は、特に限定されるものではないが、非晶質シリコン系薄膜であると好ましく、シリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であるとより好ましい。 The material of the intrinsic semiconductor layer 12 is not particularly limited, but is preferably an amorphous silicon-based thin film, and is preferably a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen. It is more preferable that
 また、真性半導体層12の厚みは、特に限定されるものではないが、2nm以上20nm以下であると好ましい。厚みが2nm以上であると、パッシベーション層としての効果が高まり、厚みが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The thickness of the intrinsic semiconductor layer 12 is not particularly limited, but is preferably 2 nm or more and 20 nm or less. When the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, it is possible to suppress a decrease in conversion characteristics caused by the increase in resistance.
 真性半導体層12の形成方法は、特に限定されるものではないが、プラズマCVD(Chemical Vapor Deposition)法であると好ましい。単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行えるためである。また、プラズマCVD法であれば、真性半導体層の膜中水素濃度を膜厚方向で変化させることで、キャリア回収を行う上で有効なエネルギーギャッププロファイルの形成も行える。 The method for forming the intrinsic semiconductor layer 12 is not particularly limited, but is preferably the plasma CVD (Chemical Vapor Deposition) method. This is because the substrate surface can be effectively passivated while suppressing the diffusion of impurities into single crystal silicon. In the plasma CVD method, an energy gap profile that is effective for carrier recovery can also be formed by changing the hydrogen concentration in the intrinsic semiconductor layer in the film thickness direction.
 なお、プラズマCVD法による薄膜の形成条件としては、例えば、基板温度100℃以上300℃以下、圧力20Pa以上2600Pa以下、高周波パワー密度0.003W/cm以上0.5W/cm以下が好適である。 As conditions for forming a thin film by plasma CVD, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / cm 2 are preferable. is there.
 また、薄膜の形成に使用される原料ガスとしては、真性半導体層12の場合、SiH、Si等のシリコン含有ガス、または、それらのガスとHを混合したものが好適である。 In the case of the intrinsic semiconductor layer 12, as a source gas used for forming a thin film, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is preferable. .
 なお、上記ガスに、CH、NH、GeH等の異種元素を含むガスを添加して、シリコンカーバイド、シリコンナイトライド、または、シリコンゲルマニウム等のシリコン合金を形成することで、適宜、薄膜のエネルギーギャップを変更しても構わない。 Note that a thin film is suitably formed by adding a gas containing different elements such as CH 4 , NH 3 , GeH 4 to the above gas to form a silicon alloy such as silicon carbide, silicon nitride, or silicon germanium. You may change the energy gap of
 導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図2に示すように、p型半導体層13pは、結晶基板11の裏側の一部に真性半導体層12pを介して形成されており、n型半導体層13nは、結晶基板11の裏側の他の一部に真性半導体層12nを介して形成される。つまり、p型半導体層13pおよびn型半導体層13nと結晶基板11との間に、パッシベーションの役割を果たす中間層として、真性半導体層12が介在する。 Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 2, the p-type semiconductor layer 13 p is formed on a part of the back side of the crystal substrate 11 via the intrinsic semiconductor layer 12 p, and the n-type semiconductor layer 13 n is other than the back side of the crystal substrate 11. It is formed in part via the intrinsic semiconductor layer 12n. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n and the crystal substrate 11 as an intermediate layer which plays a role of passivation.
 p型半導体層13pおよびn型半導体層13nの膜厚は特に限定されるものではないが、2nm以上20nm以下であると好ましい。厚みが2nm以上であると、パッシベーション層としての効果が高まり、厚みが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The film thickness of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n is not particularly limited, but is preferably 2 nm or more and 20 nm or less. When the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, it is possible to suppress a decrease in conversion characteristics caused by the increase in resistance.
 また、p型半導体層13pおよびn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが、電気的に分離されるようにパターン化されて配置される。導電型半導体層13の幅(例えば線状のパターンであれば短手長)は、50μm以上3000μm以下であると好ましく、65μm以上1000μm以下であるとより好ましく、80μm以上500μm以下であるとより一層好ましい。 The p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n are patterned and arranged so that the p-type semiconductor layer 13 p and the n-type semiconductor layer 13 n are electrically separated on the back side of the crystal substrate 11. Ru. The width of the conductive semiconductor layer 13 (e.g., a short pattern in the case of a linear pattern) is preferably 50 μm to 3000 μm, more preferably 65 μm to 1000 μm, and still more preferably 80 μm to 500 μm. .
 また、結晶基板11で生成したキャリアが、導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きいため、輸送損を低減させる観点から、p型半導体層13pがn型半導体層13nよりも幅狭であると好ましい。例えば、p型半導体層13pの幅がn型半導体層13nの幅よりも、0.5倍以上0.9倍以下であると好ましく、0.6倍以上0.8倍以下であるとより好ましい。 In addition, when carriers generated in the crystal substrate 11 are extracted through the conductive semiconductor layer 13, the holes have a larger effective mass than the electrons, and thus the p-type semiconductor layer 13 p is n from the viewpoint of reducing the transport loss. It is preferable that the width is narrower than that of the semiconductor layer 13n. For example, the width of the p-type semiconductor layer 13p is preferably 0.5 times to 0.9 times the width of the n-type semiconductor layer 13n, and more preferably 0.6 times to 0.8 times .
 また、p型半導体層13pは、p型のドーパント(ホウ素等)が添加されたシリコン層で、不純物拡散の抑制または直列抵抗抑制の観点から、非晶質シリコンで形成されると好ましい。一方、n型半導体層13nは、n型のドーパント(リン等)が添加されたシリコン層で、これもp型半導体層13pと同様に非晶質シリコン層で形成されると好ましい。 The p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (such as boron) is added, and is preferably made of amorphous silicon from the viewpoint of suppressing impurity diffusion or suppressing series resistance. On the other hand, the n-type semiconductor layer 13n is a silicon layer to which an n-type dopant (phosphorus or the like) is added, and is preferably formed of an amorphous silicon layer as well as the p-type semiconductor layer 13p.
 なお、原料ガスとしては、SiH若しくはSi等のシリコン含有ガス、または、シリコン系ガスとHとの混合ガスが好ましく用いられる。ドーパントガスとしては、p型半導体層13pの形成にはB等、n型半導体層の形成にはPH等、が好ましく用いられる。また、BまたはPといった不純物の添加量は、微量でよいため、ドーパントガスを原料ガスで希釈させた混合ガスが用いられても構わない。 As a source gas, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixed gas of a silicon-based gas and H 2 is preferably used. As the dopant gas, B 2 H 6 or the like is preferably used to form the p-type semiconductor layer 13 p, and PH 3 or the like is preferably used to form the n-type semiconductor layer. Further, since the amount of addition of the impurity such as B or P may be very small, a mixed gas obtained by diluting the dopant gas with the source gas may be used.
 また、p型半導体層13pまたはn型半導体層13nのエネルギーギャップの調整のために、CH、CO、NH、またはGeH等の異種元素を含むガスが添加され、p型半導体層13pまたはn型半導体層時13nが合金化されても構わない。 Further, in order to adjust the energy gap of the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, a gas containing a different element such as CH 4 , CO 2 , NH 3 or GeH 4 is added. Alternatively, the n-type semiconductor layer 13 n may be alloyed.
 低反射層14は、太陽電池10の受けた光の反射を抑制させる層である。低反射層14の材料としては、光を透過させる透光性の材料であれば、特に限定されるものではないが、例えば、酸化ケイ素、窒化ケイ素、酸化亜鉛、または酸化チタンが挙げられる。また、低反射層の形成方法としては、例えば、酸化亜鉛または酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布しても構わない。 The low reflective layer 14 is a layer that suppresses the reflection of light received by the solar cell 10. The material of the low reflective layer 14 is not particularly limited as long as it is a light transmitting material that transmits light, and examples thereof include silicon oxide, silicon nitride, zinc oxide, and titanium oxide. Further, as a method of forming the low reflection layer, for example, a resin material in which nanoparticles of an oxide such as zinc oxide or titanium oxide are dispersed may be used.
 電極層15は、p型半導体層13pまたはn型半導体層13n上を覆うように形成されることで、それら半導体層13に電気的に接続される。これにより、電極層15は、p型半導体層13pまたはn型半導体層13nを通るキャリアを太陽電池10の外部へ導く輸送層として機能する。 The electrode layer 15 is electrically connected to the semiconductor layer 13 by being formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n. Thus, the electrode layer 15 functions as a transport layer for guiding carriers passing through the p-type semiconductor layer 13p or the n-type semiconductor layer 13n to the outside of the solar cell 10.
 なお、電極層15は、導電性の高い金属のみで形成されても構わないが、p型半導体層13p,n型半導体層13nとの電気的接合の観点、または、電極材料である金属の両半導体層13p,13nへの原子拡散を抑制する観点から、透明導電性酸化物で形成される電極層15を、金属製の電極層とp型半導体層13p,n型半導体層13nとの間に設けると好ましい。 The electrode layer 15 may be formed of only a metal having high conductivity, but the viewpoint of electrical connection with the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or both of the metals that are electrode materials. From the viewpoint of suppressing atomic diffusion into the semiconductor layers 13p and 13n, the electrode layer 15 formed of a transparent conductive oxide is formed between the metal electrode layer and the p-type semiconductor layer 13p and the n-type semiconductor layer 13n. It is preferable to provide it.
 そこで、本明細書では、透明導電性酸化物で形成される電極層15を透明電極層17、金属製の電極層15を金属電極層18、と称する。また、図3の結晶基板11の裏側の平面図に示すように、櫛歯形状のp型半導体層13pおよびn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部、櫛歯部上に形成される電極層をフィンガー部、と称することがある。 Therefore, in the present specification, the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17 and the electrode layer 15 made of metal is referred to as a metal electrode layer 18. Further, as shown in the plan view on the back side of the crystal substrate 11 in FIG. 3, in the comb-like p-type semiconductor layer 13p and the n-type semiconductor layer 13n, the electrode layer formed on the comb back is a bus bar portion The electrode layer formed on the portion may be referred to as a finger portion.
 透明電極層17は、材料としては特に限定されるものではないが、例えば、酸化亜鉛若しくは酸化インジウム、または、酸化インジウムに種々の金属酸化物、例えば酸化チタン、酸化スズ、酸化タングステン、若しくは酸化モリブデン等を、0.5重量%以上15重量%以下、好ましくは1重量%以上10重量%以下で添加した透明導電性酸化物が挙げられる。 The material of the transparent electrode layer 17 is not particularly limited. For example, zinc oxide or indium oxide, or indium oxide, or various metal oxides such as titanium oxide, tin oxide, tungsten oxide, or molybdenum oxide Etc. may be added in an amount of 0.5% by weight or more and 15% by weight or less, preferably 1% by weight or more and 10% by weight or less.
 また、透明電極層17の厚みは、20nm以上200nm以下が望ましく、このような膜厚に好適な透明電極層の形成方法としては、例えば、スパッタ法等の物理気相堆積法(PVD)、または、有機金属化合物と酸素または水との反応を利用した化学気相堆積法(MOCVD)法等が挙げられる。 The thickness of the transparent electrode layer 17 is preferably 20 nm or more and 200 nm or less. As a method of forming a transparent electrode layer suitable for such a film thickness, for example, physical vapor deposition (PVD) such as sputtering, or And a chemical vapor deposition (MOCVD) method utilizing a reaction of an organometallic compound with oxygen or water.
 金属電極層18は、材料としては特に限定されるものではないが、例えば、銀、銅、アルミニウム、または、ニッケル等が挙げられる。 The material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver, copper, aluminum, and nickel.
 また、金属電極層18の厚みは、1μm以上80μm以下が望ましく、このような膜厚に好適な金属電極層18の形成方法としては、材料ペーストをインクジェット若しくはスクリーン印刷する印刷法、または、めっき法が挙げられる。ただし、これに限定されるものではなく、真空プロセスを採用する場合には、蒸着またはスパッタリング法が採用されても構わない。 Further, the thickness of the metal electrode layer 18 is preferably 1 μm to 80 μm, and as a method of forming the metal electrode layer 18 suitable for such a film thickness, a printing method of inkjet or screen printing material paste, or a plating method Can be mentioned. However, the present invention is not limited to this, and in the case of employing a vacuum process, vapor deposition or sputtering may be employed.
 また、p型半導体層13p、n型半導体層13nの櫛歯部の幅と、それらの上に形成される金属電極層18の幅とは、同程度であると好ましい。ただし、これに限定されることはなく、櫛歯部の幅よりも、金属電極層18の幅が狭くても構わない。また、金属電極層18同士のリークが防止されているのであれば、櫛歯部の幅よりも、金属電極層18の幅が広くても構わない。 The width of the comb teeth of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n is preferably substantially the same as the width of the metal electrode layer 18 formed thereon. However, the present invention is not limited to this, and the width of the metal electrode layer 18 may be narrower than the width of the comb teeth. Moreover, the width of the metal electrode layer 18 may be wider than the width of the comb-tooth portion as long as the leak of the metal electrode layers 18 is prevented.
 なお、結晶基板11に対して、真性半導体層12、導電型半導体層13、低反射層14、および、電極層15を積層させた段階で、各接合界面のパッシベーション、半導体層13およびその界面における欠陥準位の発生抑制、透明電極層17の低抵抗化等を目的として、アニール処理を施す。 When the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflective layer 14, and the electrode layer 15 are stacked on the crystal substrate 11, passivation of each bonding interface, the semiconductor layer 13 and the interface thereof are performed. Annealing is performed for the purpose of suppressing the generation of defect levels, reducing the resistance of the transparent electrode layer 17, and the like.
 アニール処理としては、例えば、各層を配置した結晶基板を150℃以上200℃以下に加熱したオーブンに投入して加熱処理が挙げられる。この場合、オーブン内の雰囲気は、大気でも構わないが、水素または窒素を用いることで、より効果的なアニール処理が行える。また、アニール処理は、各層を配置した結晶基板に対して赤外線ヒーターを用いて赤外線を照射させるRTA(Rapid Thermal Annealing)処理であっても構わない。 As the annealing treatment, for example, a heat treatment may be performed by introducing a crystal substrate on which each layer is disposed into an oven heated to 150 ° C. or more and 200 ° C. or less. In this case, although the atmosphere in the oven may be the atmosphere, more effective annealing can be performed by using hydrogen or nitrogen. Further, the annealing process may be RTA (Rapid Thermal Annealing) process in which the crystal substrate on which each layer is arranged is irradiated with infrared light using an infrared heater.
 ここで図1A~図1Gを用いながら、以上のようなバックコンタクト型の太陽電池10の製造方法について詳説する。この製法では、下記の第1工程~第5工程が含まれる。 Here, the manufacturing method of the back contact type solar cell 10 as described above will be described in detail with reference to FIGS. 1A to 1G. This manufacturing method includes the following first to fifth steps.
 まず、図1Aに示すように、テクスチャ構造を有する結晶基板11を準備する。そして、図1Bに示すように、結晶基板11の表側の主面11SU上に、例えば真性半導体12Uが形成され、さらにその層12U上に、反射防止層14が形成される。なお、この反射防止層14は、光閉じ込めの観点から適した光吸収係数および屈折率を有する材料で形成される。このような材料としては、シリコンナイトライド、シリコンオキサイド、またはシリコンオキシナイトライドが挙げられる。 First, as shown in FIG. 1A, a crystal substrate 11 having a textured structure is prepared. Then, as shown in FIG. 1B, for example, an intrinsic semiconductor 12U is formed on the main surface 11SU on the front side of the crystal substrate 11, and an antireflection layer 14 is formed on the layer 12U. The antireflection layer 14 is formed of a material having a light absorption coefficient and a refractive index suitable from the viewpoint of light confinement. Such materials include silicon nitride, silicon oxide, or silicon oxynitride.
 次に、図1Cに示すように、結晶基板11の裏側の主面11SB上に、例えばi型非晶質シリコン層で真性半導体層12pが形成される。そして、次に、その真性半導体層12p上に、p型半導体層13pが形成される。すなわち、結晶基板11の一方主面である主面11SBの側に、p型半導体層13pが形成される[第1工程]。 Next, as shown in FIG. 1C, on the main surface 11SB on the back side of the crystal substrate 11, an intrinsic semiconductor layer 12p is formed of, for example, an i-type amorphous silicon layer. Then, next, the p-type semiconductor layer 13p is formed on the intrinsic semiconductor layer 12p. That is, the p-type semiconductor layer 13p is formed on the main surface 11SB side which is the one main surface of the crystal substrate 11 [first step].
 また、図1Cに示すように、p型半導体層13pの上に、複層型のリフトオフ層LF[第1リフトオフ層LF1,第2リフトオフ層LF2]を形成する。詳説すると、p型半導体層13pに対して、例えばシリコン系薄膜材料を含む、第1リフトオフ層LF1および第2リフトオフ層LF2を、この順で積み重ねて形成する[第2工程]。すなわち、第1リフトオフ層LF1がp型半導体層13p上に形成され、第2リフトオフ層LF2が第1リフトオフ層LF1上に形成される。 Further, as shown in FIG. 1C, a multilayer liftoff layer LF [first liftoff layer LF1, second liftoff layer LF2] is formed on the p-type semiconductor layer 13p. In detail, the first lift-off layer LF1 and the second lift-off layer LF2 containing, for example, a silicon-based thin film material are stacked in this order on the p-type semiconductor layer 13p [second step]. That is, the first lift-off layer LF1 is formed on the p-type semiconductor layer 13p, and the second lift-off layer LF2 is formed on the first lift-off layer LF1.
 その後、図1Dに示すように、結晶基板11の主面11SBの一部にて、第2リフトオフ層LF2、第1リフトオフ層LF1、およびp型半導体層13pを除去することで、そのp型半導体層13pの無い非形成領域NAを生じさせる一方、主面11SBの残部にて、少なくとも、p型半導体層13p、第1リフトオフ層LF1、および第2リフトオフ層LF2を残す[第3工程]。 Thereafter, as shown in FIG. 1D, the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p are removed at a part of the main surface 11SB of the crystal substrate 11, thereby the p-type semiconductor While the non-forming region NA without the layer 13p is produced, at least the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2 are left in the remaining part of the main surface 11SB [third step].
 このようパターニングの工程は、フォトリソグラフィ法、例えば、一部にレジスト膜(不図示)が形成され、レジスト膜で覆われていない部分がエッチングされることにより実現する。図1Dに示される場合、真性半導体層12p、p型半導体層13p、第1リフトオフ層LF1、および第2リフトオフ層LF2のこれらの層をパターニングすることで、結晶基板11の主面11SBの一部に非形成領域NAを生じさせる(非形成領域NAについての詳細は後述)。 Such a patterning process is realized by a photolithography method, for example, a resist film (not shown) is partially formed and a portion not covered with the resist film is etched. In the case shown in FIG. 1D, by patterning these layers of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2, a part of the main surface 11SB of the crystal substrate 11 To form the non-forming region NA (details of the non-forming region NA will be described later).
 なお、このような第3工程に使用するエッチング溶液[第2エッチング溶液]としては、例えばフッ化水素酸と酸化性溶液との混合溶液(例えばフッ硝酸)、または、オゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ酸液)が挙げられる。また、この場合、リフトオフ層LFのエッチングに寄与するエッチング剤はフッ化水素である。 As an etching solution [second etching solution] used in such a third step, for example, a mixed solution of hydrofluoric acid and an oxidizing solution (for example, hydrofluoric nitric acid) or ozone may be used as the hydrofluoric acid. A dissolved solution (hereinafter, ozone / hydrofluoric acid solution) may be mentioned. In this case, the etchant contributing to the etching of the lift-off layer LF is hydrogen fluoride.
 ただし、パターニングは、レジスト膜およびエッチング溶液を用いたウエットエッチングに限定されるものではない。パターニングは、例えば、ドライエッチングであってもよいし、エッチングペースト等を用いたパターン印刷であっても構わない。 However, patterning is not limited to wet etching using a resist film and an etching solution. The patterning may be, for example, dry etching or pattern printing using an etching paste or the like.
 次に、図1Eに示すように、結晶基板11の主面11SBにおける非形成領域NAと、第2リフトオフ層LF2の表面LF2s(図1D参照)と、積み重なって残存した層(第2リフトオフ層LF2、第1リフトオフ層LF1、p型半導体層13p、真性半導体層12p)の側面SEとを覆うように、真性半導体層12n、さらに、その層12nの上に、n型半導体層13nが形成される(なお、表面LF2sと側面SEとを残存面とも称する)。すなわち、残った第2リフトオフ層LF2、および、結晶基板11の一方主面11SBの非形成領域NAに対して、n型半導体層13nを、積み重ねて形成する[第4工程]。 Next, as shown in FIG. 1E, the non-forming area NA on the main surface 11SB of the crystal substrate 11 and the surface LF2s (see FIG. 1D) of the second lift-off layer LF2 are stacked and remain (second lift-off layer LF2). An n-type semiconductor layer 13n is formed on the intrinsic semiconductor layer 12n and further on the layer 12n so as to cover the side surface SE of the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p). (Note that the surface LF2s and the side surface SE are also referred to as the remaining surface). That is, the n-type semiconductor layer 13n is formed by being stacked on the remaining second lift-off layer LF2 and the non-formation region NA of the one main surface 11SB of the crystal substrate 11 [fourth step].
 続いて、図1Fに示すように、エッチング溶液[第1エッチング溶液]を用いて、複層型のリフトオフ層LFを除去することで、その層LF上に積み重なっていた層(真性半導体層12n、n型半導体層13n)をも、結晶基板11から除去させる。すなわち、エッチング溶液を用いて、第1リフトオフ層LF1および第2リフトオフ層LF2を除去して、第2リフトオフ層LF2に積み重なるn型半導体層13nをも除去する[第5工程]。なお、このような第5工程(パターニング)に使用するエッチング溶液としては、例えばフッ化水素酸が挙げられる。 Subsequently, as shown in FIG. 1F, the multilayer liftoff layer LF is removed using an etching solution [first etching solution] to form a layer (intrinsic semiconductor layer 12 n, The n-type semiconductor layer 13 n) is also removed from the crystal substrate 11. That is, using the etching solution, the first lift-off layer LF1 and the second lift-off layer LF2 are removed, and the n-type semiconductor layer 13n stacked on the second lift-off layer LF2 is also removed [the fifth step]. In addition, as an etching solution used for such a 5th process (patterning), a hydrofluoric acid is mentioned, for example.
 また、エッチング液に対するp型半導体層13p、第1リフトオフ層LF1、および、第2リフトオフ層LF2のエッチング速度が、以下の関係式1を満たす。
 p型半導体層13pのエッチング速度<第2リフトオフ層LF2のエッチング速度<第1リフトオフ層LF1のエッチング速度…[関係式1]
In addition, the etching rates of the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2 with respect to the etching solution satisfy the following relational expression 1.
Etching rate of p-type semiconductor layer 13p <etching rate of second lift-off layer LF2 <etching rate of first lift-off layer LF1 ... [Relational equation 1]
 この後、図1Gに示すように、結晶基板11の裏側に、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)が形成される。または、透明電極層17(17p、17n)は、まず、マスクを用いず透明導電性酸化物製の膜を形成し、その後フォトリソグラフィ法により、p型半導体層13p・n型半導体層13n上の透明導電性酸化物製の膜のみを残るようにエッチングして形成されても構わない。 Thereafter, as shown in FIG. 1G, transparent electrode layers 17 (17p, 17n) are formed on the back side of the crystal substrate 11 by, for example, a sputtering method using a mask so as to form the separation grooves 25. Alternatively, for the transparent electrode layer 17 (17p, 17n), first, a film made of a transparent conductive oxide is formed without using a mask, and then a photolithographic method is performed on the p-type semiconductor layer 13p n-type semiconductor layer 13n. It may be formed by etching so as to leave only the transparent conductive oxide film.
 なお、この分離溝25により、リーク電流が発生し難くなる。さらに、透明電極層17上には、例えば、開口を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)が形成される。以上により、裏面接合型の太陽電池10における各層の形成が完了する。 The separation groove 25 makes it difficult to generate a leak current. Furthermore, on the transparent electrode layer 17, for example, a linear metal electrode layer 18 (18p, 18n) is formed using a mesh screen (not shown) having an opening. Thus, the formation of each layer in the back contact solar cell 10 is completed.
 以上の太陽電池10の製造方法にあって、第1工程~第5工程を含んでいると、以下のことがいえる。 In the method of manufacturing the solar cell 10 described above, the following can be said when the first to fifth steps are included.
 まず、リフトオフ層LFは、2層以上で形成されており、さらにエッチング速度の速い層が結晶基板11側に設けられる(関係式1参照)。これはリフトオフ層LF内のエッチング速度の差を活用することで、第3工程および第5工程においてエッチングの精度を高めつつ、パターニング工程を簡素にするためである。 First, the lift-off layer LF is formed of two or more layers, and a layer having a faster etching rate is provided on the crystal substrate 11 side (see Relational Expression 1). This is to simplify the patterning step while improving the etching accuracy in the third and fifth steps by utilizing the difference in the etching rate in the lift-off layer LF.
 エッチングの精度、すなわち、導電型半導体層13または電極層15を精度よく形成することは、太陽電池10における不所望の短絡またはリーク電流を防ぐために、重要である。第3工程では、リフトオフ層LFの一部が、所望部分のp型半導体層[第1導電型半導体層]13pにエッチング溶液の付着を防止するマスクの役割を果たす。そのため、パターン化されたp型半導体層13pの幅は、残されたリフトオフ層LFの幅に依存する。 The etching accuracy, that is, the accurate formation of the conductive semiconductor layer 13 or the electrode layer 15 is important in order to prevent undesired short circuit or leak current in the solar cell 10. In the third step, a part of the lift-off layer LF plays a role of a mask that prevents the deposition of the etching solution on the p-type semiconductor layer [first conductive semiconductor layer] 13p of the desired part. Therefore, the width of the patterned p-type semiconductor layer 13p depends on the width of the remaining lift-off layer LF.
 すると、エッチング溶液に対するリフトオフ層LFのエッチング速度が速すぎると、リフトオフ層LFが幅方向に過大にエッチングされやすくなるため(所望の幅よりも幅狭になるため)、リフトオフ層LFのパターン精度が低下しかねない。このため、エッチング液[第2エッチング溶液]に対するリフトオフ層のエッチング速度が速すぎることは好ましいとはいえない。 Then, if the etching rate of the lift-off layer LF with respect to the etching solution is too fast, the lift-off layer LF is likely to be etched excessively in the width direction (because the width becomes narrower than desired). It may decrease. For this reason, it is not preferable that the etching rate of the lift-off layer with respect to the etching solution [second etching solution] is too fast.
 一方、第5工程においては、n型半導体層[第2導電型半導体層]13nが、第3工程で残ったリフトオフ層LFを覆っているだけでなく、所望位置(残存するp型半導体層13pの隣である非成型領域NA)にも形成される。所望位置のn型半導体層13nをパターンとして残しつつ、リフトオフ層LF上のn型半導体層13nを除去するためには、エッチング液[第1エッチング溶液]に対するリフトオフ層LFのエッチング速度は速いことが好ましい。また、生産性の観点からもエッチング速度が速いほうが、処理時間が短縮され好ましい。 On the other hand, in the fifth step, the n-type semiconductor layer [second conductivity type semiconductor layer] 13n covers not only the lift-off layer LF left in the third step but also a desired position (remaining p-type semiconductor layer 13p Is also formed next to the non-molding area NA). In order to remove the n-type semiconductor layer 13n on the lift-off layer LF while leaving the n-type semiconductor layer 13n at the desired position as a pattern, the etching rate of the lift-off layer LF with respect to the etchant [first etching solution] should be fast preferable. Also, from the viewpoint of productivity, a faster etching rate is preferable because the processing time is shortened.
 このように、リフトオフ層LFは、第3工程と第5工程とで相反するエッチング特性を求められるが、この特性は、リフトオフ層LFが[関係式1]を満たせば、実現する。 As described above, the lift-off layer LF is required to have opposite etching characteristics in the third step and the fifth step, but this characteristic is realized if the lift-off layer LF satisfies [relational formula 1].
 第3工程において、関係式1が満たされていると、非成型領域NAでは、第1リフトオフ層LF1が最も早く溶解されることで、その上の第2リフト層LF2も結晶基板11から乖離しやすくなり(もちろん第2リフト層LF2は乖離だけでなく溶解もしてもいる)、さらに、第1リフトオフ層LF1から露出したp型半導体層13pも溶解していく。 In the third step, when the relational expression 1 is satisfied, in the non-molding area NA, the first lift-off layer LF1 is dissolved most quickly, and the second lift layer LF2 thereabove is also separated from the crystal substrate 11 This becomes easy (of course, the second lift layer LF2 may be dissolved as well as the separation), and the p-type semiconductor layer 13p exposed from the first lift-off layer LF1 also dissolves.
 また、第3工程では、例えば、図1Dに示すように、積み重なって残存した層(第2リフトオフ層LF2、第1リフトオフ層LF1、p型半導体層13p、真性半導体層12p)の側面SEを通じて、仮に第2リフトオフ層LF2の下の第1リフトオフ層LF1がエッチングにより侵食されたとしても、侵食されなかった第1リフトオフ層LF1が残存することで、それに連なった第2リフトオフ層LF2も残る。そのため、この残った第2リフトオフ層LF2は、第5工程においてリフトオフ層LFとして機能する。なお、所望部分のp型半導体層13pは残存しなくてはならないため、第1リフトオフ層LF1および第2リフトオフ層LF2よりも、エッチング速度は遅い。 In the third step, for example, as shown in FIG. 1D, through the side surface SE of the stacked and remaining layers (the second lift-off layer LF2, the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p) Even if the first lift-off layer LF1 under the second lift-off layer LF2 is eroded by etching, the first lift-off layer LF1 which has not been eroded remains, so that the second lift-off layer LF2 linked to it also remains. Therefore, the remaining second lift-off layer LF2 functions as the lift-off layer LF in the fifth step. The etching rate is slower than the first lift-off layer LF1 and the second lift-off layer LF2 because the p-type semiconductor layer 13p of the desired portion must remain.
 また、第5工程においては、下層である第1リフトオフ層LF1が完全に除去されれば、その層LF1上の第2リフトオフ層LF2が残ったとしても、n型半導体層13nをも除去される。すなわち、第2導電型半導体層LF2、ひいてはその上のn型半導体層13nがリフトオフされる。 In the fifth step, if the lower first lift-off layer LF1 is completely removed, the n-type semiconductor layer 13n is also removed even if the second lift-off layer LF2 on the layer LF1 remains. . That is, the second conductivity type semiconductor layer LF2, and by extension, the n-type semiconductor layer 13n thereon is lifted off.
 以上のように、複層型のリフトオフ層LFは、第5工程でほぼ完全に除去を目指す層であるが、ここに至るまでの工程(例えば第3工程)で過剰にエッチングされないために、エッチング速度は、p型半導体層13pのエッチング速度<第2リフトオフ層LF2のエッチング速度<第1リフトオフ層LF1のエッチング速度[関係式1]、となるように設計される。また、第3工程と同様、第5工程においても、所望部分のp型半導体層13pは残存しなくてはならないため、第1リフトオフ層LF1および第2リフトオフ層LF2のエッチング速度よりも、p型半導体層13pのエッチング速度は遅い。 As described above, the multilayer lift-off layer LF is a layer which aims to be almost completely removed in the fifth step, but is etched because it is not excessively etched in the steps up to here (for example, the third step). The rate is designed such that the etching rate of the p-type semiconductor layer 13p <the etching rate of the second lift-off layer LF2 <the etching rate of the first lift-off layer LF1 [relation equation 1]. Further, as in the third step, the p-type semiconductor layer 13p of the desired portion must remain in the fifth step, so the p-type semiconductor layer 13 is p-type more than the etching rate of the first lift-off layer LF1 and the second lift-off layer LF2. The etching rate of the semiconductor layer 13p is slow.
 このように、関係式1を満たすp型半導体層13pおよびリフトオフ層LFが使用されると、例えば第5工程で、レジスト膜を使用したエッチングを行わずに、n型半導体層13nがパターニングされる。つまり、以上の太陽電池10の製造方法であると、パターニング工程が簡素化され、バックコンタクト型の太陽電池10が、効率よく製造される。その上、パターン精度も高まっているために、太陽電池10における短絡またはリークも防止され、その太陽電池10からは高出力が得られる。 Thus, when the p-type semiconductor layer 13p and the lift-off layer LF satisfying the relational expression 1 are used, the n-type semiconductor layer 13n is patterned without performing etching using a resist film, for example, in the fifth step. . That is, with the method of manufacturing the solar cell 10 described above, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured. Moreover, since the pattern accuracy is also increased, short circuit or leak in the solar cell 10 is also prevented, and a high output can be obtained from the solar cell 10.
 なお、第2工程では、第1工程で形成されたp型半導体層13p上に、複層のリフトオフ層LFが形成される。そして、このようなリフトオフ層LFは、第3工程でパターニング(例えばエッチング)され、かつ、第5工程でn型半導体層13nとともに除去される。そのため、第3工程と第5工程とで使用されるエッチング溶液に対して、溶解する材料、例えば、金属系薄膜材料、金属酸化物系薄膜材料、またはシリコン系薄膜材料を含むようにして、リフトオフ層LFは形成されると好ましい。なお、このような材料の中でも、シリコン系薄膜材料が好ましく、例えば、酸化ケイ素を主成分とした複層のリフトオフ層LFであると好ましい。 Note that, in the second step, the lift-off layer LF of multiple layers is formed on the p-type semiconductor layer 13p formed in the first step. Then, such lift-off layer LF is patterned (for example, etched) in the third step, and is removed together with the n-type semiconductor layer 13n in the fifth step. Therefore, the lift-off layer LF is made to contain a material to be dissolved, for example, a metal-based thin film material, a metal oxide-based thin film material, or a silicon-based thin film material with respect to the etching solution used in the third and fifth steps. Is preferably formed. Among such materials, a silicon-based thin film material is preferable. For example, a multilayer lift-off layer LF mainly containing silicon oxide is preferable.
 また、このようにリフトオフ層LFに酸化ケイ素を主成分とする膜を適用する場合、第5工程でのエッチング液は、フッ化水素酸であると好ましい。この場合、リフトオフ層LFをエッチングするエッチング剤はフッ化水素である。また、リフトオフ層LFの積層数は2層以上であっても構わないが、生産性の観点では2層が好ましい。 In addition, in the case where a film containing silicon oxide as a main component is applied to the lift-off layer LF as described above, the etching solution in the fifth step is preferably hydrofluoric acid. In this case, the etchant for etching the lift-off layer LF is hydrogen fluoride. Although the number of stacked lift-off layers LF may be two or more, two layers are preferable from the viewpoint of productivity.
 ところで、エッチング速度が関係式1を満たすための1つの設計としては、p型半導体層13pの主成分がケイ素、第1リフトオフ層LF1、および、第2リフトオフ層LF2の主成分が、酸化ケイ素であると好ましいが、エッチング速度を制御するために、密度の違いを発生させると好ましい。密度が低ければ、エッチングレートが高まるためである。 By the way, as one design for the etching rate to satisfy the relational expression 1, the main component of the p-type semiconductor layer 13p is silicon, and the main components of the first lift-off layer LF1 and the second lift-off layer LF2 are silicon oxide. Although it is preferable if there is a difference in density to control the etching rate. If the density is low, the etching rate is increased.
 また、密度の高低に反映して、層毎の屈折率の高低が変化することから、例えば、以下のようになっていると好ましい(密度が高いと屈折率も高まりエッチングレートが低く、密度が低いと屈折率も低くなり、エッチングレートが高まる)。 In addition, since the height of the refractive index of each layer changes depending on the density of the density, for example, the following is preferable (the higher the density, the higher the refractive index and the lower the etching rate, and the density is If it is low, the refractive index will also be low, and the etching rate will increase.
 すなわち、第1リフトオフ層LF1および第2リフトオフ層LF2が、酸化ケイ素を主成分とする層であり、550nmの波長で測定される屈折率が、以下の関係式を満たすと好ましい。
  第2リフトオフ層LF2の屈折率 > 第1リフトオフ層LF1の屈折率 …[関係式2]
That is, it is preferable that the first lift-off layer LF1 and the second lift-off layer LF2 be layers containing silicon oxide as a main component, and the refractive index measured at a wavelength of 550 nm satisfy the following relational expression.
Refractive index of second lift-off layer LF2> Refractive index of first lift-off layer LF1 ... [Relational equation 2]
 なお、リフトオフ層LFが3層以上の場合には、第1リフトオフ層LF1の後に、第1リフトオフ層LF1よりも高屈折率の第2リフトオフ層LF2が形成されればよい。 When the number of lift-off layers LF is three or more, the second lift-off layer LF2 having a refractive index higher than that of the first lift-off layer LF1 may be formed after the first lift-off layer LF1.
 また、リフトオフ層LFの組成の点では、リフトオフ層LFが酸化ケイ素を主成分とする膜である場合、その主成分をSiOxと表したときのxの値が、以下の関係式を満たすと好ましい。
  第1リフトオフ層LF1のx > 第2リフトオフ層LF2のx …[関係式3]
Further, in terms of the composition of the lift-off layer LF, when the lift-off layer LF is a film containing silicon oxide as a main component, it is preferable that the value of x when the main component is expressed as SiOx satisfy the following relational expression .
X of the first lift-off layer LF1> x of the second lift-off layer LF2 ... [Relationship 3]
 なお、xの値は0.5以上2.2以下の範囲が好ましく、さらには1.2以上2.0以下、特には1.4以上1.9以下であると好ましい。この各範囲内において、大小関係が設計されていると好ましい。 The value of x is preferably in the range of 0.5 or more and 2.2 or less, more preferably 1.2 or more and 2.0 or less, and particularly preferably 1.4 or more and 1.9 or less. Within each range, it is preferable that the magnitude relationship be designed.
 なお、ここで、xの値が一般的なストイキオメトリックな値(x=2.0)よりも大きな値が上限となっているが、これは、リフトオフ層LFの薄膜形成プロセスにおいて、過剰に酸素が含まれる場合があるためである。 Here, the upper limit of the value of x is larger than a general stoichiometric value (x = 2.0), which is excessive in the thin film formation process of the lift-off layer LF. It is because oxygen may be contained.
 ところで、リフトオフ層LFの膜厚は、全体として50nm以上600nm以下であることが好ましく、特には100nm以上450nm以下であると好ましい。この範囲の中で、第2リフトオフ層LF2の方が第1リフトオフ層LF1よりも厚膜であると好ましい。 The film thickness of the lift-off layer LF is preferably 50 nm or more and 600 nm or less as a whole, and particularly preferably 100 nm or more and 450 nm or less. Within this range, it is preferable that the second lift-off layer LF2 be thicker than the first lift-off layer LF1.
 なお、レーザを用いたパターニング工程においては、レーザ照射面での光散乱によりダメージを抑制することは多少困難となる場合があるが、結晶基板11の裏側にも、テクスチャ構造TXが形成されることで、光の取り込み効率を向上させられる。 In the patterning process using a laser, it may be somewhat difficult to suppress damage due to light scattering on the laser irradiation surface, but the texture structure TX is also formed on the back side of the crystal substrate 11 Can improve the light capture efficiency.
 また、第3工程では、真性半導体層12までエッチングし、結晶基板11の一部が露出しても構わない。このようにすることで、光電変換によって発生するキャリアのライフタイムの低下が抑制される場合がある。 In the third step, the intrinsic semiconductor layer 12 may be etched to expose a part of the crystal substrate 11. By doing this, a decrease in carrier lifetime generated by photoelectric conversion may be suppressed.
 また、第4工程では、n型半導体層13nを形成する。n型半導体層13nは、結晶基板11の裏側の全面に製膜される。すなわち、p型半導体層13pの無い結晶基板11の一部の面だけでなく、リフトオフ層LF上にも形成される。なお、結晶基板11とn型半導体層13nとの間には真性半導体層12nが形成されていても構わない。 In the fourth step, the n-type semiconductor layer 13n is formed. The n-type semiconductor layer 13 n is formed on the entire back surface of the crystal substrate 11. That is, it is formed not only on part of the surface of the crystal substrate 11 without the p-type semiconductor layer 13p but also on the lift-off layer LF. The intrinsic semiconductor layer 12n may be formed between the crystal substrate 11 and the n-type semiconductor layer 13n.
 また、第4工程で真性半導体層12およびn型半導体層13nを形成する前に、第3工程で露出した結晶基板11の表面を洗浄する工程があっても構わない。なお、洗浄する工程は、第3工程で結晶基板11の表面に生じた欠陥または不純物の除去を目的とするものであり、例えばフッ化水素酸で処理する。 In addition, before the intrinsic semiconductor layer 12 and the n-type semiconductor layer 13n are formed in the fourth step, there may be a step of cleaning the surface of the crystal substrate 11 exposed in the third step. The cleaning step is intended to remove defects or impurities generated on the surface of the crystal substrate 11 in the third step, and is treated with, for example, hydrofluoric acid.
 また、結晶基板11がテクスチャ構造TXを有しており、この結晶基板11の主面11SBの側に形成される、p型半導体層13pおよびn型半導体層13nの各面には、テクスチャ構造TXを反映させたテクスチャ構造[第2テクスチャ構造]が含まれると好ましい。 In addition, the crystal substrate 11 has the texture structure TX, and each surface of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n formed on the main surface 11SB side of the crystal substrate 11 has the texture structure TX. It is preferable that the texture structure [second texture structure] reflecting the
 このような反映させたテクスチャ構造が含まれた半導体層13であると、凹凸に起因して、エッチング溶液が半導体層13に染み込み易くなるため、それら層13が除去されやすくなる、すなわち、パターニングされやすくなる。 When the semiconductor layer 13 includes such a reflected texture structure, the etching solution is easily infiltrated into the semiconductor layer 13 due to the unevenness, so that the layers 13 are easily removed, that is, patterned It will be easier.
 なお、図1Dでは、非形成領域NAでは、結晶基板11の主面11SBの一部が露出するようになっているが、これに限定されるものではなく、主面11SBの一部上に、真性半導体層12pが残っていても構わない。要は、結晶基板11の主面11SBの一部において、p型半導体層13pが除去されることで、その層13pの無い(消失した)領域が、非形成領域NAになっていればよい。 In FIG. 1D, in the non-formation region NA, a part of the main surface 11SB of the crystal substrate 11 is exposed, but the present invention is not limited to this. The intrinsic semiconductor layer 12p may remain. The point is that the p-type semiconductor layer 13p is removed from a part of the main surface 11SB of the crystal substrate 11, so that the region without the layer 13p (disappeared) may be the non-formation region NA.
 このようになっていると、残った第2リフトオフ層LF2および非形成領域NAに対して、n型半導体層13nを、積み重ねて形成する前に、真性半導体層12nを形成する工程を減らせる。 With this configuration, the process of forming the intrinsic semiconductor layer 12 n can be reduced before the n-type semiconductor layer 13 n is formed by stacking with respect to the remaining second lift-off layer LF 2 and the non-formation area NA.
 また、第3工程では、第2リフトオフ層LF2に開口部を形成するとともに、エッチング溶液[第2エッチング溶液]を、開口部を通じて、第1リフトオフ層LF1に付着させて、その第1リフトオフ層LF1を除去しても構わないし、さらには、第3工程では、上述のように第1リフト層LF1を除去するとともに、p型半導体層13pにも、エッチング溶液を付着させて、そのp型半導体層13pを除去しても構わない。なお、この開口部の形成の仕方としては、例えば、フォトリソグラフィー法により開口を有するレジストを用いたり、レーザ等で消失させたり、またはクラックを発生させたりすることが挙げられる。 In the third step, the opening is formed in the second lift-off layer LF2, and the etching solution [the second etching solution] is attached to the first lift-off layer LF1 through the opening to form the first lift-off layer LF1. In the third step, as described above, the first lift layer LF1 is removed, and the etching solution is also attached to the p-type semiconductor layer 13p, and the p-type semiconductor layer is removed. You may remove 13p. As a method of forming the opening, for example, using a resist having an opening by a photolithography method, eliminating by a laser or the like, or generating a crack may be mentioned.
 このようになっていると、開口部を通じることで、エッチング溶液が、確実に、第2リフトオフ層LF2、さらには第1リフトオフ層LF1に付着するために、リフトオフ層LF全体が効率よく除去される。その上、リフトオフ層LFが除去されることで、その層LFにて覆われていたp型半導体層13pにも、エッチング溶液が確実に付着し、除去される。つまり、第2リフトオフ層LF2、第1リフトオフ層LF1、およびp型半導体層13pの溶け残りが抑えられる。 In this case, through the opening, the entire lift-off layer LF is efficiently removed in order to ensure that the etching solution adheres to the second lift-off layer LF2 and further to the first lift-off layer LF1. Ru. In addition, the removal of the lift-off layer LF ensures that the etching solution also adheres to and is removed from the p-type semiconductor layer 13p covered with the layer LF. That is, the unmelted residue of the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p is suppressed.
 なお、第5工程に使用されるエッチング溶液[第1エッチング溶液]に含まれるエッチング剤の濃度が、第3工程に使用されるエッチング溶液[第2エッチング溶液]に含まれるエッチング剤の濃度よりも高いと好ましい。 The concentration of the etching agent contained in the etching solution [first etching solution] used in the fifth step is higher than the concentration of the etching agent contained in the etching solution [second etching solution] used in the third step High is preferable.
 このようになっていると、第3工程では、リフトオフ層LFの一部を残しつつ、第5工程でリフトオフ層を除去させて、所望のパターニングを簡易に行える。 In this case, in the third step, the lift-off layer is removed in the fifth step while leaving a part of the lift-off layer LF, and desired patterning can be easily performed.
 本発明は上記した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the claims. That is, an embodiment obtained by combining technical means appropriately modified within the scope of the claims is also included in the technical scope of the present invention.
 例えば、第1工程で使用する半導体層は、p型半導体層であったが、これに限定されず、n型半導体層であっても構わない。また、結晶基板の導電型も特に限定されず、p型であってもn型であっても構わない。 For example, the semiconductor layer used in the first step is a p-type semiconductor layer, but is not limited to this, and may be an n-type semiconductor layer. Also, the conductivity type of the crystal substrate is not particularly limited, and may be p-type or n-type.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。実施例および比較例は、以下のようにして製作した(表1参照)。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. The examples and comparative examples were manufactured as follows (see Table 1).
 [結晶基板]
 まず、結晶基板として、厚み200μmの単結晶シリコン基板を採用した。そして、単結晶シリコン基板の両面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
[Crystal substrate]
First, as a crystal substrate, a single crystal silicon substrate having a thickness of 200 μm was adopted. Then, anisotropic etching was performed on both sides of the single crystal silicon substrate. This formed a pyramidal texture structure on the crystal substrate.
 [真性半導体層]
 結晶基板をCVD装置へ導入し、その結晶基板の両側の主面に、シリコン製の真性半導体層(膜厚8nm)を形成した。なお、製膜条件は、基板温度を150℃、圧力を120Pa、SiH/H流量比を3/10、パワー密度を0.011W/cmとした。
[Intrinsic semiconductor layer]
The crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (film thickness 8 nm) made of silicon was formed on the main surfaces on both sides of the crystal substrate. The film forming conditions were such that the substrate temperature was 150 ° C., the pressure was 120 Pa, the SiH 4 / H 2 flow ratio was 3/10, and the power density was 0.011 W / cm 2 .
 [p型半導体層(第1導電型半導体層)]
 両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、裏側の主面の真性半導体層上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した[第1工程]。なお、製膜条件は、基板温度を150℃、圧力を60Pa、SiH/B流量比を1/3、パワー密度を0.01W/cmとした。また、Bガス流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。
[P-type semiconductor layer (first conductivity type semiconductor layer)]
A crystal substrate having an intrinsic semiconductor layer formed on both principal surfaces was introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon-based thin film (10 nm in film thickness) was formed on the intrinsic semiconductor layer on the principal surface on the back side 1 step]. The film forming conditions were such that the substrate temperature was 150 ° C., the pressure was 60 Pa, the SiH 4 / B 2 H 6 flow ratio was 1/3, and the power density was 0.01 W / cm 2 . Further, the B 2 H 6 gas flow rate is a flow rate of a dilution gas in which B 2 H 6 is diluted to 5000 ppm with H 2 .
 [リフトオフ層]
 さらに、CVD装置を用いて、p型水素化非晶質シリコン系薄膜の上に、主成分を酸化ケイ素(SiOx)とする第1リフトオフ層と第2リフトオフ層とを、この順で形成した。
[Lift-off layer]
Furthermore, using a CVD apparatus, a first lift-off layer and a second lift-off layer, whose main components are silicon oxide (SiOx), were formed in this order on the p-type hydrogenated amorphous silicon-based thin film.
 なお、第1リフトオフ層の製膜条件は、基板温度を180℃、圧力を50Pa、SiH/CO流量比を1/7、パワー密度を0.3W/cmとした。また、第2リフトオフ層の製膜条件は、SiH/CO流量比を1/5とした点を除いて第1リフトオフ層と同様とした。そして、両リフトオフ層ともに、所定の膜厚になるよう、製膜時間をそれぞれ調整した。 The deposition conditions for the first lift-off layer were a substrate temperature of 180 ° C., a pressure of 50 Pa, a SiH 4 / CO 2 flow ratio of 1/7, and a power density of 0.3 W / cm 2 . The deposition conditions for the second lift-off layer were the same as those for the first lift-off layer except that the SiH 4 / CO 2 flow ratio was 1⁄5. Then, the film formation time was adjusted so that both lift-off layers had a predetermined film thickness.
 また、第1リフトオフ層と第2リフトオフ層との主成分であるSiOxの組成を光電子分光法により分析した結果、xの値は、第1リフトオフ層の方が、第2リフトオフ層より大きいことを確認した。 Moreover, as a result of analyzing the composition of SiO x which is the main component of the first lift-off layer and the second lift-off layer by photoelectron spectroscopy, the value of x indicates that the first lift-off layer is larger than the second lift-off layer. confirmed.
 [リフトオフ層・第1導電型半導体層のパターニング]
 p型半導体層の形成された結晶基板の両側の主面に感光性レジスト膜を製膜した。これをフォトリソグラフィ法により、裏側主面の一部にて、第2リフトオフ層、第1リフトオフ層、およびp型半導体層を除去し、そのp型半導体層の消失した非形成領域を生じさせた一方、裏側主面の残部にて、少なくとも、p型半導体層、第1リフトオフ層、および第2リフトオフ層を残した[第3工程]。
[Patterning of lift-off layer / first conductivity type semiconductor layer]
A photosensitive resist film was formed on the main surfaces on both sides of the crystal substrate on which the p-type semiconductor layer was formed. The second lift-off layer, the first lift-off layer, and the p-type semiconductor layer were removed by photolithography on a part of the backside main surface by photolithography to form a non-formed area where the p-type semiconductor layer disappeared. On the other hand, at least the p-type semiconductor layer, the first lift-off layer, and the second lift-off layer were left in the remaining part of the back side main surface [the third step].
 なお、このとき種々層を形成された結晶基板を、エッチング剤として1重量%のフッ化水素を含有する加水フッ硝酸に浸漬させ、第1リフトオフ層・第2リフトオフ層を除去した。その後に、第1リフトオフ層・第2リフトオフ層の除去により露出したp型半導体層と、その直下の真性半導体層を除去した。すなわち、非形成領域では、結晶基板の裏側主面が露出するようにした。 At this time, the crystal substrate on which various layers were formed was immersed in hydrofluorinated nitric acid containing 1% by weight of hydrogen fluoride as an etchant to remove the first lift-off layer and the second lift-off layer. Thereafter, the p-type semiconductor layer exposed by the removal of the first lift-off layer and the second lift-off layer and the intrinsic semiconductor layer immediately below it were removed. That is, in the non-forming region, the back principal surface of the crystal substrate was exposed.
 なお、実施例4では、5重量%のフッ化水素を含有する加水フッ硝酸が用い、浸漬時間を他の実施例と比べて短時間とした。 In Example 4, a hydrofluorinated nitric acid containing 5% by weight of hydrogen fluoride was used, and the immersion time was made shorter than in the other examples.
 [n型半導体層(第2導電型半導体層)]
 第3工程後に、2重量%フッ化水素酸によって、露出した裏側の主面を洗浄した結晶基板をCVD装置に導入し、裏側の主面に上記同様にして真性半導体層(膜厚8nm)を形成し、さらに、その層の上に、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した[第4工程]。なお、製膜条件は、基板温度が150℃、圧力が60Pa、SiH/PH/H流量比が1/2、パワー密度が0.01W/cmであった。また、PHガス流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。
[N-type semiconductor layer (second conductivity type semiconductor layer)]
After the third step, the crystal substrate having the exposed back main surface washed with 2 wt% hydrofluoric acid is introduced into a CVD apparatus, and the intrinsic semiconductor layer (film thickness 8 nm) is formed on the back main surface in the same manner. Then, an n-type hydrogenated amorphous silicon-based thin film (film thickness 10 nm) was formed on the layer [step 4]. As film forming conditions, the substrate temperature was 150 ° C., the pressure was 60 Pa, the SiH 4 / PH 3 / H 2 flow ratio was 1/2, and the power density was 0.01 W / cm 2 . Further, the PH 3 gas flow rate is a flow rate of a dilution gas in which PH 3 is diluted to 5000 ppm by H 2 .
 [リフトオフ層・第2導電型半導体層の除去]
 n型半導体層の形成された結晶基板を、エッチング剤として3重量%のフッ化水素を含有するフッ化水素酸に浸漬させて、リフトオフ層、n型半導体層、および、リフトオフ層とn型半導体層との間にある真性半導体層を、まとめて除去した[第5工程]。
[Removal of lift-off layer / second conductivity type semiconductor layer]
The crystal substrate on which the n-type semiconductor layer is formed is immersed in hydrofluoric acid containing 3% by weight of hydrogen fluoride as an etching agent, and the lift-off layer, the n-type semiconductor layer, and the lift-off layer and the n-type semiconductor The intrinsic semiconductor layers lying between the layers were collectively removed [step 5].
 [電極層、低反射層]
 マグネトロンスパッタリング装置を用いて、透明電極層の基となる膜(膜厚100nm)を、結晶基板における導電型半導体層上に形成した。また、低反射層として、結晶基板の受光面側に窒化シリコン層を形成した。透明導電性酸化物としては、酸化スズを10重量%含有した酸化インジウム(ITO)をターゲットとして使用し、装置のチャンバー内に、アルゴンと酸素との混合ガスを導入させて、そのチャンバー内の圧力を0.6Paとなるように設定した。
[Electrode layer, low reflective layer]
Using a magnetron sputtering apparatus, a film (film thickness 100 nm) as a base of the transparent electrode layer was formed on the conductive semiconductor layer in the crystal substrate. In addition, as a low reflection layer, a silicon nitride layer was formed on the light receiving surface side of the crystal substrate. As a transparent conductive oxide, indium oxide (ITO) containing 10% by weight of tin oxide is used as a target, a mixed gas of argon and oxygen is introduced into the chamber of the apparatus, and the pressure in the chamber is introduced. Was set to be 0.6 Pa.
 なお、アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で、製膜を行った。 The mixing ratio of argon and oxygen was set to a condition where the resistivity is lowest (so-called bottom). In addition, film formation was performed at a power density of 0.4 W / cm 2 using a DC power supply.
 次に、フォトリソグラフィ法により、p型半導体層・n型半導体層上の透明導電性酸化物製の膜のみを残るようにエッチングして、透明電極層を形成した。このエッチングにより完成した透明電極層により、p型半導体層上の透明導電性酸化物製の膜とn型半導体層上の透明導電性酸化物製の膜との間での導通が防止された。 Next, a transparent electrode layer was formed by etching so as to leave only a film made of a transparent conductive oxide on the p-type semiconductor layer and n-type semiconductor layer by photolithography. The transparent electrode layer completed by this etching prevented conduction between the film made of the transparent conductive oxide on the p-type semiconductor layer and the film made of the transparent conductive oxide on the n-type semiconductor layer.
 さらに、透明電極層上に、銀ペースト(藤倉化成製 ドータイトFA-333)を希釈せずにスクリーン印刷し、150℃のオーブンで60分間加熱処理した。これにより、金属電極層が形成された。 Furthermore, on the transparent electrode layer, silver paste (Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.) was screen-printed without dilution, and heat-treated in an oven at 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
 次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、表1を参照とする。 Next, an evaluation method for a back contact type solar cell will be described. For the evaluation results, refer to Table 1.
 [膜厚・エッチング性の評価]
 リフトオフ層の膜厚またはエッチング状態は、光学顕微鏡(BX51、オリンパス光学工業社製)とSEM(フィールドエミッション型走査型電子顕微鏡S4800、日立ハイテクノロジーズ社製)とを用い、評価した。第3工程後に、設計のパターニング除去領域にしたがってエッチングできている場合には「○」とし、リフトオフ層が過剰にエッチングされ、太陽電池特性に悪影響が出た場合には「×」とした。第5工程では、リフトオフ層が除去された場合には「○」とし、リフトオフ層が残った場合には「×」とした。比較例2では、第3工程でリフトオフ層が除去され、第5工程以降の評価は不可能だったため-とした。
[Evaluation of film thickness and etching property]
The film thickness or etching state of the lift-off layer was evaluated using an optical microscope (BX51, manufactured by Olympus Optical Co., Ltd.) and an SEM (field emission type scanning electron microscope S4800, manufactured by Hitachi High-Technologies Corporation). After the third step, when the etching was able to be performed according to the patterned removal area of the design, it was "o", and the lift-off layer was excessively etched, and when the solar cell characteristics were adversely affected, it was "x". In the fifth step, when the lift-off layer was removed, it was "o", and when the lift-off layer remained, it was "x". In Comparative Example 2, the lift-off layer was removed in the third step, and the evaluation after the fifth step was impossible.
 [屈折率の評価]
 ガラス基板上に同条件にて製膜された薄膜の屈折率を、分光エリプソメトリー(商品名M2000、ジェー・エー・ウーラム社製)にて測定することにより求められた。フィッティング結果から、550nmの波長における屈折率を抽出した。
[Evaluation of refractive index]
The refractive index of a thin film formed under the same conditions on a glass substrate was determined by spectroscopic ellipsometry (trade name M2000, manufactured by J. A. Woolam). From the fitting results, the refractive index at a wavelength of 550 nm was extracted.
 [変換効率の評価]
 ソーラーシミュレータにより、AM(エアマス)1.5の基準太陽光を、100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率を1.00とし、その相対値を表1に記載した。
[Evaluation of conversion efficiency]
The conversion efficiency (Eff (%)) of the solar cell was measured by irradiating standard sunlight of AM (air mass) 1.5 with a light quantity of 100 mW / cm 2 by a solar simulator. The conversion efficiency of Example 1 was 1.00, and the relative value was described in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 今回の実施例、比較例では、3重量%フッ化水素酸に対する、第1リフトオフ層のエッチング速度は6.5nm/秒、第2リフトオフ層のエッチング速度は0.3nm/秒であった。 In the present example and the comparative example, the etching rate of the first lift-off layer was 6.5 nm / sec and the etching rate of the second lift-off layer was 0.3 nm / sec with respect to 3 wt% hydrofluoric acid.
 実施例1~4は、パターン精度および太陽電池特性とも良好であった。第1リフトオフ層の膜厚が厚い実施例2の方が、第5工程でリフトオフ層の除去に要する時間は短時間であり、生産性は優れていた。 Examples 1 to 4 were both excellent in pattern accuracy and solar cell characteristics. The time required for the removal of the lift-off layer in the fifth step was shorter in the case of Example 2 in which the film thickness of the first lift-off layer was thicker, and the productivity was more excellent.
 また、第3工程で1重量%のフッ化水素を含有する加水フッ硝酸を用いた実施例1~3に対し、第3工程後のパターン精度を光学顕微鏡により観察を行った結果、いずれも、パターン精度は良好であった。中でも第1リフトオフ層膜厚が最も薄く、かつ第1リフトオフ層の方が第2リフトオフ層よりも薄い実施例3が最もパターン精度は特に良好であった。 Further, as compared with Examples 1 to 3 in which the hydrofluorinated nitric acid containing 1% by weight of hydrogen fluoride was used in the third step, the pattern accuracy after the third step was observed with an optical microscope. The pattern accuracy was good. Among them, in Example 3 in which the thickness of the first lift-off layer was the thinnest and the first lift-off layer was thinner than the second lift-off layer, the pattern accuracy was particularly excellent.
 実施例4のパターン精度は、実施例1と比べるとセル内の均一性という観点でやや低かったが、太陽電池特性に悪影響を及ぼすことはなかった。 The pattern accuracy of Example 4 was somewhat lower than that of Example 1 in terms of the uniformity in the cell, but it did not adversely affect the solar cell characteristics.
 総括すると、実施例は比較例に比べ、リフトオフ層を積層とすることで太陽電池特性が良好となる結果を得た。これは、第3工程・第5工程のどちらも均一かつ精度良くパターニング・エッチングされることで、第1導電型半導体層および第2導電型半導体層の配列または電極層との電気的なコンタクト(直列抵抗の上昇抑制)を良好にすることができるためと考えられる。 In summary, compared to the comparative example, in the example, the result is that the solar cell characteristics become better by laminating the lift-off layer. This is because both the third step and the fifth step are patterned and etched uniformly and accurately, so that an electrical contact with the array of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer or the electrode layer ( This is considered to be due to the fact that it is possible to improve the series resistance rise suppression).
 特に、リフトオフ層が高屈折率層のみで形成される場合(比較例1)には、第5工程においてリフトオフ層の残渣があるため、一方、リフトオフ層が低屈折率層のみで形成される場合(比較例2)には、第3工程の加水フッ硝酸によりリフトオフ層のほとんどが除去されるため、充分な太陽電池特性を得ることができなかった。 In particular, in the case where the lift-off layer is formed only with the high refractive index layer (Comparative Example 1), there is a residue of the lift-off layer in the fifth step, while the lift off layer is formed only with the low refractive index layer In Comparative Example 2, most of the lift-off layer was removed by the hydrofluorinated nitric acid in the third step, so that sufficient solar cell characteristics could not be obtained.
  10   太陽電池
  11   結晶基板
  12   真性半導体層
  13   導電型半導体層
  13p  p型半導体層[第1導電型半導体層/第2導電型半導体層]
  13n  n型半導体層[第2導電型半導体層/第1導電型半導体層]
  15   電極層
  17   透明電極層
  18   金属電極層
  NA   非形成領域
DESCRIPTION OF SYMBOLS 10 solar cell 11 crystal substrate 12 intrinsic semiconductor layer 13 conductivity type semiconductor layer 13p p-type semiconductor layer [1st conductivity type semiconductor layer / 2nd conductivity type semiconductor layer]
13n n-type semiconductor layer [second conductivity type semiconductor layer / first conductivity type semiconductor layer]
15 electrode layer 17 transparent electrode layer 18 metal electrode layer NA non-forming region

Claims (8)

  1.  結晶基板を含む太陽電池の製造方法にあって、
     前記結晶基板の一方主面の側に、第1導電型半導体層を形成する第1工程と、
     前記第1導電型半導体層に対して、シリコン系薄膜材料を含む、第1リフトオフ層および第2リフトオフ層を、この順で積み重ねて形成する第2工程と、
     前記一方主面の一部にて、前記第2リフトオフ層、前記第1リフトオフ層、および前記第1導電型半導体層を除去することで、前記第1導電型半導体層の非形成領域を生じさせる一方、前記一方主面の残部にて、前記第1導電型半導体層、前記第1リフトオフ層、および前記第2リフトオフ層を残す第3工程と、
     前記の残った前記第2リフトオフ層、および、前記非形成領域に対して、第2導電型半導体層を、積み重ねて形成する第4工程と、
     第1エッチング溶液を用いて、前記第1リフトオフ層および前記第2リフトオフ層を除去して、前記第2リフトオフ層に積み重なる前記第2導電型半導体層をも除去する第5工程と、
    を含み、
     前記第1エッチング溶液に対する第1導電型半導体層、第1リフトオフ層、および、第2リフトオフ層のエッチング速度が、以下の関係式を満たす太陽電池の製造方法。
      第1導電型半導体層のエッチング速度 < 第2リフトオフ層のエッチング速度 < 第1リフトオフ層のエッチング速度 
      …[関係式1]
    In a method of manufacturing a solar cell including a crystal substrate,
    A first step of forming a first conductive type semiconductor layer on the side of one main surface of the crystal substrate;
    A second step of forming a first lift-off layer and a second lift-off layer, which include a silicon-based thin film material, on the first conductive type semiconductor layer in the order of stacking;
    By removing the second lift-off layer, the first lift-off layer, and the first conductive semiconductor layer on a part of the one main surface, a non-formation region of the first conductive semiconductor layer is generated. On the other hand, a third step of leaving the first conductive type semiconductor layer, the first lift off layer, and the second lift off layer in the remaining portion of the one main surface;
    Forming a second conductive type semiconductor layer on the remaining second lift-off layer and the non-forming region, and forming a fourth step;
    A fifth step of removing the first lift-off layer and the second lift-off layer using a first etching solution and also removing the second conductive type semiconductor layer stacked on the second lift-off layer;
    Including
    The manufacturing method of the solar cell with which the etching rate of the 1st conductivity type semiconductor layer with respect to the said 1st etching solution, a 1st lift-off layer, and a 2nd lift-off layer satisfy | fills the following relational expression.
    Etching rate of first conductive type semiconductor layer <etching rate of second lift-off layer <etching rate of first lift-off layer
    ... [Relationship 1]
  2.  前記第1リフトオフ層および前記第2リフトオフ層が、酸化ケイ素を主成分とする層であり、550nmの波長で測定される屈折率が、以下の関係式を満たす請求項1に記載の太陽電池の製造方法。
      第2リフトオフ層の屈折率 > 第1リフトオフ層の屈折率 
      …[関係式2]
    The solar cell according to claim 1, wherein the first lift-off layer and the second lift-off layer are layers mainly composed of silicon oxide, and the refractive index measured at a wavelength of 550 nm satisfies the following relational expression. Production method.
    Refractive index of second lift-off layer> Refractive index of first lift-off layer
    ... [relation equation 2]
  3.  前記第1リフトオフ層および前記第2リフトオフ層が酸化ケイ素を主成分とする膜であり、その主成分をSiOxと表したときのxの値が、以下の関係式を満たす請求項1に記載の太陽電池の製造方法。
      第1リフトオフ層のx > 第2リフトオフ層のx 
      …[関係式3]
    The first lift-off layer and the second lift-off layer are films containing silicon oxide as a main component, and the value of x when the main component is expressed as SiO x satisfies the following relational expression: Method of manufacturing a solar cell
    1st lift-off layer x> 2nd lift-off layer x
    ... [Relationship 3]
  4.  前記結晶基板が第1テクスチャ構造を有しており、
     前記結晶基板の前記一方主面の側に形成される、前記第1導電型半導体層および前記第2導電型半導体層の各面には、前記第1テクスチャ構造を反映させた第2テクスチャ構造が含まれる請求項1~3のいずれか1項に記載の太陽電池の製造方法。
    The crystal substrate has a first texture structure,
    Each surface of the first conductive type semiconductor layer and the second conductive type semiconductor layer formed on the side of the one main surface of the crystal substrate has a second texture structure reflecting the first texture structure. The method for producing a solar cell according to any one of claims 1 to 3, which is included.
  5.  前記非形成領域では、前記結晶基板の前記一方主面の一部が露出する請求項1~4のいずれか1項に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to any one of claims 1 to 4, wherein a part of the one main surface of the crystal substrate is exposed in the non-formation region.
  6.  前記第3工程では、前記第2リフトオフ層に開口部を形成するとともに、第2エッチング溶液を、前記開口部を通じて、前記第1リフトオフ層に付着させて、その第1リフトオフ層を除去する請求項1~5のいずれか1項に記載の太陽電池の製造方法。 In the third step, an opening is formed in the second lift-off layer, and a second etching solution is adhered to the first lift-off layer through the opening to remove the first lift-off layer. The manufacturing method of the solar cell according to any one of 1 to 5.
  7.  前記第3工程では、前記第1リフトオフ層を除去するとともに、前記第1導電型半導体層にも、前記第2エッチング溶液を付着させて、その第1導電型半導体層を除去する請求項6に記載の太陽電池の製造方法。 In the third step, the first lift-off layer is removed, and the second etching solution is also attached to the first conductive type semiconductor layer to remove the first conductive type semiconductor layer. The manufacturing method of the solar cell as described.
  8.  前記第1エッチング溶液に含まれるエッチング剤の濃度が、前記第2エッチング溶液に含まれるエッチング剤の濃度よりも高い請求項6または7に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein a concentration of an etchant contained in the first etching solution is higher than a concentration of an etchant contained in the second etching solution.
PCT/JP2018/036419 2018-01-09 2018-09-28 Method for manufacturing solar cell WO2019138613A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880086006.1A CN111566825A (en) 2018-01-09 2018-09-28 Method for manufacturing solar cell
JP2019564287A JPWO2019138613A1 (en) 2018-01-09 2018-09-28 How to manufacture solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018001320 2018-01-09
JP2018-001320 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019138613A1 true WO2019138613A1 (en) 2019-07-18

Family

ID=67218555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036419 WO2019138613A1 (en) 2018-01-09 2018-09-28 Method for manufacturing solar cell

Country Status (4)

Country Link
JP (1) JPWO2019138613A1 (en)
CN (1) CN111566825A (en)
TW (1) TWI783063B (en)
WO (1) WO2019138613A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell
JP7353865B2 (en) 2019-08-22 2023-10-02 株式会社カネカ How to manufacture solar cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156665A (en) * 1998-04-13 2000-12-05 Lucent Technologies Inc. Trilayer lift-off process for semiconductor device metallization
JP2010532817A (en) * 2007-04-03 2010-10-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Deposition method of local film
JP2013120863A (en) * 2011-12-08 2013-06-17 Sharp Corp Method for manufacturing solar cell
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111261A (en) * 1993-08-16 1995-04-25 Canon Sales Co Inc Apparatus and method for film forming
JPH10190003A (en) * 1996-12-27 1998-07-21 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
WO2016158226A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Solar cell and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156665A (en) * 1998-04-13 2000-12-05 Lucent Technologies Inc. Trilayer lift-off process for semiconductor device metallization
JP2010532817A (en) * 2007-04-03 2010-10-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Deposition method of local film
JP2013120863A (en) * 2011-12-08 2013-06-17 Sharp Corp Method for manufacturing solar cell
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell
JP7353865B2 (en) 2019-08-22 2023-10-02 株式会社カネカ How to manufacture solar cells

Also Published As

Publication number Publication date
JPWO2019138613A1 (en) 2021-01-07
CN111566825A (en) 2020-08-21
TW201931619A (en) 2019-08-01
TWI783063B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP5774204B2 (en) Photovoltaic element, manufacturing method thereof, and solar cell module
JP5174635B2 (en) Solar cell element
JP2010123859A (en) Solar battery element and production process of solar battery element
JP2010147324A (en) Solar cell element and method of manufacturing solar cell element
US20210057597A1 (en) Method for manufacturing solar cell, and holder used for same
JP7228561B2 (en) Solar cell manufacturing method
WO2019138613A1 (en) Method for manufacturing solar cell
WO2019163646A1 (en) Method for producing solar cell
JP7221276B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP2013115057A (en) Method for manufacturing crystalline silicon solar cell
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
JP7183245B2 (en) Solar cell manufacturing method
JP5645734B2 (en) Solar cell element
JP7237920B2 (en) Solar cell manufacturing method
JP6053082B1 (en) Photovoltaic power generation element and manufacturing method thereof
JP7281444B2 (en) Solar cell manufacturing method
JP7361045B2 (en) How to manufacture solar cells
WO2020022044A1 (en) Manufacturing method for solar cell
JP7353865B2 (en) How to manufacture solar cells
JP2020096126A (en) Manufacturing method of back electrode type solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899900

Country of ref document: EP

Kind code of ref document: A1