WO2019163648A1 - Method for producing solar cell - Google Patents

Method for producing solar cell Download PDF

Info

Publication number
WO2019163648A1
WO2019163648A1 PCT/JP2019/005408 JP2019005408W WO2019163648A1 WO 2019163648 A1 WO2019163648 A1 WO 2019163648A1 JP 2019005408 W JP2019005408 W JP 2019005408W WO 2019163648 A1 WO2019163648 A1 WO 2019163648A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
lift
type semiconductor
solar cell
Prior art date
Application number
PCT/JP2019/005408
Other languages
French (fr)
Japanese (ja)
Inventor
良太 三島
足立 大輔
邦裕 中野
小西 克典
崇 口山
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020501718A priority Critical patent/JP7281444B2/en
Publication of WO2019163648A1 publication Critical patent/WO2019163648A1/en

Links

Images

Classifications

    • H01L31/0747
    • H01L31/18
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell.
  • a solar cell is generally a double-sided electrode type in which electrodes are arranged on both surfaces (light-receiving surface and back surface) of a semiconductor substrate.
  • a back contact (back electrode) type solar cell in which an electrode is disposed only on the back surface as shown in Patent Document 1 has been developed.
  • the back contact type solar cell must be formed by electrically separating the p-type semiconductor layer and the n-type semiconductor layer in the back surface narrower than the area of the double-sided electrode type.
  • the p-type semiconductor layer and the n-type semiconductor layer are electrically separated using laser light. For this reason, a back contact type solar cell has the problem that manufacture becomes very complicated compared with the solar cell of a double-sided electrode type, for example.
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to easily manufacture a high-performance back contact solar cell.
  • one embodiment of the present invention includes a step of forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate; Forming a lift-off layer including a silicon-based thin film material on one semiconductor layer; selectively removing the lift-off layer and the first semiconductor layer; and one main surface including the lift-off layer and the first semiconductor layer A step of forming a second semiconductor layer of the second conductivity type, and a step of removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution.
  • the step of selectively removing the lift-off layer and the first semiconductor layer includes a step of removing the first semiconductor layer by plasma etching using a gas containing hydrogen as a main component after removing the lift-off layer.
  • a high-performance back contact solar cell is easily manufactured.
  • FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an embodiment.
  • FIG. 2 is a plan view showing the back main surface of the crystal substrate constituting the solar cell according to the embodiment.
  • FIG. 3 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 4 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 5 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 6 is a partial schematic cross-sectional view showing a modification of the method for manufacturing a solar cell according to an embodiment and showing a step in place of FIG. FIG.
  • FIG. 7 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 8 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment.
  • FIG. 9 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment.
  • FIG. 10 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
  • FIG. 1 is a partial cross-sectional view of a solar cell (cell) according to this embodiment.
  • the solar cell 10 uses a crystal substrate 11 made of silicon (Si).
  • the crystal substrate 11 has two main surfaces 11S (11SU, 11SB) facing each other.
  • the main surface on which light is incident is referred to as the front main surface 11SU
  • the opposite main surface is referred to as the back main surface 11SB.
  • the front main surface 11SU has a light receiving side that is more positively received than the back main surface 11SB and a non-light receiving side that is not actively receiving light.
  • the solar cell 10 is a so-called heterojunction crystal silicon solar cell, and is a back contact type (back electrode type) solar cell in which an electrode layer is disposed on the back main surface 11SB.
  • the solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal electrode). Layer 18).
  • first conductivity type first conductivity type
  • second conductivity type second conductivity type
  • the crystal substrate 11 may be a semiconductor substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon.
  • a single crystal silicon substrate will be described as an example.
  • the conductivity type of the crystal substrate 11 is an n-type single crystal silicon substrate into which an impurity (for example, phosphorus (P) atom) that introduces electrons into silicon atoms is introduced, holes are introduced into the silicon atoms. It may be a p-type single crystal silicon substrate into which impurities to be introduced (for example, boron (B) atoms) are introduced.
  • impurities to be introduced for example, boron (B) atoms
  • the crystal substrate 11 has a texture structure TX (first texture structure) composed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of confining received light. You may have.
  • TX first texture structure
  • the texture structure TX is obtained by, for example, anisotropic etching applying the difference between the etching rate of the crystal substrate 11 with the (100) plane orientation and the etching rate of the (111) plane orientation. Can be formed.
  • the size of the texture structure TX can be defined by the number of vertices (mountains), for example.
  • it is preferably in the range of 50000 / mm 2 or more and 100000 / mm 2 or less, particularly 70000 / mm 2 or more and 85000 / mm 2 or less. A range is preferable.
  • the thickness of the crystal substrate 11 may be 250 ⁇ m or less.
  • the measurement direction when measuring the thickness is a direction perpendicular to the average plane of the crystal substrate 11 (the average plane means a plane of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is defined as the thickness direction.
  • the thickness of the crystal substrate 11 is 250 ⁇ m or less, the amount of silicon used can be reduced, so that it becomes easy to secure the silicon substrate and the cost can be reduced.
  • the back contact structure that collects holes and electrons generated by photoexcitation in the silicon substrate only on the back side is preferable from the viewpoint of the free path of each exciton.
  • the thickness of the crystal substrate 11 is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the thickness of the crystal substrate 11 is represented by the distance between straight lines connecting the convex vertices in the light-receiving side and the back surface side. Is done.
  • an intrinsic (i-type) semiconductor layer 12 can be disposed between the crystal substrate 11 and the conductive semiconductor layer 13.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) covers both the main surfaces 11S (11SU, 11SB) of the crystal substrate 11, thereby performing surface passivation while suppressing diffusion of impurities into the crystal substrate 11.
  • intrinsic (i-type) is not limited to complete intrinsicity including no conductive impurities, but is “weak” including a small amount of n-type impurities or p-type impurities within a range in which a silicon-based layer can function as an intrinsic layer. Also included are layers that are substantially intrinsic of “n-type” or “weak p-type”.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) is not essential, and may be appropriately formed as necessary.
  • the material of the intrinsic semiconductor layer 12 is not particularly limited, but may be an amorphous silicon-based material, which is a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen as a thin film. There may be.
  • amorphous as used herein refers to a structure having a long period and no order, that is, not only a complete disorder but also an order having a short period.
  • the thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
  • the method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma CVD (plasma enhanced chemical vapor deposition) method is used. According to this method, passivation of the substrate surface can be effectively performed while suppressing the diffusion of impurities into the single crystal silicon. Further, in the case of the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective in recovering carriers.
  • a plasma CVD plasma enhanced chemical vapor deposition
  • the conditions for forming a thin film by plasma CVD include, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / It may be cm 2 or less.
  • a silicon-containing gas such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or those gases and hydrogen (H 2 ). May be a mixed gas.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x). ) Or a silicon compound such as silicon germanium (SIGe), the energy gap of the thin film may be changed as appropriate.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x).
  • SiN x silicon nitride
  • SiGe silicon germanium
  • Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 1, the p-type semiconductor layer 13p is formed on a part of the back main surface 11SB of the crystal substrate 11 via the intrinsic semiconductor layer 12p. N-type semiconductor layer 13n is formed on the other part of the back main surface of crystal substrate 11 with intrinsic semiconductor layer 12n interposed. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13p and the crystal substrate 11 and between the n-type semiconductor layer 13n and the crystal substrate 11 as an intermediate layer that plays a role of passivation.
  • the thicknesses of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
  • the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are arranged on the back side of the crystal substrate 11 so that the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are electrically separated.
  • the width of the conductive semiconductor layer 13 may be 50 ⁇ m or more and 3000 ⁇ m or less, and more preferably 80 ⁇ m or more and 500 ⁇ m or less.
  • the gap between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be 3000 ⁇ m or less, more preferably 1000 ⁇ m or less (note that the width of the semiconductor layer and the width of the electrode layer described later are Unless otherwise specified, the length of a portion of each patterned layer is intended to be the length in a direction perpendicular to the extending direction of the linear portion, for example, by patterning).
  • the p-type semiconductor layer 13p may be narrower than the n-type semiconductor layer 13n.
  • the width of the p-type semiconductor layer 13p may be not less than 0.5 times and not more than 0.9 times the width of the n-type semiconductor layer 13n, and is not less than 0.6 times and not more than 0.8 times. More preferred.
  • the low reflection layer 14 is a layer that suppresses reflection of light received by the solar cell 10.
  • the material of the low reflection layer 14 is not particularly limited as long as it is a light-transmitting material that transmits light.
  • distributed the nanoparticle of oxides such as a zinc oxide or a titanium oxide, for example.
  • the electrode layer 15 is formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, and is electrically connected to each conductive semiconductor layer 13. Thereby, the electrode layer 15 functions as a transport layer for guiding carriers generated in the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
  • the electrode layers 15p and 15n corresponding to the semiconductor layers 13p and 13n are spaced apart to prevent a short circuit between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n.
  • the electrode layer 15 may be formed of only a metal having high conductivity. Further, from the viewpoint of electrical connection between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or from the viewpoint of suppressing the diffusion of atoms into both the semiconductor layers 13p and 13n of the metal that is the electrode material, The electrode layer 15 made of a conductive oxide may be provided between the metal electrode layer and the p-type semiconductor layer 13p and between the metal electrode layer and the n-type semiconductor layer 13n.
  • the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17, and the metal electrode layer 15 is referred to as a metal electrode layer 18.
  • an electrode layer formed on the comb back portion May be referred to as a bus bar portion, and an electrode layer formed on the comb tooth portion may be referred to as a finger portion.
  • the material of the transparent electrode layer 17 is not particularly limited.
  • TiO x titanium oxide
  • TiO x tin oxide
  • a transparent conductive oxide to which SnO x ), tungsten oxide (WO x ), molybdenum oxide (MoO x ), or the like is added at a concentration of 1 wt% or more and 10 wt% or less can be given.
  • the thickness of the transparent electrode layer 17 may be 20 nm or more and 200 nm or less.
  • a method for forming a transparent electrode layer suitable for this thickness for example, a physical organic vapor deposition (PVD: physical vapor deposition) method such as a sputtering method, or a metal organic using a reaction between an organic metal compound and oxygen or water.
  • PVD physical organic vapor deposition
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • the material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver (Ag), copper (Cu), aluminum (Al), and nickel (Ni).
  • the thickness of the metal electrode layer 18 may be 1 ⁇ m or more and 80 ⁇ m or less.
  • Examples of a method for forming the metal electrode layer 18 suitable for this thickness include a printing method in which a material paste is printed by inkjet or screen printing, or a plating method.
  • the present invention is not limited to this, and when a vacuum process is employed, vapor deposition or sputtering may be employed.
  • the width of the comb tooth portions in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be approximately the same as the width of the metal electrode layer 18 formed on the comb tooth portions.
  • the width of the metal electrode layer 18 may be narrower than the width of the comb tooth portion.
  • the width of the metal electrode layer 18 may be wider than the width of the comb tooth portion as long as the leakage current between the metal electrode layers 18 is prevented.
  • the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflection layer 14, and the electrode layer 15 are stacked on the back side main surface 11SB of the crystal substrate 11, and the passivation and conductive properties of each bonding surface are stacked.
  • a predetermined annealing treatment is performed for the purpose of suppressing the generation of defect levels at the type semiconductor layer 13 and its interface and crystallizing the transparent conductive oxide in the transparent electrode layer 17.
  • Examples of the annealing process according to the present embodiment include an annealing process in which the crystal substrate 11 on which each of the above layers is formed is placed in an oven heated to 150 ° C. or more and 200 ° C. or less.
  • the atmosphere in the oven may be air, and more effective annealing treatment can be performed by using hydrogen or nitrogen as the atmosphere.
  • this annealing treatment may be an RTA (Rapid Thermal Annealing) process in which the crystal substrate 11 on which each layer is formed is irradiated with infrared rays by an infrared heater.
  • RTA Rapid Thermal Annealing
  • a crystal substrate 11 having a texture structure TX on each of a front main surface 11SU and a back main surface 11SB is prepared.
  • an intrinsic semiconductor layer 12 ⁇ / b> U is formed on the front main surface 11 ⁇ / b> SU of the crystal substrate 11.
  • the antireflection layer 14 is formed on the formed intrinsic semiconductor layer 12U.
  • silicon nitride (SiN x ) or silicon oxide (SiO x ) having a suitable light absorption coefficient and refractive index is used from the viewpoint of a light confinement effect for confining incident light.
  • the p-type semiconductor layer 13 p is formed on the back main surface 11 SB of the crystal substrate 11.
  • the intrinsic semiconductor layer 12p using, for example, i-type amorphous silicon is formed between the crystal substrate 11 and the p-type semiconductor layer 13p. Therefore, in the present embodiment, the step of forming the p-type semiconductor layer (first semiconductor layer) 13p is performed on one main surface of the crystal substrate (semiconductor substrate) 11 before the p-type semiconductor layer 13p is formed. (Back side main surface) The process includes forming an intrinsic semiconductor layer (first intrinsic semiconductor layer) 12p on 11S.
  • the p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (boron (B) or the like) is added, and is preferably formed of amorphous silicon from the viewpoint of suppressing impurity diffusion or suppressing series resistance.
  • a p-type dopant boron (B) or the like
  • it is a silicon layer to which an n-type dopant (phosphorus (P) or the like) is added, and is similar to the p-type semiconductor layer 13p. It is preferably formed of crystalline silicon.
  • a silicon-containing gas such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixed gas of a silicon-based gas and hydrogen (H 2 ) may be used.
  • the dopant gas diborane (B 2 H 6 ) or the like can be used for forming the p-type semiconductor layer 13p, and phosphine (PH 3 ) or the like can be used for forming the n-type semiconductor layer.
  • impurities such as boron (B) or phosphorus (P) may be small, a mixed gas obtained by diluting a dopant gas with a raw material gas may be used.
  • the p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be compounded by adding a gas containing any element.
  • lift-off layers LF (LF1, LF2) are formed on the formed p-type semiconductor layer 13p.
  • the lift-off layer LF is removed by patterning in the step shown in FIG. 7 described later, and further removed at the same time as the n-type semiconductor layer 13n in the step shown in FIG.
  • the lift-off layer LF is formed on the back main surface 11SB of the crystal substrate 11 in the order of the first lift-off layer LF1 and the second lift-off layer LF2.
  • the first lift-off layer LF1 may be mainly composed of silicon oxide (SiO x ) or silicon nitride (SiN x ).
  • the refractive index may be 1.45 or more and 1.90 or less. Further, in this case, if the refractive index of the first lift-off layer LF1 is 1.50 or more and 1.80 or less, particularly 1.55 or more and 1.72 or less, the suppression of undercut in the step shown in FIG. From the viewpoint of balance with lift-off in the step shown in FIG. This is because the difference in refractive index depends on the silicon content in the layer and is a factor affecting the etching rate of the lift-off layer LF.
  • the refractive index may be 1.60 or more and 2.10 or less.
  • the refractive index of the first lift-off layer LF1 in this case is preferably 1.70 or more and 2.00 or less, particularly 1.80 or more and 1.95 or less.
  • the above refractive index is preferably fitted from a dielectric function in spectroscopic ellipsometry measurement and a numerical value in light having a wavelength of 632 nm is extracted.
  • the structure of the first lift-off layer LF1 is not particularly limited, and examples thereof include a structure containing physical or chemical voids (defects) inside the layer.
  • the first lift-off layer LF1 is formed by a CVD (Chemical Vapor Deposition) method
  • the growing particles grow so as to be stacked substantially perpendicular to the film formation surface.
  • a large number of particle bodies formed of the grown particles are generated, and voids may be generated between these particle bodies.
  • the etching solution may easily enter the layer, and thus the etching rate may be increased. For this reason, the time of the below-mentioned lift-off process can be shortened.
  • the second lift-off layer LF2 may be hydrogenated amorphous silicon.
  • the second lift-off layer LF2 plays a role of a resist, so that a photoresist composed of an organic substance is not necessary, which is preferable.
  • the thickness of the lift-off layer LF may be 20 nm or more and 600 nm or less as a whole in a region that is not shielded by the mask 20 described later. In particular, the thickness of the lift-off layer LF is preferably 50 nm or more and 450 nm or less.
  • the second lift-off layer LF2 is preferably about 10 nm to 20 nm in a region not shielded by the mask 20, and is 5 nm or less, particularly preferably 3 nm or less, in a region shielded by the mask 20.
  • the lift-off layer LF has a laminated structure of three or more layers, it is preferable to use hydrogenated amorphous silicon for the upper lift-off layer.
  • the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off layer LF (LF1, LF2) are formed in the process shown in FIG.
  • a mask 20 for selectively forming a film on the etching region may be disposed above the main surface 11SB. That is, as shown in FIG. 6, the region to be removed by patterning may be a structure shielded by the mask 20.
  • the reaction gas wraps around the region shielded by the mask 20, the thicknesses of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off layer LF on the crystal substrate 11 are as follows. Is smaller than the unshielded area.
  • the step of selectively removing the p-type semiconductor layer (first semiconductor layer) 13p shown in FIG. 7 (hereinafter referred to as a patterning step), the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off Removal of the layer LF is facilitated.
  • the mask 20 is held so as to be spaced from the back side main surface 11SB of the crystal substrate 11 and not to contact the back side main surface 11SB.
  • the distance between the back surface of the mask 20 and the back main surface 11SB of the crystal substrate 11 is not particularly limited, but can be set to about 0.5 mm or more and 1.2 mm or less as an example.
  • the p-type semiconductor layer 13p and the lift-off layer LF formed in the step shown in FIG. 5 are removed by patterning.
  • a known method can be used, and patterning using an etching solution is preferable.
  • the back main surface 11SB of the crystal substrate 11 also has the texture structure TX from the viewpoint of giving priority to light capturing efficiency. In this case, the patterning process using a laser beam becomes somewhat difficult from the viewpoint of productivity.
  • the first lift-off layer LF1 and the second lift-off layer LF2 formed in the step shown in FIG. 5 are etched with hydrofluoric acid and a basic aqueous solution that generates hydroxide ions, respectively.
  • the thickness of the second lift-off layer LF2 made of hydrogenated amorphous silicon located at the upper portion is extremely small. For this reason, since there are many pinholes in this shielding region, the first lift-off layer LF1 and the second lift-off layer LF2 can be patterned only with hydrofluoric acid.
  • plasma etching in which a gas containing hydrogen as a main component is introduced may be used for etching the intrinsic semiconductor layer 12p and the p-type semiconductor layer 13p.
  • a gas containing hydrogen (H 2 ) as a main component is introduced into the crystal substrate 11 placed in a vacuum chamber, plasma is generated using a high frequency power source, and etching is performed using the generated plasma.
  • the main component here indicates that hydrogen is 90% by volume or more with respect to the total amount of gas introduced into the vacuum chamber.
  • the volume ratio of hydrogen is more preferably 95% or more.
  • the introduced gas species other than hydrogen include SiH 4 and CH 4 .
  • the intrinsic semiconductor layer 12p can be etched to expose the crystal substrate 11 in the patterning region. If it does in this way, the fall of the lifetime of the carrier generate
  • an n-type semiconductor layer 13n is formed.
  • the n-type semiconductor layer 13n can be formed on the entire surface on the back main surface 11SB of the crystal substrate 11. That is, the n-type semiconductor layer 13n is also formed on the lift-off layer LF.
  • an intrinsic semiconductor layer 12n is formed between the crystal substrate 11 and the n-type semiconductor layer 13n.
  • the n-type semiconductor layer 13n covers not only the upper surface of the lift-off layer LF but also the side surfaces (end surfaces) of the lift-off layer LF, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p via the intrinsic semiconductor layer 12n. It is formed.
  • the step of forming the n-type semiconductor layer (second semiconductor layer) 13n includes the lift-off layer LF of the crystal substrate (semiconductor substrate) 11 before the n-type semiconductor layer 13n is formed. a step of forming an intrinsic semiconductor layer (second intrinsic semiconductor layer) 12n on one main surface (back side main surface) 11S including the p-type semiconductor layer.
  • a step of cleaning the surface of the crystal substrate 11 exposed in the patterning step of FIG. 7 may be provided before forming the intrinsic semiconductor layer 12n. Absent.
  • the cleaning process may be performed with, for example, hydrofluoric acid for the purpose of removing defects and impurities generated on the surface of the crystal substrate 11 in the patterning process.
  • the lift-off layer LF and the lift-off layer LF are formed.
  • the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n thus formed are simultaneously removed. While the photolithography method is used in the patterning process shown in FIG. 7, a resist coating process such as photolithography and a developing process are not required in this process. For this reason, pattern formation with respect to the n-type semiconductor layer 13n can be easily performed.
  • hydrofluoric acid is used as an etching solution in this step.
  • the transparent electrode layer 17 (17p, 17n) is formed so as to generate the separation groove 25.
  • the transparent electrode layer 17 (17p, 17n) may be formed as follows instead of the sputtering method. For example, a transparent conductive oxide film is formed on the entire surface of the back main surface 11SB without using a mask, and then the transparent conductive film is formed on the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by photolithography.
  • etching may be performed to leave the conductive oxide film.
  • etching may be performed to leave the conductive oxide film.
  • a linear metal electrode layer 18 (18p, 18n) is formed on the transparent electrode layer 17 by using, for example, a mesh screen (not shown) having an opening.
  • the back junction solar cell 10 is formed.
  • the lift-off layer LF is a multi-layer type, but is not limited thereto.
  • a single lift-off layer LF may be used. Note that such a single layer is preferably formed of the first lift-off layer LF1.
  • Crystal substrate a single crystal silicon substrate having a thickness of 200 ⁇ m was employed as the crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal texture structure was formed on the crystal substrate.
  • the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (thickness 8 nm) made of silicon was formed on both main surfaces of the introduced crystal substrate.
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a flow rate ratio of SiH 4 / H 2 of 3/10, and a power density of 0.011 W / cm 2 .
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / B 2 H 6 of 1/3, and a power density of 0.01 W / cm 2 .
  • the flow rate of the B 2 H 6 gas in this example is a flow rate of the diluted gas obtained by diluting B 2 H 6 to 5000 ppm with H 2 .
  • lift-off layer Next, two lift-off layers were formed on the p-type semiconductor layer.
  • the lift-off layer was formed with the following two types of compositions.
  • silicon oxide (SiO x ) was formed to a thickness of 200 nm (a region without mask shielding) using a plasma CVD apparatus.
  • the substrate temperature was 150 ° C.
  • the pressure was 0.9 kPa
  • the flow rate ratio of SiH 4 / CO 2 / H 2 was 1/10/750
  • the power density was 0.15 W / cm 2 .
  • hydrogenated amorphous silicon was formed as a second lift-off layer on the first lift-off layer with a film thickness of 15 nm (region without mask shielding) using a plasma CVD apparatus.
  • the substrate temperature was 150 ° C.
  • the pressure was 120 Pa
  • the flow rate ratio of SiH 4 / H 2 was 3/10
  • the power density was 0.011 W / cm 2 .
  • silicon nitride (SiN x ) was formed to a thickness of 200 nm (region without mask shielding) using a plasma CVD apparatus.
  • the substrate temperature was 150 ° C.
  • the pressure was 0.2 kPa
  • the flow ratio of SiH 4 / HN 3 / H 2 was 1/4/50
  • the power density was 0.15 W / cm 2 .
  • hydrogenated amorphous silicon was formed as a second lift-off layer on the first lift-off layer with a film thickness of 15 nm (region without mask shielding) using a plasma CVD apparatus.
  • the substrate temperature was 150 ° C.
  • the pressure was 120 Pa
  • the flow rate ratio of SiH 4 / H 2 was 3/10
  • the power density was 0.011 W / cm 2 .
  • the film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / PH 3 of 1/2, and a power density of 0.01 W / cm 2 .
  • the flow rate of the PH 3 gas in this example is the flow rate of the diluted gas in which PH 3 is diluted to 5000 ppm with H 2 .
  • an oxide film (film thickness: 100 nm) serving as a base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate.
  • the transparent conductive oxide indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target.
  • a mixed gas of argon (Ar) and oxygen (O 2 ) was introduced into the chamber of the sputtering apparatus, and the pressure in the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set such that the resistivity was the lowest (so-called bottom).
  • film formation was performed at a power density of 0.4 W / cm 2 using a DC power source.
  • etching was performed by photolithography so as to leave only the transparent conductive oxide film on the p-type semiconductor layer and the n-type semiconductor layer, thereby forming a transparent electrode layer.
  • the transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film on the n-type semiconductor layer.
  • a silver paste (manufactured by Fujikura Kasei Co., Ltd .: Dotite FA-333) was screen-printed on the transparent electrode layer without dilution, and a heat treatment was performed in an oven at a temperature of 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
  • the thickness of the lift-off layer and the etching state were measured by using a SEM (Field Emission Scanning Electron Microscope S4800: manufactured by Hitachi High-Technologies Corporation) at a magnification of 100,000 times. After the p-type semiconductor layer patterning step, “ ⁇ ” was given when the etching was performed according to the designed patterning removal region, and “X” was given when the lift-off layer was excessively etched.
  • Examples 1 to 4 and Comparative Example 2 hydrogen plasma etching is used for etching the p-type semiconductor layer and the intrinsic semiconductor layer. However, in Comparative Example 2, although the mask is arranged, the thickness of each layer in the shielding region is increased. In Comparative Examples 1 and 3, hydrogen plasma etching is not performed.
  • Comparative Example 1 since hydrogen plasma etching was not performed, the p-type semiconductor layer was not sufficiently patterned in the p-type semiconductor layer patterning step. In Comparative Example 2, since the lift-off layer was removed in the p-type semiconductor layer patterning step and evaluation in the subsequent lift-off step was impossible, “ ⁇ ” was given.
  • the refractive index of the thin film formed on the glass substrate under the same conditions was determined by measuring using a spectroscopic ellipsometry (trade name M2000: manufactured by JA Woollam). From the fitting result, the refractive index of light having a wavelength of 632 nm was extracted.
  • Examples 1 and 2 silicon oxide was used for the first lift-off layer. In Examples 3 and 4, silicon nitride was used for the first lift-off layer.
  • Comparative Example 3 ozone / hydrofluoric acid in which 20 ppm of ozone was mixed with 5.5% by weight of hydrofluoric acid in patterning removal of the intrinsic semiconductor layer and the p-conductivity type semiconductor layer in the p-type semiconductor layer patterning step It was immersed in a liquid. That is, wet etching was performed.
  • the intrinsic semiconductor layer, the p-type semiconductor layer and the lift-off layer are shielded (masked) on the region to be removed by patterning.
  • the film thickness on these regions becomes small. Thereby, it turned out that favorable patterning can be easily performed by performing the subsequent plasma etching process.
  • Comparative Example 3 although the thickness of the patterning removal portion was reduced by film formation using a mask, the intrinsic semiconductor layer and the p-type semiconductor layer were removed with ozone / hydrofluoric acid, and the lift-off layer was also removed at the same time. It was nonconforming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This method involves: a step for forming a first semiconductor layer (13p) of a first conductive type on one principal surface of a crystal substrate (11); a step for forming a lift-off layer (LF) which contains a silicon thin-film material on the first semiconductor layer; a step for selectively removing the lift-off layer and the first semiconductor layer; a step for forming a second semiconductor layer (13n) of a second conductive type on the one principal surface containing the lift-off layer and the first semiconductor layer; and a step for removing the second semiconductor layer which covers the lift-off layer by removing the lift-off layer using an etching solution. The step for selectively removing the lift-off layer and the first semiconductor layer includes a step for removing the first semiconductor layer, by plasma etching by introducing a gas having hydrogen as a principal component thereof, after removing the lift-off layer.

Description

太陽電池の製造方法Manufacturing method of solar cell
 本発明は、太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a solar cell.
 従来、太陽電池は、半導体基板の両面(受光面及び裏面)に電極を配置した両面電極型が一般的であった。近年、電極による遮蔽損がない太陽電池として、特許文献1に示されるような、裏面にのみ電極を配置したバックコンタクト(裏面電極)型太陽電池が開発されている。 Conventionally, a solar cell is generally a double-sided electrode type in which electrodes are arranged on both surfaces (light-receiving surface and back surface) of a semiconductor substrate. In recent years, as a solar cell having no shielding loss due to an electrode, a back contact (back electrode) type solar cell in which an electrode is disposed only on the back surface as shown in Patent Document 1 has been developed.
特開2009-200267号公報JP 2009-200277 A
 しかしながら、バックコンタクト型太陽電池は、両面電極型の面積と比べて狭い裏面内に、p型半導体層及びn型半導体層を電気的に分離して形成しなければならず、特許文献1では、レーザ光を用いてp型半導体層とn型半導体層とを電気的に分離している。このため、バックコンタクト型太陽電池は、例えば両面電極型の太陽電池と比べて製造が非常に煩雑になるという問題がある。 However, the back contact type solar cell must be formed by electrically separating the p-type semiconductor layer and the n-type semiconductor layer in the back surface narrower than the area of the double-sided electrode type. The p-type semiconductor layer and the n-type semiconductor layer are electrically separated using laser light. For this reason, a back contact type solar cell has the problem that manufacture becomes very complicated compared with the solar cell of a double-sided electrode type, for example.
 また、レーザ光を用いて、p型半導体層とn型半導体層との電気的な分離を煩雑に行ってしまうと、レーザ光の精度不足又はレーザ光の出力不足等によって、絶縁分離を十分に行えないこともある。このような場合、バックコンタクト型太陽電池の性能は低下してしまうという問題もある。特に、p型半導体層及びn型半導体層をテクスチャ形状の上に形成する場合には、性能低下のリスクは高くなる。 In addition, if the electrical separation of the p-type semiconductor layer and the n-type semiconductor layer is complicated using laser light, insulation isolation may be sufficient due to insufficient precision of the laser light or insufficient output of the laser light. There are things you can't do. In such a case, there is also a problem that the performance of the back contact solar cell is deteriorated. In particular, when the p-type semiconductor layer and the n-type semiconductor layer are formed on a textured shape, the risk of performance degradation increases.
 本発明は、前記従来の問題を解決するためになされたものであり、その目的は、高性能なバックコンタクト型太陽電池を簡易に製造することにある。 The present invention has been made to solve the above-described conventional problems, and an object thereof is to easily manufacture a high-performance back contact solar cell.
 前記の目的を達成するため、本発明の一態様は、半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、リフトオフ層及び第1半導体層を選択的に除去する工程と、リフトオフ層及び第1半導体層を含む一方の主面の上に、第2導電型の第2半導体層を形成する工程と、エッチング溶液を用いて、リフトオフ層を除去することにより、リフトオフ層を覆う第2半導体層を除去する工程とを含む。リフトオフ層及び第1半導体層を選択的に除去する工程において、リフトオフ層を除去した後に、水素を主成分とするガスを導入したプラズマエッチングで、第1半導体層を除去する工程を含む。 In order to achieve the above object, one embodiment of the present invention includes a step of forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate; Forming a lift-off layer including a silicon-based thin film material on one semiconductor layer; selectively removing the lift-off layer and the first semiconductor layer; and one main surface including the lift-off layer and the first semiconductor layer A step of forming a second semiconductor layer of the second conductivity type, and a step of removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution. The step of selectively removing the lift-off layer and the first semiconductor layer includes a step of removing the first semiconductor layer by plasma etching using a gas containing hydrogen as a main component after removing the lift-off layer.
 本発明によれば、高性能なバックコンタクト型太陽電池が簡易に製造される。 According to the present invention, a high-performance back contact solar cell is easily manufactured.
図1は一実施形態に係る太陽電池を部分的に示す模式断面図である。FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an embodiment. 図2は一実施形態に係る太陽電池を構成する結晶基板の裏側主面を示す平面図である。FIG. 2 is a plan view showing the back main surface of the crystal substrate constituting the solar cell according to the embodiment. 図3は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 3 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図4は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 4 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図5は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 5 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図6は一実施形態に係る太陽電池の製造方法の一変形例であって、図5に代わる工程を示す部分的な模式断面図である。FIG. 6 is a partial schematic cross-sectional view showing a modification of the method for manufacturing a solar cell according to an embodiment and showing a step in place of FIG. 図7は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 7 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment. 図8は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 8 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment. 図9は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 9 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to one embodiment. 図10は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。FIG. 10 is a partial schematic cross-sectional view showing one step of a method for manufacturing a solar cell according to an embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物又はその用途を制限することを意図しない。また、図面中の各構成部材の寸法比は、図示する際の便宜上のものであり、必ずしも実寸比を表してはいない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its application. In addition, the dimensional ratios of the constituent members in the drawings are for the convenience of illustration, and do not necessarily represent the actual dimensional ratios.
 (一実施形態)
 本発明の一実施形態について図面を参照しながら説明する。
(One embodiment)
An embodiment of the present invention will be described with reference to the drawings.
 図1は本実施形態に係る太陽電池(セル)の部分的な断面図を示す。図1に示すように、本実施形態に係る太陽電池10は、シリコン(Si)製の結晶基板11を用いている。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有している。ここでは、光が入射する主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側を受光側とし、積極的に受光させない側を非受光側とする。 FIG. 1 is a partial cross-sectional view of a solar cell (cell) according to this embodiment. As shown in FIG. 1, the solar cell 10 according to the present embodiment uses a crystal substrate 11 made of silicon (Si). The crystal substrate 11 has two main surfaces 11S (11SU, 11SB) facing each other. Here, the main surface on which light is incident is referred to as the front main surface 11SU, and the opposite main surface is referred to as the back main surface 11SB. For convenience, the front main surface 11SU has a light receiving side that is more positively received than the back main surface 11SB and a non-light receiving side that is not actively receiving light.
 本実施形態に係る太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。 The solar cell 10 according to this embodiment is a so-called heterojunction crystal silicon solar cell, and is a back contact type (back electrode type) solar cell in which an electrode layer is disposed on the back main surface 11SB.
 太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。 The solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal electrode). Layer 18).
 以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。 Hereinafter, for convenience, members corresponding to the p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be suffixed with “p” or “n”. In addition, since the conductivity types are different such as p-type and n-type, one conductivity type may be referred to as “first conductivity type” and the other conductivity type may be referred to as “second conductivity type”.
 結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。 The crystal substrate 11 may be a semiconductor substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon. Hereinafter, a single crystal silicon substrate will be described as an example.
 結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)を導入されたn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B)原子)を導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。 Even if the conductivity type of the crystal substrate 11 is an n-type single crystal silicon substrate into which an impurity (for example, phosphorus (P) atom) that introduces electrons into silicon atoms is introduced, holes are introduced into the silicon atoms. It may be a p-type single crystal silicon substrate into which impurities to be introduced (for example, boron (B) atoms) are introduced. Hereinafter, an n-type single crystal substrate that is said to have a long carrier life will be described as an example.
 また、結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成することができる。 The crystal substrate 11 has a texture structure TX (first texture structure) composed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of confining received light. You may have. Note that the texture structure TX (uneven surface) is obtained by, for example, anisotropic etching applying the difference between the etching rate of the crystal substrate 11 with the (100) plane orientation and the etching rate of the (111) plane orientation. Can be formed.
 テクスチャ構造TXの大きさとして、例えば頂点(山)の数で定義することが可能である。本発明においては、光取り込みと生産性との観点から、50000個/mm以上100000個/mm以下の範囲であることが好ましく、特には70000個/mm以上85000個/mm以下の範囲であることが好ましい。 The size of the texture structure TX can be defined by the number of vertices (mountains), for example. In the present invention, from the viewpoint of light uptake and productivity, it is preferably in the range of 50000 / mm 2 or more and 100000 / mm 2 or less, particularly 70000 / mm 2 or more and 85000 / mm 2 or less. A range is preferable.
 結晶基板11の厚さは、250μm以下であってもよい。なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。そこで、これ以降、この垂直方向、すなわち、厚さを測定する方向を厚さ方向とする。 The thickness of the crystal substrate 11 may be 250 μm or less. Note that the measurement direction when measuring the thickness is a direction perpendicular to the average plane of the crystal substrate 11 (the average plane means a plane of the entire substrate independent of the texture structure TX). Therefore, hereinafter, the vertical direction, that is, the direction in which the thickness is measured is defined as the thickness direction.
 結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。 When the thickness of the crystal substrate 11 is 250 μm or less, the amount of silicon used can be reduced, so that it becomes easy to secure the silicon substrate and the cost can be reduced. In addition, the back contact structure that collects holes and electrons generated by photoexcitation in the silicon substrate only on the back side is preferable from the viewpoint of the free path of each exciton.
 一方で、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。 On the other hand, when the thickness of the crystal substrate 11 is excessively small, the mechanical strength is reduced, or external light (sunlight) is not sufficiently absorbed, and the short-circuit current density is reduced. For this reason, the thickness of the crystal substrate 11 is preferably 50 μm or more, and more preferably 70 μm or more. When the texture structure TX is formed on the main surface of the crystal substrate 11, the thickness of the crystal substrate 11 is represented by the distance between straight lines connecting the convex vertices in the light-receiving side and the back surface side. Is done.
 ところで、結晶基板11と導電型半導体層13との間には、真性(i型)半導体層12を配置することができる。真性半導体層12(12U、12p、12n)が結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。 Incidentally, an intrinsic (i-type) semiconductor layer 12 can be disposed between the crystal substrate 11 and the conductive semiconductor layer 13. The intrinsic semiconductor layer 12 (12U, 12p, 12n) covers both the main surfaces 11S (11SU, 11SB) of the crystal substrate 11, thereby performing surface passivation while suppressing diffusion of impurities into the crystal substrate 11. Note that “intrinsic (i-type)” is not limited to complete intrinsicity including no conductive impurities, but is “weak” including a small amount of n-type impurities or p-type impurities within a range in which a silicon-based layer can function as an intrinsic layer. Also included are layers that are substantially intrinsic of “n-type” or “weak p-type”.
 なお、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。 In addition, the intrinsic semiconductor layer 12 (12U, 12p, 12n) is not essential, and may be appropriately formed as necessary.
 真性半導体層12の材料は、特に限定されないが、非晶質シリコン系材料であってもよく、薄膜としてシリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造であり、すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。 The material of the intrinsic semiconductor layer 12 is not particularly limited, but may be an amorphous silicon-based material, which is a hydrogenated amorphous silicon-based thin film (a-Si: H thin film) containing silicon and hydrogen as a thin film. There may be. The term “amorphous” as used herein refers to a structure having a long period and no order, that is, not only a complete disorder but also an order having a short period.
 また、真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
 真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。 The method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma CVD (plasma enhanced chemical vapor deposition) method is used. According to this method, passivation of the substrate surface can be effectively performed while suppressing the diffusion of impurities into the single crystal silicon. Further, in the case of the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective in recovering carriers.
 なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm以上0.5W/cm以下であってもよい。 The conditions for forming a thin film by plasma CVD include, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / It may be cm 2 or less.
 また、薄膜の形成に使用する原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH)及びジシラン(Si)等のシリコン含有ガス、又はそれらのガスと水素(H)とを混合したガスであってもよい。 As the raw material gas used for forming the thin film, in the case of the intrinsic semiconductor layer 12, a silicon-containing gas such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or those gases and hydrogen (H 2 ). May be a mixed gas.
 なお、上記のガスに、メタン(CH)、アンモニア(NH)若しくはモノゲルマン(GeH)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiN)又はシリコンゲルマニウム(SIGe)等のシリコン化合物を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。 Note that a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN x). ) Or a silicon compound such as silicon germanium (SIGe), the energy gap of the thin film may be changed as appropriate.
 導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図1に示すように、p型半導体層13pは、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面の他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及びn型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12が介在する。 Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 1, the p-type semiconductor layer 13p is formed on a part of the back main surface 11SB of the crystal substrate 11 via the intrinsic semiconductor layer 12p. N-type semiconductor layer 13n is formed on the other part of the back main surface of crystal substrate 11 with intrinsic semiconductor layer 12n interposed. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13p and the crystal substrate 11 and between the n-type semiconductor layer 13n and the crystal substrate 11 as an intermediate layer that plays a role of passivation.
 p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。 The thicknesses of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer for the crystal substrate 11 is enhanced, and when the thickness is 20 nm or less, a decrease in conversion characteristics caused by an increase in resistance can be suppressed.
 p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であるとより好ましい。加えて、p型半導体層13pとn型半導体層13nとの乖離の間隔は、3000μm以下であってよく、1000μm以下であるとより好ましい(なお、半導体層の幅及び後述する電極層の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば線状になった一部分の延び方向と直交する方向の長さを意図する)。 The p-type semiconductor layer 13p and the n-type semiconductor layer 13n are arranged on the back side of the crystal substrate 11 so that the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are electrically separated. The width of the conductive semiconductor layer 13 may be 50 μm or more and 3000 μm or less, and more preferably 80 μm or more and 500 μm or less. In addition, the gap between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be 3000 μm or less, more preferably 1000 μm or less (note that the width of the semiconductor layer and the width of the electrode layer described later are Unless otherwise specified, the length of a portion of each patterned layer is intended to be the length in a direction perpendicular to the extending direction of the linear portion, for example, by patterning).
 結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であるとより好ましい。 When photoexcitons (carriers) generated in the crystal substrate 11 are taken out through the conductive semiconductor layer 13, holes have an effective mass larger than electrons. For this reason, from the viewpoint of reducing transport loss, the p-type semiconductor layer 13p may be narrower than the n-type semiconductor layer 13n. For example, the width of the p-type semiconductor layer 13p may be not less than 0.5 times and not more than 0.9 times the width of the n-type semiconductor layer 13n, and is not less than 0.6 times and not more than 0.8 times. More preferred.
 低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiO)、窒化ケイ素(SiN)、酸化亜鉛(ZnO)又は酸化チタン(TiO)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。 The low reflection layer 14 is a layer that suppresses reflection of light received by the solar cell 10. The material of the low reflection layer 14 is not particularly limited as long as it is a light-transmitting material that transmits light. For example, silicon oxide (SiO x ), silicon nitride (SiN x ), zinc oxide (ZnO), or oxide titanium (TiO x) and the like. Moreover, as a formation method of the low reflection layer 14, you may apply with the resin material which disperse | distributed the nanoparticle of oxides, such as a zinc oxide or a titanium oxide, for example.
 電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。 The electrode layer 15 is formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, and is electrically connected to each conductive semiconductor layer 13. Thereby, the electrode layer 15 functions as a transport layer for guiding carriers generated in the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
 なお、各半導体層13p、13nに対応する電極層15p、15nは、離間して配置されることで、p型半導体層13pとn型半導体層13nとの短絡を防止する。 In addition, the electrode layers 15p and 15n corresponding to the semiconductor layers 13p and 13n are spaced apart to prevent a short circuit between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n.
 また、電極層15は、導電性が高い金属のみで形成されてもよい。また、p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、透明導電性酸化物で構成された電極層15を、金属製の電極層とp型半導体層13pとの間及び金属製の電極層とn型半導体層13nとの間にそれぞれ設けてもよい。 Further, the electrode layer 15 may be formed of only a metal having high conductivity. Further, from the viewpoint of electrical connection between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, or from the viewpoint of suppressing the diffusion of atoms into both the semiconductor layers 13p and 13n of the metal that is the electrode material, The electrode layer 15 made of a conductive oxide may be provided between the metal electrode layer and the p-type semiconductor layer 13p and between the metal electrode layer and the n-type semiconductor layer 13n.
 本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。また、図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部と称し、櫛歯部上に形成される電極層をフィンガ部と称することがある。 In the present embodiment, the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17, and the metal electrode layer 15 is referred to as a metal electrode layer 18. Further, as shown in the plan view of the back main surface 11SB of the crystal substrate 11 shown in FIG. 2, in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n each having a comb-teeth shape, an electrode layer formed on the comb back portion May be referred to as a bus bar portion, and an electrode layer formed on the comb tooth portion may be referred to as a finger portion.
 透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InO)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)若しくは酸化モリブデン(MoO)等を1重量%以上10重量%以下の濃度で添加した透明導電性酸化物が挙げられる。 The material of the transparent electrode layer 17 is not particularly limited. For example, zinc oxide (ZnO) or indium oxide (InO x ), or various metal oxides such as titanium oxide (TiO x ), tin oxide (indium oxide) A transparent conductive oxide to which SnO x ), tungsten oxide (WO x ), molybdenum oxide (MoO x ), or the like is added at a concentration of 1 wt% or more and 10 wt% or less can be given.
 透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積法(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。 The thickness of the transparent electrode layer 17 may be 20 nm or more and 200 nm or less. As a method for forming a transparent electrode layer suitable for this thickness, for example, a physical organic vapor deposition (PVD: physical vapor deposition) method such as a sputtering method, or a metal organic using a reaction between an organic metal compound and oxygen or water. The chemical vapor deposition method (MOCVD: Metal-Organic-Chemical-Vapor-Deposition) method etc. are mentioned.
 金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。 The material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver (Ag), copper (Cu), aluminum (Al), and nickel (Ni).
 金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、蒸着又はスパッタリング法を採用してもよい。 The thickness of the metal electrode layer 18 may be 1 μm or more and 80 μm or less. Examples of a method for forming the metal electrode layer 18 suitable for this thickness include a printing method in which a material paste is printed by inkjet or screen printing, or a plating method. However, the present invention is not limited to this, and when a vacuum process is employed, vapor deposition or sputtering may be employed.
 また、p型半導体層13p及びn型半導体層13nにおける櫛歯部の幅と、該櫛歯部の上に形成される金属電極層18の幅とは、同程度であってもよい。但し、櫛歯部の幅と比べて、金属電極層18の幅が狭くてもよい。また、金属電極層18同士のリーク電流が防止される構成であれば、櫛歯部の幅と比べて、金属電極層18の幅が広くてもよい。 Further, the width of the comb tooth portions in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be approximately the same as the width of the metal electrode layer 18 formed on the comb tooth portions. However, the width of the metal electrode layer 18 may be narrower than the width of the comb tooth portion. Further, the width of the metal electrode layer 18 may be wider than the width of the comb tooth portion as long as the leakage current between the metal electrode layers 18 is prevented.
 本実施形態においては、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。 In this embodiment, the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflection layer 14, and the electrode layer 15 are stacked on the back side main surface 11SB of the crystal substrate 11, and the passivation and conductive properties of each bonding surface are stacked. A predetermined annealing treatment is performed for the purpose of suppressing the generation of defect levels at the type semiconductor layer 13 and its interface and crystallizing the transparent conductive oxide in the transparent electrode layer 17.
 本実施形態に係るアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は大気でもよく、さらには、雰囲気として水素又は窒素を用いると、より効果的なアニール処理を行うことができる。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。 Examples of the annealing process according to the present embodiment include an annealing process in which the crystal substrate 11 on which each of the above layers is formed is placed in an oven heated to 150 ° C. or more and 200 ° C. or less. In this case, the atmosphere in the oven may be air, and more effective annealing treatment can be performed by using hydrogen or nitrogen as the atmosphere. Further, this annealing treatment may be an RTA (Rapid Thermal Annealing) process in which the crystal substrate 11 on which each layer is formed is irradiated with infrared rays by an infrared heater.
 [太陽電池の製造方法]
 以下、本実施形態に係る太陽電池10の製造方法について図3~図10を参照しながら説明する。
[Method for manufacturing solar cell]
Hereinafter, a method for manufacturing the solar cell 10 according to the present embodiment will be described with reference to FIGS.
 まず、図3に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する。 First, as shown in FIG. 3, a crystal substrate 11 having a texture structure TX on each of a front main surface 11SU and a back main surface 11SB is prepared.
 次に、図4に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に反射防止層14を形成する。反射防止層14には、入射光を閉じ込める光閉じ込め効果の観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiN)又はシリコンオキサイド(SiO)が用いられる。 Next, as shown in FIG. 4, for example, an intrinsic semiconductor layer 12 </ b> U is formed on the front main surface 11 </ b> SU of the crystal substrate 11. Subsequently, the antireflection layer 14 is formed on the formed intrinsic semiconductor layer 12U. For the antireflection layer 14, silicon nitride (SiN x ) or silicon oxide (SiO x ) having a suitable light absorption coefficient and refractive index is used from the viewpoint of a light confinement effect for confining incident light.
 次に、図5に示すように、結晶基板11の裏側主面11SBの上にp型半導体層13pを形成する。なお、図5では、上述したように、結晶基板11とp型半導体層13pとの間に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する。従って、本実施形態においては、p型半導体層(第1半導体層)13pを形成する工程は、p型半導体層13pを形成するよりも前に、結晶基板(半導体基板)11の一方の主面(裏側主面)11Sの上に真性半導体層(第1真性半導体層)12pを形成する工程を含む。 Next, as shown in FIG. 5, the p-type semiconductor layer 13 p is formed on the back main surface 11 SB of the crystal substrate 11. In FIG. 5, as described above, the intrinsic semiconductor layer 12p using, for example, i-type amorphous silicon is formed between the crystal substrate 11 and the p-type semiconductor layer 13p. Therefore, in the present embodiment, the step of forming the p-type semiconductor layer (first semiconductor layer) 13p is performed on one main surface of the crystal substrate (semiconductor substrate) 11 before the p-type semiconductor layer 13p is formed. (Back side main surface) The process includes forming an intrinsic semiconductor layer (first intrinsic semiconductor layer) 12p on 11S.
 p型半導体層13pは、p型のドーパント(ホウ素(B)等)が添加されたシリコン層で、不純物拡散の抑制又は直列抵抗抑制という観点から、非晶質シリコンで形成されることが好ましい。一方、p型半導体層13pに代えて、n型半導体層13nを用いる場合は、n型のドーパント(リン(P)等)が添加されたシリコン層で、p型半導体層13pと同様に、非晶質シリコンで形成されることが好ましい。導電型半導体層13の原料ガスとしては、モノシラン(SiH)若しくはジシラン(Si)等のシリコン含有ガス、又はシリコン系ガスと水素(H)との混合ガスを用いてもよい。ドーパントガスには、p型半導体層13pの形成にはジボラン(B)等を用いることができ、n型半導体層の形成にはホスフィン(PH)等を用いることができる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。 The p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (boron (B) or the like) is added, and is preferably formed of amorphous silicon from the viewpoint of suppressing impurity diffusion or suppressing series resistance. On the other hand, in the case of using the n-type semiconductor layer 13n instead of the p-type semiconductor layer 13p, it is a silicon layer to which an n-type dopant (phosphorus (P) or the like) is added, and is similar to the p-type semiconductor layer 13p. It is preferably formed of crystalline silicon. As a source gas for the conductive semiconductor layer 13, a silicon-containing gas such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixed gas of a silicon-based gas and hydrogen (H 2 ) may be used. As the dopant gas, diborane (B 2 H 6 ) or the like can be used for forming the p-type semiconductor layer 13p, and phosphine (PH 3 ) or the like can be used for forming the n-type semiconductor layer. Moreover, since the addition amount of impurities such as boron (B) or phosphorus (P) may be small, a mixed gas obtained by diluting a dopant gas with a raw material gas may be used.
 また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH)、二酸化炭素(CO)、アンモニア(NH)又はモノゲルマン(GeH)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが化合物化されてもよい。 Further, in order to adjust the energy gap of the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, different types such as methane (CH 4 ), carbon dioxide (CO 2 ), ammonia (NH 3 ), or monogermane (GeH 4 ) are used. The p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be compounded by adding a gas containing any element.
 続いて、図5に示すように、形成されたp型半導体層13pの上にリフトオフ層LF(LF1、LF2)を形成する。リフトオフ層LFは、後述の図7に示す工程においてパターニング除去され、さらに、図9に示す工程においてn型半導体層13nと同時に除去される。本実施形態においては、リフトオフ層LFは、結晶基板11の裏側主面11SBの上に、第1リフトオフ層LF1及び第2リフトオフ層LF2の順に形成される。第1リフトオフ層LF1は、酸化ケイ素(SiO)又は窒化ケイ素(SiN)が主成分であってもよい。 Subsequently, as shown in FIG. 5, lift-off layers LF (LF1, LF2) are formed on the formed p-type semiconductor layer 13p. The lift-off layer LF is removed by patterning in the step shown in FIG. 7 described later, and further removed at the same time as the n-type semiconductor layer 13n in the step shown in FIG. In this embodiment, the lift-off layer LF is formed on the back main surface 11SB of the crystal substrate 11 in the order of the first lift-off layer LF1 and the second lift-off layer LF2. The first lift-off layer LF1 may be mainly composed of silicon oxide (SiO x ) or silicon nitride (SiN x ).
 第1リフトオフ層LF1が酸化ケイ素を主成分とする場合には、その屈折率は1.45以上1.90以下であってもよい。さらには、この場合の第1リフトオフ層LF1の屈折率は、1.50以上1.80以下、特に1.55以上1.72以下であれば、図7に示す工程でのアンダーカットの抑制と、図9に示す工程でのリフトオフとのバランスの観点から好ましい。これは、屈折率の違いが、層中のケイ素の含有量に依存しており、リフトオフ層LFのエッチング速度に影響を与える因子であるためである。 When the first lift-off layer LF1 is mainly composed of silicon oxide, the refractive index may be 1.45 or more and 1.90 or less. Further, in this case, if the refractive index of the first lift-off layer LF1 is 1.50 or more and 1.80 or less, particularly 1.55 or more and 1.72 or less, the suppression of undercut in the step shown in FIG. From the viewpoint of balance with lift-off in the step shown in FIG. This is because the difference in refractive index depends on the silicon content in the layer and is a factor affecting the etching rate of the lift-off layer LF.
 同様に、第1リフトオフ層LF1が窒化ケイ素を主成分とする場合には、その屈折率は1.60以上2.10以下であってもよい。さらには、この場合の第1リフトオフ層LF1の屈折率は、1.70以上2.00以下、特に1.80以上1.95以下が好ましい。上記の屈折率は、分光エリプソメトリ測定における誘電関数からフィッティングを行い、波長632nmの光における数値を抽出することが好ましい。 Similarly, when the first lift-off layer LF1 is mainly composed of silicon nitride, the refractive index may be 1.60 or more and 2.10 or less. Furthermore, the refractive index of the first lift-off layer LF1 in this case is preferably 1.70 or more and 2.00 or less, particularly 1.80 or more and 1.95 or less. The above refractive index is preferably fitted from a dielectric function in spectroscopic ellipsometry measurement and a numerical value in light having a wavelength of 632 nm is extracted.
 なお、第1リフトオフ層LF1の構造は、特に限定されるものではないが、例えば層の内部に、物理的又は化学的な空隙(欠陥)を含んだ構造が挙げられる。例えば、CVD(Chemical Vapor Deposition)法で第1リフトオフ層LF1を形成すると、成長する粒子は成膜面に対してほぼ垂直に積み上がるように成長する。この場合、成長した粒子で形成された粒子体が多数生じ、これらの粒子体同士の間に空隙が生じることがある。このような空隙を含むリフトオフ層LF1の場合、エッチング溶液が層の内部に浸入しやすくなるので、エッチング速度が速まることもある。このため、後述のリフトオフ工程の時間を短縮し得る。 The structure of the first lift-off layer LF1 is not particularly limited, and examples thereof include a structure containing physical or chemical voids (defects) inside the layer. For example, when the first lift-off layer LF1 is formed by a CVD (Chemical Vapor Deposition) method, the growing particles grow so as to be stacked substantially perpendicular to the film formation surface. In this case, a large number of particle bodies formed of the grown particles are generated, and voids may be generated between these particle bodies. In the case of the lift-off layer LF1 including such voids, the etching solution may easily enter the layer, and thus the etching rate may be increased. For this reason, the time of the below-mentioned lift-off process can be shortened.
 一方、第2リフトオフ層LF2は、水素化非晶質シリコンであってもよい。図7に示す工程で説明するリフトオフ層LFのパターニングにおいて、第2リフトオフ層LF2がレジストの役割を果たすため、有機物により構成されるフォトレジストが不要となるため好ましい。リフトオフ層LFの厚さは、後述するマスク20で遮蔽されない領域において、全体として20nm以上600nm以下であってもよい。特に、リフトオフ層LFの厚さは50nm以上450nm以下であることが好ましい。このうち第2リフトオフ層LF2は、マスク20で遮蔽されない領域において、10nm以上20nm以下程度が好ましく、マスク20で遮蔽される領域では、5nm以下、特に好ましくは3nm以下である。なお、リフトオフ層LFを3層以上の積層構造とする場合は、上層のリフトオフ層に、水素化非晶質シリコンを用いることが好ましい。 On the other hand, the second lift-off layer LF2 may be hydrogenated amorphous silicon. In the patterning of the lift-off layer LF described in the process shown in FIG. 7, the second lift-off layer LF2 plays a role of a resist, so that a photoresist composed of an organic substance is not necessary, which is preferable. The thickness of the lift-off layer LF may be 20 nm or more and 600 nm or less as a whole in a region that is not shielded by the mask 20 described later. In particular, the thickness of the lift-off layer LF is preferably 50 nm or more and 450 nm or less. Among them, the second lift-off layer LF2 is preferably about 10 nm to 20 nm in a region not shielded by the mask 20, and is 5 nm or less, particularly preferably 3 nm or less, in a region shielded by the mask 20. When the lift-off layer LF has a laminated structure of three or more layers, it is preferable to use hydrogenated amorphous silicon for the upper lift-off layer.
 また、本実施形態では、その一変形例として、図5に示す工程において、真性半導体層12p、p型半導体層13p及びリフトオフ層LF(LF1、LF2)を形成する際に、結晶基板11の裏側主面11SBの上側に、エッチング領域上に選択して成膜するためのマスク20を配置してもよい。すなわち、図6に示すように、パターニング除去される領域が、マスク20によって遮蔽される構造であってもよい。CVD成膜では、マスク20で遮蔽された領域においても、成膜時の反応ガスの回り込みがあるため、結晶基板11上の真性半導体層12p、p型半導体層13p及びリフトオフ層LFの各厚さは、遮蔽されていない領域と比べて小さくなる。これにより、次の図7に示すp型半導体層(第1半導体層)13pを選択的に除去する工程(以下、パターニング工程と呼ぶ。)において、真性半導体層12p、p型半導体層13p及びリフトオフ層LFの除去が容易となる。なお、マスク20は、結晶基板11の裏側主面11SBから間隔をおくと共に、裏側主面11SBと接しないように保持されていると好ましい。このマスク20の裏面と結晶基板11の裏側主面11SBとの間隔は、特には限定されないが、一例として、0.5mm以上1.2mm以下程度に設定することができる。 Further, in the present embodiment, as a modification thereof, when the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off layer LF (LF1, LF2) are formed in the process shown in FIG. A mask 20 for selectively forming a film on the etching region may be disposed above the main surface 11SB. That is, as shown in FIG. 6, the region to be removed by patterning may be a structure shielded by the mask 20. In the CVD film formation, since the reaction gas wraps around the region shielded by the mask 20, the thicknesses of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off layer LF on the crystal substrate 11 are as follows. Is smaller than the unshielded area. Thereby, in the step of selectively removing the p-type semiconductor layer (first semiconductor layer) 13p shown in FIG. 7 (hereinafter referred to as a patterning step), the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off Removal of the layer LF is facilitated. In addition, it is preferable that the mask 20 is held so as to be spaced from the back side main surface 11SB of the crystal substrate 11 and not to contact the back side main surface 11SB. The distance between the back surface of the mask 20 and the back main surface 11SB of the crystal substrate 11 is not particularly limited, but can be set to about 0.5 mm or more and 1.2 mm or less as an example.
 次に、図7に示すパターニング工程では、図5に示す工程で形成された、少なくともp型半導体層13p及びリフトオフ層LFをパターニング除去する。本工程は、公知の手法を用いることができ、エッチング液を用いたパターニングが好ましい。本実施形態では、光の取り込み効率を優先するという観点から、結晶基板11の裏側主面11SBもテクスチャ構造TXを有している。この場合には、生産性の観点から、レーザ光を用いたパターニング工程は多少困難となる。図5に示す工程で形成された第1リフトオフ層LF1及び第2リフトオフ層LF2は、それぞれ、フッ化水素酸と、水酸化物イオンを発生する塩基性水溶液とによってエッチングされる。なお、図6に示す工程でマスク20により遮蔽された領域においては、上部に位置する水素化非晶質シリコンによる第2リフトオフ層LF2の膜厚が極めて小さい。このため、この遮蔽領域にはピンホールが多く存在するので、フッ化水素酸のみで第1リフトオフ層LF1及び第2リフトオフ層LF2のパターニングが行える。 Next, in the patterning step shown in FIG. 7, at least the p-type semiconductor layer 13p and the lift-off layer LF formed in the step shown in FIG. 5 are removed by patterning. In this step, a known method can be used, and patterning using an etching solution is preferable. In the present embodiment, the back main surface 11SB of the crystal substrate 11 also has the texture structure TX from the viewpoint of giving priority to light capturing efficiency. In this case, the patterning process using a laser beam becomes somewhat difficult from the viewpoint of productivity. The first lift-off layer LF1 and the second lift-off layer LF2 formed in the step shown in FIG. 5 are etched with hydrofluoric acid and a basic aqueous solution that generates hydroxide ions, respectively. In the region shielded by the mask 20 in the step shown in FIG. 6, the thickness of the second lift-off layer LF2 made of hydrogenated amorphous silicon located at the upper portion is extremely small. For this reason, since there are many pinholes in this shielding region, the first lift-off layer LF1 and the second lift-off layer LF2 can be patterned only with hydrofluoric acid.
 さらに、本パターニング工程では、真性半導体層12p及びp型半導体層13pのエッチングには、水素を主成分とするガスを導入したプラズマエッチング(水素プラズマエッチング)が用いられてもよい。例えば、真空チャンバに投入された結晶基板11に対して、水素(H)を主成分とするガスを導入し、高周波電源を用いてプラズマを発生させ、発生したプラズマによってエッチングを行う。ここでの主成分とは、真空チャンバに導入されるガスの全量に対して、水素が90体積%以上であることを示している。この水素の体積比率は95%以上であるとより好ましい。水素以外の導入ガス種としては、SiH又はCH等が挙げられる。 Further, in this patterning step, plasma etching (hydrogen plasma etching) in which a gas containing hydrogen as a main component is introduced may be used for etching the intrinsic semiconductor layer 12p and the p-type semiconductor layer 13p. For example, a gas containing hydrogen (H 2 ) as a main component is introduced into the crystal substrate 11 placed in a vacuum chamber, plasma is generated using a high frequency power source, and etching is performed using the generated plasma. The main component here indicates that hydrogen is 90% by volume or more with respect to the total amount of gas introduced into the vacuum chamber. The volume ratio of hydrogen is more preferably 95% or more. Examples of the introduced gas species other than hydrogen include SiH 4 and CH 4 .
 また、本パターニング工程では、真性半導体層12pまでをエッチングし、パターニング領域では結晶基板11を露出させることができる。このようにすると、光電変換によって発生するキャリアのライフタイムの低下をより抑制することができる。 In this patterning step, the intrinsic semiconductor layer 12p can be etched to expose the crystal substrate 11 in the patterning region. If it does in this way, the fall of the lifetime of the carrier generate | occur | produced by photoelectric conversion can be suppressed more.
 次に、図8に示す工程では、n型半導体層13nを形成する。n型半導体層13nは、結晶基板11の裏側主面11SBの上の全面に形成することができる。すなわち、n型半導体層13nは、リフトオフ層LFの上にも形成される。なお、図5に示す工程と同様に、結晶基板11とn型半導体層13nとの間に、真性半導体層12nを形成する。この場合、n型半導体層13nは、リフトオフ層LFの上面だけでなく、真性半導体層12nを介して、リフトオフ層LF、p型半導体層13p及び真性半導体層12pの側面(端面)を覆うように形成される。従って、本実施形態においては、n型半導体層(第2半導体層)13nを形成する工程は、n型半導体層13nを形成するよりも前に、結晶基板(半導体基板)11のリフトオフ層LF及びp型半導体層を含む一方の主面(裏側主面)11Sの上に真性半導体層(第2真性半導体層)12nを形成する工程を含む。 Next, in the step shown in FIG. 8, an n-type semiconductor layer 13n is formed. The n-type semiconductor layer 13n can be formed on the entire surface on the back main surface 11SB of the crystal substrate 11. That is, the n-type semiconductor layer 13n is also formed on the lift-off layer LF. Similar to the process shown in FIG. 5, an intrinsic semiconductor layer 12n is formed between the crystal substrate 11 and the n-type semiconductor layer 13n. In this case, the n-type semiconductor layer 13n covers not only the upper surface of the lift-off layer LF but also the side surfaces (end surfaces) of the lift-off layer LF, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p via the intrinsic semiconductor layer 12n. It is formed. Therefore, in the present embodiment, the step of forming the n-type semiconductor layer (second semiconductor layer) 13n includes the lift-off layer LF of the crystal substrate (semiconductor substrate) 11 before the n-type semiconductor layer 13n is formed. a step of forming an intrinsic semiconductor layer (second intrinsic semiconductor layer) 12n on one main surface (back side main surface) 11S including the p-type semiconductor layer.
 また、上述のように結晶基板11を露出させた場合には、真性半導体層12nを形成するより前に、図7のパターニング工程で露出した結晶基板11の表面を洗浄する工程を設けても構わない。洗浄工程は、パターニング工程で結晶基板11の表面に生じた欠陥及び不純物の除去を目的とし、例えばフッ化水素酸で処理すればよい。 When the crystal substrate 11 is exposed as described above, a step of cleaning the surface of the crystal substrate 11 exposed in the patterning step of FIG. 7 may be provided before forming the intrinsic semiconductor layer 12n. Absent. The cleaning process may be performed with, for example, hydrofluoric acid for the purpose of removing defects and impurities generated on the surface of the crystal substrate 11 in the patterning process.
 次に、図9に示すリフトオフ層LFを覆うn型半導体層(第2半導体層)13nを除去する工程(以下、リフトオフ工程と呼ぶ。)では、リフトオフ層LF、並びにリフトオフ層LFの上に形成された真性半導体層12n及びn型半導体層13nを同時に除去する。図7に示すパターニング工程ではフォトリソグラフィ法を用いたのに対し、本工程ではフォトリソグラフィ等のレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nに対するパターン形成を簡易に行える。また、リフトオフ層LFに酸化ケイ素又は窒化ケイ素を主成分とする膜を適用する場合には、本工程でのエッチング液にはフッ化水素酸が用いられる。 Next, in the step of removing the n-type semiconductor layer (second semiconductor layer) 13n covering the lift-off layer LF shown in FIG. 9 (hereinafter referred to as a lift-off step), the lift-off layer LF and the lift-off layer LF are formed. The intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n thus formed are simultaneously removed. While the photolithography method is used in the patterning process shown in FIG. 7, a resist coating process such as photolithography and a developing process are not required in this process. For this reason, pattern formation with respect to the n-type semiconductor layer 13n can be easily performed. In addition, when a film containing silicon oxide or silicon nitride as a main component is applied to the lift-off layer LF, hydrofluoric acid is used as an etching solution in this step.
 次に、図10に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれの上に、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)を形成する。なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。例えば、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。ここで、p型半導体層13pとn型半導体層13nとを互いに分離絶縁する分離溝25を形成することにより、リーク電流が発生し難くなる。 Next, as shown in FIG. 10, on the back main surface 11SB of the crystal substrate 11, that is, on each of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n, for example, by a sputtering method using a mask. The transparent electrode layer 17 (17p, 17n) is formed so as to generate the separation groove 25. The transparent electrode layer 17 (17p, 17n) may be formed as follows instead of the sputtering method. For example, a transparent conductive oxide film is formed on the entire surface of the back main surface 11SB without using a mask, and then the transparent conductive film is formed on the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by photolithography. Alternatively, etching may be performed to leave the conductive oxide film. Here, by forming the isolation trench 25 that isolates and insulates the p-type semiconductor layer 13p and the n-type semiconductor layer 13n from each other, a leak current is hardly generated.
 その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する。 Thereafter, a linear metal electrode layer 18 (18p, 18n) is formed on the transparent electrode layer 17 by using, for example, a mesh screen (not shown) having an opening.
 以上の工程により、裏面接合型の太陽電池10が形成される。 Through the above steps, the back junction solar cell 10 is formed.
 本発明は、上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 例えば、以上の太陽電池の製造方法では、リフトオフ層LFが複層型であったが、これに限定されるものではない。例えば、単層のリフトオフ層LFのみを用いても構わない。なお、このような単層は、第1リフトオフ層LF1で形成されると好ましい。 For example, in the above solar cell manufacturing method, the lift-off layer LF is a multi-layer type, but is not limited thereto. For example, only a single lift-off layer LF may be used. Note that such a single layer is preferably formed of the first lift-off layer LF1.
 以下、本発明を実施例により具体的に説明する。但し、本発明はこれらの実施例に限定されない。実施例及び比較例は、以下のようにして作製した([表1]を参照)。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. Examples and Comparative Examples were produced as follows (see [Table 1]).
 [結晶基板]
 まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
[Crystal substrate]
First, a single crystal silicon substrate having a thickness of 200 μm was employed as the crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal texture structure was formed on the crystal substrate.
 [真性半導体層]
 次に、結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(厚さ8nm)を形成した。成膜条件は、基板温度が150℃、圧力が120Pa、SiH/Hの流量比が3/10、及びパワー密度が0.011W/cmであった。
[Intrinsic semiconductor layer]
Next, the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (thickness 8 nm) made of silicon was formed on both main surfaces of the introduced crystal substrate. The film formation conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a flow rate ratio of SiH 4 / H 2 of 3/10, and a power density of 0.011 W / cm 2 .
 [p型半導体層(第1導電型半導体層)]
 次に、両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、結晶基板における裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
[P-type semiconductor layer (first conductivity type semiconductor layer)]
Next, a crystal substrate having an intrinsic semiconductor layer formed on both main surfaces is introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon-based thin film (film thickness: 10 nm) is formed on the intrinsic semiconductor layer on the back main surface of the crystal substrate. ) Was formed.
 成膜条件は、基板温度が150℃、圧力が60Pa、SiH/Bの流量比が1/3、及びパワー密度が0.01W/cmであった。なお、本実施例でのBガスの流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。 The film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / B 2 H 6 of 1/3, and a power density of 0.01 W / cm 2 . Note that the flow rate of the B 2 H 6 gas in this example is a flow rate of the diluted gas obtained by diluting B 2 H 6 to 5000 ppm with H 2 .
 [リフトオフ層]
 次に、p型半導体層の上に2層のリフトオフ層を形成した。リフトオフ層は、以下の2種類の組成で形成した。
[Lift-off layer]
Next, two lift-off layers were formed on the p-type semiconductor layer. The lift-off layer was formed with the following two types of compositions.
 (酸化ケイ素主成分型リフトオフ層)
 実施例1、2及び比較例1、3に用いる第1リフトオフ層として、プラズマCVD装置を用いて、酸化ケイ素(SiO)を200nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を0.9kPa、SiH/CO/Hの流量比を1/10/750、及びパワー密度を0.15W/cmとした。続いて、第1リフトオフ層の上に第2リフトオフ層として、プラズマCVD装置を用いて、水素化非晶質シリコンを15nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を120Pa、SiH/Hの流量比を3/10、及びパワー密度を0.011W/cmとした。
(Silicon oxide-based lift-off layer)
As a first lift-off layer used in Examples 1 and 2 and Comparative Examples 1 and 3, silicon oxide (SiO x ) was formed to a thickness of 200 nm (a region without mask shielding) using a plasma CVD apparatus. The substrate temperature was 150 ° C., the pressure was 0.9 kPa, the flow rate ratio of SiH 4 / CO 2 / H 2 was 1/10/750, and the power density was 0.15 W / cm 2 . Subsequently, hydrogenated amorphous silicon was formed as a second lift-off layer on the first lift-off layer with a film thickness of 15 nm (region without mask shielding) using a plasma CVD apparatus. The substrate temperature was 150 ° C., the pressure was 120 Pa, the flow rate ratio of SiH 4 / H 2 was 3/10, and the power density was 0.011 W / cm 2 .
 (窒化ケイ素主成分型リフトオフ層)
 実施例3、4に用いる第1リフトオフ層として、プラズマCVD装置を用いて、窒化ケイ素(SiN)を200nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を0.2kPa、SiH/HN/Hの流量比を1/4/50、及びパワー密度を0.15W/cmとした。続いて、第1リフトオフ層の上に第2リフトオフ層として、プラズマCVD装置を用いて、水素化非晶質シリコンを15nmの膜厚(マスク遮蔽なし領域)で形成した。基板温度を150℃、圧力を120Pa、SiH/Hの流量比を3/10、及びパワー密度を0.011W/cmとした。
(Silicon nitride-based lift-off layer)
As the first lift-off layer used in Examples 3 and 4, silicon nitride (SiN x ) was formed to a thickness of 200 nm (region without mask shielding) using a plasma CVD apparatus. The substrate temperature was 150 ° C., the pressure was 0.2 kPa, the flow ratio of SiH 4 / HN 3 / H 2 was 1/4/50, and the power density was 0.15 W / cm 2 . Subsequently, hydrogenated amorphous silicon was formed as a second lift-off layer on the first lift-off layer with a film thickness of 15 nm (region without mask shielding) using a plasma CVD apparatus. The substrate temperature was 150 ° C., the pressure was 120 Pa, the flow rate ratio of SiH 4 / H 2 was 3/10, and the power density was 0.011 W / cm 2 .
 [リフトオフ層のパターニング]
 次に、p型半導体層が形成された結晶基板を、濃度が1重量%の加水フッ化水素酸に浸漬し、露出領域のリフトオフ層が除去された後に、純水によるリンスを行った。
[Pattern of lift-off layer]
Next, the crystal substrate on which the p-type semiconductor layer was formed was immersed in hydrofluoric acid having a concentration of 1% by weight. After the lift-off layer in the exposed region was removed, rinsing with pure water was performed.
 [真性半導体層及びp型半導体層のパターニング]
 続いて、リフトオフ層のパターニングを行った後に、真性半導体層及びp型半導体層に対して水素プラズマエッチングを用いたパターニングを行った。以下、この工程をp型半導体層パターニング工程と略称する。
[Patterning of intrinsic semiconductor layer and p-type semiconductor layer]
Subsequently, after patterning the lift-off layer, the intrinsic semiconductor layer and the p-type semiconductor layer were patterned using hydrogen plasma etching. Hereinafter, this process is abbreviated as a p-type semiconductor layer patterning process.
 以下のように、反応ガスとして水素(H)のみを用いる場合と、水素(H)にシラン(SiH)を添加する場合とで比較した。 Comparison was made between the case where only hydrogen (H 2 ) was used as a reaction gas and the case where silane (SiH 4 ) was added to hydrogen (H 2 ) as follows.
 (水素プラズマエッチング:プ-1)
 実施例1、3及び比較例2用として、結晶基板を真空チャンバに投入し、基板温度を150℃とし、圧力が0.4kPaとなるように水素(H)を導入し、パワー密度を0.011W/cmとした。
(Hydrogen plasma etching: P-1)
For Examples 1 and 3 and Comparative Example 2, the crystal substrate was put into a vacuum chamber, the substrate temperature was 150 ° C., hydrogen (H 2 ) was introduced so that the pressure was 0.4 kPa, and the power density was 0. 011 W / cm 2 .
 (シラン添加水素プラズマエッチング:プ-2)
 実施例2、4用として、結晶基板を真空チャンバに投入し、基板温度を150℃、圧力を0.4kPa、SiH/Hの流量比を1/330、及びパワー密度を0.011W/cmとした。 [n型半導体層(第2導電型半導体層)]
 続いて、p型半導体層パターニング工程の後に、裏側主面の露出部分を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
(Silane-added hydrogen plasma etching: P-2)
For Examples 2 and 4, the crystal substrate was put into a vacuum chamber, the substrate temperature was 150 ° C., the pressure was 0.4 kPa, the flow rate ratio of SiH 4 / H 2 was 1/330, and the power density was 0.011 W / It was cm 2. [N-type semiconductor layer (second conductivity type semiconductor layer)]
Subsequently, after the p-type semiconductor layer patterning step, a crystal substrate in which an exposed portion of the back side main surface is washed with hydrofluoric acid having a concentration of 2% by weight is introduced into a CVD apparatus, and an intrinsic semiconductor layer, n is formed on the back side main surface. Type hydrogenated amorphous silicon thin film (film thickness 10 nm) was formed.
 成膜条件は、基板温度が150℃、圧力が60Pa、SiH/PHの流量比が1/2、及びパワー密度が0.01W/cmであった。なお、本実施例でのPHガスの流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。 The film formation conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a flow rate ratio of SiH 4 / PH 3 of 1/2, and a power density of 0.01 W / cm 2 . Note that the flow rate of the PH 3 gas in this example is the flow rate of the diluted gas in which PH 3 is diluted to 5000 ppm with H 2 .
 [リフトオフ層及びn型半導体層の除去(リフトオフ)]
 次に、n型半導体層が形成された結晶基板を、濃度が5重量%フッ化水素酸に浸漬した。これにより、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層が同時に除去された。
[Removal of lift-off layer and n-type semiconductor layer (lift-off)]
Next, the crystal substrate on which the n-type semiconductor layer was formed was immersed in hydrofluoric acid having a concentration of 5% by weight. Thereby, the lift-off layer, the n-type semiconductor layer covering the lift-off layer, and the intrinsic semiconductor layer between the lift-off layer and the n-type semiconductor layer were simultaneously removed.
 [電極層]
 次に、マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。スパッタリング装置のチャンバ内に、アルゴン(Ar)と酸素(O)との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で成膜を行った。
[Electrode layer]
Next, using a magnetron sputtering apparatus, an oxide film (film thickness: 100 nm) serving as a base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate. As the transparent conductive oxide, indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target. A mixed gas of argon (Ar) and oxygen (O 2 ) was introduced into the chamber of the sputtering apparatus, and the pressure in the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set such that the resistivity was the lowest (so-called bottom). In addition, film formation was performed at a power density of 0.4 W / cm 2 using a DC power source.
 次に、フォトリソグラフィ法により、p型半導体層及びn型半導体層の上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物製膜との間での導通が防止された。 Next, etching was performed by photolithography so as to leave only the transparent conductive oxide film on the p-type semiconductor layer and the n-type semiconductor layer, thereby forming a transparent electrode layer. The transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film on the n-type semiconductor layer.
 さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA-333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。 Further, a silver paste (manufactured by Fujikura Kasei Co., Ltd .: Dotite FA-333) was screen-printed on the transparent electrode layer without dilution, and a heat treatment was performed in an oven at a temperature of 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
 次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]を参照とする。 Next, an evaluation method for a back contact type solar cell will be described. Refer to [Table 1] for the evaluation results.
 [膜厚及びエッチング性の評価]
 リフトオフ層の膜厚及びエッチングの状態は、SEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)を用い、10万倍の倍率で観察して測定した。p型半導体層パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングできている場合には「○」とし、リフトオフ層が過剰にエッチングされた場合には「×」とした。
[Evaluation of film thickness and etching properties]
The thickness of the lift-off layer and the etching state were measured by using a SEM (Field Emission Scanning Electron Microscope S4800: manufactured by Hitachi High-Technologies Corporation) at a magnification of 100,000 times. After the p-type semiconductor layer patterning step, “◯” was given when the etching was performed according to the designed patterning removal region, and “X” was given when the lift-off layer was excessively etched.
 リフトオフ工程では、リフトオフ層が除去された場合には「○」とし、リフトオフ層が残った場合には「×」とした。 In the lift-off process, “○” was given when the lift-off layer was removed, and “x” was given when the lift-off layer remained.
 実施例1~4及び比較例1、3は、真性半導体層、p型半導体層及びリフトオフ層を形成する工程において、これらの層を除去する領域上を覆うマスクを配置している。 In Examples 1 to 4 and Comparative Examples 1 and 3, in the process of forming the intrinsic semiconductor layer, the p-type semiconductor layer, and the lift-off layer, a mask covering the region from which these layers are removed is disposed.
 また、実施例1~4及び比較例2は、p型半導体層及び真性半導体層のエッチングに水素プラズマエッチングを用いている。但し、比較例2は、マスクを配置しているものの、その遮蔽領域内での各層の厚さを大きくしている。比較例1、3は水素プラズマエッチングを行っていない。 In Examples 1 to 4 and Comparative Example 2, hydrogen plasma etching is used for etching the p-type semiconductor layer and the intrinsic semiconductor layer. However, in Comparative Example 2, although the mask is arranged, the thickness of each layer in the shielding region is increased. In Comparative Examples 1 and 3, hydrogen plasma etching is not performed.
 比較例1では、水素プラズマエッチングを行っていないため、p型半導体層パターニング工程で、p型半導体層のパターニングが十分に行われなかったため、「×」とした。比較例2では、p型半導体層パターニング工程でリフトオフ層が除去されてしまい、その後のリフトオフ工程での評価が不可能だったため、「-」とした。 In Comparative Example 1, since hydrogen plasma etching was not performed, the p-type semiconductor layer was not sufficiently patterned in the p-type semiconductor layer patterning step. In Comparative Example 2, since the lift-off layer was removed in the p-type semiconductor layer patterning step and evaluation in the subsequent lift-off step was impossible, “−” was given.
 [屈折率の評価]
 ガラス基板上に同一条件で成膜された薄膜の屈折率を、分光エリプソメトリ(商品名M2000:ジェー・エー・ウーラム社製)を用いて測定することにより求めた。フィッティングの結果から、波長が632nmの光における屈折率を抽出した。
[Evaluation of refractive index]
The refractive index of the thin film formed on the glass substrate under the same conditions was determined by measuring using a spectroscopic ellipsometry (trade name M2000: manufactured by JA Woollam). From the fitting result, the refractive index of light having a wavelength of 632 nm was extracted.
 [変換効率の評価]
 ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に掲載した。
[Evaluation of conversion efficiency]
A solar simulator was used to irradiate AM (air mass) 1.5 standard sunlight with a light amount of 100 mW / cm 2 to measure the conversion efficiency (Eff (%)) of the solar cell. The conversion efficiency (solar cell characteristics) of Example 1 was set to 1.00, and the relative values are shown in [Table 1].
 実施例1、2では、第1リフトオフ層に酸化ケイ素を用いた。実施例3、4では、第1リフトオフ層に窒化ケイ素を用いた。 In Examples 1 and 2, silicon oxide was used for the first lift-off layer. In Examples 3 and 4, silicon nitride was used for the first lift-off layer.
 p型半導体層パターニング工程でのプラズマエッチング処理には、実施例1、3及び比較例2において水素(H)ガスのみからなる処理を行い、実施例2、4においてシラン(SiH)ガスを添加した水素(H)ガスを用いてプラズマエッチング処理を行った。 In the plasma etching process in the p-type semiconductor layer patterning process, a process including only hydrogen (H 2 ) gas is performed in Examples 1 and 3 and Comparative Example 2, and silane (SiH 4 ) gas is used in Examples 2 and 4. Plasma etching treatment was performed using the added hydrogen (H 2 ) gas.
 比較例3では、p型半導体層パターニング工程での真性半導体層及びp導電型半導体層に対するパターニング除去において、濃度が5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ酸液に浸漬して行った。すなわち、ウェットエッチングを行った。 In Comparative Example 3, ozone / hydrofluoric acid in which 20 ppm of ozone was mixed with 5.5% by weight of hydrofluoric acid in patterning removal of the intrinsic semiconductor layer and the p-conductivity type semiconductor layer in the p-type semiconductor layer patterning step It was immersed in a liquid. That is, wet etching was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例と比較例とを比べると、本実施例においては、成膜時に、真性半導体層、p型半導体層及びリフトオフ層をパターニングして除去する領域上に、これらの領域を遮蔽(マスク)するマスクを配置して成膜する場合には、これらの領域上での膜厚は小さくなる。これにより、その後のプラズマエッチング処理を行うことによって、良好なパターニングを簡易に行えることが分かった。 Comparing the example and the comparative example, in the present example, at the time of film formation, the intrinsic semiconductor layer, the p-type semiconductor layer and the lift-off layer are shielded (masked) on the region to be removed by patterning. When a film is formed with a mask arranged, the film thickness on these regions becomes small. Thereby, it turned out that favorable patterning can be easily performed by performing the subsequent plasma etching process.
 なお、比較例3では、マスクを用いた成膜によるパターニング除去部の膜厚を小さくしたものの、真性半導体層及びp型半導体層をオゾン/フッ酸で除去しており、リフトオフ層も同時に除去されてしまい、不適合であった。 In Comparative Example 3, although the thickness of the patterning removal portion was reduced by film formation using a mask, the intrinsic semiconductor layer and the p-type semiconductor layer were removed with ozone / hydrofluoric acid, and the lift-off layer was also removed at the same time. It was nonconforming.
 10   太陽電池
 11   結晶基板(半導体基板)
 12   真性半導体層
 13   導電型半導体層
 13p  p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
 13n  n型半導体層[第2導電型の第2半導体層/第1導電型の第1半導体層]
 15   電極層
 17   透明電極層
 18   金属電極層
 20   マスク
 LF   リフトオフ層
10 Solar cell 11 Crystal substrate (semiconductor substrate)
12 Intrinsic Semiconductor Layer 13 Conductive Semiconductor Layer 13p p-type Semiconductor Layer [First Conductive First Semiconductor Layer / Second Conductive Second Semiconductor Layer]
13n n-type semiconductor layer [second conductive type second semiconductor layer / first conductive type first semiconductor layer]
15 Electrode layer 17 Transparent electrode layer 18 Metal electrode layer 20 Mask LF Lift-off layer

Claims (6)

  1.  半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、
     前記第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、
     前記リフトオフ層及び第1半導体層を選択的に除去する工程と、
     前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に、第2導電型の第2半導体層を形成する工程と、
     エッチング溶液を用いて、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程とを含み、
     前記リフトオフ層及び第1半導体層を選択的に除去する工程において、前記リフトオフ層を除去した後に、水素を主成分とするガスを導入したプラズマエッチングで、前記第1半導体層を除去する工程を含む太陽電池の製造方法。
    Forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate;
    Forming a lift-off layer containing a silicon-based thin film material on the first semiconductor layer;
    Selectively removing the lift-off layer and the first semiconductor layer;
    Forming a second semiconductor layer of a second conductivity type on the one main surface including the lift-off layer and the first semiconductor layer;
    Removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution,
    The step of selectively removing the lift-off layer and the first semiconductor layer includes a step of removing the first semiconductor layer by plasma etching using a gas containing hydrogen as a main component after removing the lift-off layer. A method for manufacturing a solar cell.
  2.  請求項1に記載の太陽電池の製造方法において、
     前記リフトオフ層は、酸化ケイ素を主成分とする層を含み、波長が632nmの光における屈折率が1.45以上1.90以下である記載の太陽電池の製造方法。
    In the manufacturing method of the solar cell of Claim 1,
    The said lift-off layer is a manufacturing method of the solar cell of the description whose refractive index in the light whose wavelength is 632 nm contains the layer which has a silicon oxide as a main component, and is 1.45 or more and 1.90 or less.
  3.  請求項1に記載の太陽電池の製造方法において、
     前記リフトオフ層は、窒化ケイ素を主成分とする層を含み、波長が632nmの光における屈折率が1.60以上2.10以下である太陽電池の製造方法。
    In the manufacturing method of the solar cell of Claim 1,
    The lift-off layer includes a layer mainly composed of silicon nitride, and has a refractive index of 1.60 or more and 2.10 or less in light having a wavelength of 632 nm.
  4.  請求項1~3のいずれか1項に記載の太陽電池の製造方法において、
     前記第1半導体層を形成する工程及び前記リフトオフ層を形成する工程では、
     前記第1半導体層及びリフトオフ層を化学気層堆積法により形成し、且つ、
     前記第2半導体層を形成する領域から間隔をおいて、該領域を遮蔽するマスクを配置する太陽電池の製造方法。
    The method for producing a solar cell according to any one of claims 1 to 3,
    In the step of forming the first semiconductor layer and the step of forming the lift-off layer,
    Forming the first semiconductor layer and the lift-off layer by chemical vapor deposition; and
    The manufacturing method of the solar cell which arrange | positions the mask which shields this area | region at intervals from the area | region which forms the said 2nd semiconductor layer.
  5.  請求項1~4のいずれか1項に記載の太陽電池の製造方法において、
     前記半導体基板の少なくとも前記第1半導体層及び第2半導体層が形成される面は、テクスチャ構造を有している太陽電池の製造方法。
    The method for producing a solar cell according to any one of claims 1 to 4,
    The method for manufacturing a solar cell, wherein at least a surface of the semiconductor substrate on which the first semiconductor layer and the second semiconductor layer are formed has a texture structure.
  6.  請求項1~5のいずれか1項に記載の太陽電池の製造方法において、
     前記第1半導体層を形成する工程は、前記第1半導体層を形成するよりも前に、前記半導体基板の前記一方の主面の上に第1真性半導体層を形成する工程を含み、
     前記第1半導体層を選択的に除去する工程は、前記第1半導体層に続いて前記第1真性半導体層を選択的に除去する工程を含み、
     前記第2半導体層を形成する工程は、前記第2半導体層を形成するよりも前に、前記半導体基板の前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に第2真性半導体層を形成する工程を含み、
     前記第2半導体層を除去する工程は、前記第2半導体層に続いて前記第2真性半導体層を選択的に除去する工程を含む太陽電池の製造方法。
    In the method for producing a solar cell according to any one of claims 1 to 5,
    The step of forming the first semiconductor layer includes a step of forming a first intrinsic semiconductor layer on the one main surface of the semiconductor substrate before forming the first semiconductor layer,
    Selectively removing the first semiconductor layer includes selectively removing the first intrinsic semiconductor layer following the first semiconductor layer;
    The step of forming the second semiconductor layer includes the step of forming a second intrinsic semiconductor on the one main surface including the lift-off layer and the first semiconductor layer of the semiconductor substrate before forming the second semiconductor layer. Forming a layer,
    The step of removing the second semiconductor layer includes a step of selectively removing the second intrinsic semiconductor layer following the second semiconductor layer.
PCT/JP2019/005408 2018-02-23 2019-02-14 Method for producing solar cell WO2019163648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501718A JP7281444B2 (en) 2018-02-23 2019-02-14 Solar cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030759 2018-02-23
JP2018-030759 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163648A1 true WO2019163648A1 (en) 2019-08-29

Family

ID=67687585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005408 WO2019163648A1 (en) 2018-02-23 2019-02-14 Method for producing solar cell

Country Status (2)

Country Link
JP (1) JP7281444B2 (en)
WO (1) WO2019163648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell
CN117712212A (en) * 2024-02-05 2024-03-15 天合光能股份有限公司 Solar cell and method for manufacturing solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171725A (en) * 1989-11-14 1991-07-25 Advanced Micro Devices Inc Method for etching n-type, p-type and intrinsic silicon on same wafer at practically same speed
US5286340A (en) * 1991-09-13 1994-02-15 University Of Pittsburgh Of The Commonwealth System Of Higher Education Process for controlling silicon etching by atomic hydrogen
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
WO2017217219A1 (en) * 2016-06-15 2017-12-21 株式会社カネカ Solar cell and production method therefor, and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171725A (en) * 1989-11-14 1991-07-25 Advanced Micro Devices Inc Method for etching n-type, p-type and intrinsic silicon on same wafer at practically same speed
US5286340A (en) * 1991-09-13 1994-02-15 University Of Pittsburgh Of The Commonwealth System Of Higher Education Process for controlling silicon etching by atomic hydrogen
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
WO2017217219A1 (en) * 2016-06-15 2017-12-21 株式会社カネカ Solar cell and production method therefor, and solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211519B2 (en) * 2018-02-23 2021-12-28 Kaneka Corporation Method for manufacturing solar cell
CN117712212A (en) * 2024-02-05 2024-03-15 天合光能股份有限公司 Solar cell and method for manufacturing solar cell
CN117712212B (en) * 2024-02-05 2024-04-23 天合光能股份有限公司 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP7281444B2 (en) 2023-05-25
JPWO2019163648A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US9722101B2 (en) Solar cell, solar cell manufacturing method, and solar cell module
JP7361023B2 (en) Solar cell manufacturing method and holder used therein
US11211519B2 (en) Method for manufacturing solar cell
WO2019163646A1 (en) Method for producing solar cell
WO2019163648A1 (en) Method for producing solar cell
TWI783063B (en) Manufacturing method of solar cell
JP7221276B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP5645734B2 (en) Solar cell element
JP7237920B2 (en) Solar cell manufacturing method
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
JP7183245B2 (en) Solar cell manufacturing method
JP6285713B2 (en) Crystalline silicon solar cell and solar cell module
JP7353865B2 (en) How to manufacture solar cells
JP7361045B2 (en) How to manufacture solar cells
WO2020022044A1 (en) Manufacturing method for solar cell
JP2022064104A (en) Solar battery
TW201511306A (en) Passivated emitter rear contact solar cell and method of manufacturing the same
JP2020096126A (en) Manufacturing method of back electrode type solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756803

Country of ref document: EP

Kind code of ref document: A1