JP7281444B2 - Solar cell manufacturing method - Google Patents
Solar cell manufacturing method Download PDFInfo
- Publication number
- JP7281444B2 JP7281444B2 JP2020501718A JP2020501718A JP7281444B2 JP 7281444 B2 JP7281444 B2 JP 7281444B2 JP 2020501718 A JP2020501718 A JP 2020501718A JP 2020501718 A JP2020501718 A JP 2020501718A JP 7281444 B2 JP7281444 B2 JP 7281444B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- lift
- forming
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 228
- 239000000758 substrate Substances 0.000 claims description 95
- 238000000034 method Methods 0.000 claims description 65
- 239000007789 gas Substances 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims description 25
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 238000001020 plasma etching Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 327
- 239000013078 crystal Substances 0.000 description 59
- 238000000059 patterning Methods 0.000 description 30
- 239000010408 film Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 description 12
- 150000002431 hydrogen Chemical class 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 244000126211 Hericium coralloides Species 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002161 passivation Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 2
- 229910052986 germanium hydride Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- -1 hydroxide ions Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a solar cell.
従来、太陽電池は、半導体基板の両面(受光面及び裏面)に電極を配置した両面電極型が一般的であった。近年、電極による遮蔽損がない太陽電池として、特許文献1に示されるような、裏面にのみ電極を配置したバックコンタクト(裏面電極)型太陽電池が開発されている。 Conventionally, a solar cell has generally been of a double-sided electrode type in which electrodes are arranged on both sides (light-receiving surface and back surface) of a semiconductor substrate. In recent years, a back-contact (back surface electrode) type solar cell in which an electrode is arranged only on the back surface, as disclosed in Patent Document 1, has been developed as a solar cell without shielding loss due to electrodes.
しかしながら、バックコンタクト型太陽電池は、両面電極型の面積と比べて狭い裏面内に、p型半導体層及びn型半導体層を電気的に分離して形成しなければならず、特許文献1では、レーザ光を用いてp型半導体層とn型半導体層とを電気的に分離している。このため、バックコンタクト型太陽電池は、例えば両面電極型の太陽電池と比べて製造が非常に煩雑になるという問題がある。 However, in a back-contact solar cell, a p-type semiconductor layer and an n-type semiconductor layer must be electrically separated and formed in a back surface area that is narrower than that of a double-sided electrode type solar cell. A laser beam is used to electrically separate the p-type semiconductor layer and the n-type semiconductor layer. For this reason, the back-contact solar cell has a problem that manufacturing is much more complicated than, for example, a double-sided electrode solar cell.
また、レーザ光を用いて、p型半導体層とn型半導体層との電気的な分離を煩雑に行ってしまうと、レーザ光の精度不足又はレーザ光の出力不足等によって、絶縁分離を十分に行えないこともある。このような場合、バックコンタクト型太陽電池の性能は低下してしまうという問題もある。特に、p型半導体層及びn型半導体層をテクスチャ形状の上に形成する場合には、性能低下のリスクは高くなる。 In addition, if the electrical separation between the p-type semiconductor layer and the n-type semiconductor layer is performed in a complicated manner using a laser beam, the insulation separation may be insufficient due to insufficient accuracy of the laser beam, insufficient output of the laser beam, or the like. Sometimes you can't. In such a case, there is also the problem that the performance of the back-contact solar cell is degraded. In particular, when the p-type semiconductor layer and the n-type semiconductor layer are formed on textured shapes, the risk of performance deterioration increases.
本発明は、前記従来の問題を解決するためになされたものであり、その目的は、高性能なバックコンタクト型太陽電池を簡易に製造することにある。 SUMMARY OF THE INVENTION The present invention has been made to solve the above conventional problems, and an object of the present invention is to easily manufacture a high-performance back-contact solar cell.
前記の目的を達成するため、本発明の一態様は、半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、リフトオフ層及び第1半導体層を選択的に除去する工程と、リフトオフ層及び第1半導体層を含む一方の主面の上に、第2導電型の第2半導体層を形成する工程と、エッチング溶液を用いて、リフトオフ層を除去することにより、リフトオフ層を覆う第2半導体層を除去する工程とを含む。リフトオフ層及び第1半導体層を選択的に除去する工程において、リフトオフ層を除去した後に、水素を主成分とするガスを導入したプラズマエッチングで、第1半導体層を除去する工程を含む。 In order to achieve the above object, one aspect of the present invention provides a step of forming a first semiconductor layer of a first conductivity type on one of two main surfaces facing each other in a semiconductor substrate; forming a lift-off layer containing a silicon-based thin film material on one semiconductor layer; selectively removing the lift-off layer and the first semiconductor layer; and one main surface including the lift-off layer and the first semiconductor layer. forming a second semiconductor layer of the second conductivity type on top; and removing the second semiconductor layer overlying the lift-off layer by using an etching solution to remove the lift-off layer. In the step of selectively removing the lift-off layer and the first semiconductor layer, after the lift-off layer is removed, the first semiconductor layer is removed by plasma etching in which a gas containing hydrogen as a main component is introduced.
本発明によれば、高性能なバックコンタクト型太陽電池が簡易に製造される。 According to the present invention, a high-performance back-contact solar cell can be easily manufactured.
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物又はその用途を制限することを意図しない。また、図面中の各構成部材の寸法比は、図示する際の便宜上のものであり、必ずしも実寸比を表してはいない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following description of preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its applications or its uses. Also, the dimensional ratio of each component in the drawings is for convenience of illustration and does not necessarily represent the actual dimensional ratio.
(一実施形態)
本発明の一実施形態について図面を参照しながら説明する。(one embodiment)
An embodiment of the present invention will be described with reference to the drawings.
図1は本実施形態に係る太陽電池(セル)の部分的な断面図を示す。図1に示すように、本実施形態に係る太陽電池10は、シリコン(Si)製の結晶基板11を用いている。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有している。ここでは、光が入射する主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側を受光側とし、積極的に受光させない側を非受光側とする。
FIG. 1 shows a partial cross-sectional view of a solar cell (cell) according to this embodiment. As shown in FIG. 1, a
本実施形態に係る太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。
The
太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。
以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。
Hereinafter, for the sake of convenience, members individually corresponding to the p-
結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。
The
結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)を導入されたn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B)原子)を導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。
Even if the conductivity type of the
また、結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成することができる。
In addition, from the viewpoint of confining received light, the
テクスチャ構造TXの大きさとして、例えば頂点(山)の数で定義することが可能である。本発明においては、光取り込みと生産性との観点から、50000個/mm2以上100000個/mm2以下の範囲であることが好ましく、特には70000個/mm2以上85000個/mm2以下の範囲であることが好ましい。The size of the texture structure TX can be defined, for example, by the number of vertices (mountains). In the present invention, from the viewpoint of light capture and productivity, the range is preferably 50,000/mm 2 or more and 100,000/mm 2 or less, and particularly 70,000/mm 2 or more and 85,000/mm 2 or less. A range is preferred.
結晶基板11の厚さは、250μm以下であってもよい。なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。そこで、これ以降、この垂直方向、すなわち、厚さを測定する方向を厚さ方向とする。
The thickness of the
結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。
If the thickness of the
一方で、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。
On the other hand, if the thickness of the
ところで、結晶基板11と導電型半導体層13との間には、真性(i型)半導体層12を配置することができる。真性半導体層12(12U、12p、12n)が結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。
By the way, an intrinsic (i-type) semiconductor layer 12 can be arranged between the
なお、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。 It should be noted that the intrinsic semiconductor layers 12 (12U, 12p, 12n) are not essential, and may be appropriately formed as needed.
真性半導体層12の材料は、特に限定されないが、非晶質シリコン系材料であってもよく、薄膜としてシリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造であり、すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。 Although the material of the intrinsic semiconductor layer 12 is not particularly limited, it may be an amorphous silicon-based material, and the thin film may be a hydrogenated amorphous silicon-based thin film (a-Si:H thin film) containing silicon and hydrogen. There may be. The term "amorphous" as used herein means a structure having no long-period order, that is, not only complete disorder but also short-period order is included.
また、真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
The thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the
真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。 A method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma enhanced chemical vapor deposition (CVD) method is used. According to this method, it is possible to effectively passivate the substrate surface while suppressing the diffusion of impurities into single crystal silicon. Further, with the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective for recovering carriers.
なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm2以上0.5W/cm2以下であってもよい。The conditions for forming a thin film by the plasma CVD method include, for example, a substrate temperature of 100° C. or higher and 300° C. or lower, a pressure of 20 Pa or higher and 2600 Pa or lower, and a high frequency power density of 0.003 W/cm 2 or higher and 0.5 W/cm2. cm 2 or less.
また、薄膜の形成に使用する原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH4)及びジシラン(Si2H6)等のシリコン含有ガス、又はそれらのガスと水素(H2)とを混合したガスであってもよい。In the case of the intrinsic semiconductor layer 12, the raw material gas used for forming the thin film includes silicon-containing gases such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or these gases and hydrogen (H 2 ). and may be a mixed gas.
なお、上記のガスに、メタン(CH4)、アンモニア(NH3)若しくはモノゲルマン(GeH4)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiNx)又はシリコンゲルマニウム(SIGe)等のシリコン化合物を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。Incidentally, a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ) or monogermane (GeH 4 ) is added to the above gas to form silicon carbide (SiC) or silicon nitride (SiN x ) . ) or a silicon compound such as silicon germanium (SIGe) to change the energy gap of the thin film accordingly.
導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図1に示すように、p型半導体層13pは、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面の他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及びn型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12が介在する。
Conductive semiconductor layer 13 includes p-
p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
Each thickness of the p-
p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であるとより好ましい。加えて、p型半導体層13pとn型半導体層13nとの乖離の間隔は、3000μm以下であってよく、1000μm以下であるとより好ましい(なお、半導体層の幅及び後述する電極層の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば線状になった一部分の延び方向と直交する方向の長さを意図する)。
P-
結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であるとより好ましい。
When photoexcitons (carriers) generated in the
低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)、酸化亜鉛(ZnO)又は酸化チタン(TiOx)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。The low-
電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。
なお、各半導体層13p、13nに対応する電極層15p、15nは、離間して配置されることで、p型半導体層13pとn型半導体層13nとの短絡を防止する。
The electrode layers 15p and 15n corresponding to the semiconductor layers 13p and 13n are spaced apart to prevent a short circuit between the p-
また、電極層15は、導電性が高い金属のみで形成されてもよい。また、p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、透明導電性酸化物で構成された電極層15を、金属製の電極層とp型半導体層13pとの間及び金属製の電極層とn型半導体層13nとの間にそれぞれ設けてもよい。
Moreover, the
本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。また、図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部と称し、櫛歯部上に形成される電極層をフィンガ部と称することがある。
In this embodiment, the
透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InOx)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiOx)、酸化スズ(SnOx)、酸化タングステン(WOx)若しくは酸化モリブデン(MoOx)等を1重量%以上10重量%以下の濃度で添加した透明導電性酸化物が挙げられる。 The material of the
透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積法(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。
The thickness of the
金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。
Although the material of the
金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、蒸着又はスパッタリング法を採用してもよい。
The thickness of the
また、p型半導体層13p及びn型半導体層13nにおける櫛歯部の幅と、該櫛歯部の上に形成される金属電極層18の幅とは、同程度であってもよい。但し、櫛歯部の幅と比べて、金属電極層18の幅が狭くてもよい。また、金属電極層18同士のリーク電流が防止される構成であれば、櫛歯部の幅と比べて、金属電極層18の幅が広くてもよい。
Moreover, the width of the comb tooth portions in the p-
本実施形態においては、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。
In this embodiment, the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low-
本実施形態に係るアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は大気でもよく、さらには、雰囲気として水素又は窒素を用いると、より効果的なアニール処理を行うことができる。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。
An annealing treatment according to the present embodiment includes, for example, an annealing treatment in which the
[太陽電池の製造方法]
以下、本実施形態に係る太陽電池10の製造方法について図3~図10を参照しながら説明する。[Method for manufacturing solar cell]
A method for manufacturing the
まず、図3に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する。
First, as shown in FIG. 3, the
次に、図4に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に反射防止層14を形成する。反射防止層14には、入射光を閉じ込める光閉じ込め効果の観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiNx)又はシリコンオキサイド(SiOx)が用いられる。Next, as shown in FIG. 4, on the front main surface 11SU of the
次に、図5に示すように、結晶基板11の裏側主面11SBの上にp型半導体層13pを形成する。なお、図5では、上述したように、結晶基板11とp型半導体層13pとの間に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する。従って、本実施形態においては、p型半導体層(第1半導体層)13pを形成する工程は、p型半導体層13pを形成するよりも前に、結晶基板(半導体基板)11の一方の主面(裏側主面)11Sの上に真性半導体層(第1真性半導体層)12pを形成する工程を含む。
Next, as shown in FIG. 5, a p-
p型半導体層13pは、p型のドーパント(ホウ素(B)等)が添加されたシリコン層で、不純物拡散の抑制又は直列抵抗抑制という観点から、非晶質シリコンで形成されることが好ましい。一方、p型半導体層13pに代えて、n型半導体層13nを用いる場合は、n型のドーパント(リン(P)等)が添加されたシリコン層で、p型半導体層13pと同様に、非晶質シリコンで形成されることが好ましい。導電型半導体層13の原料ガスとしては、モノシラン(SiH4)若しくはジシラン(Si2H6)等のシリコン含有ガス、又はシリコン系ガスと水素(H2)との混合ガスを用いてもよい。ドーパントガスには、p型半導体層13pの形成にはジボラン(B2H6)等を用いることができ、n型半導体層の形成にはホスフィン(PH3)等を用いることができる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。The p-
また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH4)、二酸化炭素(CO2)、アンモニア(NH3)又はモノゲルマン(GeH4)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが化合物化されてもよい。Further, in order to adjust the energy gap of the p-
続いて、図5に示すように、形成されたp型半導体層13pの上にリフトオフ層LF(LF1、LF2)を形成する。リフトオフ層LFは、後述の図7に示す工程においてパターニング除去され、さらに、図9に示す工程においてn型半導体層13nと同時に除去される。本実施形態においては、リフトオフ層LFは、結晶基板11の裏側主面11SBの上に、第1リフトオフ層LF1及び第2リフトオフ層LF2の順に形成される。第1リフトオフ層LF1は、酸化ケイ素(SiOx)又は窒化ケイ素(SiNx)が主成分であってもよい。Subsequently, as shown in FIG. 5, lift-off layers LF (LF1, LF2) are formed on the formed p-
第1リフトオフ層LF1が酸化ケイ素を主成分とする場合には、その屈折率は1.45以上1.90以下であってもよい。さらには、この場合の第1リフトオフ層LF1の屈折率は、1.50以上1.80以下、特に1.55以上1.72以下であれば、図7に示す工程でのアンダーカットの抑制と、図9に示す工程でのリフトオフとのバランスの観点から好ましい。これは、屈折率の違いが、層中のケイ素の含有量に依存しており、リフトオフ層LFのエッチング速度に影響を与える因子であるためである。 When the first lift-off layer LF1 is mainly composed of silicon oxide, its refractive index may be 1.45 or more and 1.90 or less. Furthermore, if the refractive index of the first lift-off layer LF1 in this case is 1.50 or more and 1.80 or less, particularly 1.55 or more and 1.72 or less, the undercut in the process shown in FIG. , is preferable from the viewpoint of balance with lift-off in the process shown in FIG. This is because the difference in refractive index depends on the silicon content in the layer and is a factor affecting the etching rate of the lift-off layer LF.
同様に、第1リフトオフ層LF1が窒化ケイ素を主成分とする場合には、その屈折率は1.60以上2.10以下であってもよい。さらには、この場合の第1リフトオフ層LF1の屈折率は、1.70以上2.00以下、特に1.80以上1.95以下が好ましい。上記の屈折率は、分光エリプソメトリ測定における誘電関数からフィッティングを行い、波長632nmの光における数値を抽出することが好ましい。 Similarly, when the first lift-off layer LF1 is mainly composed of silicon nitride, its refractive index may be 1.60 or more and 2.10 or less. Furthermore, the refractive index of the first lift-off layer LF1 in this case is preferably 1.70 or more and 2.00 or less, particularly 1.80 or more and 1.95 or less. The above refractive index is preferably obtained by fitting from the dielectric function in spectroscopic ellipsometry measurement and extracting the numerical value for light with a wavelength of 632 nm.
なお、第1リフトオフ層LF1の構造は、特に限定されるものではないが、例えば層の内部に、物理的又は化学的な空隙(欠陥)を含んだ構造が挙げられる。例えば、CVD(Chemical Vapor Deposition)法で第1リフトオフ層LF1を形成すると、成長する粒子は成膜面に対してほぼ垂直に積み上がるように成長する。この場合、成長した粒子で形成された粒子体が多数生じ、これらの粒子体同士の間に空隙が生じることがある。このような空隙を含むリフトオフ層LF1の場合、エッチング溶液が層の内部に浸入しやすくなるので、エッチング速度が速まることもある。このため、後述のリフトオフ工程の時間を短縮し得る。 Although the structure of the first lift-off layer LF1 is not particularly limited, for example, a structure including physical or chemical voids (defects) inside the layer can be mentioned. For example, if the first lift-off layer LF1 is formed by a CVD (Chemical Vapor Deposition) method, growing particles grow so as to pile up almost perpendicularly to the film formation surface. In this case, a large number of granules formed of grown grains are produced, and gaps may be formed between these granules. In the case of the lift-off layer LF1 including such voids, the etching solution can easily penetrate into the inside of the layer, so that the etching rate may be increased. Therefore, it is possible to shorten the time of the lift-off process, which will be described later.
一方、第2リフトオフ層LF2は、水素化非晶質シリコンであってもよい。図7に示す工程で説明するリフトオフ層LFのパターニングにおいて、第2リフトオフ層LF2がレジストの役割を果たすため、有機物により構成されるフォトレジストが不要となるため好ましい。リフトオフ層LFの厚さは、後述するマスク20で遮蔽されない領域において、全体として20nm以上600nm以下であってもよい。特に、リフトオフ層LFの厚さは50nm以上450nm以下であることが好ましい。このうち第2リフトオフ層LF2は、マスク20で遮蔽されない領域において、10nm以上20nm以下程度が好ましく、マスク20で遮蔽される領域では、5nm以下、特に好ましくは3nm以下である。なお、リフトオフ層LFを3層以上の積層構造とする場合は、上層のリフトオフ層に、水素化非晶質シリコンを用いることが好ましい。 On the other hand, the second lift-off layer LF2 may be hydrogenated amorphous silicon. In the patterning of the lift-off layer LF described in the process shown in FIG. 7, the second lift-off layer LF2 serves as a resist, which is preferable because it eliminates the need for a photoresist composed of an organic substance. The thickness of the lift-off layer LF may be 20 nm or more and 600 nm or less as a whole in the region not shielded by the mask 20 described later. In particular, the thickness of the lift-off layer LF is preferably 50 nm or more and 450 nm or less. Of these, the second lift-off layer LF2 preferably has a thickness of about 10 nm to 20 nm in the region not shielded by the mask 20, and a thickness of 5 nm or less, particularly preferably 3 nm or less in the region shielded by the mask 20. When the lift-off layer LF has a laminated structure of three or more layers, hydrogenated amorphous silicon is preferably used for the upper lift-off layer.
また、本実施形態では、その一変形例として、図5に示す工程において、真性半導体層12p、p型半導体層13p及びリフトオフ層LF(LF1、LF2)を形成する際に、結晶基板11の裏側主面11SBの上側に、エッチング領域上に選択して成膜するためのマスク20を配置してもよい。すなわち、図6に示すように、パターニング除去される領域が、マスク20によって遮蔽される構造であってもよい。CVD成膜では、マスク20で遮蔽された領域においても、成膜時の反応ガスの回り込みがあるため、結晶基板11上の真性半導体層12p、p型半導体層13p及びリフトオフ層LFの各厚さは、遮蔽されていない領域と比べて小さくなる。これにより、次の図7に示すp型半導体層(第1半導体層)13pを選択的に除去する工程(以下、パターニング工程と呼ぶ。)において、真性半導体層12p、p型半導体層13p及びリフトオフ層LFの除去が容易となる。なお、マスク20は、結晶基板11の裏側主面11SBから間隔をおくと共に、裏側主面11SBと接しないように保持されていると好ましい。このマスク20の裏面と結晶基板11の裏側主面11SBとの間隔は、特には限定されないが、一例として、0.5mm以上1.2mm以下程度に設定することができる。
Further, in the present embodiment, as a modified example thereof, in the process shown in FIG. A mask 20 for selectively forming a film on the etching region may be arranged on the upper side of the main surface 11SB. That is, as shown in FIG. 6, the region to be removed by patterning may be a structure shielded by the mask 20 . In CVD film formation, even in the region shielded by the mask 20, the reaction gas during the film formation is leaked. is smaller compared to the unoccluded area. As a result, in the step of selectively removing the p-type semiconductor layer (first semiconductor layer) 13p (hereinafter referred to as a patterning step) shown in FIG. Removal of layer LF is facilitated. It is preferable that the mask 20 is spaced from the back main surface 11SB of the
次に、図7に示すパターニング工程では、図5に示す工程で形成された、少なくともp型半導体層13p及びリフトオフ層LFをパターニング除去する。本工程は、公知の手法を用いることができ、エッチング液を用いたパターニングが好ましい。本実施形態では、光の取り込み効率を優先するという観点から、結晶基板11の裏側主面11SBもテクスチャ構造TXを有している。この場合には、生産性の観点から、レーザ光を用いたパターニング工程は多少困難となる。図5に示す工程で形成された第1リフトオフ層LF1及び第2リフトオフ層LF2は、それぞれ、フッ化水素酸と、水酸化物イオンを発生する塩基性水溶液とによってエッチングされる。なお、図6に示す工程でマスク20により遮蔽された領域においては、上部に位置する水素化非晶質シリコンによる第2リフトオフ層LF2の膜厚が極めて小さい。このため、この遮蔽領域にはピンホールが多く存在するので、フッ化水素酸のみで第1リフトオフ層LF1及び第2リフトオフ層LF2のパターニングが行える。
Next, in the patterning step shown in FIG. 7, at least the p-
さらに、本パターニング工程では、真性半導体層12p及びp型半導体層13pのエッチングには、水素を主成分とするガスを導入したプラズマエッチング(水素プラズマエッチング)が用いられてもよい。例えば、真空チャンバに投入された結晶基板11に対して、水素(H2)を主成分とするガスを導入し、高周波電源を用いてプラズマを発生させ、発生したプラズマによってエッチングを行う。ここでの主成分とは、真空チャンバに導入されるガスの全量に対して、水素が90体積%以上であることを示している。この水素の体積比率は95%以上であるとより好ましい。水素以外の導入ガス種としては、SiH4又はCH4等が挙げられる。Furthermore, in this patterning step, plasma etching (hydrogen plasma etching) introducing a gas containing hydrogen as a main component may be used to etch the
また、本パターニング工程では、真性半導体層12pまでをエッチングし、パターニング領域では結晶基板11を露出させることができる。このようにすると、光電変換によって発生するキャリアのライフタイムの低下をより抑制することができる。
Further, in this patterning process, etching is performed up to the
次に、図8に示す工程では、n型半導体層13nを形成する。n型半導体層13nは、結晶基板11の裏側主面11SBの上の全面に形成することができる。すなわち、n型半導体層13nは、リフトオフ層LFの上にも形成される。なお、図5に示す工程と同様に、結晶基板11とn型半導体層13nとの間に、真性半導体層12nを形成する。この場合、n型半導体層13nは、リフトオフ層LFの上面だけでなく、真性半導体層12nを介して、リフトオフ層LF、p型半導体層13p及び真性半導体層12pの側面(端面)を覆うように形成される。従って、本実施形態においては、n型半導体層(第2半導体層)13nを形成する工程は、n型半導体層13nを形成するよりも前に、結晶基板(半導体基板)11のリフトオフ層LF及びp型半導体層を含む一方の主面(裏側主面)11Sの上に真性半導体層(第2真性半導体層)12nを形成する工程を含む。
Next, in the process shown in FIG. 8, the n-
また、上述のように結晶基板11を露出させた場合には、真性半導体層12nを形成するより前に、図7のパターニング工程で露出した結晶基板11の表面を洗浄する工程を設けても構わない。洗浄工程は、パターニング工程で結晶基板11の表面に生じた欠陥及び不純物の除去を目的とし、例えばフッ化水素酸で処理すればよい。
Further, when the
次に、図9に示すリフトオフ層LFを覆うn型半導体層(第2半導体層)13nを除去する工程(以下、リフトオフ工程と呼ぶ。)では、リフトオフ層LF、並びにリフトオフ層LFの上に形成された真性半導体層12n及びn型半導体層13nを同時に除去する。図7に示すパターニング工程ではフォトリソグラフィ法を用いたのに対し、本工程ではフォトリソグラフィ等のレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nに対するパターン形成を簡易に行える。また、リフトオフ層LFに酸化ケイ素又は窒化ケイ素を主成分とする膜を適用する場合には、本工程でのエッチング液にはフッ化水素酸が用いられる。
Next, in the step of removing the n-type semiconductor layer (second semiconductor layer) 13n covering the lift-off layer LF (hereinafter referred to as a lift-off step) shown in FIG. The
次に、図10に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれの上に、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)を形成する。なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。例えば、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。ここで、p型半導体層13pとn型半導体層13nとを互いに分離絶縁する分離溝25を形成することにより、リーク電流が発生し難くなる。
Next, as shown in FIG. 10, on the back main surface 11SB of the
その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する。
After that, a linear metal electrode layer 18 (18p, 18n) is formed on the
以上の工程により、裏面接合型の太陽電池10が形成される。
Through the steps described above, the back contact
本発明は、上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above embodiments, and various modifications are possible within the scope of the claims. That is, the technical scope of the present invention also includes embodiments obtained by combining technical means appropriately modified within the scope of the claims.
例えば、以上の太陽電池の製造方法では、リフトオフ層LFが複層型であったが、これに限定されるものではない。例えば、単層のリフトオフ層LFのみを用いても構わない。なお、このような単層は、第1リフトオフ層LF1で形成されると好ましい。 For example, in the method for manufacturing a solar cell described above, the lift-off layer LF is of a multi-layer type, but it is not limited to this. For example, only a single-layer lift-off layer LF may be used. Note that such a single layer is preferably formed of the first lift-off layer LF1.
以下、本発明を実施例により具体的に説明する。但し、本発明はこれらの実施例に限定されない。実施例及び比較例は、以下のようにして作製した([表1]を参照)。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. Examples and comparative examples were produced as follows (see [Table 1]).
[結晶基板]
まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。[Crystal substrate]
First, a single crystal silicon substrate having a thickness of 200 μm was adopted as a crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal textured structure was formed on the crystal substrate.
[真性半導体層]
次に、結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(厚さ8nm)を形成した。成膜条件は、基板温度が150℃、圧力が120Pa、SiH4/H2の流量比が3/10、及びパワー密度が0.011W/cm2であった。[Intrinsic semiconductor layer]
Next, the crystal substrate was introduced into a CVD apparatus, and intrinsic semiconductor layers (thickness: 8 nm) made of silicon were formed on both main surfaces of the introduced crystal substrate. The deposition conditions were a substrate temperature of 150° C., a pressure of 120 Pa, a flow ratio of SiH 4 /H 2 of 3/10, and a power density of 0.011 W/cm 2 .
[p型半導体層(第1導電型半導体層)]
次に、両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、結晶基板における裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。[p-type semiconductor layer (first conductivity type semiconductor layer)]
Next, a crystalline substrate having intrinsic semiconductor layers formed on both main surfaces thereof was introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon thin film (
成膜条件は、基板温度が150℃、圧力が60Pa、SiH4/B2H6の流量比が1/3、及びパワー密度が0.01W/cm2であった。なお、本実施例でのB2H6ガスの流量は、B2H6がH2により5000ppmまで希釈された希釈ガスの流量である。The deposition conditions were a substrate temperature of 150° C., a pressure of 60 Pa, a flow ratio of SiH 4 /B 2 H 6 of 1/3, and a power density of 0.01 W/cm 2 . The flow rate of the B 2 H 6 gas in this example is the flow rate of the diluent gas obtained by diluting the B 2 H 6 with H 2 to 5000 ppm.
[リフトオフ層]
次に、p型半導体層の上に2層のリフトオフ層を形成した。リフトオフ層は、以下の2種類の組成で形成した。[Lift-off layer]
Next, two lift-off layers were formed on the p-type semiconductor layer. The lift-off layer was formed with the following two compositions.
(酸化ケイ素主成分型リフトオフ層)
実施例1、2及び比較例1、3に用いる第1リフトオフ層として、プラズマCVD装置を用いて、酸化ケイ素(SiOx)を200nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を0.9kPa、SiH4/CO2/H2の流量比を1/10/750、及びパワー密度を0.15W/cm2とした。続いて、第1リフトオフ層の上に第2リフトオフ層として、プラズマCVD装置を用いて、水素化非晶質シリコンを15nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を120Pa、SiH4/H2の流量比を3/10、及びパワー密度を0.011W/cm2とした。(Silicon oxide-based lift-off layer)
As the first lift-off layer used in Examples 1 and 2 and Comparative Examples 1 and 3, silicon oxide (SiO x ) was formed with a film thickness of 200 nm (mask unshielded region) using a plasma CVD apparatus. The substrate temperature was 150° C., the pressure was 0.9 kPa, the flow ratio of SiH 4 /CO 2 /H 2 was 1/10/750, and the power density was 0.15 W/cm 2 . Subsequently, as a second lift-off layer, hydrogenated amorphous silicon was formed on the first lift-off layer with a film thickness of 15 nm (mask-unshielded region) using a plasma CVD apparatus. The substrate temperature was 150° C., the pressure was 120 Pa, the SiH 4 /H 2 flow ratio was 3/10, and the power density was 0.011 W/cm 2 .
(窒化ケイ素主成分型リフトオフ層)
実施例3、4に用いる第1リフトオフ層として、プラズマCVD装置を用いて、窒化ケイ素(SiNx)を200nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を0.2kPa、SiH4/HN3/H2の流量比を1/4/50、及びパワー密度を0.15W/cm2とした。続いて、第1リフトオフ層の上に第2リフトオフ層として、プラズマCVD装置を用いて、水素化非晶質シリコンを15nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を120Pa、SiH4/H2の流量比を3/10、及びパワー密度を0.011W/cm2とした。(Silicon nitride-based lift-off layer)
As the first lift-off layer used in Examples 3 and 4, silicon nitride (SiN x ) was formed with a film thickness of 200 nm (mask unshielded region) using a plasma CVD apparatus. The substrate temperature was 150° C., the pressure was 0.2 kPa, the flow ratio of SiH 4 /HN 3 /H 2 was 1/4/50, and the power density was 0.15 W/cm 2 . Subsequently, hydrogenated amorphous silicon was formed with a film thickness of 15 nm (mask unshielded region) on the first lift-off layer as a second lift-off layer using a plasma CVD apparatus. The substrate temperature was 150° C., the pressure was 120 Pa, the SiH 4 /H 2 flow ratio was 3/10, and the power density was 0.011 W/cm 2 .
[リフトオフ層のパターニング]
次に、p型半導体層が形成された結晶基板を、濃度が1重量%の加水フッ化水素酸に浸漬し、露出領域のリフトオフ層が除去された後に、純水によるリンスを行った。[Patterning of lift-off layer]
Next, the crystal substrate on which the p-type semiconductor layer was formed was immersed in hydrofluoric acid having a concentration of 1% by weight, and after the lift-off layer in the exposed region was removed, it was rinsed with pure water.
[真性半導体層及びp型半導体層のパターニング]
続いて、リフトオフ層のパターニングを行った後に、真性半導体層及びp型半導体層に対して水素プラズマエッチングを用いたパターニングを行った。以下、この工程をp型半導体層パターニング工程と略称する。[Patterning of intrinsic semiconductor layer and p-type semiconductor layer]
Subsequently, after patterning the lift-off layer, the intrinsic semiconductor layer and the p-type semiconductor layer were patterned using hydrogen plasma etching. Hereinafter, this step is abbreviated as a p-type semiconductor layer patterning step.
以下のように、反応ガスとして水素(H2)のみを用いる場合と、水素(H2)にシラン(SiH4)を添加する場合とで比較した。As described below, the case of using only hydrogen (H 2 ) as a reaction gas and the case of adding silane (SiH 4 ) to hydrogen (H 2 ) were compared.
(水素プラズマエッチング:プ-1)
実施例1、3及び比較例2用として、結晶基板を真空チャンバに投入し、基板温度を150℃とし、圧力が0.4kPaとなるように水素(H2)を導入し、パワー密度を0.011W/cm2とした。(Hydrogen plasma etching: P-1)
For Examples 1 and 3 and Comparative Example 2, the crystal substrate was placed in a vacuum chamber, the substrate temperature was set to 150° C., hydrogen (H 2 ) was introduced so that the pressure was 0.4 kPa, and the power density was set to 0. 011 W/cm 2 .
(シラン添加水素プラズマエッチング:プ-2)
実施例2、4用として、結晶基板を真空チャンバに投入し、基板温度を150℃、圧力を0.4kPa、SiH4/H2の流量比を1/330、及びパワー密度を0.011W/cm2とした。 [n型半導体層(第2導電型半導体層)]
続いて、p型半導体層パターニング工程の後に、裏側主面の露出部分を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。(Silane-added hydrogen plasma etching: P-2)
For Examples 2 and 4, the crystal substrate was placed in a vacuum chamber, the substrate temperature was 150° C., the pressure was 0.4 kPa, the SiH 4 /H 2 flow ratio was 1/330, and the power density was 0.011 W/. cm2 . [n-type semiconductor layer (second conductivity type semiconductor layer)]
Subsequently, after the p-type semiconductor layer patterning step, the crystal substrate, the exposed portion of the back side of which has been washed with hydrofluoric acid having a concentration of 2% by weight, is introduced into a CVD apparatus. A hydrogenated amorphous silicon-based thin film (thickness: 10 nm) was formed.
成膜条件は、基板温度が150℃、圧力が60Pa、SiH4/PH3の流量比が1/2、及びパワー密度が0.01W/cm2であった。なお、本実施例でのPH3ガスの流量は、PH3がH2により5000ppmまで希釈された希釈ガスの流量である。The deposition conditions were a substrate temperature of 150° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 /PH 3 of 1/2, and a power density of 0.01 W/cm 2 . The flow rate of the PH3 gas in this example is the flow rate of the diluent gas obtained by diluting PH3 with H2 to 5000 ppm.
[リフトオフ層及びn型半導体層の除去(リフトオフ)]
次に、n型半導体層が形成された結晶基板を、濃度が5重量%フッ化水素酸に浸漬した。これにより、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層が同時に除去された。[Removal of lift-off layer and n-type semiconductor layer (lift-off)]
Next, the crystal substrate on which the n-type semiconductor layer was formed was immersed in hydrofluoric acid having a concentration of 5% by weight. This simultaneously removed the lift-off layer, the n-type semiconductor layer covering the lift-off layer, and the intrinsic semiconductor layer between the lift-off layer and the n-type semiconductor layer.
[電極層]
次に、マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。スパッタリング装置のチャンバ内に、アルゴン(Ar)と酸素(O2)との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cm2の電力密度で成膜を行った。[Electrode layer]
Next, using a magnetron sputtering apparatus, an oxide film (thickness: 100 nm) serving as the base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate. As a transparent conductive oxide, indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target. A mixed gas of argon (Ar) and oxygen (O 2 ) was introduced into the chamber of the sputtering apparatus, and the pressure inside the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set to the lowest resistivity (so-called bottom) condition. In addition, film formation was performed using a DC power supply at a power density of 0.4 W/cm 2 .
次に、フォトリソグラフィ法により、p型半導体層及びn型半導体層の上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物製膜との間での導通が防止された。 Next, etching was performed by photolithography so as to leave only the transparent conductive oxide film on the p-type semiconductor layer and the n-type semiconductor layer to form a transparent electrode layer. The transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film formed on the n-type semiconductor layer.
さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA-333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。 Further, an undiluted silver paste (Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.) was screen-printed on the transparent electrode layer and heat-treated in an oven at a temperature of 150° C. for 60 minutes. Thus, a metal electrode layer was formed.
次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]を参照とする。 Next, an evaluation method for back-contact solar cells will be described. Refer to [Table 1] for the evaluation results.
[膜厚及びエッチング性の評価]
リフトオフ層の膜厚及びエッチングの状態は、SEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)を用い、10万倍の倍率で観察して測定した。p型半導体層パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングできている場合には「○」とし、リフトオフ層が過剰にエッチングされた場合には「×」とした。[Evaluation of film thickness and etchability]
The film thickness and etching state of the lift-off layer were observed and measured at a magnification of 100,000 times using an SEM (Field Emission Scanning Electron Microscope S4800: manufactured by Hitachi High-Technologies Corporation). After the p-type semiconductor layer patterning process, when etching was completed according to the designed patterning removal area, it was evaluated as "O", and when the lift-off layer was excessively etched, it was evaluated as "X".
リフトオフ工程では、リフトオフ層が除去された場合には「○」とし、リフトオフ層が残った場合には「×」とした。 In the lift-off process, when the lift-off layer was removed, it was evaluated as "◯", and when the lift-off layer remained, it was evaluated as "x".
実施例1~4及び比較例1、3は、真性半導体層、p型半導体層及びリフトオフ層を形成する工程において、これらの層を除去する領域上を覆うマスクを配置している。 In Examples 1 to 4 and Comparative Examples 1 and 3, in the process of forming the intrinsic semiconductor layer, the p-type semiconductor layer and the lift-off layer, a mask is arranged to cover the regions where these layers are removed.
また、実施例1~4及び比較例2は、p型半導体層及び真性半導体層のエッチングに水素プラズマエッチングを用いている。但し、比較例2は、マスクを配置しているものの、その遮蔽領域内での各層の厚さを大きくしている。比較例1、3は水素プラズマエッチングを行っていない。 Further, in Examples 1 to 4 and Comparative Example 2, hydrogen plasma etching is used for etching the p-type semiconductor layer and the intrinsic semiconductor layer. However, in Comparative Example 2, although the mask is arranged, the thickness of each layer within the shielding region is increased. Comparative Examples 1 and 3 were not subjected to hydrogen plasma etching.
比較例1では、水素プラズマエッチングを行っていないため、p型半導体層パターニング工程で、p型半導体層のパターニングが十分に行われなかったため、「×」とした。比較例2では、p型半導体層パターニング工程でリフトオフ層が除去されてしまい、その後のリフトオフ工程での評価が不可能だったため、「-」とした。 In Comparative Example 1, since hydrogen plasma etching was not performed, the p-type semiconductor layer was not sufficiently patterned in the p-type semiconductor layer patterning process, and therefore, "x" was given. In Comparative Example 2, the lift-off layer was removed in the p-type semiconductor layer patterning process, and evaluation in the subsequent lift-off process was impossible.
[屈折率の評価]
ガラス基板上に同一条件で成膜された薄膜の屈折率を、分光エリプソメトリ(商品名M2000:ジェー・エー・ウーラム社製)を用いて測定することにより求めた。フィッティングの結果から、波長が632nmの光における屈折率を抽出した。[Evaluation of refractive index]
The refractive index of the thin film formed on the glass substrate under the same conditions was obtained by measuring the refractive index using a spectroscopic ellipsometry (trade name: M2000, manufactured by JA Woollam Co.). From the fitting results, the refractive index for light with a wavelength of 632 nm was extracted.
[変換効率の評価]
ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cm2の光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に掲載した。[Evaluation of conversion efficiency]
A solar simulator was used to irradiate standard sunlight of AM (air mass) 1.5 at a light amount of 100 mW/cm 2 to measure the conversion efficiency (Eff (%)) of the solar cell. Taking the conversion efficiency (solar cell characteristics) of Example 1 as 1.00, the relative values are shown in [Table 1].
実施例1、2では、第1リフトオフ層に酸化ケイ素を用いた。実施例3、4では、第1リフトオフ層に窒化ケイ素を用いた。 In Examples 1 and 2, silicon oxide was used for the first lift-off layer. In Examples 3 and 4, silicon nitride was used for the first lift-off layer.
p型半導体層パターニング工程でのプラズマエッチング処理には、実施例1、3及び比較例2において水素(H2)ガスのみからなる処理を行い、実施例2、4においてシラン(SiH4)ガスを添加した水素(H2)ガスを用いてプラズマエッチング処理を行った。In the plasma etching process in the p-type semiconductor layer patterning process, in Examples 1 and 3 and Comparative Example 2, a process using only hydrogen (H 2 ) gas was performed, and in Examples 2 and 4, silane (SiH 4 ) gas was used. A plasma etching treatment was performed using the added hydrogen (H 2 ) gas.
比較例3では、p型半導体層パターニング工程での真性半導体層及びp導電型半導体層に対するパターニング除去において、濃度が5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ酸液に浸漬して行った。すなわち、ウェットエッチングを行った。 In Comparative Example 3, in the patterning removal of the intrinsic semiconductor layer and the p-conductivity semiconductor layer in the p-type semiconductor layer patterning step, ozone/hydrofluoric acid, which is a mixture of 5.5% by weight hydrofluoric acid and 20 ppm ozone, was used. It was immersed in liquid. That is, wet etching was performed.
実施例と比較例とを比べると、本実施例においては、成膜時に、真性半導体層、p型半導体層及びリフトオフ層をパターニングして除去する領域上に、これらの領域を遮蔽(マスク)するマスクを配置して成膜する場合には、これらの領域上での膜厚は小さくなる。これにより、その後のプラズマエッチング処理を行うことによって、良好なパターニングを簡易に行えることが分かった。 Comparing the example and the comparative example, in this example, the intrinsic semiconductor layer, the p-type semiconductor layer, and the lift-off layer are shielded (masked) over the regions to be patterned and removed during deposition. When the film is formed using a mask, the film thickness on these regions becomes small. From this, it was found that good patterning can be easily performed by performing the subsequent plasma etching process.
なお、比較例3では、マスクを用いた成膜によるパターニング除去部の膜厚を小さくしたものの、真性半導体層及びp型半導体層をオゾン/フッ酸で除去しており、リフトオフ層も同時に除去されてしまい、不適合であった。 In Comparative Example 3, although the film thickness of the patterning removed portion was reduced by film formation using a mask, the intrinsic semiconductor layer and the p-type semiconductor layer were removed with ozone/hydrofluoric acid, and the lift-off layer was also removed at the same time. It was non-conforming.
10 太陽電池
11 結晶基板(半導体基板)
12 真性半導体層
13 導電型半導体層
13p p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
13n n型半導体層[第2導電型の第2半導体層/第1導電型の第1半導体層]
15 電極層
17 透明電極層
18 金属電極層
20 マスク
LF リフトオフ層10
12 intrinsic semiconductor layer 13 conductivity
13n n-type semiconductor layer [second conductivity type second semiconductor layer/first conductivity type first semiconductor layer]
15
Claims (6)
前記第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、
前記リフトオフ層及び第1半導体層を選択的に除去する工程と、
前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に、第2導電型の第2半導体層を形成する工程と、
エッチング溶液を用いて、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程とを含み、
前記リフトオフ層及び第1半導体層を選択的に除去する工程において、前記リフトオフ層を、フッ化水素酸を含むエッチング液で除去した後に、水素を主成分とするガスを導入したプラズマエッチングで、前記第1半導体層を除去する工程を含む太陽電池の製造方法。 forming a first semiconductor layer of a first conductivity type on one of two main surfaces facing each other in a semiconductor substrate;
forming a lift-off layer containing a silicon-based thin film material on the first semiconductor layer;
selectively removing the lift-off layer and the first semiconductor layer;
forming a second semiconductor layer of a second conductivity type on the one main surface including the lift-off layer and the first semiconductor layer;
removing the second semiconductor layer overlying the lift-off layer by removing the lift-off layer using an etching solution;
In the step of selectively removing the lift-off layer and the first semiconductor layer, after removing the lift-off layer with an etchant containing hydrofluoric acid, plasma etching is performed by introducing a gas containing hydrogen as a main component. A method of manufacturing a solar cell, comprising removing the first semiconductor layer.
前記第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、
前記リフトオフ層及び第1半導体層を選択的に除去する工程と、
前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に、第2導電型の第2半導体層を形成する工程と、
エッチング溶液を用いて、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程とを含み、
前記リフトオフ層及び第1半導体層を選択的に除去する工程において、前記リフトオフ層を除去した後に、水素を主成分とするガスを導入したプラズマエッチングで、前記第1半導体層を除去する工程を含み、
前記リフトオフ層は、酸化ケイ素を主成分とする層を含み、波長が632nmの光における屈折率が1.55以上1.72以下である太陽電池の製造方法。 forming a first semiconductor layer of a first conductivity type on one of two main surfaces facing each other in a semiconductor substrate;
forming a lift-off layer containing a silicon-based thin film material on the first semiconductor layer;
selectively removing the lift-off layer and the first semiconductor layer;
forming a second semiconductor layer of a second conductivity type on the one main surface including the lift-off layer and the first semiconductor layer;
removing the second semiconductor layer overlying the lift-off layer by removing the lift-off layer using an etching solution;
In the step of selectively removing the lift-off layer and the first semiconductor layer, after removing the lift-off layer, the step of removing the first semiconductor layer by plasma etching in which a gas containing hydrogen as a main component is introduced. ,
The method for manufacturing a solar cell, wherein the lift-off layer includes a layer containing silicon oxide as a main component and has a refractive index of 1.55 or more and 1.72 or less for light with a wavelength of 632 nm.
前記リフトオフ層は、窒化ケイ素を主成分とする層を含み、波長が632nmの光における屈折率が1.60以上2.10以下である太陽電池の製造方法。 In the method for manufacturing a solar cell according to claim 1 ,
The method for manufacturing a solar cell, wherein the lift-off layer includes a layer containing silicon nitride as a main component, and has a refractive index of 1.60 or more and 2.10 or less for light with a wavelength of 632 nm.
前記第1半導体層を形成する工程及び前記リフトオフ層を形成する工程では、
前記第1半導体層及びリフトオフ層を化学気層堆積法により形成し、且つ、
前記第2半導体層を形成する領域から間隔をおいて、該領域を遮蔽するマスクを配置する太陽電池の製造方法。 In the method for manufacturing a solar cell according to any one of claims 1 to 3,
In the step of forming the first semiconductor layer and the step of forming the lift-off layer,
forming the first semiconductor layer and the lift-off layer by a chemical vapor deposition method, and
A method for manufacturing a solar cell, wherein a mask for shielding the region is arranged at a distance from the region where the second semiconductor layer is to be formed.
前記半導体基板の少なくとも前記第1半導体層及び第2半導体層が形成される面は、テクスチャ構造を有している太陽電池の製造方法。 In the method for manufacturing a solar cell according to any one of claims 1 to 4,
A method of manufacturing a solar cell, wherein at least a surface of the semiconductor substrate on which the first semiconductor layer and the second semiconductor layer are formed has a textured structure.
前記第1半導体層を形成する工程は、前記第1半導体層を形成するよりも前に、前記半導体基板の前記一方の主面の上に第1真性半導体層を形成する工程を含み、
前記第1半導体層を選択的に除去する工程は、前記第1半導体層に続いて前記第1真性半導体層を選択的に除去する工程を含み、
前記第2半導体層を形成する工程は、前記第2半導体層を形成するよりも前に、前記半導体基板の前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に第2真性半導体層を形成する工程を含み、
前記第2半導体層を除去する工程は、前記第2半導体層に続いて前記第2真性半導体層を選択的に除去する工程を含む太陽電池の製造方法。 In the method for manufacturing a solar cell according to any one of claims 1 to 5,
forming the first semiconductor layer includes forming a first intrinsic semiconductor layer on the one main surface of the semiconductor substrate before forming the first semiconductor layer;
selectively removing the first semiconductor layer comprises selectively removing the first intrinsic semiconductor layer subsequent to the first semiconductor layer;
The step of forming the second semiconductor layer includes forming a second intrinsic semiconductor on the one main surface including the lift-off layer and the first semiconductor layer of the semiconductor substrate before forming the second semiconductor layer. forming a layer;
The method of manufacturing a solar cell, wherein the step of removing the second semiconductor layer includes the step of selectively removing the second intrinsic semiconductor layer following the step of removing the second semiconductor layer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018030759 | 2018-02-23 | ||
JP2018030759 | 2018-02-23 | ||
PCT/JP2019/005408 WO2019163648A1 (en) | 2018-02-23 | 2019-02-14 | Method for producing solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019163648A1 JPWO2019163648A1 (en) | 2021-02-04 |
JP7281444B2 true JP7281444B2 (en) | 2023-05-25 |
Family
ID=67687585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020501718A Active JP7281444B2 (en) | 2018-02-23 | 2019-02-14 | Solar cell manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7281444B2 (en) |
WO (1) | WO2019163648A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7228561B2 (en) * | 2018-02-23 | 2023-02-24 | 株式会社カネカ | Solar cell manufacturing method |
CN117712212B (en) * | 2024-02-05 | 2024-04-23 | 天合光能股份有限公司 | Solar cell and method for manufacturing solar cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015060432A1 (en) | 2013-10-25 | 2015-04-30 | シャープ株式会社 | Photoelectric conversion device |
WO2017217219A1 (en) | 2016-06-15 | 2017-12-21 | 株式会社カネカ | Solar cell and production method therefor, and solar cell module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4992134A (en) * | 1989-11-14 | 1991-02-12 | Advanced Micro Devices, Inc. | Dopant-independent polysilicon plasma etch |
US5286340A (en) * | 1991-09-13 | 1994-02-15 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Process for controlling silicon etching by atomic hydrogen |
-
2019
- 2019-02-14 WO PCT/JP2019/005408 patent/WO2019163648A1/en active Application Filing
- 2019-02-14 JP JP2020501718A patent/JP7281444B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015060432A1 (en) | 2013-10-25 | 2015-04-30 | シャープ株式会社 | Photoelectric conversion device |
WO2017217219A1 (en) | 2016-06-15 | 2017-12-21 | 株式会社カネカ | Solar cell and production method therefor, and solar cell module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019163648A1 (en) | 2021-02-04 |
WO2019163648A1 (en) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2765615B1 (en) | Solar cell, solar cell manufacturing method, and solar cell module | |
JP5863391B2 (en) | Method for manufacturing crystalline silicon solar cell | |
US10854767B2 (en) | Solar cell and method for manufacturing same | |
JP7361023B2 (en) | Solar cell manufacturing method and holder used therein | |
US20120273036A1 (en) | Photoelectric conversion device and manufacturing method thereof | |
US11211519B2 (en) | Method for manufacturing solar cell | |
US8987738B2 (en) | Photoelectric conversion device | |
JP7281444B2 (en) | Solar cell manufacturing method | |
WO2019163646A1 (en) | Method for producing solar cell | |
TWI783063B (en) | Manufacturing method of solar cell | |
JP7221276B2 (en) | SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL | |
JP7237920B2 (en) | Solar cell manufacturing method | |
JP2011077454A (en) | Crystal silicon system solar cell and method of manufacturing the same | |
JP7183245B2 (en) | Solar cell manufacturing method | |
JP5645734B2 (en) | Solar cell element | |
JP6285713B2 (en) | Crystalline silicon solar cell and solar cell module | |
JP7353865B2 (en) | How to manufacture solar cells | |
JP7195130B2 (en) | Method for manufacturing back electrode type solar cell | |
WO2020022044A1 (en) | Manufacturing method for solar cell | |
WO2020105265A1 (en) | Method for manufacturing solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7281444 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |