WO2019163646A1 - Method for producing solar cell - Google Patents

Method for producing solar cell Download PDF

Info

Publication number
WO2019163646A1
WO2019163646A1 PCT/JP2019/005405 JP2019005405W WO2019163646A1 WO 2019163646 A1 WO2019163646 A1 WO 2019163646A1 JP 2019005405 W JP2019005405 W JP 2019005405W WO 2019163646 A1 WO2019163646 A1 WO 2019163646A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lift
semiconductor layer
type semiconductor
solar cell
Prior art date
Application number
PCT/JP2019/005405
Other languages
French (fr)
Japanese (ja)
Inventor
良太 三島
足立 大輔
邦裕 中野
崇 口山
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020501716A priority Critical patent/JPWO2019163646A1/en
Publication of WO2019163646A1 publication Critical patent/WO2019163646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell.
  • a solar cell is generally a double-sided electrode type in which electrodes are arranged on both main surfaces (light-receiving surface and back surface) of a semiconductor substrate.
  • a back contact (back electrode) type solar cell in which an electrode is disposed only on the back surface has been developed as a solar cell having no shielding loss due to an electrode.
  • a semiconductor layer pattern such as a p-type semiconductor layer and an n-type semiconductor layer must be formed on the back surface with high accuracy, and the manufacturing method becomes complicated as compared with a double-sided electrode type solar cell.
  • a semiconductor layer pattern forming technique by a lift-off method can be cited.
  • silicon oxide (SiO x ) or silicon nitride as a lift-off layer (also referred to as a mask layer or a sacrificial layer), the lift-off layer is removed, and a semiconductor layer formed thereon is removed, thereby providing a semiconductor.
  • a patterning technique for forming a layer pattern is in progress.
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to efficiently manufacture a high-output back contact solar cell.
  • one embodiment of the present invention includes a step of forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate; A step of sequentially laminating a first lift-off layer and a second lift-off layer including silicon-based thin film materials having different densities on one semiconductor layer; and selecting the second lift-off layer, the first lift-off layer, and the first semiconductor layer Removing the first conductive layer, forming a second conductive type second semiconductor layer on one main surface including the second lift-off layer, the first lift-off layer, and the first semiconductor layer, and a first etching solution And removing the second lift-off layer and the second lift-off layer, thereby removing the second semiconductor layer covering the second lift-off layer.
  • etching rates of the first semiconductor layer, the first lift-off layer, and the second lift-off layer with respect to the first etching solution are expressed by the following relational expression (1): etching rate of the first semiconductor layer ⁇ etching rate of the second lift-off layer ⁇ first The lift-off layer etching rate (1) is satisfied.
  • a high-output back contact solar cell is efficiently manufactured.
  • FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an embodiment.
  • FIG. 2 is a plan view showing the back main surface of the crystal substrate constituting the solar cell according to the embodiment.
  • FIG. 3 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 4 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 5 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 6 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an embodiment.
  • FIG. 2 is a plan view showing the back main surface of the crystal substrate constituting the solar cell according to the embodiment.
  • FIG. 3 is a partial schematic cross-sectional view showing
  • FIG. 7 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 8 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment.
  • FIG. 9 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment.
  • FIG. 10 is a transmission electron microscope (TEM) photograph showing a part of the lift-off layer used in the method for manufacturing a solar cell according to one embodiment.
  • TEM transmission electron microscope
  • FIG. 1 is a partial cross-sectional view of a solar cell (cell) according to this embodiment.
  • the solar cell 10 uses a crystal substrate 11 made of silicon (Si).
  • the crystal substrate 11 has two main surfaces 11S (11SU, 11SB) facing each other.
  • the main surface on which light is incident is referred to as the front main surface 11SU
  • the opposite main surface is referred to as the back main surface 11SB.
  • the front main surface 11SU has a light receiving side that is more positively received than the back main surface 11SB and a non-light receiving side that is not actively receiving light.
  • the solar cell 10 is a so-called heterojunction crystal silicon solar cell, and is a back contact type (back electrode type) solar cell in which an electrode layer is disposed on the back main surface 11SB.
  • the solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal electrode). Layer 18).
  • first conductivity type first conductivity type
  • second conductivity type second conductivity type
  • the crystal substrate 11 may be a semiconductor substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon.
  • a single crystal silicon substrate will be described as an example.
  • the conductivity type of the crystal substrate 11 is an n-type single crystal silicon substrate into which an impurity (for example, phosphorus (P) atom) that introduces electrons into silicon atoms is introduced, holes are introduced into the silicon atoms. It may be a p-type single crystal silicon substrate into which impurities to be introduced (for example, boron (B) atoms) are introduced.
  • impurities to be introduced for example, boron (B) atoms
  • the crystal substrate 11 has a texture structure TX (first texture structure) composed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of confining received light. You may have.
  • TX first texture structure
  • the texture structure TX is obtained by, for example, anisotropic etching applying the difference between the etching rate of the crystal substrate 11 with the (100) plane orientation and the etching rate of the (111) plane orientation. Can be formed.
  • the size of the unevenness in the texture structure TX can be defined by the number of vertices (mountains), for example.
  • it is preferably in the range of 50000 pieces / mm 2 or more and 100000 pieces / mm 2 or less, particularly 70000 pieces / mm 2 or more and 85000 pieces / mm 2 or less. It is preferable that it is in the range.
  • the thickness of the crystal substrate 11 may be 250 ⁇ m or less.
  • the measurement direction when measuring the thickness is a direction perpendicular to the average plane of the crystal substrate 11 (the average plane means a plane of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is defined as the thickness direction.
  • the thickness of the crystal substrate 11 is 250 ⁇ m or less, the amount of silicon used can be reduced, so that it becomes easy to secure the silicon substrate and the cost can be reduced.
  • the back contact structure that collects holes and electrons generated by photoexcitation in the silicon substrate only on the back side is preferable from the viewpoint of the free path of each exciton.
  • the thickness of the crystal substrate 11 is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the thickness of the crystal substrate 11 is represented by the distance between straight lines connecting the convex vertices in the light-receiving side and the back surface side. Is done.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) covers the both main surfaces 11S (11SU, 11SB) of the crystal substrate 11, thereby performing surface passivation while suppressing diffusion of impurities into the crystal substrate 11.
  • intrinsic (i-type) is not limited to complete intrinsicity including no conductive impurities, but is “weak” including a small amount of n-type impurities or p-type impurities within a range in which a silicon-based layer can function as an intrinsic layer. Also included are layers that are substantially intrinsic of “n-type” or “weak p-type”.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) is not essential, and may be appropriately formed as necessary.
  • the material of the intrinsic semiconductor layer 12 is not particularly limited, but may be an amorphous silicon-based material, which is a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen as a thin film. There may be.
  • amorphous as used herein refers to a structure having a long period and no order, that is, not only a complete disorder but also an order having a short period.
  • the thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
  • the method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma CVD (plasma enhanced chemical vapor deposition) method is used. According to this method, passivation of the substrate surface can be effectively performed while suppressing the diffusion of impurities into the single crystal silicon. Further, in the case of the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective in recovering carriers.
  • a plasma CVD plasma enhanced chemical vapor deposition
  • the conditions for forming a thin film by plasma CVD include, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / It may be cm 2 or less.
  • a silicon-containing gas such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or those gases and hydrogen (H 2 ). May be a mixed gas.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x). ) Or a silicon compound such as silicon germanium (SIGe), the energy gap of the thin film may be changed as appropriate.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x).
  • SiN x silicon nitride
  • SiGe silicon germanium
  • Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 1, the p-type semiconductor layer 13p is formed on a part of the back main surface 11SB of the crystal substrate 11 via the intrinsic semiconductor layer 12p. N-type semiconductor layer 13n is formed on the other part of the back main surface of crystal substrate 11 with intrinsic semiconductor layer 12n interposed. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13p and the crystal substrate 11 and between the n-type semiconductor layer 13n and the crystal substrate 11 as an intermediate layer that plays a role of passivation.
  • the thicknesses of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
  • the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are arranged on the back side of the crystal substrate 11 so that the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are electrically separated.
  • the width of the conductive semiconductor layer 13 may be 50 ⁇ m or more and 3000 ⁇ m or less, and may be 80 ⁇ m or more and 500 ⁇ m or less (note that the width of the semiconductor layer and the width of the electrode layer described below are not particularly specified unless otherwise specified).
  • the length of a part of each layer formed is intended by patterning, for example, a length in a direction perpendicular to the extending direction of a part of the linear shape).
  • the p-type semiconductor layer 13p may be narrower than the n-type semiconductor layer 13n.
  • the width of the p-type semiconductor layer 13p may be not less than 0.5 times and not more than 0.9 times the width of the n-type semiconductor layer 13n, and is not less than 0.6 times and not more than 0.8 times. Also good.
  • the p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (boron or the like) is added, and may be formed of amorphous silicon from the viewpoint of suppressing impurity diffusion or series resistance.
  • the n-type semiconductor layer 13n is a silicon layer to which an n-type dopant (phosphorus or the like) is added, and may be formed of an amorphous silicon layer similarly to the p-type semiconductor layer 13p.
  • a silicon-containing gas such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixed gas of a silicon-based gas and hydrogen (H 2 ) may be used.
  • the dopant gas diborane (B 2 H 6 ) or the like can be used for forming the p-type semiconductor layer 13p, and phosphine (PH 3 ) or the like can be used for forming the n-type semiconductor layer.
  • impurities such as boron (B) or phosphorus (P) may be small, a mixed gas obtained by diluting a dopant gas with a raw material gas may be used.
  • the p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be compounded by adding a gas containing any element.
  • the low reflection layer 14 is a layer that suppresses reflection of light received by the solar cell 10.
  • the material of the low reflection layer 14 is not particularly limited as long as it is a light-transmitting material that transmits light.
  • distributed the nanoparticle of oxides such as a zinc oxide or a titanium oxide, for example.
  • the electrode layer 15 is formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, and is electrically connected to each conductive semiconductor layer 13. Thereby, the electrode layer 15 functions as a transport layer for guiding carriers generated in the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
  • the electrode layer 15 may be formed of only a metal having high conductivity. Further, from the viewpoint of electrical connection between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or from the viewpoint of suppressing the diffusion of atoms into both the semiconductor layers 13p and 13n of the metal that is the electrode material, The electrode layer 15 made of a conductive oxide may be provided between the metal electrode layer and the p-type semiconductor layer 13p and between the metal electrode layer and the n-type semiconductor layer 13n.
  • the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17, and the metal electrode layer 15 is referred to as a metal electrode layer 18.
  • an electrode layer formed on the comb back portion May be referred to as a bus bar portion, and an electrode layer formed on the comb tooth portion may be referred to as a finger portion.
  • the material of the transparent electrode layer 17 is not particularly limited.
  • TiO x titanium oxide
  • TiO x titanium oxide
  • tin oxide indium oxide
  • examples thereof include a transparent conductive oxide in which SnO), tungsten oxide (WO x ), molybdenum oxide (MoO x ), or the like is added at a concentration of 1 wt% or more and 10 wt% or less.
  • the thickness of the transparent electrode layer 17 may be 20 nm or more and 200 nm or less.
  • a method for forming a transparent electrode layer suitable for this thickness for example, a physical organic vapor deposition (PVD: physical vapor deposition) method such as a sputtering method, or a metal organic using a reaction between an organic metal compound and oxygen or water.
  • PVD physical organic vapor deposition
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • the material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver (Ag), copper (Cu), aluminum (Al), and nickel (Ni).
  • the thickness of the metal electrode layer 18 may be 1 ⁇ m or more and 80 ⁇ m or less.
  • Examples of a method for forming the metal electrode layer 18 suitable for this thickness include a printing method in which a material paste is printed by inkjet or screen printing, or a plating method.
  • the present invention is not limited to this, and when a vacuum process is employed, vapor deposition or sputtering may be employed.
  • the width of the comb tooth portions in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be approximately the same as the width of the metal electrode layer 18 formed on the comb tooth portions.
  • the width of the metal electrode layer 18 may be narrower than the width of the comb tooth portion.
  • the width of the metal electrode layer 18 may be wider than the width of the comb tooth portion as long as the leakage current between the metal electrode layers 18 is prevented.
  • the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflection layer 14, and the electrode layer 15 are stacked on the back side main surface 11SB of the crystal substrate 11, and the passivation and conductive properties of each bonding surface are stacked.
  • a predetermined annealing treatment is performed for the purpose of suppressing the generation of defect levels at the type semiconductor layer 13 and its interface and crystallizing the transparent conductive oxide in the transparent electrode layer 17.
  • Examples of the annealing process according to the present embodiment include an annealing process in which the crystal substrate 11 on which each of the above layers is formed is placed in an oven heated to 150 ° C. or more and 200 ° C. or less.
  • the atmosphere in the oven may be air, and more effective annealing can be performed by using hydrogen or nitrogen as the atmosphere.
  • this annealing treatment may be an RTA (Rapid Thermal Annealing) process in which the crystal substrate 11 on which each layer is formed is irradiated with infrared rays by an infrared heater.
  • RTA Rapid Thermal Annealing
  • a crystal substrate 11 having a texture structure TX on each of a front main surface 11SU and a back main surface 11SB is prepared.
  • an intrinsic semiconductor layer 12 ⁇ / b> U is formed on the front main surface 11 ⁇ / b> SU of the crystal substrate 11.
  • the antireflection layer 14 is formed on the formed intrinsic semiconductor layer 12U.
  • silicon nitride (SiN x ) or silicon oxide (SiO x ) having a suitable light absorption coefficient and refractive index is used from the viewpoint of a light confinement effect for confining incident light.
  • an intrinsic semiconductor layer 12p using, for example, i-type amorphous silicon is formed on the back main surface 11SB of the crystal substrate 11.
  • a p-type semiconductor layer 13p is formed on the formed intrinsic semiconductor layer 12p.
  • the p-type semiconductor layer 13p with the intrinsic semiconductor layer 12p interposed is formed on the back-side main surface 11SB, which is one main surface of the crystal substrate 11.
  • first lift-off layer LF1 and second lift-off layer LF2 are formed on the formed p-type semiconductor layer 13p.
  • first lift-off layer LF1 and a second lift-off layer LF2 containing silicon thin film materials having different densities are sequentially stacked on the p-type semiconductor layer 13p.
  • the first lift-off layer LF1 is formed on the p-type semiconductor layer 13p
  • the second lift-off layer LF2 is formed on the first lift-off layer LF1.
  • the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p are patterned on the back main surface 11SB of the crystal substrate 11.
  • the p-type semiconductor layer 13p is selectively removed, resulting in a non-formed region NA where the p-type semiconductor layer 13p is not formed.
  • at least the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p remain in the region that is not etched on the back-side main surface 11SB of the crystal substrate 11.
  • Such a patterning process is realized by photolithography, for example, by forming a resist film (not shown) having a predetermined pattern on the second lift-off layer LF2, and etching a region masked by the formed resist film. To do.
  • a resist film (not shown) having a predetermined pattern on the second lift-off layer LF2, and etching a region masked by the formed resist film.
  • FIG. 6 by patterning each of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2, a part of the back main surface 11SB of the crystal substrate 11 is formed.
  • a non-forming area NA that is, an exposed area of the back side main surface 11SB is generated in the area. Details of the non-forming area NA will be described later.
  • etching solution used in the process shown in FIG. 6, for example, a mixed solution of hydrofluoric acid and an oxidizing solution (for example, hydrofluoric acid) or a solution in which ozone is dissolved in hydrofluoric acid (hereinafter referred to as ozone / hydrofluoric acid). Liquid).
  • the etching solution in this case corresponds to the second etching solution.
  • An etchant that contributes to the etching of the lift-off layer LF is hydrogen fluoride.
  • the patterning here is not limited to wet etching using an etching solution.
  • the patterning may be, for example, dry etching or pattern printing using an etching paste or the like.
  • the intrinsic semiconductor layer is formed on the back main surface 11SB of the crystal substrate 11 including the second lift-off layer LF2, the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p. 12n and n-type semiconductor layer 13n are sequentially formed.
  • the stacked film of the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n is formed on the non-forming region NA, on the surface and side surfaces (end surfaces) of the second lift-off layer LF2, and on the first lift-off layer LF1 and the p-type semiconductor. It is formed on the side surfaces (end surfaces) of the layer 13p and the intrinsic semiconductor layer 12p.
  • the n-type semiconductor layer 13n deposited on the second lift-off layer LF2 is removed by removing the stacked first lift-off layer LF1 and second lift-off layer LF2 using an etching solution. Then, the intrinsic semiconductor layer 12 n is removed from the crystal substrate 11.
  • the etching solution in this case corresponds to the first etching solution.
  • An example of the etching solution used for this patterning is hydrofluoric acid.
  • the etching rates of the first lift-off layer LF1 and the second lift-off layer LF2 satisfy the following relational expression (1).
  • the separation groove is formed on the back main surface 11SB of the crystal substrate 11, that is, on each of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by, for example, sputtering using a mask.
  • the transparent electrode layer 17 (17p, 17n) is formed to generate 25.
  • the transparent electrode layer 17 (17p, 17n) may be formed as follows instead of the sputtering method.
  • a transparent conductive oxide film is formed on the entire surface of the back main surface 11SB without using a mask, and then the transparent conductive film is formed on the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by photolithography.
  • etching may be performed to leave the conductive oxide film.
  • the isolation trench 25 that isolates and insulates the p-type semiconductor layer 13p and the n-type semiconductor layer 13n from each other, a leak current is hardly generated.
  • a linear metal electrode layer 18 (18p, 18n) is formed on the transparent electrode layer 17 by using, for example, a mesh screen (not shown) having an opening.
  • the back junction solar cell 10 is formed.
  • the lift-off layer LF is formed of at least two layers having a difference in density, and satisfies the relational expression (1) due to the difference in density. That is, the first lift-off layer LF1 having a high etching rate is provided on the crystal substrate 11 side as compared with the second lift-off layer LF2 having a low etching rate. In this way, by using the difference in etching rate in the lift-off layer LF, the accuracy of each etching is increased in the process shown in FIG. 6 and the process shown in FIG.
  • Etching accuracy that is, forming the conductive semiconductor layer 13 or the electrode layer 15 with high accuracy is important for preventing an undesired short circuit or leakage current in the solar cell 10.
  • p-type semiconductor layer patterning step the step of selectively removing the p-type semiconductor layer (first conductivity type semiconductor layer) 13p (hereinafter abbreviated as p-type semiconductor layer patterning step), a part of the lift-off layer LF.
  • the width of the patterned p-type semiconductor layer 13p depends on the width of the remaining lift-off layer LF. That is, in the p-type semiconductor layer patterning step, it is required to accurately etch a pattern having a width direction of about several hundred ⁇ m, but the accuracy in the thickness direction is not so important.
  • the etching rate of the lift-off layer LF with respect to the etching solution is too fast, the lift-off layer LF is likely to be etched excessively in the width direction (becomes narrower than the desired width). For this reason, the pattern accuracy of the lift-off layer LF may be lowered. As described above, it is not preferable that the etching rate of the lift-off layer LF with respect to the etching solution (second etching solution) is too high.
  • the n-type semiconductor layer 13n not only covers the second lift-off layer LF2 remaining in the p-type semiconductor layer patterning process, but also at a desired position (remaining p-type semiconductor layer 13p). Is also formed in the non-molding area NA) adjacent to. Subsequently, while leaving the n-type semiconductor layer 13n at a desired position as a pattern, the upper surface and side surfaces (end surfaces) of the second lift-off layer LF2, and the side surfaces of the first lift layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p ( The n-type semiconductor layer 13n on the end face) is removed.
  • the etching rate of the lift-off layer LF is faster as the etching solution (first etching solution) than the p-type semiconductor layer 12p.
  • the etching solution first etching solution
  • complete etching is required in a region in the width direction of several tens to several hundreds of nm, but accuracy in the width direction is not required.
  • the etching rate is high because the processing time is shortened.
  • the lift-off layer LF is required to have etching characteristics that conflict between the p-type semiconductor layer patterning step and the lift-off step. This characteristic is realized if the relational expression (1) resulting from the density difference between the lift-off layer LF1 and the lift-off layer LF2 is satisfied.
  • the first lift-off layer LF1 is dissolved most rapidly in the non-molding area NA. 11 (the second lift layer LF2 is not only separated but also dissolved), and the p-type semiconductor layer 13p exposed from the first lift-off layer LF1 is also dissolved.
  • the stacked layers remaining (second lift-off layer LF2, first lift-off layer LF1, p-type semiconductor layer 13p, and intrinsic semiconductor layer 12p).
  • the first lift-off layer LF1 under the second lift-off layer LF2 is eroded by etching, the first lift-off layer LF1 that has not been eroded remains. For this reason, the 2nd lift-off layer LF2 continued to it also remains. Thereby, the remaining second lift-off layer LF2 functions as the lift-off layer LF in the lift-off process.
  • the etching rate is slower than that of the first lift-off layer LF1 and the second lift-off layer LF2.
  • the n-type semiconductor layer 13n is also removed. Is done. That is, the second conductivity type semiconductor layer LF2 and thus the n-type semiconductor layer 13n thereon are lifted off.
  • the multi-layer type lift-off layer LF is a layer aimed to be removed almost completely in the lift-off process shown in FIG. 8, but the process up to this point (for example, p-type semiconductor layer patterning shown in FIG. 6).
  • the etching rate is such that the etching rate of the p-type semiconductor layer 13p ⁇ the etching rate of the second lift-off layer LF2 ⁇ the etching rate of the first lift-off layer LF1 (relational expression (1)).
  • the density difference between the lift-off layers LF1 and LF2 is designed.
  • a desired portion of the p-type semiconductor layer 13p must remain in the lift-off step, so that the etching rate of the first lift-off layer LF1 and the second lift-off layer LF2 is higher than that.
  • the etching rate of the p-type semiconductor layer 13p is slow.
  • the n-type semiconductor layer 13n is patterned without performing etching using a resist film in the lift-off process. Is done. That is, with the manufacturing method of the solar cell 10 described above, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured. In addition, since the pattern accuracy is also increased, occurrence of short circuit or leakage current in the solar cell 10 is prevented, and high output is obtained from the solar cell 10.
  • the number of lift-off layers LF may be two or more, or two from the viewpoint of productivity.
  • a lift-off layer LF including a plurality of layers is formed on the previously formed p-type semiconductor layer 13p.
  • the lift-off layer LF is patterned by, for example, etching in the process shown in FIG. Thereafter, in the step shown in FIG. 8, the n-type semiconductor layer 13n is removed.
  • the lift-off layer LF is preferably formed of a material that dissolves in the etching solution used in both steps shown in FIGS.
  • a plurality of lift-off layers LF mainly composed of silicon oxide may be used.
  • the lift-off layer LF is a layer that is almost completely removed in design in the lift-off process shown in FIG. 8, but is not excessively etched in the process up to this point (for example, the process shown in FIG. 6).
  • the etching rate is the above relational expression (1): It is preferable that the etching rate of the p-type semiconductor layer 13p ⁇ the etching rate of the second lift-off layer LF2 ⁇ the etching rate of the first lift-off layer LF1 (1).
  • the first lift-off layer LF1 dissolves quickly. Therefore, various layers deposited on the first lift-off layer LF1 are likely to be separated from the crystal substrate 11. As a result, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured.
  • a difference in density is provided between the first lift-off layer LF1 and the second lift-off layer LF2.
  • the main components of the first lift-off layer LF1 and the second lift-off layer LF2 are made of silicon oxide, and furthermore, in order to control the etching rate, a difference is caused in the respective densities. is there. This is because if the density of the layer is low, the etching rate of the layer becomes large.
  • the first lift-off layer LF1 and the second lift-off layer LF2 are mainly composed of silicon oxide, and each density has the following relational expression (2): Density of second lift-off layer LF1> Density of first lift-off layer LF1 (2) It is preferable to satisfy
  • the first lift-off layer LF1 reflects the height of the density of the lift-off layers LF1 and LF2. It can be seen that there is a difference in density in the layer between the second lift-off layer LF2 and the second lift-off layer LF2 (that is, the density of the lift-off layers LF1, LF2 can be determined from the presence or absence of voids in the cross-sectional TEM image).
  • the term “dense / dense” means not only the microscopic density (dense) and small (sparse) derived from the arrangement of atoms forming the layer, but also the macro of the presence of fine voids in the layer (sparse) or not (dense). Including cases. Therefore, the first lift-off layer LF1 may have a structure having voids throughout the layer. The low density mentioned above and the magnitude of the etching rate are related to this dense structure.
  • the density can be determined from the refractive index of each layer in the lift-off layers LF1 and LF2. That is, the large refractive index corresponds to the large density, and the small refractive index corresponds to the small density.
  • the composition of the lift-off layer LF when the lift-off layer LF is a film containing silicon oxide as a main component, oxygen when the first lift-off layer is expressed as SiO x and the second lift-off layer is expressed as SiO y. It is preferable that the composition x and y satisfy the following relational expressions (3) and (4).
  • silicon oxide having such a sparse / dense structure is controlled particularly by pressure.
  • a sparse structure can be easily obtained by setting the pressure low.
  • the film thickness of the lift-off layer LF is preferably 20 nm or more and 600 nm or less as a whole, and particularly preferably 50 nm or more and 450 nm or less. Within this range, the second lift-off layer LF2 is preferably thicker than the first lift-off layer LF1.
  • the texture structure TX is also formed on the back surface side of the crystal substrate 11, the patterning process using laser light is affected by scattering due to the texture structure. A little difficult.
  • a part of the crystal substrate 11 may be exposed by etching up to the intrinsic semiconductor layer 12p. In this case, a decrease in the lifetime of carriers generated by photoelectric conversion may be suppressed.
  • the n-type semiconductor layer 13n is formed.
  • the n-type semiconductor layer 13n is formed over the entire back side main surface 11SB of the crystal substrate 11. That is, it is formed not only on a part of the exposed surface of the crystal substrate 11 without the p-type semiconductor layer 13p but also on the lift-off layer LF. Note that an intrinsic semiconductor layer 12n may be formed between the crystal substrate 11 and the n-type semiconductor layer 13n.
  • the step of cleaning the surface of the crystal substrate 11 exposed in the p-type semiconductor layer patterning step shown in FIG. 6 is performed before forming the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n. It may be provided.
  • the cleaning step is performed with, for example, hydrofluoric acid for the purpose of removing defects or impurities generated on the surface of the crystal substrate 11 in the step shown in FIG.
  • the etching liquid is hydrofluoric acid.
  • the etching agent for etching the lift-off layer is hydrogen fluoride.
  • the crystal substrate 11 has a texture structure TX, and each surface of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n formed on the back main surface 11SB of the crystal substrate 11 has a texture structure TX. It is preferable that a texture structure reflecting the above (second texture structure) is included.
  • the etching solution easily penetrates into the semiconductor layer 13 due to the unevenness of the texture structure TX. For this reason, the conductive semiconductor layer 13 is easily removed, that is, easily patterned.
  • the texture structure TX (first texture structure) is provided on both main surfaces 11S of the crystal substrate 11, that is, the front-side main surface 11SU and the back-side main surface 11SB. May be provided. That is, when the texture structure TX is provided on the front main surface 11SU, the effect of capturing received light and the effect of confinement are enhanced. On the other hand, when the texture structure TX is provided on the back main surface 11SB, the light capturing effect is improved and the patterning of the conductive semiconductor layer 13 is facilitated. Therefore, the texture structure TX of the crystal substrate 11 may be provided on at least one main surface 11S. In the present embodiment, the texture structure TX of both the main surfaces 11S has the same pattern. However, the present invention is not limited to this, and the size of the unevenness of the texture structure TX is changed between the front-side main surface 11SU and the back-side main surface 11SB. Also good.
  • the back side main surface 11SB of the crystal substrate 11 is exposed in the non-formation region NA, but is not limited thereto. That is, the intrinsic semiconductor layer 12p may remain on the non-formation area NA of the back side main surface 11SB. What is important is that the p-type semiconductor layer 13p is selectively removed from a part of the back main surface 11SB of the crystal substrate 11, and the removed region of the p-type semiconductor layer 13p becomes a non-forming region NA. It only has to be.
  • the process of forming the intrinsic semiconductor layer 12n can be reduced before the n-type semiconductor layer 13n is deposited on the remaining second lift-off layer LF2 and the non-formed region NA.
  • the concentration of the etching agent contained in the etching solution (first etching solution) used in the lift-off process shown in FIG. 8 is the same as the etching solution (second etching solution) used in the p-type semiconductor layer patterning process shown in FIG.
  • the concentration of the etching agent contained in (1) or less is preferable.
  • the lift-off layer LF is removed in the step shown in FIG. 8 while leaving a part of the lift-off layer LF, and desired patterning can be easily performed.
  • the concentrations of the etching agents in the first etching solution and the second etching solution may be the same.
  • the composition of the etchant in both solutions does not necessarily have to be different, and may be the same composition.
  • the semiconductor layer used in the semiconductor layer forming step shown in FIG. 5 is the p-type semiconductor layer 13p, but is not limited thereto, and may be the n-type semiconductor layer 13n.
  • the conductivity type of the crystal substrate 11 is not particularly limited, and may be p-type or n-type.
  • Crystal substrate a single crystal silicon substrate having a thickness of 200 ⁇ m was employed as the crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal texture structure was formed on the crystal substrate.
  • the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (thickness 8 nm) made of silicon was formed on both main surfaces of the introduced crystal substrate.
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a flow rate ratio of SiH 4 / H 2 of 3/10, and a power density of 0.011 W / cm 2 .
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / B 2 H 6 of 1/3, and a power density of 0.01 W / cm 2 .
  • the flow rate of B 2 H 6 gas is the flow rate of the diluent gas B 2 H 6 was diluted by H 2 to 5000 ppm.
  • the film formation conditions for the first lift-off layer were a substrate temperature of 180 ° C., a pressure of 50 Pa, a flow rate ratio of SiH 4 / CO 2 of 1/5, and a power density of 0.01 W / cm 2 .
  • the film formation conditions for the second lift-off layer were the same as those for the first lift-off layer except that the SiH 4 / CO 2 flow ratio was 1/7 and the power density was 0.3 W / cm 2 .
  • the film formation time was adjusted so that both lift-off layers had a predetermined film thickness.
  • the crystal substrate on which a plurality of layers were formed was immersed in hydrofluoric acid containing hydrogen fluoride having a concentration of 1% by weight as an etching agent to remove the first lift-off layer and the second lift-off layer. Thereafter, the p-type semiconductor layer exposed by the removal of the first lift-off layer and the second lift-off layer and the intrinsic semiconductor layer immediately below the p-type semiconductor layer were removed. That is, the non-formation area
  • Example 4 hydrofluoric acid containing hydrogen fluoride having a concentration of 5% by weight was used, and the immersion time was shortened compared to other examples.
  • N-type semiconductor layer (second conductivity type semiconductor layer) Next, after the p-type semiconductor layer patterning step, a crystal substrate in which the exposed portion of the back side main surface is washed with hydrofluoric acid having a concentration of 2% by weight is introduced into a CVD apparatus, and an intrinsic semiconductor layer (film) is formed on the back side main surface. 8 nm in thickness) was formed under the same film formation conditions as the first intrinsic semiconductor layer. Subsequently, an n-type hydrogenated amorphous silicon-based thin film (film thickness: 10 nm) was formed on the formed intrinsic semiconductor layer.
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / PH 3 of 1/2, and a power density of 0.01 W / cm 2 .
  • the flow rate of the PH 3 gas is the flow rate of the diluent gas PH 3 is diluted by H 2 to 5000 ppm.
  • an oxide film (film thickness: 100 nm) serving as a base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate. Further, a silicon nitride layer was formed on the light receiving surface side of the crystal substrate as a low reflection layer.
  • the transparent conductive oxide indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target.
  • a mixed gas of argon (Ar) and oxygen (O 2 ) was introduced into the chamber of the sputtering apparatus, and the pressure in the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set such that the resistivity was the lowest (so-called bottom).
  • film formation was performed at a power density of 0.4 W / cm 2 using a DC power source.
  • etching was performed by photolithography so as to leave only the transparent conductive oxide film on the conductive semiconductor layers (p-type semiconductor layer and n-type semiconductor layer), thereby forming a transparent electrode layer.
  • the transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film on the n-type semiconductor layer.
  • a silver paste (manufactured by Fujikura Kasei Co., Ltd .: Dotite FA-333) was screen-printed on the transparent electrode layer without dilution, and a heat treatment was performed in an oven at a temperature of 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
  • the etching rate of the first lift-off layer is 6.5 nm / s and the etching rate of the second lift-off layer is 0.3 nm / s with respect to hydrofluoric acid having a concentration of 3% by weight. Met.
  • the etching rate of the p-type semiconductor layer was 0.1 nm / s or less.
  • Example 1 both the pattern accuracy and the solar cell characteristics were good.
  • Example 2 in which the thickness of the first lift-off layer was large, the time required to remove the lift-off layer in the lift-off process was shorter and the productivity was excellent.
  • Example 3 in which hydrofluoric acid containing 1% by weight of hydrogen fluoride was used in the p-type semiconductor layer patterning step, the pattern accuracy after the p-type semiconductor layer patterning step was optically changed. As a result of observation with a microscope, the pattern accuracy was good in all cases. Among them, Example 3 in which the thickness of the first lift-off layer was the smallest and the thickness of the first lift-off layer was smaller than that of the second lift-off layer was particularly good in pattern accuracy.
  • Example 4 The pattern accuracy of Example 4 was slightly lower than Example 1 in terms of uniformity in the cell, but did not adversely affect the solar cell characteristics.
  • the example obtained a result that the solar cell characteristics were improved by making the lift-off layer a laminated structure as compared with the comparative example. This is because both the p-type semiconductor layer patterning step and the lift-off step are uniformly and accurately patterned and etched, so that the electrical connection between the first conductive type semiconductor layer and the second conductive type semiconductor layer or the electrode layer is achieved. This is considered to be because good contact (suppression of increase in series resistance) can be improved.

Abstract

This method involves: a step for forming a first semiconductor layer (13p) of a first conductive type on one principal surface of a crystal substrate (11); a step for layering a first lift-off layer (LF1) and a second lift-off layer (LF2) which contain silicon and have different densities on the first semiconductor layer; a step for selectively removing the first and second lift-off layers and the first semiconductor layer; a step for forming a second semiconductor layer (13n) of a second conductive type on the one principal surface containing the first and second lift-off layers and the first semiconductor layer; and a step for removing the second semiconductor layer which covers the second lift-off layer by removing the first and second lift-off layers using a first etching solution. The etching speeds of the first semiconductor layer and the first and second lift-off layers when subjected to the first etching solution satisfy formula (1): first semiconductor layer etching speed < second lift-off layer etching speed < first lift-off layer etching speed.

Description

太陽電池の製造方法Manufacturing method of solar cell
 本発明は、太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a solar cell.
 従来、太陽電池は、半導体基板の両主面(受光面及び裏面)に電極を配置した両面電極型が一般的であった。近年、電極による遮蔽損がない太陽電池として、裏面にのみ電極を配置したバックコンタクト(裏面電極)型太陽電池が開発されている。 Conventionally, a solar cell is generally a double-sided electrode type in which electrodes are arranged on both main surfaces (light-receiving surface and back surface) of a semiconductor substrate. In recent years, a back contact (back electrode) type solar cell in which an electrode is disposed only on the back surface has been developed as a solar cell having no shielding loss due to an electrode.
 バックコンタクト型太陽電池は、裏面にp型半導体層及びn型半導体層等の半導体層パターンを高精度で形成しなければならず、両面電極型の太陽電池と比べて製造方法が煩雑となる。製造方法を簡略化するための技術として、特許文献1に示されるように、リフトオフ法による半導体層パターンの形成技術が挙げられる。 In the back contact type solar cell, a semiconductor layer pattern such as a p-type semiconductor layer and an n-type semiconductor layer must be formed on the back surface with high accuracy, and the manufacturing method becomes complicated as compared with a double-sided electrode type solar cell. As a technique for simplifying the manufacturing method, as shown in Patent Document 1, a semiconductor layer pattern forming technique by a lift-off method can be cited.
 すなわち、酸化ケイ素(SiO)又は窒化ケイ素をリフトオフ層(マスク層又は犠牲層ともいう。)として用い、該リフトオフ層を除去して、その上に形成された半導体層を除去することにより、半導体層パターンを形成するパターニング技術の開発が進められている。 That is, by using silicon oxide (SiO x ) or silicon nitride as a lift-off layer (also referred to as a mask layer or a sacrificial layer), the lift-off layer is removed, and a semiconductor layer formed thereon is removed, thereby providing a semiconductor. Development of a patterning technique for forming a layer pattern is in progress.
特開2013-120863号公報JP 2013-120863 A
 しかしながら、高精度の半導体層パターンをリフトオフ法により形成する場合、リフトオフ層と半導体層との溶解性が似ていると、意図しない層までが除去されることもあり、パターン精度が低下する、又は生産性が低下するという虞がある。 However, when a high-precision semiconductor layer pattern is formed by the lift-off method, if the solubility of the lift-off layer and the semiconductor layer is similar, an unintended layer may be removed, and the pattern accuracy is reduced, or There is a risk that productivity may be reduced.
 本発明は、前記従来の問題を解決するためになされたものであり、その目的は、高出力のバックコンタクト型の太陽電池を効率良く製造することにある。 The present invention has been made to solve the above-described conventional problems, and an object thereof is to efficiently manufacture a high-output back contact solar cell.
 前記の目的を達成するため、本発明の一態様は、半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、第1半導体層の上に、互いの密度が異なるシリコン系薄膜材料を含む第1リフトオフ層及び第2リフトオフ層を順次積層する工程と、第2リフトオフ層、第1リフトオフ層及び第1半導体層を選択的に除去する工程と、第2リフトオフ層、第1リフトオフ層及び第1半導体層を含む一方の主面の上に、第2導電型の第2半導体層を形成する工程と、第1エッチング溶液を用いて、第1リフトオフ層及び第2リフトオフ層を除去することにより、第2リフトオフ層を覆う第2半導体層を除去する工程とを含む。第1エッチング溶液に対する第1半導体層、第1リフトオフ層及び第2リフトオフ層のエッチング速度は、以下の関係式(1):第1半導体層のエッチング速度 < 第2リフトオフ層のエッチング速度 < 第1リフトオフ層のエッチング速度 …(1)を満たす。 In order to achieve the above object, one embodiment of the present invention includes a step of forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate; A step of sequentially laminating a first lift-off layer and a second lift-off layer including silicon-based thin film materials having different densities on one semiconductor layer; and selecting the second lift-off layer, the first lift-off layer, and the first semiconductor layer Removing the first conductive layer, forming a second conductive type second semiconductor layer on one main surface including the second lift-off layer, the first lift-off layer, and the first semiconductor layer, and a first etching solution And removing the second lift-off layer and the second lift-off layer, thereby removing the second semiconductor layer covering the second lift-off layer. The etching rates of the first semiconductor layer, the first lift-off layer, and the second lift-off layer with respect to the first etching solution are expressed by the following relational expression (1): etching rate of the first semiconductor layer <etching rate of the second lift-off layer <first The lift-off layer etching rate (1) is satisfied.
 本発明によれば、高出力のバックコンタクト型の太陽電池が効率良く製造される。 According to the present invention, a high-output back contact solar cell is efficiently manufactured.
図1は一実施形態に係る太陽電池を部分的に示す模式断面図である。FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an embodiment. 図2は一実施形態に係る太陽電池を構成する結晶基板の裏側主面を示す平面図である。FIG. 2 is a plan view showing the back main surface of the crystal substrate constituting the solar cell according to the embodiment. 図3は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 3 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図4は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 4 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図5は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 5 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図6は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 6 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図7は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 7 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図8は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 8 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment. 図9は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 9 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment. 図10は一実施形態に係る太陽電池の製造方法に用いるリフトオフ層の一部を示す透過型電子顕微鏡(TEM)写真である。FIG. 10 is a transmission electron microscope (TEM) photograph showing a part of the lift-off layer used in the method for manufacturing a solar cell according to one embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物又はその用途を制限することを意図しない。また、図面中の各構成部材の寸法比は、図示する際の便宜上のものであり、必ずしも実寸比を表してはいない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its application. In addition, the dimensional ratios of the constituent members in the drawings are for the convenience of illustration, and do not necessarily represent the actual dimensional ratios.
 (一実施形態)
 本発明の一実施形態について図面を参照しながら説明する。
(One embodiment)
An embodiment of the present invention will be described with reference to the drawings.
 図1は本実施形態に係る太陽電池(セル)の部分的な断面図を示す。図1に示すように、本実施形態に係る太陽電池10は、シリコン(Si)製の結晶基板11を用いている。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有している。ここでは、光が入射する主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側を受光側とし、積極的に受光させない側を非受光側とする。 FIG. 1 is a partial cross-sectional view of a solar cell (cell) according to this embodiment. As shown in FIG. 1, the solar cell 10 according to the present embodiment uses a crystal substrate 11 made of silicon (Si). The crystal substrate 11 has two main surfaces 11S (11SU, 11SB) facing each other. Here, the main surface on which light is incident is referred to as the front main surface 11SU, and the opposite main surface is referred to as the back main surface 11SB. For convenience, the front main surface 11SU has a light receiving side that is more positively received than the back main surface 11SB and a non-light receiving side that is not actively receiving light.
 本実施形態に係る太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。 The solar cell 10 according to this embodiment is a so-called heterojunction crystal silicon solar cell, and is a back contact type (back electrode type) solar cell in which an electrode layer is disposed on the back main surface 11SB.
 太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。 The solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal electrode). Layer 18).
 以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。 Hereinafter, for convenience, members corresponding to the p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be suffixed with “p” or “n”. In addition, since the conductivity types are different such as p-type and n-type, one conductivity type may be referred to as “first conductivity type” and the other conductivity type may be referred to as “second conductivity type”.
 結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。 The crystal substrate 11 may be a semiconductor substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon. Hereinafter, a single crystal silicon substrate will be described as an example.
 結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)を導入されたn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B)原子)を導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。 Even if the conductivity type of the crystal substrate 11 is an n-type single crystal silicon substrate into which an impurity (for example, phosphorus (P) atom) that introduces electrons into silicon atoms is introduced, holes are introduced into the silicon atoms. It may be a p-type single crystal silicon substrate into which impurities to be introduced (for example, boron (B) atoms) are introduced. Hereinafter, an n-type single crystal substrate that is said to have a long carrier life will be described as an example.
 また、結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成することができる。 The crystal substrate 11 has a texture structure TX (first texture structure) composed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of confining received light. You may have. Note that the texture structure TX (uneven surface) is obtained by, for example, anisotropic etching applying the difference between the etching rate of the crystal substrate 11 with the (100) plane orientation and the etching rate of the (111) plane orientation. Can be formed.
 テクスチャ構造TXにおける凹凸の大きさとして、例えば、頂点(山)の数で定義することが可能である。本実施形態においては、光取り込みと生産性との観点から、50000個/mm以上100000個/mm以下の範囲であることが好ましく、特には70000個/mm以上85000個/mm以下の範囲であると好ましい。 The size of the unevenness in the texture structure TX can be defined by the number of vertices (mountains), for example. In the present embodiment, from the viewpoint of light capture and productivity, it is preferably in the range of 50000 pieces / mm 2 or more and 100000 pieces / mm 2 or less, particularly 70000 pieces / mm 2 or more and 85000 pieces / mm 2 or less. It is preferable that it is in the range.
 結晶基板11の厚さは、250μm以下であってもよい。なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。そこで、これ以降、この垂直方向、すなわち、厚さを測定する方向を厚さ方向とする。 The thickness of the crystal substrate 11 may be 250 μm or less. Note that the measurement direction when measuring the thickness is a direction perpendicular to the average plane of the crystal substrate 11 (the average plane means a plane of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is defined as the thickness direction.
 結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。 When the thickness of the crystal substrate 11 is 250 μm or less, the amount of silicon used can be reduced, so that it becomes easy to secure the silicon substrate and the cost can be reduced. In addition, the back contact structure that collects holes and electrons generated by photoexcitation in the silicon substrate only on the back side is preferable from the viewpoint of the free path of each exciton.
 なお、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。 In addition, when the thickness of the crystal substrate 11 is excessively small, the mechanical strength is reduced, or external light (sunlight) is not sufficiently absorbed, and the short-circuit current density is reduced. For this reason, the thickness of the crystal substrate 11 is preferably 50 μm or more, and more preferably 70 μm or more. When the texture structure TX is formed on the main surface of the crystal substrate 11, the thickness of the crystal substrate 11 is represented by the distance between straight lines connecting the convex vertices in the light-receiving side and the back surface side. Is done.
 真性半導体層12(12U、12p、12n)は、結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。 The intrinsic semiconductor layer 12 (12U, 12p, 12n) covers the both main surfaces 11S (11SU, 11SB) of the crystal substrate 11, thereby performing surface passivation while suppressing diffusion of impurities into the crystal substrate 11. Note that “intrinsic (i-type)” is not limited to complete intrinsicity including no conductive impurities, but is “weak” including a small amount of n-type impurities or p-type impurities within a range in which a silicon-based layer can function as an intrinsic layer. Also included are layers that are substantially intrinsic of “n-type” or “weak p-type”.
 なお、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。 In addition, the intrinsic semiconductor layer 12 (12U, 12p, 12n) is not essential, and may be appropriately formed as necessary.
 真性半導体層12の材料は、特に限定されないが、非晶質シリコン系材料であってもよく、薄膜としてシリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造であり、すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。 The material of the intrinsic semiconductor layer 12 is not particularly limited, but may be an amorphous silicon-based material, which is a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen as a thin film. There may be. The term “amorphous” as used herein refers to a structure having a long period and no order, that is, not only a complete disorder but also an order having a short period.
 また、真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
 真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。 The method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma CVD (plasma enhanced chemical vapor deposition) method is used. According to this method, passivation of the substrate surface can be effectively performed while suppressing the diffusion of impurities into the single crystal silicon. Further, in the case of the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective in recovering carriers.
 なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm以上0.5W/cm以下であってもよい。 The conditions for forming a thin film by plasma CVD include, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / It may be cm 2 or less.
 また、薄膜の形成に使用する原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH)及びジシラン(Si)等のシリコン含有ガス、又はそれらのガスと水素(H)とを混合したガスであってもよい。 As the raw material gas used for forming the thin film, in the case of the intrinsic semiconductor layer 12, a silicon-containing gas such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or those gases and hydrogen (H 2 ). May be a mixed gas.
 なお、上記のガスに、メタン(CH)、アンモニア(NH)若しくはモノゲルマン(GeH)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiN)又はシリコンゲルマニウム(SIGe)等のシリコン化合物を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。 Note that a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x). ) Or a silicon compound such as silicon germanium (SIGe), the energy gap of the thin film may be changed as appropriate.
 導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図1に示すように、p型半導体層13pは、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面の他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及びn型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12が介在する。 Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 1, the p-type semiconductor layer 13p is formed on a part of the back main surface 11SB of the crystal substrate 11 via the intrinsic semiconductor layer 12p. N-type semiconductor layer 13n is formed on the other part of the back main surface of crystal substrate 11 with intrinsic semiconductor layer 12n interposed. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13p and the crystal substrate 11 and between the n-type semiconductor layer 13n and the crystal substrate 11 as an intermediate layer that plays a role of passivation.
 p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The thicknesses of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
 p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であってもよい(なお、半導体層の幅及び後述の電極層の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば線状になった一部分の延び方向と直交する方向の長さを意図する)。 The p-type semiconductor layer 13p and the n-type semiconductor layer 13n are arranged on the back side of the crystal substrate 11 so that the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are electrically separated. The width of the conductive semiconductor layer 13 may be 50 μm or more and 3000 μm or less, and may be 80 μm or more and 500 μm or less (note that the width of the semiconductor layer and the width of the electrode layer described below are not particularly specified unless otherwise specified). The length of a part of each layer formed is intended by patterning, for example, a length in a direction perpendicular to the extending direction of a part of the linear shape).
 結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であってもよい。 When photoexcitons (carriers) generated in the crystal substrate 11 are taken out through the conductive semiconductor layer 13, holes have an effective mass larger than electrons. For this reason, from the viewpoint of reducing transport loss, the p-type semiconductor layer 13p may be narrower than the n-type semiconductor layer 13n. For example, the width of the p-type semiconductor layer 13p may be not less than 0.5 times and not more than 0.9 times the width of the n-type semiconductor layer 13n, and is not less than 0.6 times and not more than 0.8 times. Also good.
 p型半導体層13pは、p型のドーパント(ホウ素等)が添加されたシリコン層であって、不純物拡散の抑制又は直列抵抗の抑制という観点から、非晶質シリコンで形成されてもよい。一方、n型半導体層13nは、n型のドーパント(リン等)が添加されたシリコン層であって、p型半導体層13pと同様に、非晶質シリコン層で形成されてもよい。 The p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (boron or the like) is added, and may be formed of amorphous silicon from the viewpoint of suppressing impurity diffusion or series resistance. On the other hand, the n-type semiconductor layer 13n is a silicon layer to which an n-type dopant (phosphorus or the like) is added, and may be formed of an amorphous silicon layer similarly to the p-type semiconductor layer 13p.
 導電型半導体層13の原料ガスとしては、モノシラン(SiH)若しくはジシラン(Si)等のシリコン含有ガス、又はシリコン系ガスと水素(H)との混合ガスを用いてもよい。ドーパントガスには、p型半導体層13pの形成にはジボラン(B)等を用いることができ、n型半導体層の形成にはホスフィン(PH)等を用いることができる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。 As a source gas for the conductive semiconductor layer 13, a silicon-containing gas such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixed gas of a silicon-based gas and hydrogen (H 2 ) may be used. As the dopant gas, diborane (B 2 H 6 ) or the like can be used for forming the p-type semiconductor layer 13p, and phosphine (PH 3 ) or the like can be used for forming the n-type semiconductor layer. Moreover, since the addition amount of impurities such as boron (B) or phosphorus (P) may be small, a mixed gas obtained by diluting a dopant gas with a raw material gas may be used.
 また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH)、二酸化炭素(CO)、アンモニア(NH)又はモノゲルマン(GeH)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが化合物化されてもよい。 Further, in order to adjust the energy gap of the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, different types such as methane (CH 4 ), carbon dioxide (CO 2 ), ammonia (NH 3 ), or monogermane (GeH 4 ) are used. The p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be compounded by adding a gas containing any element.
 低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiO)、窒化ケイ素(SiN)、酸化亜鉛(ZnO)又は酸化チタン(TiO)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。 The low reflection layer 14 is a layer that suppresses reflection of light received by the solar cell 10. The material of the low reflection layer 14 is not particularly limited as long as it is a light-transmitting material that transmits light. For example, silicon oxide (SiO x ), silicon nitride (SiN x ), zinc oxide (ZnO), or oxide titanium (TiO x) and the like. Moreover, as a formation method of the low reflection layer 14, you may apply with the resin material which disperse | distributed the nanoparticle of oxides, such as a zinc oxide or a titanium oxide, for example.
 電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。 The electrode layer 15 is formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, and is electrically connected to each conductive semiconductor layer 13. Thereby, the electrode layer 15 functions as a transport layer for guiding carriers generated in the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
 なお、電極層15は、導電性が高い金属のみで形成されてもよい。また、p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、透明導電性酸化物で構成された電極層15を、金属製の電極層とp型半導体層13pとの間及び金属製の電極層とn型半導体層13nとの間にそれぞれ設けてもよい。 Note that the electrode layer 15 may be formed of only a metal having high conductivity. Further, from the viewpoint of electrical connection between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or from the viewpoint of suppressing the diffusion of atoms into both the semiconductor layers 13p and 13n of the metal that is the electrode material, The electrode layer 15 made of a conductive oxide may be provided between the metal electrode layer and the p-type semiconductor layer 13p and between the metal electrode layer and the n-type semiconductor layer 13n.
 本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。また、図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部と称し、櫛歯部上に形成される電極層をフィンガ部と称することがある。 In the present embodiment, the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17, and the metal electrode layer 15 is referred to as a metal electrode layer 18. Further, as shown in the plan view of the back main surface 11SB of the crystal substrate 11 shown in FIG. 2, in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n each having a comb-teeth shape, an electrode layer formed on the comb back portion May be referred to as a bus bar portion, and an electrode layer formed on the comb tooth portion may be referred to as a finger portion.
 透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InO)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)若しくは酸化モリブデン(MoO)等を1重量%以上10重量%以下の濃度で添加した透明導電性酸化物が挙げられる。 The material of the transparent electrode layer 17 is not particularly limited. For example, zinc oxide (ZnO) or indium oxide (InO x ), or various metal oxides such as titanium oxide (TiO x ), tin oxide (indium oxide) Examples thereof include a transparent conductive oxide in which SnO), tungsten oxide (WO x ), molybdenum oxide (MoO x ), or the like is added at a concentration of 1 wt% or more and 10 wt% or less.
 透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積法(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。 The thickness of the transparent electrode layer 17 may be 20 nm or more and 200 nm or less. As a method for forming a transparent electrode layer suitable for this thickness, for example, a physical organic vapor deposition (PVD: physical vapor deposition) method such as a sputtering method, or a metal organic using a reaction between an organic metal compound and oxygen or water. The chemical vapor deposition method (MOCVD: Metal-Organic-Chemical-Vapor-Deposition) method etc. are mentioned.
 金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。 The material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver (Ag), copper (Cu), aluminum (Al), and nickel (Ni).
 金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、蒸着又はスパッタリング法を採用してもよい。 The thickness of the metal electrode layer 18 may be 1 μm or more and 80 μm or less. Examples of a method for forming the metal electrode layer 18 suitable for this thickness include a printing method in which a material paste is printed by inkjet or screen printing, or a plating method. However, the present invention is not limited to this, and when a vacuum process is employed, vapor deposition or sputtering may be employed.
 また、p型半導体層13p及びn型半導体層13nにおける櫛歯部の幅と、該櫛歯部の上に形成される金属電極層18の幅とは、同程度であってもよい。但し、櫛歯部の幅と比べて、金属電極層18の幅が狭くてもよい。また、金属電極層18同士のリーク電流が防止される構成であれば、櫛歯部の幅と比べて、金属電極層18の幅が広くてもよい。 Further, the width of the comb tooth portions in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be approximately the same as the width of the metal electrode layer 18 formed on the comb tooth portions. However, the width of the metal electrode layer 18 may be narrower than the width of the comb tooth portion. Further, the width of the metal electrode layer 18 may be wider than the width of the comb tooth portion as long as the leakage current between the metal electrode layers 18 is prevented.
 本実施形態においては、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。 In this embodiment, the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflection layer 14, and the electrode layer 15 are stacked on the back side main surface 11SB of the crystal substrate 11, and the passivation and conductive properties of each bonding surface are stacked. A predetermined annealing treatment is performed for the purpose of suppressing the generation of defect levels at the type semiconductor layer 13 and its interface and crystallizing the transparent conductive oxide in the transparent electrode layer 17.
 本実施形態に係るアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は、大気でもよく、さらには、雰囲気として水素又は窒素を用いると、より効果的なアニール処理を行うことができる。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。 Examples of the annealing process according to the present embodiment include an annealing process in which the crystal substrate 11 on which each of the above layers is formed is placed in an oven heated to 150 ° C. or more and 200 ° C. or less. In this case, the atmosphere in the oven may be air, and more effective annealing can be performed by using hydrogen or nitrogen as the atmosphere. Further, this annealing treatment may be an RTA (Rapid Thermal Annealing) process in which the crystal substrate 11 on which each layer is formed is irradiated with infrared rays by an infrared heater.
 [太陽電池の製造方法]
 以下、本実施形態に係る太陽電池10の製造方法について図3~図9を参照しながら説明する。
[Method for manufacturing solar cell]
Hereinafter, a method for manufacturing the solar cell 10 according to the present embodiment will be described with reference to FIGS.
 まず、図3に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する。 First, as shown in FIG. 3, a crystal substrate 11 having a texture structure TX on each of a front main surface 11SU and a back main surface 11SB is prepared.
 次に、図4に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に反射防止層14を形成する。反射防止層14には、入射光を閉じ込める光閉じ込め効果の観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiN)又はシリコンオキサイド(SiO)が用いられる。 Next, as shown in FIG. 4, for example, an intrinsic semiconductor layer 12 </ b> U is formed on the front main surface 11 </ b> SU of the crystal substrate 11. Subsequently, the antireflection layer 14 is formed on the formed intrinsic semiconductor layer 12U. For the antireflection layer 14, silicon nitride (SiN x ) or silicon oxide (SiO x ) having a suitable light absorption coefficient and refractive index is used from the viewpoint of a light confinement effect for confining incident light.
 次に、図5に示すように、結晶基板11の裏側主面11SBの上に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する。続いて、形成した真性半導体層12pの上に、p型半導体層13pを形成する。これにより、結晶基板11における一方の主面である裏側主面11SBの上に、真性半導体層12pを介在させたp型半導体層13pが形成される。 Next, as shown in FIG. 5, an intrinsic semiconductor layer 12p using, for example, i-type amorphous silicon is formed on the back main surface 11SB of the crystal substrate 11. Subsequently, a p-type semiconductor layer 13p is formed on the formed intrinsic semiconductor layer 12p. As a result, the p-type semiconductor layer 13p with the intrinsic semiconductor layer 12p interposed is formed on the back-side main surface 11SB, which is one main surface of the crystal substrate 11.
 その後、形成したp型半導体層13pの上に、複数層のリフトオフ層LF(第1リフトオフ層LF1及び第2リフトオフ層LF2)を形成する。具体的には、p型半導体層13pの上に、互いの密度が異なるシリコン系薄膜材料を含む第1リフトオフ層LF1及び第2リフトオフ層LF2を順次積層して形成する。これにより、第1リフトオフ層LF1がp型半導体層13pの上に形成され、第2リフトオフ層LF2が第1リフトオフ層LF1の上に形成される。 Thereafter, a plurality of lift-off layers LF (first lift-off layer LF1 and second lift-off layer LF2) are formed on the formed p-type semiconductor layer 13p. Specifically, a first lift-off layer LF1 and a second lift-off layer LF2 containing silicon thin film materials having different densities are sequentially stacked on the p-type semiconductor layer 13p. As a result, the first lift-off layer LF1 is formed on the p-type semiconductor layer 13p, and the second lift-off layer LF2 is formed on the first lift-off layer LF1.
 次に、図6に示すように、結晶基板11の裏側主面11SBにおいて、第2リフトオフ層LF2、第1リフトオフ層LF1及びp型半導体層13pをパターニングする。これにより、p型半導体層13pが選択的に除去されて、p型半導体層13pの形成されない非形成領域NAが生じる。一方、結晶基板11の裏側主面11SBでエッチングされなかった領域には、少なくとも第2リフトオフ層LF2、第1リフトオフ層LF1及びp型半導体層13pが残る。 Next, as shown in FIG. 6, the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p are patterned on the back main surface 11SB of the crystal substrate 11. As a result, the p-type semiconductor layer 13p is selectively removed, resulting in a non-formed region NA where the p-type semiconductor layer 13p is not formed. On the other hand, at least the second lift-off layer LF2, the first lift-off layer LF1, and the p-type semiconductor layer 13p remain in the region that is not etched on the back-side main surface 11SB of the crystal substrate 11.
 このようなパターニング工程は、フォトリソグラフィ法、例えば所定のパターンを有するレジスト膜(不図示)を第2リフトオフ層LF2の上に形成し、形成したレジスト膜によってマスクされた領域をエッチングすることにより実現する。図6に示す場合は、真性半導体層12p、p型半導体層13p、第1リフトオフ層LF1、及び第2リフトオフ層LF2の各層をパターニングすることにより、結晶基板11の裏側主面11SBの一部の領域に非形成領域NA、すなわち裏側主面11SBの露出領域が生じる。なお、非形成領域NAについての詳細は後述する。 Such a patterning process is realized by photolithography, for example, by forming a resist film (not shown) having a predetermined pattern on the second lift-off layer LF2, and etching a region masked by the formed resist film. To do. In the case shown in FIG. 6, by patterning each of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, the first lift-off layer LF1, and the second lift-off layer LF2, a part of the back main surface 11SB of the crystal substrate 11 is formed. A non-forming area NA, that is, an exposed area of the back side main surface 11SB is generated in the area. Details of the non-forming area NA will be described later.
 図6に示す工程で使用するエッチング溶液として、例えばフッ化水素酸と酸化性溶液との混合溶液(例えばフッ硝酸)、又はオゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ酸液)が挙げられる。この場合のエッチング溶液は、第2エッチング溶液に相当する。また、リフトオフ層LFのエッチングに寄与するエッチング剤はフッ化水素である。なお、ここでのパターニングは、エッチング溶液を用いたウエットエッチングには限定されない。パターニングは、例えばドライエッチングであってもよく、エッチングペースト等を用いたパターン印刷であってもよい。 As an etching solution used in the process shown in FIG. 6, for example, a mixed solution of hydrofluoric acid and an oxidizing solution (for example, hydrofluoric acid) or a solution in which ozone is dissolved in hydrofluoric acid (hereinafter referred to as ozone / hydrofluoric acid). Liquid). The etching solution in this case corresponds to the second etching solution. An etchant that contributes to the etching of the lift-off layer LF is hydrogen fluoride. Note that the patterning here is not limited to wet etching using an etching solution. The patterning may be, for example, dry etching or pattern printing using an etching paste or the like.
 次に、図7に示すように、第2リフトオフ層LF2、第1リフトオフ層LF1、p型半導体層13p及び真性半導体層12pを含め、結晶基板11の裏側主面11SBの上に、真性半導体層12n及びn型半導体層13nを順次形成する。これにより、真性半導体層12nとn型半導体層13nとの積層膜が、非形成領域NA上と、第2リフトオフ層LF2の表面及び側面(端面)上と、第1リフトオフ層LF1、p型半導体層13p及び真性半導体層12pの側面(端面)上とに形成される。 Next, as shown in FIG. 7, the intrinsic semiconductor layer is formed on the back main surface 11SB of the crystal substrate 11 including the second lift-off layer LF2, the first lift-off layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p. 12n and n-type semiconductor layer 13n are sequentially formed. Thereby, the stacked film of the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n is formed on the non-forming region NA, on the surface and side surfaces (end surfaces) of the second lift-off layer LF2, and on the first lift-off layer LF1 and the p-type semiconductor. It is formed on the side surfaces (end surfaces) of the layer 13p and the intrinsic semiconductor layer 12p.
 次に、図8に示すように、エッチング溶液を用いて、積層した第1リフトオフ層LF1及び第2リフトオフ層LF2を除去することにより、第2リフトオフ層LF2の上に堆積したn型半導体層13n及び真性半導体層12nを結晶基板11から除去する。この場合のエッチング溶液は、第1エッチング溶液に相当する。なお、このパターニングに使用するエッチング溶液としては、例えばフッ化水素酸が挙げられる。 Next, as shown in FIG. 8, the n-type semiconductor layer 13n deposited on the second lift-off layer LF2 is removed by removing the stacked first lift-off layer LF1 and second lift-off layer LF2 using an etching solution. Then, the intrinsic semiconductor layer 12 n is removed from the crystal substrate 11. The etching solution in this case corresponds to the first etching solution. An example of the etching solution used for this patterning is hydrofluoric acid.
 また、図8に示す、リフトオフ層LFを覆うn型半導体層(第2導電型半導体層)13nを除去する工程(以下、リフトオフ工程と略称する)において、エッチング溶液に対するp型半導体層13p、第1リフトオフ層LF1及び第2リフトオフ層LF2の各エッチング速度は、以下の関係式(1)を満たす。 Further, in the step of removing the n-type semiconductor layer (second conductivity type semiconductor layer) 13n covering the lift-off layer LF shown in FIG. 8 (hereinafter referred to as a lift-off step), the p-type semiconductor layer 13p with respect to the etching solution, The etching rates of the first lift-off layer LF1 and the second lift-off layer LF2 satisfy the following relational expression (1).
 p型半導体層13pのエッチング速度 < 第2リフトオフ層LF2のエッチング速度< 第1リフトオフ層LF1のエッチング速度 …(1)
 次に、図9に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれに、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)を形成する。なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。例えば、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。ここで、p型半導体層13pとn型半導体層13nとを互いに分離絶縁する分離溝25を形成することにより、リーク電流が発生し難くなる。
Etching rate of p-type semiconductor layer 13p <etching rate of second lift-off layer LF2 <etching rate of first lift-off layer LF1 (1)
Next, as shown in FIG. 9, the separation groove is formed on the back main surface 11SB of the crystal substrate 11, that is, on each of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by, for example, sputtering using a mask. The transparent electrode layer 17 (17p, 17n) is formed to generate 25. The transparent electrode layer 17 (17p, 17n) may be formed as follows instead of the sputtering method. For example, a transparent conductive oxide film is formed on the entire surface of the back main surface 11SB without using a mask, and then the transparent conductive film is formed on the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by photolithography. Alternatively, etching may be performed to leave the conductive oxide film. Here, by forming the isolation trench 25 that isolates and insulates the p-type semiconductor layer 13p and the n-type semiconductor layer 13n from each other, a leak current is hardly generated.
 その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する。 Thereafter, a linear metal electrode layer 18 (18p, 18n) is formed on the transparent electrode layer 17 by using, for example, a mesh screen (not shown) having an opening.
 以上の工程により、裏面接合型の太陽電池10が形成される。 Through the above steps, the back junction solar cell 10 is formed.
 (まとめ及び効果)
 上述した太陽電池10の製造方法から以下のことがいえる。
(Summary and effect)
The following can be said from the manufacturing method of the solar cell 10 described above.
 まず、リフトオフ層LFは、互いの密度に差を持たせた、少なくとも2層で形成され、この密度の差に起因して、上記関係式(1)を満たすようになる。すなわち、エッチング速度の速い第1リフトオフ層LF1が、エッチング速度の遅い第2リフトオフ層LF2と比べて、結晶基板11側に設けられる。このように、リフトオフ層LF内のエッチング速度の差を利用することにより、図6に示す工程及び図8に示す工程において、それぞれのエッチングの精度が高くなる。 First, the lift-off layer LF is formed of at least two layers having a difference in density, and satisfies the relational expression (1) due to the difference in density. That is, the first lift-off layer LF1 having a high etching rate is provided on the crystal substrate 11 side as compared with the second lift-off layer LF2 having a low etching rate. In this way, by using the difference in etching rate in the lift-off layer LF, the accuracy of each etching is increased in the process shown in FIG. 6 and the process shown in FIG.
 エッチングの精度、すなわち、導電型半導体層13又は電極層15を精度良く形成することは、太陽電池10における不所望の短絡若しくはリーク電流を防ぐために、重要である。図6に示す工程、すなわち、p型半導体層(第1導電型半導体層)13pを選択的に除去する工程(以下、p型半導体層パターニング工程と略称する。)では、リフトオフ層LFの一部が、所望部分のp型半導体層13pにエッチング溶液の付着を防止するマスクの役割を果たす。このため、パターン化されたp型半導体層13pの幅は、残されたリフトオフ層LFの幅に依存する。すなわち、p型半導体層パターニング工程においては、数百μm程度の幅方向を有するパターンを精度良くエッチングすることが求められる一方、厚さ方向の精度はそれほど重要ではない。 Etching accuracy, that is, forming the conductive semiconductor layer 13 or the electrode layer 15 with high accuracy is important for preventing an undesired short circuit or leakage current in the solar cell 10. In the step shown in FIG. 6, that is, the step of selectively removing the p-type semiconductor layer (first conductivity type semiconductor layer) 13p (hereinafter abbreviated as p-type semiconductor layer patterning step), a part of the lift-off layer LF. However, it serves as a mask for preventing the etching solution from adhering to the desired portion of the p-type semiconductor layer 13p. For this reason, the width of the patterned p-type semiconductor layer 13p depends on the width of the remaining lift-off layer LF. That is, in the p-type semiconductor layer patterning step, it is required to accurately etch a pattern having a width direction of about several hundred μm, but the accuracy in the thickness direction is not so important.
 従って、エッチング溶液に対するリフトオフ層LFのエッチング速度が速すぎると、リフトオフ層LFが幅方向に過大にエッチングされやすくなる(所望の幅よりも幅狭になる)。このため、リフトオフ層LFのパターン精度が低下しかねない。このように、エッチング液(第2エッチング溶液)に対するリフトオフ層LFのエッチング速度が速すぎることは好ましくない。 Therefore, if the etching rate of the lift-off layer LF with respect to the etching solution is too fast, the lift-off layer LF is likely to be etched excessively in the width direction (becomes narrower than the desired width). For this reason, the pattern accuracy of the lift-off layer LF may be lowered. As described above, it is not preferable that the etching rate of the lift-off layer LF with respect to the etching solution (second etching solution) is too high.
 一方、図8に示すリフトオフ工程においては、n型半導体層13nは、p型半導体層パターニング工程で残った第2リフトオフ層LF2を覆っているだけでなく、所望位置(残存するp型半導体層13pに隣接する非成型領域NA)にも形成される。続いて、所望位置のn型半導体層13nをパターンとして残しつつ、第2リフトオフ層LF2の上面及び側面(端面)、並びに第1リフト層LF1、p型半導体層13p及び真性半導体層12pの側面(端面)上のn型半導体層13nが除去される。従って、エッチング液(第1エッチング溶液)として、p型半導体層12pと比べてリフトオフ層LFのエッチング速度が速いことが好ましい。例えば、数十nmから数百nm程度の幅方向の領域において完全にエッチングされることが求められる一方、幅方向の精度は求められない。また、生産性の観点からもエッチング速度が速いほうが、処理時間が短縮され好ましい。 On the other hand, in the lift-off process shown in FIG. 8, the n-type semiconductor layer 13n not only covers the second lift-off layer LF2 remaining in the p-type semiconductor layer patterning process, but also at a desired position (remaining p-type semiconductor layer 13p). Is also formed in the non-molding area NA) adjacent to. Subsequently, while leaving the n-type semiconductor layer 13n at a desired position as a pattern, the upper surface and side surfaces (end surfaces) of the second lift-off layer LF2, and the side surfaces of the first lift layer LF1, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p ( The n-type semiconductor layer 13n on the end face) is removed. Therefore, it is preferable that the etching rate of the lift-off layer LF is faster as the etching solution (first etching solution) than the p-type semiconductor layer 12p. For example, complete etching is required in a region in the width direction of several tens to several hundreds of nm, but accuracy in the width direction is not required. Also, from the viewpoint of productivity, it is preferable that the etching rate is high because the processing time is shortened.
 このように、リフトオフ層LFは、p型半導体層パターニング工程とリフトオフ工程とで相反するエッチング特性を求められる。この特性は、リフトオフ層LF1とリフトオフ層LF2との密度差に起因する関係式(1)を満たせば実現する。 As described above, the lift-off layer LF is required to have etching characteristics that conflict between the p-type semiconductor layer patterning step and the lift-off step. This characteristic is realized if the relational expression (1) resulting from the density difference between the lift-off layer LF1 and the lift-off layer LF2 is satisfied.
 p型半導体層パターニング工程において、関係式(1)が満たされていると、非成型領域NAでは、第1リフトオフ層LF1が最も速く溶解されるので、その上の第2リフト層LF2も結晶基板11から乖離しやすくなり(このとき、第2リフト層LF2は乖離だけでなく溶解もしてもいる)、さらに、第1リフトオフ層LF1から露出したp型半導体層13pも溶解していく。 In the p-type semiconductor layer patterning step, when the relational expression (1) is satisfied, the first lift-off layer LF1 is dissolved most rapidly in the non-molding area NA. 11 (the second lift layer LF2 is not only separated but also dissolved), and the p-type semiconductor layer 13p exposed from the first lift-off layer LF1 is also dissolved.
 より詳細には、p型半導体層パターニング工程では、例えば、図6に示すように、積み重なって残存した各層(第2リフトオフ層LF2、第1リフトオフ層LF1、p型半導体層13p及び真性半導体層12p)の側面SEを通じて、仮に第2リフトオフ層LF2の下の第1リフトオフ層LF1がエッチングにより浸食されたとしても、浸食されなかった第1リフトオフ層LF1が残存する。このため、それに連なった第2リフトオフ層LF2も残る。これにより、残った第2リフトオフ層LF2は、リフトオフ工程においてリフトオフ層LFとして機能する。なお、所望部分のp型半導体層13pは残存しなくてはならないため、第1リフトオフ層LF1及び第2リフトオフ層LF2よりも、エッチング速度は遅い。 More specifically, in the p-type semiconductor layer patterning step, for example, as shown in FIG. 6, the stacked layers remaining (second lift-off layer LF2, first lift-off layer LF1, p-type semiconductor layer 13p, and intrinsic semiconductor layer 12p). ), Even if the first lift-off layer LF1 under the second lift-off layer LF2 is eroded by etching, the first lift-off layer LF1 that has not been eroded remains. For this reason, the 2nd lift-off layer LF2 continued to it also remains. Thereby, the remaining second lift-off layer LF2 functions as the lift-off layer LF in the lift-off process. Note that since the p-type semiconductor layer 13p of a desired portion must remain, the etching rate is slower than that of the first lift-off layer LF1 and the second lift-off layer LF2.
 また、リフトオフ工程においては、下層である第1リフトオフ層LF1が完全に除去されれば、この第1リフトオフ層LF1上の第2リフトオフ層LF2が残ったとしても、n型半導体層13nをも除去される。すなわち、第2導電型半導体層LF2、ひいてはその上のn型半導体層13nがリフトオフされる。 In the lift-off process, if the first lift-off layer LF1, which is the lower layer, is completely removed, even if the second lift-off layer LF2 on the first lift-off layer LF1 remains, the n-type semiconductor layer 13n is also removed. Is done. That is, the second conductivity type semiconductor layer LF2 and thus the n-type semiconductor layer 13n thereon are lifted off.
 以上のように、複層型のリフトオフ層LFは、図8に示すリフトオフ工程でほぼ完全に除去を目指す層であるが、ここに至るまでの工程(例えば、図6に示すp型半導体層パターニング工程)で過剰にエッチングされないために、エッチング速度は、p型半導体層13pのエッチング速度 < 第2リフトオフ層LF2のエッチング速度 < 第1リフトオフ層LF1のエッチング速度(関係式(1))となるように、リフトオフ層LF1、LF2との密度差を用いて設計される。また、p型半導体層パターニング工程と同様に、リフトオフ工程においても、所望部分のp型半導体層13pは残存しなくてはならないため、第1リフトオフ層LF1及び第2リフトオフ層LF2のエッチング速度よりも、p型半導体層13pのエッチング速度は遅い。 As described above, the multi-layer type lift-off layer LF is a layer aimed to be removed almost completely in the lift-off process shown in FIG. 8, but the process up to this point (for example, p-type semiconductor layer patterning shown in FIG. 6). In this step, the etching rate is such that the etching rate of the p-type semiconductor layer 13p <<the etching rate of the second lift-off layer LF2 <<the etching rate of the first lift-off layer LF1 (relational expression (1)). In addition, the density difference between the lift-off layers LF1 and LF2 is designed. Similarly to the p-type semiconductor layer patterning step, a desired portion of the p-type semiconductor layer 13p must remain in the lift-off step, so that the etching rate of the first lift-off layer LF1 and the second lift-off layer LF2 is higher than that. The etching rate of the p-type semiconductor layer 13p is slow.
 このように、関係式(1)を満たすp型半導体層13p及びリフトオフ層LFが使用されると、例えば、リフトオフ工程で、レジスト膜を使用したエッチングを行わずに、n型半導体層13nがパターニングされる。つまり、上記の太陽電池10の製造方法であると、パターニング工程が簡素化され、バックコンタクト型の太陽電池10が効率良く製造される。その上、パターン精度も高まっているために、太陽電池10における短絡又はリーク電流の発生もが防止され、その太陽電池10からは高出力が得られる。 As described above, when the p-type semiconductor layer 13p and the lift-off layer LF satisfying the relational expression (1) are used, for example, the n-type semiconductor layer 13n is patterned without performing etching using a resist film in the lift-off process. Is done. That is, with the manufacturing method of the solar cell 10 described above, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured. In addition, since the pattern accuracy is also increased, occurrence of short circuit or leakage current in the solar cell 10 is prevented, and high output is obtained from the solar cell 10.
 なお、リフトオフ層LFの積層数は2層以上であってもよく、生産性の観点からは2層であってもよい。 The number of lift-off layers LF may be two or more, or two from the viewpoint of productivity.
 また、図5に示す工程では、先に形成されたp型半導体層13pの上に、複数層を含むリフトオフ層LFを形成する。このリフトオフ層LFは、図6に示す工程において、例えばエッチングによりパターニングされる。その後、図8に示す工程において、n型半導体層13nと共に除去される。このため、リフトオフ層LFは、図6及び図8に示す両工程で使用されるエッチング溶液に溶解する材料で形成されると好ましい。例えば、酸化ケイ素を主成分とした複数層のリフトオフ層LFであってもよい。 In the step shown in FIG. 5, a lift-off layer LF including a plurality of layers is formed on the previously formed p-type semiconductor layer 13p. The lift-off layer LF is patterned by, for example, etching in the process shown in FIG. Thereafter, in the step shown in FIG. 8, the n-type semiconductor layer 13n is removed. For this reason, the lift-off layer LF is preferably formed of a material that dissolves in the etching solution used in both steps shown in FIGS. For example, a plurality of lift-off layers LF mainly composed of silicon oxide may be used.
 また、リフトオフ層LFは、図8に示すリフトオフ工程において、設計上は、ほぼ完全に除去される層ではあるが、ここに至るまでの工程(例えば図6に示す工程)において過剰にエッチングされないために、そのエッチング速度は、上記の関係式(1):
 p型半導体層13pのエッチング速度 < 第2リフトオフ層LF2のエッチング速度< 第1リフトオフ層LF1のエッチング速度 …(1)となるように設計されると好ましい。
Further, the lift-off layer LF is a layer that is almost completely removed in design in the lift-off process shown in FIG. 8, but is not excessively etched in the process up to this point (for example, the process shown in FIG. 6). Further, the etching rate is the above relational expression (1):
It is preferable that the etching rate of the p-type semiconductor layer 13p <the etching rate of the second lift-off layer LF2 <the etching rate of the first lift-off layer LF1 (1).
 これらp型半導体層13p、第2リフトオフ層LF2及び第1リフトオフ層LF1が上記の関係式(1)を満たすと、第1リフトオフ層LF1が速く溶解する。従って、第1リフトオフ層LF1の上に堆積した種々の層が結晶基板11から乖離しやすくなる。その結果、パターニング工程が簡素化されるので、バックコンタクト型の太陽電池10が効率良く製造される。 When the p-type semiconductor layer 13p, the second lift-off layer LF2, and the first lift-off layer LF1 satisfy the relational expression (1), the first lift-off layer LF1 dissolves quickly. Therefore, various layers deposited on the first lift-off layer LF1 are likely to be separated from the crystal substrate 11. As a result, the patterning process is simplified, and the back contact solar cell 10 is efficiently manufactured.
 このように、異なるエッチング速度を得るための1つの設計法としては、一例として、第1リフトオフ層LF1と第2リフトオフ層LF2との間に密度差を設けることが挙げられる。詳細な例を挙げるとすると、第1リフトオフ層LF1及び第2リフトオフ層LF2の各主成分を酸化ケイ素とすること、さらに、エッチング速度を制御するために、それぞれの密度に差異を生じさせることである。層の密度が低ければ、その層のエッチングレートが大きくなるからである。 Thus, as one example of a design method for obtaining different etching rates, a difference in density is provided between the first lift-off layer LF1 and the second lift-off layer LF2. As a detailed example, the main components of the first lift-off layer LF1 and the second lift-off layer LF2 are made of silicon oxide, and furthermore, in order to control the etching rate, a difference is caused in the respective densities. is there. This is because if the density of the layer is low, the etching rate of the layer becomes large.
 具体的には、第1リフトオフ層LF1及び第2リフトオフ層LF2は、酸化ケイ素を主成分とし、且つ各密度が以下の関係式(2):
 第2リフトオフ層LF1の密度 > 第1リフトオフ層LF1の密度 …(2)
を満たすと好ましい。
Specifically, the first lift-off layer LF1 and the second lift-off layer LF2 are mainly composed of silicon oxide, and each density has the following relational expression (2):
Density of second lift-off layer LF1> Density of first lift-off layer LF1 (2)
It is preferable to satisfy
 なお、図10に示すように、透過型電子顕微鏡(TEM)を用いて、太陽電池10の断面を観察すれば、各リフトオフ層LF1、LF2の密度の高低を反映して、第1リフトオフ層LF1と第2リフトオフ層LF2とにおいて層中の疎密に差があるのが分かる(すなわち、リフトオフ層LF1、LF2の密度の高低は、断面TEM像の空隙の有無から判断できる。)。 As shown in FIG. 10, when the cross section of the solar cell 10 is observed using a transmission electron microscope (TEM), the first lift-off layer LF1 reflects the height of the density of the lift-off layers LF1 and LF2. It can be seen that there is a difference in density in the layer between the second lift-off layer LF2 and the second lift-off layer LF2 (that is, the density of the lift-off layers LF1, LF2 can be determined from the presence or absence of voids in the cross-sectional TEM image).
 ここでいう疎密とは、層を形成する原子の配列に由来するミクロな密度の大(密)小(疎)だけでなく、層中に微細な空隙の有(疎)無(密)というマクロな場合をも含む。従って、第1リフトオフ層LF1にあっては、層の全体に空隙を有する構造であってもよい。上述の密度が低いことと、エッチングレートの大きさとが関係するのは、この疎密構造によるところが大きい。 Here, the term “dense / dense” means not only the microscopic density (dense) and small (sparse) derived from the arrangement of atoms forming the layer, but also the macro of the presence of fine voids in the layer (sparse) or not (dense). Including cases. Therefore, the first lift-off layer LF1 may have a structure having voids throughout the layer. The low density mentioned above and the magnitude of the etching rate are related to this dense structure.
 なお、密度の高低は、リフトオフ層LF1、LF2における各層の屈折率の大小から判断することも可能である。すなわち、屈折率の大は密度の大に対応し、屈折率の小は密度の小に対応する。 It should be noted that the density can be determined from the refractive index of each layer in the lift-off layers LF1 and LF2. That is, the large refractive index corresponds to the large density, and the small refractive index corresponds to the small density.
 また、リフトオフ層LFの組成の観点からは、リフトオフ層LFが酸化ケイ素を主成分とする膜である場合に、第1リフトオフ層をSiO、第2リフトオフ層をSiOと表したときの酸素の各組成x、yの値が、以下の関係式(3)及び(4)を満たすと好ましい。 From the viewpoint of the composition of the lift-off layer LF, when the lift-off layer LF is a film containing silicon oxide as a main component, oxygen when the first lift-off layer is expressed as SiO x and the second lift-off layer is expressed as SiO y. It is preferable that the composition x and y satisfy the following relational expressions (3) and (4).
 y > x … (3)
 1.0 < x < 2.2、 0.5 < y < 2.2 …(4)
 この各範囲内において、大小関係が設計されていると好ましい。
y> x (3)
1.0 <x <2.2, 0.5 <y <2.2 (4)
Within this range, it is preferable that a magnitude relationship is designed.
 なお、ここで、組成xの値が一般的なストイキオメトリックな値(x=2.0)よりも大きい値が上限となっているが、これは、リフトオフ層LFの薄膜形成プロセスにおいて、酸素が過剰に含まれる場合があるためである。 Here, the value of the composition x is larger than a general stoichiometric value (x = 2.0), which is the upper limit in the thin film formation process of the lift-off layer LF. This is because may be included excessively.
 このような疎密構造を示す酸化ケイ素は、CVD法を用いた成膜の場合には、特に圧力によって制御され、例えば、圧力を低く設定することにより、疎な構造を得やすくなる。 In the case of film formation using the CVD method, silicon oxide having such a sparse / dense structure is controlled particularly by pressure. For example, a sparse structure can be easily obtained by setting the pressure low.
 リフトオフ層LFの膜厚は、全体として20nm以上600nm以下であると好ましく、特には50nm以上450nm以下であると好ましい。この範囲内で、第2リフトオフ層LF2の方が第1リフトオフ層LF1よりも厚膜であると好ましい。 The film thickness of the lift-off layer LF is preferably 20 nm or more and 600 nm or less as a whole, and particularly preferably 50 nm or more and 450 nm or less. Within this range, the second lift-off layer LF2 is preferably thicker than the first lift-off layer LF1.
 なお、光の取り込み効率を優先する観点からは、結晶基板11の裏面側にもテクスチャ構造TXが形成されている場合は、テクスチャ構造による散乱の影響を受けるため、レーザ光を用いたパターニング工程は多少困難となる。 In addition, from the viewpoint of giving priority to the light capturing efficiency, when the texture structure TX is also formed on the back surface side of the crystal substrate 11, the patterning process using laser light is affected by scattering due to the texture structure. A little difficult.
 また、図6に示すp型半導体層パターニング工程では、真性半導体層12pまでをエッチングして、結晶基板11の一部が露出してもよい。このようにすると、光電変換によって発生するキャリアのライフタイムの低下が抑制される場合がある。 Further, in the p-type semiconductor layer patterning step shown in FIG. 6, a part of the crystal substrate 11 may be exposed by etching up to the intrinsic semiconductor layer 12p. In this case, a decrease in the lifetime of carriers generated by photoelectric conversion may be suppressed.
 また、図7に示すn型半導体層形成工程では、n型半導体層13nを形成する。n型半導体層13nは、結晶基板11の裏側主面11SBの全面に成膜される。すなわち、p型半導体層13pがない結晶基板11の一部の露出面上だけでなく、リフトオフ層LFの上にも形成される。なお、結晶基板11とn型半導体層13nとの間には、真性半導体層12nが形成されていても構わない。 In the n-type semiconductor layer forming step shown in FIG. 7, the n-type semiconductor layer 13n is formed. The n-type semiconductor layer 13n is formed over the entire back side main surface 11SB of the crystal substrate 11. That is, it is formed not only on a part of the exposed surface of the crystal substrate 11 without the p-type semiconductor layer 13p but also on the lift-off layer LF. Note that an intrinsic semiconductor layer 12n may be formed between the crystal substrate 11 and the n-type semiconductor layer 13n.
 また、図7に示す工程では、真性半導体層12n及びn型半導体層13nを形成するよりも前に、図6に示すp型半導体層パターニング工程で露出した結晶基板11の表面を洗浄する工程を設けてもよい。なお、洗浄工程は、図6に示す工程で結晶基板11の表面に生じた欠陥又は不純物の除去を目的とし、例えばフッ化水素酸で処理する。 Further, in the step shown in FIG. 7, the step of cleaning the surface of the crystal substrate 11 exposed in the p-type semiconductor layer patterning step shown in FIG. 6 is performed before forming the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n. It may be provided. The cleaning step is performed with, for example, hydrofluoric acid for the purpose of removing defects or impurities generated on the surface of the crystal substrate 11 in the step shown in FIG.
 また、図8に示すリフトオフ工程では、エッチング溶液により、複数層のリフトオフ層LFを除去すると、このリフトオフ層LFの上に堆積していた真性半導体層12n及びn型半導体層13nも結晶基板11から同時に除去される(いわゆるリフトオフ)。この工程では、図6に示す工程での、例えばフォトリソグラフィ法を用いた場合と比べて、フォトリソグラフィ法に使用するレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nが簡便にパターン化される。なお、リフトオフ層LFに酸化ケイ素を主成分とする膜を適用する場合は、図8に示す工程でのエッチング液は、フッ化水素酸であると好ましい。この場合、リフトオフ層をエッチングするエッチング剤はフッ化水素である。 In the lift-off process shown in FIG. 8, when the lift-off layer LF having a plurality of layers is removed by an etching solution, the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n deposited on the lift-off layer LF are also removed from the crystal substrate 11. Simultaneously removed (so-called lift-off). This step does not require the resist coating step and the development step used in the photolithography method as compared with the case of using the photolithography method in the step shown in FIG. For this reason, the n-type semiconductor layer 13n is easily patterned. In addition, when applying the film | membrane which has a silicon oxide as a main component to the lift-off layer LF, it is preferable in the process shown in FIG. 8 that the etching liquid is hydrofluoric acid. In this case, the etching agent for etching the lift-off layer is hydrogen fluoride.
 また、結晶基板11がテクスチャ構造TXを有しており、この結晶基板11の裏側主面11SBの上に形成されるp型半導体層13p及びn型半導体層13nの各面には、テクスチャ構造TXを反映したテクスチャ構造(第2テクスチャ構造)が含まれると好ましい。 Further, the crystal substrate 11 has a texture structure TX, and each surface of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n formed on the back main surface 11SB of the crystal substrate 11 has a texture structure TX. It is preferable that a texture structure reflecting the above (second texture structure) is included.
 表面にテクスチャ構造TXを有する導電型半導体層13であると、テクスチャ構造TXの凹凸に起因して、エッチング溶液が半導体層13に染み込みやすくなる。このため、導電型半導体層13が除去されやすく、すなわちパターニングされやすくなる。 When the conductive semiconductor layer 13 has the texture structure TX on the surface, the etching solution easily penetrates into the semiconductor layer 13 due to the unevenness of the texture structure TX. For this reason, the conductive semiconductor layer 13 is easily removed, that is, easily patterned.
 なお、本実施形態においては、結晶基板11の両主面11S、すなわち、表側主面11SUと裏側主面11SBとにテクスチャ構造TX(第1テクスチャ構造)を設けたが、いずれか一方の主面に設けてもよい。すなわち、テクスチャ構造TXを表側主面11SUに設けた場合は、受光した光の取り込み効果及び閉じ込め効果が高くなる。一方、テクスチャ構造TXを裏側主面11SBに設けた場合は、光の取り込み効果が向上すると共に、導電型半導体層13のパターニングが容易となる。従って、結晶基板11のテクスチャ構造TXは、少なくとも一方の主面11Sに設ければよい。また、本実施形態においては、両主面11Sのテクスチャ構造TXを同一パターンとしたが、これに限られず、表側主面11SUと裏側主面11SBとでテクスチャ構造TXの凹凸の大きさを変えてもよい。 In the present embodiment, the texture structure TX (first texture structure) is provided on both main surfaces 11S of the crystal substrate 11, that is, the front-side main surface 11SU and the back-side main surface 11SB. May be provided. That is, when the texture structure TX is provided on the front main surface 11SU, the effect of capturing received light and the effect of confinement are enhanced. On the other hand, when the texture structure TX is provided on the back main surface 11SB, the light capturing effect is improved and the patterning of the conductive semiconductor layer 13 is facilitated. Therefore, the texture structure TX of the crystal substrate 11 may be provided on at least one main surface 11S. In the present embodiment, the texture structure TX of both the main surfaces 11S has the same pattern. However, the present invention is not limited to this, and the size of the unevenness of the texture structure TX is changed between the front-side main surface 11SU and the back-side main surface 11SB. Also good.
 また、図6に示すp型半導体層パターニング工程では、結晶基板11の裏側主面11SBが非形成領域NAにおいて露出しているが、これに限定されない。すなわち、裏側主面11SBの非形成領域NAの上に、真性半導体層12pが残っていても構わない。重要なことは、結晶基板11の裏側主面11SBの一部に、p型半導体層13pが選択的に除去されることであり、p型半導体層13pの除去された領域が非形成領域NAになっていればよい。 Further, in the p-type semiconductor layer patterning step shown in FIG. 6, the back side main surface 11SB of the crystal substrate 11 is exposed in the non-formation region NA, but is not limited thereto. That is, the intrinsic semiconductor layer 12p may remain on the non-formation area NA of the back side main surface 11SB. What is important is that the p-type semiconductor layer 13p is selectively removed from a part of the back main surface 11SB of the crystal substrate 11, and the removed region of the p-type semiconductor layer 13p becomes a non-forming region NA. It only has to be.
 このような場合には、残存した第2リフトオフ層LF2及び非形成領域NAの上に、n型半導体層13nを堆積する前に、真性半導体層12nを形成する工程を減らせる。 In such a case, the process of forming the intrinsic semiconductor layer 12n can be reduced before the n-type semiconductor layer 13n is deposited on the remaining second lift-off layer LF2 and the non-formed region NA.
 なお、図8に示すリフトオフ工程で使用されるエッチング溶液(第1エッチング溶液)に含まれるエッチング剤の濃度は、図6に示すp型半導体層パターニング工程で使用されるエッチング溶液(第2エッチング溶液)に含まれるエッチング剤の濃度以下であると好ましい。 The concentration of the etching agent contained in the etching solution (first etching solution) used in the lift-off process shown in FIG. 8 is the same as the etching solution (second etching solution) used in the p-type semiconductor layer patterning process shown in FIG. The concentration of the etching agent contained in (1) or less is preferable.
 このようにすると、図6に示す工程では、リフトオフ層LFの一部を残しつつ、図8に示す工程でリフトオフ層LFを除去して、所望のパターニングを簡易に行うことができる。但し、第1エッチング溶液と第2エッチング溶液との互いのエッチング剤の濃度は、同一でも構わない。さらには、両溶液のエッチング剤の組成は必ずしも異なる必要はなく、同一の組成であってもよい。 In this way, in the step shown in FIG. 6, the lift-off layer LF is removed in the step shown in FIG. 8 while leaving a part of the lift-off layer LF, and desired patterning can be easily performed. However, the concentrations of the etching agents in the first etching solution and the second etching solution may be the same. Furthermore, the composition of the etchant in both solutions does not necessarily have to be different, and may be the same composition.
 本発明は、上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 例えば、図5に示す半導体層形成工程で使用する半導体層は、p型半導体層13pであったが、これに限定されず、n型半導体層13nであっても構わない。また、結晶基板11の導電型も特に限定されず、p型であってもn型であっても構わない。 For example, the semiconductor layer used in the semiconductor layer forming step shown in FIG. 5 is the p-type semiconductor layer 13p, but is not limited thereto, and may be the n-type semiconductor layer 13n. The conductivity type of the crystal substrate 11 is not particularly limited, and may be p-type or n-type.
 以下、本発明を実施例により具体的に説明する。但し、本発明はこれらの実施例に限定されない。実施例及び比較例は、以下のようにして作製した([表1]を参照)。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. Examples and Comparative Examples were produced as follows (see [Table 1]).
 [結晶基板]
 まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
[Crystal substrate]
First, a single crystal silicon substrate having a thickness of 200 μm was employed as the crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal texture structure was formed on the crystal substrate.
 [真性半導体層]
 次に、結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(厚さ8nm)を形成した。成膜条件は、基板温度を150℃、圧力を120Pa、SiH/Hの流量比を3/10、及びパワー密度を0.011W/cmとした。
[Intrinsic semiconductor layer]
Next, the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (thickness 8 nm) made of silicon was formed on both main surfaces of the introduced crystal substrate. The film formation conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a flow rate ratio of SiH 4 / H 2 of 3/10, and a power density of 0.011 W / cm 2 .
 [p型半導体層(第1導電型半導体層)]
 次に、両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、結晶基板における裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
[P-type semiconductor layer (first conductivity type semiconductor layer)]
Next, a crystal substrate having an intrinsic semiconductor layer formed on both main surfaces is introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon-based thin film (film thickness: 10 nm) is formed on the intrinsic semiconductor layer on the back main surface of the crystal substrate. ) Was formed.
 成膜条件は、基板温度を150℃、圧力を60Pa、SiH/Bの流量比を1/3、及びパワー密度を0.01W/cmとした。また、Bガスの流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。 The film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / B 2 H 6 of 1/3, and a power density of 0.01 W / cm 2 . The flow rate of B 2 H 6 gas is the flow rate of the diluent gas B 2 H 6 was diluted by H 2 to 5000 ppm.
 [リフトオフ層]
 さらに、CVD装置を用いて、p型水素化非晶質シリコン系薄膜の上に、主成分を酸化ケイ素(SiO)とする第1リフトオフ層と第2リフトオフ層とを順次形成した。
[Lift-off layer]
Further, using a CVD apparatus, a first lift-off layer and a second lift-off layer having silicon oxide (SiO x ) as a main component were sequentially formed on the p-type hydrogenated amorphous silicon thin film.
 第1リフトオフ層の成膜条件は、基板温度を180℃、圧力を50Pa、SiH/COの流量比を1/5、及びパワー密度を0.01W/cmとした。また、第2リフトオフ層の成膜条件は、SiH/COの流量比を1/7、及びパワー密度を0.3W/cmとした点を除いて第1リフトオフ層と同様とした。両リフトオフ層ともに、所定の膜厚となるように成膜時間をそれぞれ調整した。 The film formation conditions for the first lift-off layer were a substrate temperature of 180 ° C., a pressure of 50 Pa, a flow rate ratio of SiH 4 / CO 2 of 1/5, and a power density of 0.01 W / cm 2 . The film formation conditions for the second lift-off layer were the same as those for the first lift-off layer except that the SiH 4 / CO 2 flow ratio was 1/7 and the power density was 0.3 W / cm 2 . The film formation time was adjusted so that both lift-off layers had a predetermined film thickness.
 [リフトオフ層及びp型半導体層のパターニング]
 次に、p型半導体層が形成された結晶基板の両主面上に、感光性レジスト膜を成膜した。成膜した感光性レジスト膜に対して、フォトリソグラフィ法により、裏側主面の一部において、第2リフトオフ層、第1リフトオフ層、及びp型半導体層を除去し、p型半導体層が除去された非形成領域を生じさせる一方、裏側主面の残部において、少なくともp型半導体層、第1リフトオフ層、及び第2リフトオフ層を残すパターニングを行った。
[Patterning of lift-off layer and p-type semiconductor layer]
Next, a photosensitive resist film was formed on both main surfaces of the crystal substrate on which the p-type semiconductor layer was formed. With respect to the formed photosensitive resist film, the second lift-off layer, the first lift-off layer, and the p-type semiconductor layer are removed on a part of the back main surface by photolithography, and the p-type semiconductor layer is removed. On the other hand, patterning was performed to leave at least the p-type semiconductor layer, the first lift-off layer, and the second lift-off layer in the remaining portion of the back-side main surface.
 このとき、複数の層が形成された結晶基板を、エッチング剤として濃度が1重量%のフッ化水素を含有する加水フッ硝酸に浸漬し、第1リフトオフ層及び第2リフトオフ層を除去した。その後、第1リフトオフ層及び第2リフトオフ層の除去により露出したp型半導体層と、その直下の真性半導体層とを除去した。すなわち、結晶基板の裏側主面における非形成領域を露出した。 At this time, the crystal substrate on which a plurality of layers were formed was immersed in hydrofluoric acid containing hydrogen fluoride having a concentration of 1% by weight as an etching agent to remove the first lift-off layer and the second lift-off layer. Thereafter, the p-type semiconductor layer exposed by the removal of the first lift-off layer and the second lift-off layer and the intrinsic semiconductor layer immediately below the p-type semiconductor layer were removed. That is, the non-formation area | region in the back side main surface of a crystal substrate was exposed.
 なお、実施例4では、濃度が5重量%のフッ化水素を含有する加水フッ硝酸を用い、浸漬時間を他の実施例と比べて短くした。 In Example 4, hydrofluoric acid containing hydrogen fluoride having a concentration of 5% by weight was used, and the immersion time was shortened compared to other examples.
 [n型半導体層(第2導電型半導体層)]
 次に、p型半導体層パターニング工程の後に、裏側主面の露出部分を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層(膜厚8nm)を1回目の真性半導体層と同様の成膜条件で形成した。続いて、形成した真性半導体層の上に、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
[N-type semiconductor layer (second conductivity type semiconductor layer)]
Next, after the p-type semiconductor layer patterning step, a crystal substrate in which the exposed portion of the back side main surface is washed with hydrofluoric acid having a concentration of 2% by weight is introduced into a CVD apparatus, and an intrinsic semiconductor layer (film) is formed on the back side main surface. 8 nm in thickness) was formed under the same film formation conditions as the first intrinsic semiconductor layer. Subsequently, an n-type hydrogenated amorphous silicon-based thin film (film thickness: 10 nm) was formed on the formed intrinsic semiconductor layer.
 成膜条件は、基板温度が150℃、圧力が60Pa、SiH/PHの流量比が1/2、及びパワー密度が0.01W/cmとした。また、PHガスの流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。 The film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / PH 3 of 1/2, and a power density of 0.01 W / cm 2 . The flow rate of the PH 3 gas is the flow rate of the diluent gas PH 3 is diluted by H 2 to 5000 ppm.
 [リフトオフ層及びn型半導体層の除去(リフトオフ)]
 次に、n型半導体層が形成された結晶基板を、エッチング剤として濃度が3重量%のフッ化水素を含有するフッ化水素酸に浸漬した。これにより、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層がまとめて除去された。
[Removal of lift-off layer and n-type semiconductor layer (lift-off)]
Next, the crystal substrate on which the n-type semiconductor layer was formed was immersed in hydrofluoric acid containing hydrogen fluoride having a concentration of 3% by weight as an etchant. Thereby, the lift-off layer, the n-type semiconductor layer covering the lift-off layer, and the intrinsic semiconductor layer between the lift-off layer and the n-type semiconductor layer were removed together.
 [電極層、低反射層]
 次に、マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。また、低反射層として、結晶基板の受光面側に窒化シリコン層を形成した。透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。スパッタリング装置のチャンバ内に、アルゴン(Ar)と酸素(O)との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で成膜を行った。
[Electrode layer, low reflection layer]
Next, using a magnetron sputtering apparatus, an oxide film (film thickness: 100 nm) serving as a base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate. Further, a silicon nitride layer was formed on the light receiving surface side of the crystal substrate as a low reflection layer. As the transparent conductive oxide, indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target. A mixed gas of argon (Ar) and oxygen (O 2 ) was introduced into the chamber of the sputtering apparatus, and the pressure in the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set such that the resistivity was the lowest (so-called bottom). In addition, film formation was performed at a power density of 0.4 W / cm 2 using a DC power source.
 次に、フォトリソグラフィ法により、導電型半導体層(p型半導体層及びn型半導体層)の上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物膜との間での導通が防止された。 Next, etching was performed by photolithography so as to leave only the transparent conductive oxide film on the conductive semiconductor layers (p-type semiconductor layer and n-type semiconductor layer), thereby forming a transparent electrode layer. The transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film on the n-type semiconductor layer.
 さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA-333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。 Further, a silver paste (manufactured by Fujikura Kasei Co., Ltd .: Dotite FA-333) was screen-printed on the transparent electrode layer without dilution, and a heat treatment was performed in an oven at a temperature of 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
 次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]を参照とする。 Next, an evaluation method for a back contact type solar cell will be described. Refer to [Table 1] for the evaluation results.
 [膜厚及びエッチング性の評価]
 リフトオフ層の膜厚及びエッチングの状態は、光学顕微鏡(BX51:オリンパス光学工業社製)とSEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)とを用いて評価した。p型半導体層パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングされている場合には「○」とし、リフトオフ層が過剰にエッチングされ、太陽電池特性に悪影響が出た場合には「×」とした。
[Evaluation of film thickness and etching properties]
The film thickness and etching state of the lift-off layer were evaluated using an optical microscope (BX51: manufactured by Olympus Optical Co., Ltd.) and SEM (field emission type scanning electron microscope S4800: manufactured by Hitachi High-Technologies Corporation). After the p-type semiconductor layer patterning step, “○” is indicated when the etching is performed in accordance with the designed patterning removal region, and “X” is indicated when the lift-off layer is excessively etched and the solar cell characteristics are adversely affected. It was.
 リフトオフ工程では、リフトオフ層が除去された場合には「○」とし、リフトオフ層が残った場合には「×」とした。比較例2では、p型半導体層パターニング工程でリフトオフ層が除去され、リフトオフ工程以降の評価が不可能だったため、「-」とした。 In the lift-off process, “○” was given when the lift-off layer was removed, and “x” was given when the lift-off layer remained. In Comparative Example 2, since the lift-off layer was removed in the p-type semiconductor layer patterning step and evaluation after the lift-off step was impossible, “−” was given.
 [リフトオフ層の疎密評価]
 透過型電子顕微鏡(TEM)を用いて、太陽電池の断面を観察した。断面TEM像の空隙の有無から、第1リフトオフ層の断面構造が疎であるか否か、第2リフトオフ層の構造が密であるか否かを判定した。
[Density evaluation of lift-off layer]
The cross section of the solar cell was observed using a transmission electron microscope (TEM). From the presence or absence of voids in the cross-sectional TEM image, it was determined whether the cross-sectional structure of the first lift-off layer was sparse and whether the structure of the second lift-off layer was dense.
 [変換効率の評価]
 ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に掲載した。
[Evaluation of conversion efficiency]
A solar simulator was used to irradiate AM (air mass) 1.5 standard sunlight with a light amount of 100 mW / cm 2 to measure the conversion efficiency (Eff (%)) of the solar cell. The conversion efficiency (solar cell characteristics) of Example 1 was set to 1.00, and the relative values are shown in [Table 1].
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例及び各比較例では、濃度が3重量%のフッ化水素酸に対する、第1リフトオフ層のエッチング速度は6.5nm/sであり、第2リフトオフ層のエッチング速度は0.3nm/sであった。これに対し、p型半導体層のエッチング速度は0.1nm/s以下であった。 In each example and each comparative example, the etching rate of the first lift-off layer is 6.5 nm / s and the etching rate of the second lift-off layer is 0.3 nm / s with respect to hydrofluoric acid having a concentration of 3% by weight. Met. On the other hand, the etching rate of the p-type semiconductor layer was 0.1 nm / s or less.
 実施例1~4は、パターン精度及び太陽電池特性の共に良好であった。第1リフトオフ層の厚さの大きい実施例2の方が、リフトオフ工程におけるリフトオフ層の除去に要する時間は短く、生産性は優れていた。 In Examples 1 to 4, both the pattern accuracy and the solar cell characteristics were good. In Example 2 in which the thickness of the first lift-off layer was large, the time required to remove the lift-off layer in the lift-off process was shorter and the productivity was excellent.
 また、p型半導体層パターニング工程で、濃度が1重量%のフッ化水素を含有する加水フッ硝酸を用いた実施例1~3に対して、p型半導体層パターニング工程の後のパターン精度を光学顕微鏡により観察を行った結果、いずれもパターン精度は良好であった。なかでも、第1リフトオフ層の厚さが最も小さく、且つ第1リフトオフ層の方が第2リフトオフ層よりも厚さの小さい実施例3が、パターン精度は特に良好であった。 Further, in Examples 1 to 3 in which hydrofluoric acid containing 1% by weight of hydrogen fluoride was used in the p-type semiconductor layer patterning step, the pattern accuracy after the p-type semiconductor layer patterning step was optically changed. As a result of observation with a microscope, the pattern accuracy was good in all cases. Among them, Example 3 in which the thickness of the first lift-off layer was the smallest and the thickness of the first lift-off layer was smaller than that of the second lift-off layer was particularly good in pattern accuracy.
 実施例4のパターン精度は、実施例1と比べるとセル内の均一性という観点でやや低かったが、太陽電池特性に悪影響を及ぼすことはなかった。 The pattern accuracy of Example 4 was slightly lower than Example 1 in terms of uniformity in the cell, but did not adversely affect the solar cell characteristics.
 総括すると、実施例は比較例と比べ、リフトオフ層を積層構造とすることにより、太陽電池特性が良好となるという結果を得た。これは、p型半導体層パターニング工程及びリフトオフ工程のどちらも均一で且つ精度良くパターニング及びエッチングされ、これにより、第1導電型半導体層及び第2導電型半導体層の配列又は電極層との電気的なコンタクト(直列抵抗の上昇抑制)を良好にすることができるためと考えられる。 In summary, the example obtained a result that the solar cell characteristics were improved by making the lift-off layer a laminated structure as compared with the comparative example. This is because both the p-type semiconductor layer patterning step and the lift-off step are uniformly and accurately patterned and etched, so that the electrical connection between the first conductive type semiconductor layer and the second conductive type semiconductor layer or the electrode layer is achieved. This is considered to be because good contact (suppression of increase in series resistance) can be improved.
 特に、リフトオフ層が高屈折率層のみで形成される場合(比較例1)には、リフトオフ工程においてリフトオフ層の残渣が存在するため、また、リフトオフ層が低屈折率層のみで形成される場合(比較例2)には、p型半導体層パターニング工程の加水フッ硝酸によって、リフトオフ層のほとんどが除去されるため、充分な太陽電池特性を得ることができなかった。 In particular, when the lift-off layer is formed of only the high-refractive index layer (Comparative Example 1), there is a residue of the lift-off layer in the lift-off process, and the lift-off layer is formed of only the low-refractive index layer. In (Comparative Example 2), since most of the lift-off layer was removed by hydrofluoric acid in the p-type semiconductor layer patterning step, sufficient solar cell characteristics could not be obtained.
 10   太陽電池
 11   結晶基板(半導体基板)
 12   真性半導体層
 13   導電型半導体層
 13p  p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
 13n  n型半導体層[第2導電型の第2半導体層/第1導電型の第1半導体層]
 15   電極層
 17   透明電極層
 18   金属電極層
 LF   リフトオフ層
 LF1  第1リフトオフ層
 LF2  第2リフトオフ層
10 Solar cell 11 Crystal substrate (semiconductor substrate)
12 Intrinsic Semiconductor Layer 13 Conductive Semiconductor Layer 13p p-type Semiconductor Layer [First Conductive First Semiconductor Layer / Second Conductive Second Semiconductor Layer]
13n n-type semiconductor layer [second conductive type second semiconductor layer / first conductive type first semiconductor layer]
15 Electrode layer 17 Transparent electrode layer 18 Metal electrode layer LF Lift-off layer LF1 First lift-off layer LF2 Second lift-off layer

Claims (6)

  1.  半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、
     前記第1半導体層の上に、互いの密度が異なるシリコン系薄膜材料を含む第1リフトオフ層及び第2リフトオフ層を順次積層する工程と、
     前記第2リフトオフ層、第1リフトオフ層及び第1半導体層を選択的に除去する工程と、
     前記第2リフトオフ層、第1リフトオフ層及び第1半導体層を含む前記一方の主面の上に、第2導電型の第2半導体層を形成する工程と、
     第1エッチング溶液を用いて、前記第1リフトオフ層及び第2リフトオフ層を除去することにより、前記第2リフトオフ層を覆う前記第2半導体層を除去する工程とを含み、
     前記第1エッチング溶液に対する第1半導体層、第1リフトオフ層及び第2リフトオフ層のエッチング速度は、以下の関係式(1):
     第1半導体層のエッチング速度 <第2リフトオフ層のエッチング速度 <第1リフトオフ層のエッチング速度 …(1)
     を満たす太陽電池の製造方法。
    Forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate;
    A step of sequentially laminating a first lift-off layer and a second lift-off layer including silicon-based thin film materials having different densities on the first semiconductor layer;
    Selectively removing the second lift-off layer, the first lift-off layer, and the first semiconductor layer;
    Forming a second semiconductor layer of a second conductivity type on the one main surface including the second lift-off layer, the first lift-off layer, and the first semiconductor layer;
    Removing the second semiconductor layer covering the second lift-off layer by removing the first lift-off layer and the second lift-off layer using a first etching solution;
    The etching rates of the first semiconductor layer, the first lift-off layer, and the second lift-off layer with respect to the first etching solution are expressed by the following relational expression (1):
    Etching rate of first semiconductor layer <Etching rate of second lift-off layer <Etching rate of first lift-off layer (1)
    The manufacturing method of the solar cell which satisfy | fills.
  2.  請求項1に記載の太陽電池の製造方法において、
     前記第1リフトオフ層及び第2リフトオフ層は、酸化ケイ素を主成分とし、且つ各密度が以下の関係式(2):
     第2リフトオフ層の密度 >第1リフトオフ層の密度 …(2)
     を満たす太陽電池の製造方法。
    In the manufacturing method of the solar cell of Claim 1,
    The first lift-off layer and the second lift-off layer are mainly composed of silicon oxide, and each density has the following relational expression (2):
    Density of second lift-off layer> Density of first lift-off layer (2)
    The manufacturing method of the solar cell which satisfy | fills.
  3.  請求項1又は2に記載の太陽電池の製造方法において、
     前記第1リフトオフ層は、前記第2リフトオフ層と比べて疎な構造である太陽電池の製造方法。
    In the manufacturing method of the solar cell of Claim 1 or 2,
    The method for manufacturing a solar cell, wherein the first lift-off layer has a sparse structure as compared with the second lift-off layer.
  4.  請求項1~3のいずれか1項に記載の太陽電池の製造方法において、
     前記半導体基板は、前記2つの主面に第1テクスチャ構造を有しており、
     前記半導体基板の前記一方の主面に形成された前記第1半導体層及び第2半導体層には、前記第1テクスチャ構造を反映した第2テクスチャ構造を含む太陽電池の製造方法。
    The method for producing a solar cell according to any one of claims 1 to 3,
    The semiconductor substrate has a first texture structure on the two main surfaces,
    The method for manufacturing a solar cell, wherein the first semiconductor layer and the second semiconductor layer formed on the one main surface of the semiconductor substrate include a second texture structure reflecting the first texture structure.
  5.  請求項1~4のいずれか1項に記載の太陽電池の製造方法において、
     前記第1半導体層を選択的に除去する工程では、
     前記半導体基板における前記一方の主面の一部が露出する太陽電池の製造方法。
    The method for producing a solar cell according to any one of claims 1 to 4,
    In the step of selectively removing the first semiconductor layer,
    A method for manufacturing a solar cell, wherein a part of the one main surface of the semiconductor substrate is exposed.
  6.  請求項1~5のいずれか1項に記載の太陽電池の製造方法において、
     前記第1半導体層を形成する工程は、前記第1半導体層を形成するよりも前に、前記半導体基板の前記一方の主面の上に第1真性半導体層を形成する工程を含み、
     前記第1半導体層を選択的に除去する工程は、前記第1半導体層に続いて前記第1真性半導体層を選択的に除去する工程を含み、
     前記第2半導体層を形成する工程は、前記第2半導体層を形成するよりも前に、前記半導体基板の前記第2リフトオフ層、第1リフトオフ層及び第1半導体層を含む前記一方の主面の上に第2真性半導体層を形成する工程を含み、
     前記第2半導体層を除去する工程は、前記第2半導体層に続いて前記第2真性半導体層を選択的に除去する工程を含む太陽電池の製造方法。
    In the method for producing a solar cell according to any one of claims 1 to 5,
    The step of forming the first semiconductor layer includes a step of forming a first intrinsic semiconductor layer on the one main surface of the semiconductor substrate before forming the first semiconductor layer,
    Selectively removing the first semiconductor layer includes selectively removing the first intrinsic semiconductor layer following the first semiconductor layer;
    The step of forming the second semiconductor layer includes the first main surface including the second lift-off layer, the first lift-off layer, and the first semiconductor layer of the semiconductor substrate prior to forming the second semiconductor layer. Forming a second intrinsic semiconductor layer on the substrate,
    The step of removing the second semiconductor layer includes a step of selectively removing the second intrinsic semiconductor layer following the second semiconductor layer.
PCT/JP2019/005405 2018-02-23 2019-02-14 Method for producing solar cell WO2019163646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501716A JPWO2019163646A1 (en) 2018-02-23 2019-02-14 How to manufacture solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030753 2018-02-23
JP2018-030753 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163646A1 true WO2019163646A1 (en) 2019-08-29

Family

ID=67688115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005405 WO2019163646A1 (en) 2018-02-23 2019-02-14 Method for producing solar cell

Country Status (3)

Country Link
JP (1) JPWO2019163646A1 (en)
TW (1) TWI761662B (en)
WO (1) WO2019163646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799118B (en) * 2022-01-28 2023-04-11 勝慧科技有限公司 Electrode coupled double hetrojunction solar cell having double active regions for photoelectric effect and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532817A (en) * 2007-04-03 2010-10-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Deposition method of local film
US20140199806A1 (en) * 2011-06-30 2014-07-17 Alison Joan Lennon Dielectric structures in solar cells
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
WO2016129481A1 (en) * 2015-02-09 2016-08-18 シャープ株式会社 Photoelectric conversion element
WO2017217219A1 (en) * 2016-06-15 2017-12-21 株式会社カネカ Solar cell and production method therefor, and solar cell module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203713A1 (en) * 2007-09-11 2010-08-12 Tadahiro Ohmi Method of manufacturing electronic device
TWI457984B (en) * 2008-08-06 2014-10-21 Soitec Silicon On Insulator Relaxation of strained layers
SG171762A1 (en) * 2008-11-19 2011-07-28 Agency Science Tech & Res Method of at least partially releasing an epitaxial layer
JP2013120863A (en) * 2011-12-08 2013-06-17 Sharp Corp Method for manufacturing solar cell
WO2014171686A1 (en) * 2013-04-16 2014-10-23 Hanwha Chemical Corporation Solar cell and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532817A (en) * 2007-04-03 2010-10-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Deposition method of local film
US20140199806A1 (en) * 2011-06-30 2014-07-17 Alison Joan Lennon Dielectric structures in solar cells
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
WO2016129481A1 (en) * 2015-02-09 2016-08-18 シャープ株式会社 Photoelectric conversion element
WO2017217219A1 (en) * 2016-06-15 2017-12-21 株式会社カネカ Solar cell and production method therefor, and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell

Also Published As

Publication number Publication date
TWI761662B (en) 2022-04-21
TW201937748A (en) 2019-09-16
JPWO2019163646A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2013145008A1 (en) Photovoltaic element, method of manufacturing same, and solar cell module
JP2010123859A (en) Solar battery element and production process of solar battery element
US20120273036A1 (en) Photoelectric conversion device and manufacturing method thereof
US11211519B2 (en) Method for manufacturing solar cell
US20210057597A1 (en) Method for manufacturing solar cell, and holder used for same
US20120264253A1 (en) Method of fabricating solar cell
WO2019163646A1 (en) Method for producing solar cell
TWI783063B (en) Manufacturing method of solar cell
JP2011228529A (en) Solar battery cell and manufacturing method thereof
US11158748B2 (en) Solar cell, solar cell module, and solar cell manufacturing method
JP7221276B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP5645734B2 (en) Solar cell element
JP7281444B2 (en) Solar cell manufacturing method
WO2019163784A1 (en) Method for manufacturing solar cell
JP7183245B2 (en) Solar cell manufacturing method
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
WO2020022044A1 (en) Manufacturing method for solar cell
JP7361045B2 (en) How to manufacture solar cells
JP7353865B2 (en) How to manufacture solar cells
JP2020096126A (en) Manufacturing method of back electrode type solar cell
JP2022064104A (en) Solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756815

Country of ref document: EP

Kind code of ref document: A1