TW201511306A - Passivated emitter rear contact solar cell and method of manufacturing the same - Google Patents

Passivated emitter rear contact solar cell and method of manufacturing the same Download PDF

Info

Publication number
TW201511306A
TW201511306A TW102132443A TW102132443A TW201511306A TW 201511306 A TW201511306 A TW 201511306A TW 102132443 A TW102132443 A TW 102132443A TW 102132443 A TW102132443 A TW 102132443A TW 201511306 A TW201511306 A TW 201511306A
Authority
TW
Taiwan
Prior art keywords
pattern
electrode
dielectric layer
solar cell
sub
Prior art date
Application number
TW102132443A
Other languages
Chinese (zh)
Inventor
Cheng-Liang Cheng
Yi-Chin Chou
Chia-Yun Liu
Pin-Sheng Wang
Bang-Hao Wu
Original Assignee
Terasolar Energy Materials Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terasolar Energy Materials Corp Ltd filed Critical Terasolar Energy Materials Corp Ltd
Priority to TW102132443A priority Critical patent/TW201511306A/en
Priority to CN201310728746.XA priority patent/CN104425634A/en
Publication of TW201511306A publication Critical patent/TW201511306A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A passivated emitter rear contact solar cell including a p-type silicon wafer, a N-type doping layer, a front dielectric layer, a front contact electrode, a back dielectric layer, a first back contact electrode and a second back contact electrode is provided. A back side of the p-type silicon wafer has a bus-bar region and the other region excluding the bus-bar region. The back dielectric layer has a first opening pattern located at the bus-bar region and a second opening pattern located at the other region excluding the bus-bar region, wherein the first opening pattern and the second opening pattern expose the p-type silicon wafer. The first opening pattern of the back dielectric layer is different from the second opening pattern of the back dielectric layer.

Description

鈍化發射極背電極矽晶太陽能電池及其製造方法 Passivated emitter back electrode twinned solar cell and method of manufacturing same

本發明是有關於一種太陽能電池,且特別是有關於一種鈍化發射極背電極矽晶太陽能電池。 This invention relates to a solar cell, and more particularly to a passivated emitter back electrode twinned solar cell.

太陽能電池是一種能量轉換的光電元件(photovoltaic device)。典型的太陽能電池基本的結構可分為基板、P-N二極體、抗反射層以及金屬電極四個主要部分。簡單來說,太陽能電池的工作原理是P-N二極體將太陽光能轉換成電子電洞對,再經正、負電極傳導出電能。 A solar cell is an energy-converting photovoltaic device. The basic structure of a typical solar cell can be divided into four main parts: a substrate, a P-N diode, an anti-reflection layer, and a metal electrode. Simply put, the working principle of a solar cell is that the P-N diode converts solar energy into an electron hole pair, and then conducts electric energy through the positive and negative electrodes.

在習知技術中,提出一種具有高效率的鈍化發射極背電極矽晶太陽能電池(passivated emitter rear contact solar cell,PERC),其主要是在基板的背面上形成介電層,於介電層局部移除形成開口,並於背面介電層上網印鋁漿及銀漿,最後經高溫共燒製程形成鋁電極與銀電極來作為背面電極。然而,在鈍化發射極背電極矽晶太陽能電池的製程中,基板背面須經一單面拋光製程 使基板的背面表面平滑,使得介電層附著於基板的背面以發揮延長載子存活時間的效果。但,如此一來,當將多個矽晶太陽能電池以焊條與背面銀電極相互連接形成矽晶太陽能電池模組時,因前述背面拋光製程而存在背面銀電極與基板之間及背面銀電極與介電層之間附著力不足的問題,而使太陽能電池模組面臨可靠度下降、良率低下的問題。 In the prior art, a passivated emitter rear contact solar cell (PERC) with high efficiency is proposed, which mainly forms a dielectric layer on the back surface of the substrate, and is partially on the dielectric layer. The opening is removed, and the aluminum paste and the silver paste are printed on the back dielectric layer, and finally the aluminum electrode and the silver electrode are formed as a back electrode by a high temperature co-firing process. However, in the process of passivating the emitter back electrode twinned solar cell, the back side of the substrate is subjected to a single-side polishing process. The back surface of the substrate is made smooth so that the dielectric layer adheres to the back surface of the substrate to exert an effect of prolonging the carrier survival time. However, when a plurality of twinned solar cells are connected to each other to form a twinned solar cell module by using a bonding electrode and a backside silver electrode, the backside silver electrode and the substrate and the backside silver electrode are present due to the backside polishing process. The problem of insufficient adhesion between the dielectric layers causes the solar cell module to suffer from a problem of reduced reliability and low yield.

本發明提供一種鈍化發射極背電極矽晶太陽能電池,藉此可以增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中背面銀電極與焊條之間以及背面銀電極與基板之間的附著力,避免鈍化發射極背電極矽晶太陽能電池串接成鈍化發射極背電極矽晶太陽能電池模組時自背面銀電極處脫落,增加太陽能電池模組的可靠度與良率。 The invention provides a passivated emitter back electrode twin solar cell, thereby enhancing the adhesion between the backside silver electrode and the electrode and the back silver electrode and the substrate in the subsequent module process of the passivated emitter back electrode twin solar cell. To avoid the passivation of the emitter back electrode, the tantalum solar cell is connected in series to passivate the emitter back electrode, and the solar cell module is detached from the back silver electrode, thereby increasing the reliability and yield of the solar cell module.

本發明提出一種鈍化發射極背電極矽晶太陽能電池,其包括P型矽晶片、N型摻雜層、正面介電層、正面電極、背面介電層、第一背面電極以及第二背面電極。P型矽晶片具有受光面與背面,並且背面上具有主柵線區域以及除主柵線區域以外的其他區域。N型摻雜層、正面介電層及正面電極位於P型矽晶片的受光面上。背面介電層位於P型矽晶片的背面上,並且背面介電層具有位於主柵線區域的第一開口圖案以及位於其他區域的第二開口圖案,其中第一開口圖案與第二開口圖案暴露出P型矽晶片。 第一背面電極位於背面介電層上,並填入第一開口圖案內。第二背面電極位於背面介電層上,並填入第二開口圖案內。值得注意的是,背面介電層的第一開口圖案不同於第二開口圖案。 The present invention provides a passivated emitter back electrode twinned solar cell comprising a P-type germanium wafer, an N-type doped layer, a front dielectric layer, a front side electrode, a back dielectric layer, a first back side electrode, and a second back side electrode. The P-type germanium wafer has a light-receiving surface and a back surface, and has a main gate line region on the back surface and other regions than the main gate line region. The N-type doped layer, the front dielectric layer, and the front surface electrode are on the light receiving surface of the P-type germanium wafer. The back dielectric layer is on the back surface of the P-type germanium wafer, and the back dielectric layer has a first opening pattern at the main gate line region and a second opening pattern at other regions, wherein the first opening pattern and the second opening pattern are exposed A P-type germanium wafer is produced. The first back electrode is on the back dielectric layer and is filled in the first opening pattern. The second back electrode is on the back dielectric layer and is filled in the second opening pattern. It is worth noting that the first opening pattern of the back dielectric layer is different from the second opening pattern.

本發明另提出一種鈍化發射極背電極矽晶太陽能電池的製造方法,其包括下列步驟。首先,提供P型矽晶片,其具有受光面與背面,其中P型矽晶片於背面上具有主柵線區域以及除主柵線區域以外的其他區域。接著,在P型矽晶片的受光面上形成N型摻雜層,並於N型摻雜層上形成正面介電層。然後,於P型矽晶片的背面上形成背面介電層,以使背面介電層之位於主柵線區域形成第一開口圖案,並於背面介電層之位於其他區域形成第二開口圖案。值得注意的是,第一開口圖案不同於第二開口圖案,並且第一開口圖案與第二開口圖案暴露出P型矽晶片。之後,於正面介電層上形成正面電極,於背面介電層上形成第一背面電極,以使第一背面電極填入第一開口圖案內,並於背面介電層上形成第二背面電極,以使第二背面電極填入第二開口圖案內。最後,經由高溫共燒製程完成鈍化發射極背電極矽晶太陽能電池之製造。 The present invention further provides a method of fabricating a passivated emitter back electrode twinned solar cell comprising the following steps. First, a P-type germanium wafer having a light-receiving surface and a back surface is provided, wherein the P-type germanium wafer has a main gate line region on the back surface and other regions than the main gate line region. Next, an N-type doped layer is formed on the light-receiving surface of the P-type germanium wafer, and a front dielectric layer is formed on the N-type doped layer. Then, a back dielectric layer is formed on the back surface of the P-type germanium wafer such that the first dielectric pattern is formed in the main gate line region of the back dielectric layer, and the second opening pattern is formed in other regions of the back dielectric layer. It is to be noted that the first opening pattern is different from the second opening pattern, and the first opening pattern and the second opening pattern expose the P-type germanium wafer. Thereafter, a front surface electrode is formed on the front dielectric layer, and a first back surface electrode is formed on the back dielectric layer, so that the first back surface electrode is filled in the first opening pattern, and the second back surface electrode is formed on the back surface dielectric layer. So that the second back electrode is filled in the second opening pattern. Finally, the fabrication of the passivated emitter back electrode twinned solar cell is completed via a high temperature co-firing process.

在本發明的一實施例中,第一開口圖案包括彼此獨立的多個第一子圖案,且第二開口圖案包括彼此獨立的多個第二子圖案。 In an embodiment of the invention, the first opening pattern includes a plurality of first sub-patterns that are independent of each other, and the second opening pattern includes a plurality of second sub-patterns that are independent of each other.

在本發明的一實施例中,上述的第一子圖案的第一寬度不同於第二子圖案的第二寬度。 In an embodiment of the invention, the first width of the first sub-pattern is different from the second width of the second sub-pattern.

在本發明的一實施例中,上述的第一子圖案與第二子圖案分別為條狀圖案。 In an embodiment of the invention, the first sub-pattern and the second sub-pattern are respectively strip-shaped patterns.

在本發明的一實施例中,其中任兩相鄰第一子圖案之間的第一間距不同於任兩相鄰第二子圖案之間的第二間距。舉例而言,第一間距例如小於第二間距。 In an embodiment of the invention, the first spacing between any two adjacent first sub-patterns is different from the second spacing between any two adjacent second sub-patterns. For example, the first spacing is, for example, less than the second spacing.

在本發明的一實施例中,上述的第一子圖案在主柵線區域中例如是呈現虛線的分布形態,上述的第二子圖案在上述的其他區域中例如是呈現實線的分布形態,且第一子圖案在主柵線區域中所佔的比例例如是小於第二子圖案在其他區域中所佔的比例。 In an embodiment of the present invention, the first sub-pattern has a distribution pattern of a dotted line in the main gate line region, and the second sub-pattern is, for example, a distribution pattern of solid lines in the other regions. And the proportion of the first sub-pattern in the main gate line region is, for example, smaller than the proportion of the second sub-pattern in other regions.

在本發明的一實施例中,例如是第一子圖案的形狀不同於第二子圖案。 In an embodiment of the invention, for example, the shape of the first sub-pattern is different from the second sub-pattern.

在本發明的一實施例中,上述的第一子圖案與第二子圖案可以分別是線、點、線段或其組合。 In an embodiment of the invention, the first sub-pattern and the second sub-pattern may be lines, dots, line segments, or a combination thereof, respectively.

在本發明的一實施例中,上述的鈍化發射極背電極矽晶太陽能電池可進一步包括與第一背面電極連接的焊條。 In an embodiment of the invention, the passivated emitter back electrode twin solar cell may further include an electrode connected to the first back electrode.

在本發明的一實施例中,上述的p型矽晶片包括硼摻雜或鎵摻雜的矽晶片。 In an embodiment of the invention, the p-type germanium wafer comprises a boron doped or gallium doped germanium wafer.

在本發明的一實施例中,上述的背面介電層中的第一開口圖案與第二開口圖案的總面積相對於背面之面積的比率為0.5%至15%之間。 In an embodiment of the invention, the ratio of the total area of the first opening pattern and the second opening pattern in the back surface dielectric layer to the area of the back surface is between 0.5% and 15%.

在本發明的一實施例中,上述的背面介電層圖案例如為 AlxOy、SiO2、SixNy、SixNyHz、SixOyNz或SiC組合的單層或多層結構。 In an embodiment of the invention, the back dielectric layer pattern is, for example, a single layer of Al x O y , SiO 2 , Si x N y , Si x N y H z , Si x O y N z or SiC combination. Or multilayer structure.

在本發明的一實施例中,上述的正面介電層例如為SiO2、SixNy、SixNyHz、SixOyNz或SiC組合的單層或多層結構。 In an embodiment of the invention, the front dielectric layer is, for example, a single layer or a multilayer structure of SiO 2 , Si x N y , Si x N y H z , Si x O y N z or SiC combination.

在本發明的一實施例中,上述的N型摻雜層對應於正面電極的區域可為高濃度摻雜V族元素(例如:磷(P)、砷(As)),且其表面電阻例如為小於或等於70ohm/sq.。 In an embodiment of the invention, the region of the N-type doped layer corresponding to the front electrode may be a high concentration doped group V element (eg, phosphorus (P), arsenic (As)), and its surface resistance is, for example, It is less than or equal to 70 ohm/sq.

在本發明的一實施例中,上述的N型摻雜層對應於除了正面電極以外的區域可為低濃度摻雜V族元素(例如:磷(P)、砷(As)),且其表面電阻例如為大於70ohm/sq.。 In an embodiment of the invention, the N-type doped layer corresponding to the region other than the front electrode may be a low concentration doped group V element (eg, phosphorus (P), arsenic (As)), and the surface thereof The resistance is, for example, greater than 70 ohm/sq.

在本發明的一實施例中,上述的N型摻雜層可以是對應於正面電極以外的區域的一部分為高濃度摻雜V族元素(例如:磷(P)、砷(As))。 In an embodiment of the invention, the N-type doping layer may be a high concentration doped Group V element (for example, phosphorus (P), arsenic (As)) corresponding to a portion of the region other than the front surface electrode.

本發明再提出一種鈍化發射極背電極矽晶太陽能電池,其包括P型矽晶片、N型摻雜層、正面介電層、正面電極、背面介電層、第一背面電極以及第二背面電極。P型矽晶片具有受光面與背面,並且背面上具有主柵線區域以及除主柵線區域以外的其他區域。N型摻雜層、正面介電層及正面電極位於P型矽晶片的受光面上。背面介電層位於P型矽晶片的背面上,背面介電層在位於主柵線區域的圖案不同於背面介電層在位於其他區域的圖案。第一背面電極位於背面介電層上。第二背面電極位於背面介電層上,並填入背面介電層之位於所述其他區域圖案內。 The present invention further provides a passivated emitter back electrode twin solar cell comprising a P-type germanium wafer, an N-type doped layer, a front dielectric layer, a front electrode, a back dielectric layer, a first back electrode, and a second back electrode . The P-type germanium wafer has a light-receiving surface and a back surface, and has a main gate line region on the back surface and other regions than the main gate line region. The N-type doped layer, the front dielectric layer, and the front surface electrode are on the light receiving surface of the P-type germanium wafer. The back dielectric layer is on the back side of the P-type germanium wafer, and the pattern of the back dielectric layer in the main gate line region is different from the pattern of the back dielectric layer in other regions. The first back electrode is on the back dielectric layer. The second back electrode is on the back dielectric layer and is filled in the pattern of the other regions in the back dielectric layer.

在本發明的一實施例中,上述的背面介電層在位於主柵線區域為全面覆蓋P型矽晶片,而背面介電層在位於其他區域具有開口圖案。 In an embodiment of the invention, the back dielectric layer has a full coverage of the P-type germanium in the main gate line region, and the back dielectric layer has an opening pattern in other regions.

本發明提出一種太陽能電池模組,其包括多個如上述的鈍化發射極背電極矽晶太陽能電池以及焊條,其中焊條電性連接於兩相鄰鈍化發射極背電極矽晶太陽能電池之間。 The invention provides a solar cell module comprising a plurality of passivated emitter back electrode twin solar cells and an electrode as described above, wherein the electrode is electrically connected between two adjacent passivated emitter back electrode twin solar cells.

在本發明的一實施例中,上述的正面電極、第一背面電極以及第二背面電極是經由高溫共燒製程而形成。 In an embodiment of the invention, the front surface electrode, the first back surface electrode, and the second back surface electrode are formed by a high temperature co-firing process.

在本發明的一實施例中,上述的高溫共燒製程的最高溫度大於600℃。 In an embodiment of the invention, the highest temperature of the high temperature co-firing process is greater than 600 °C.

基於上述,藉由將背面介電層的位於主柵線區域的圖案以及位於其他區域的圖案設計為不相同,可以有效增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中背面銀電極與焊條之間以及背面銀電極與基板之間的附著力,避免鈍化發射極背電極矽晶太陽能電池串接成鈍化發射極背電極矽晶太陽能電池模組時自背面銀電極處脫落,增加太陽能電池模組的可靠度與良率。 Based on the above, by designing the pattern of the back dielectric layer in the main gate line region and the pattern in other regions to be different, the passivation emitter back electrode twin solar cell can be effectively enhanced in the subsequent module process. Adhesion between the electrode and the electrode and the silver electrode on the back surface to avoid passivation of the emitter back electrode, the twin crystal solar cell is connected in series to passivate the emitter back electrode, the silicon solar cell module is detached from the back silver electrode, and the solar energy is increased. Battery module reliability and yield.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧太陽能電池模組 10‧‧‧Solar battery module

100‧‧‧太陽能電池 100‧‧‧ solar cells

110‧‧‧P型矽晶片 110‧‧‧P type silicon wafer

120‧‧‧N型摻雜層 120‧‧‧N-doped layer

130‧‧‧正面介電層 130‧‧‧Positive dielectric layer

140‧‧‧正面電極組成物 140‧‧‧Front electrode composition

140a‧‧‧正面電極 140a‧‧‧front electrode

150、250、350、450‧‧‧背面介電層 150, 250, 350, 450‧‧‧ back dielectric layer

152、252、352‧‧‧第一開口圖案 152, 252, 352‧‧‧ first opening pattern

154、254、354、454‧‧‧第二開口圖案 154, 254, 354, 454‧‧‧ second opening pattern

152a、252a、352a‧‧‧第一子圖案 152a, 252a, 352a‧‧‧ first sub-pattern

154a、254a、354a、454a‧‧‧第二子圖案 154a, 254a, 354a, 454a‧‧‧ second sub-pattern

160‧‧‧第一背面電極組成物 160‧‧‧First back electrode composition

160a‧‧‧第一背面電極 160a‧‧‧First back electrode

170‧‧‧第二背面電極組成物 170‧‧‧Second back electrode composition

170a‧‧‧第二背面電極 170a‧‧‧second back electrode

180‧‧‧焊條 180‧‧‧ welding rod

P1‧‧‧第一間距 P1‧‧‧ first spacing

P2‧‧‧第二間距 P2‧‧‧Second spacing

R1‧‧‧主柵線區域 R1‧‧‧ main grid area

R2‧‧‧其他區域 R2‧‧‧Other areas

S1‧‧‧受光面 S1‧‧‧Stained surface

S2‧‧‧背面 S2‧‧‧Back

W1‧‧‧第一寬度 W1‧‧‧ first width

W2‧‧‧第二寬度 W2‧‧‧ second width

圖1是依照本發明的第一實施例的一種鈍化發射極背電極矽 晶太陽能電池的立體示意圖。 1 is a passivated emitter back electrode 矽 in accordance with a first embodiment of the present invention A schematic view of a crystalline solar cell.

圖2是沿著圖1中的A-A'剖面的示意圖。 Fig. 2 is a schematic view taken along line AA' of Fig. 1.

圖3是依照本發明的第一實施例的一種鈍化發射極背電極矽晶太陽能電池的背面上視圖。 3 is a rear elevational view of a passivated emitter back electrode twinned solar cell in accordance with a first embodiment of the present invention.

圖4A是圖3中B部分的放大圖。 Fig. 4A is an enlarged view of a portion B in Fig. 3.

圖4B至圖4D是依照本發明多個實施例的B部分的放大圖。 4B through 4D are enlarged views of a portion B in accordance with various embodiments of the present invention.

圖5A至圖5C是依照本發明的第一實施例的一種鈍化發射極背電極矽晶太陽能電池的製造方法的示意圖。 5A through 5C are schematic views of a method of fabricating a passivated emitter back electrode twin solar cell in accordance with a first embodiment of the present invention.

圖6是依照本發明第一實施例的太陽能電池模組示意圖。 Figure 6 is a schematic view of a solar cell module in accordance with a first embodiment of the present invention.

圖1是依照本發明的第一實施例的一種鈍化發射極背電極矽晶太陽能電池(以下簡稱為「太陽能電池」)的立體示意圖。圖2是沿著圖1中的A-A'剖面的示意圖。 1 is a perspective view of a passivated emitter back electrode twin solar cell (hereinafter simply referred to as "solar cell") in accordance with a first embodiment of the present invention. Fig. 2 is a schematic view taken along line AA' of Fig. 1.

請參照圖1及圖2,本實施例的太陽能電池100包括P型矽晶片110、N型摻雜層120、正面介電層130、正面電極140a、背面介電層150、第一背面電極160a以及第二背面電極170a。詳言之,P型矽晶片110具有彼此相對的受光面S1及背面S2,自P型矽晶片110的受光面S1上起依序包括N型摻雜層120、正面介電層130以及正面電極140a。在P型矽晶片110的背面S2上有背面介電層150第一背面電極160a以及第二背面電極170a,並且背面介電層150具有第一開口圖案152以及第二開口圖案154。 1 and 2, the solar cell 100 of the present embodiment includes a P-type germanium wafer 110, an N-type doped layer 120, a front dielectric layer 130, a front surface electrode 140a, a back surface dielectric layer 150, and a first back surface electrode 160a. And a second back surface electrode 170a. In detail, the P-type germanium wafer 110 has light-receiving surfaces S1 and S2 opposite to each other, and sequentially includes an N-type doping layer 120, a front dielectric layer 130, and a front surface electrode from the light-receiving surface S1 of the P-type germanium wafer 110. 140a. On the back surface S2 of the P-type germanium wafer 110, a back surface dielectric layer 150 has a first back surface electrode 160a and a second back surface electrode 170a, and the back surface dielectric layer 150 has a first opening pattern 152 and a second opening pattern 154.

如圖1所示,在本實施例中,P型矽晶片110的受光面S1上具有例如粗糙表面、金字塔型(pyramid texturing)或倒金字塔型(inverted-pyramid texturing)的結構,以降低太陽光或光線進入太陽能電池100時的反射率,藉此增加太陽光的利用率。 As shown in FIG. 1, in the present embodiment, the light-receiving surface S1 of the P-type germanium wafer 110 has a structure such as a rough surface, a pyramid texturing or an inverted-pyramid texturing to reduce sunlight. Or the reflectivity of light entering the solar cell 100, thereby increasing the utilization of sunlight.

在本實施例中,N型摻雜層120位於P型矽晶片110的受光面S1上,並且正面介電層130位於N型摻雜層120上。正面電極140a位於正面介電層130上。 In the present embodiment, the N-type doping layer 120 is located on the light receiving surface S1 of the P-type germanium wafer 110, and the front dielectric layer 130 is located on the N-type doping layer 120. The front electrode 140a is located on the front dielectric layer 130.

如圖1與圖2所示,背面介電層150位於P型矽晶片110的背面S2上,且本實施例之背面介電層150是以單層結構為例,在其他實施例中,背面介電層150亦可以是多層結構,在太陽能電池100中,當太陽光照射P型矽晶片110時,P型矽晶片110的內部會同時產生電子電洞對(載子),並且電子與電洞分別經正負極而產生電流。在本發明之鈍化發射極背電極矽晶太陽能電池中,所產生的載子可因背面介電層的保護而避免再結合(recombined),進而延長載子的存活率。特別的是,背面介電層150在不同的區域具有不同的圖案。 As shown in FIG. 1 and FIG. 2, the back dielectric layer 150 is located on the back surface S2 of the P-type germanium wafer 110, and the back dielectric layer 150 of the present embodiment is exemplified by a single layer structure. In other embodiments, the back surface is shown. The dielectric layer 150 may also have a multi-layer structure. In the solar cell 100, when the sunlight illuminates the P-type germanium wafer 110, the inside of the P-type germanium wafer 110 simultaneously generates electron hole pairs (carriers), and electrons and electricity. The holes generate current through the positive and negative electrodes, respectively. In the passivated emitter back electrode twin solar cell of the present invention, the generated carriers can be recombined due to the protection of the back dielectric layer, thereby prolonging the survival rate of the carriers. In particular, the back dielectric layer 150 has a different pattern in different regions.

圖3是依照本發明的第一實施例的一種鈍化發射極背電極矽晶太陽能電池的背面上視圖。請參照圖3,可將P型矽晶片110的背面S2劃分成主柵線區域R1以及除主柵線區域R1以外的其他區域R2,其中主柵線區域R1乃為太陽能電池100中預定形成主柵線(bus-bar)的區域。在本實施例中,P型矽晶片110的背面S2劃分成三條互相平行主柵線區域R1,在其他實施例中,亦 可視情況調整為兩個或多個。此外,主柵線區域R1在P型矽晶片110的背面S2上的其他位置亦可視產品需求進行調整。本發明藉由使背面介電層150在主柵線區域R1的圖案不同於背面介電層150在除主柵線區域R1以外的其他區域R2的圖案,藉此可以使太陽能電池100在串接成形成太陽能電池模組時有效地增加太陽能電池之背面銀電極與焊條之間的附著力、太陽能電池之背面銀電極與P型矽晶片110之間的附著力,進而提升太陽能電池模組的可靠度與良率。下文將對背面介電層150詳加說明。 3 is a rear elevational view of a passivated emitter back electrode twinned solar cell in accordance with a first embodiment of the present invention. Referring to FIG. 3, the back surface S2 of the P-type germanium wafer 110 may be divided into a main gate line region R1 and a region R2 other than the main gate line region R1, wherein the main gate line region R1 is a predetermined formation in the solar cell 100. The area of the bus-bar. In the present embodiment, the back surface S2 of the P-type germanium wafer 110 is divided into three mutually parallel main gate line regions R1. In other embodiments, Adjust to two or more depending on the situation. In addition, the other positions of the main gate line region R1 on the back surface S2 of the P-type germanium wafer 110 can also be adjusted according to product requirements. In the present invention, the pattern of the back surface dielectric layer 150 in the main gate line region R1 is different from the pattern of the back surface dielectric layer 150 in the region R2 other than the main gate line region R1, whereby the solar cell 100 can be connected in series. When the solar cell module is formed, the adhesion between the silver electrode on the back surface of the solar cell and the electrode, the adhesion between the silver electrode on the back side of the solar cell and the P-type silicon wafer 110 are effectively increased, thereby improving the reliability of the solar cell module. Degree and yield. The back dielectric layer 150 will be described in detail below.

此外,請參照圖1與圖2,第一背面電極160a以及第二背面電極170a位於背面介電層150上,並且第二背面電極170a與第一背面電極160a電性連接。具體而言,在本實施例中,來自第二背面電極170a的載子匯集至第一背面電極160a,而第一背面電極160a再將所匯集之載子所產生的電流向外傳導。換言之,本實施例之第一背面電極160a作為匯流電極(bus-bar electrode),而第二背面電極170a則作為手指電極(finger electrode)。 In addition, referring to FIG. 1 and FIG. 2, the first back surface electrode 160a and the second back surface electrode 170a are located on the back surface dielectric layer 150, and the second back surface electrode 170a is electrically connected to the first back surface electrode 160a. Specifically, in the present embodiment, the carriers from the second back surface electrode 170a are collected to the first back surface electrode 160a, and the first back surface electrode 160a conducts the current generated by the collected carriers outward. In other words, the first back surface electrode 160a of the present embodiment functions as a bus-bar electrode, and the second back surface electrode 170a functions as a finger electrode.

進一步而言,在本實施例中,當多個太陽能電池100串接時,太陽能電池100更可包括焊條180,使得焊條180與作為匯流電極的第一背面電極160a連接,以進一步將收集至太陽能電池100之匯流電極的第一背面電極160a的電流向外傳導。 Further, in the present embodiment, when a plurality of solar cells 100 are connected in series, the solar cell 100 may further include an electrode 180 such that the electrode 180 is connected to the first back electrode 160a as a bus electrode to further collect the solar energy. The current of the first back surface electrode 160a of the bus electrode of the battery 100 is conducted outward.

值得注意的是,本發明之太陽能電池有目的地將背面劃分成主柵線區域以及除主柵線區域以外的其他區域,使背面介電層在主柵線區域的圖案以及在其他區域的圖案不同,藉由背面介 電層在不同區域具有不同圖案分布的技術手段,使得後續製程中與背面銀電極連接的焊條得以藉由背面在不同區域間因不同圖案所形成的不同的形態(morphology)分布來增加背面銀電極對P型矽晶片及對焊條的附著力。詳言之,使背面介電層在不同區域具有不同圖案的實施方式,可以改變圖案的寬度、數量、分布密度、圖形等,以下將分別舉例詳加說明: It is worth noting that the solar cell of the present invention purposely divides the back side into a main gate line region and other regions than the main gate line region, so that the pattern of the back dielectric layer in the main gate line region and the pattern in other regions Different The electrical layer has different pattern distribution techniques in different regions, so that the electrode connected to the back silver electrode in the subsequent process can increase the back silver electrode by different morphology distribution formed by different patterns on the back surface between different regions. Adhesion to P-type germanium wafers and to electrodes. In detail, the embodiment in which the back dielectric layer has different patterns in different regions can change the width, the number, the distribution density, the graphics, etc. of the pattern, and the following will be explained in detail by way of example:

[第一實施例][First Embodiment]

圖4A是圖3中一實施例的太陽能電池背面上視圖在B部分的第一實施例的局部放大圖。請參照一併參照圖1、圖2以及圖4A,在本實施例中,使背面介電層150在主柵線區域R1的圖案不同於背面介電層150在除主柵線區域R1以外的其他區域R2的圖案的態樣,例如是改變圖案的寬度。 4A is a partial enlarged view of the first embodiment of the back side view of the solar cell of FIG. 3 in a portion B of the embodiment. Referring to FIG. 1 , FIG. 2 and FIG. 4A together, in the embodiment, the pattern of the back dielectric layer 150 in the main gate line region R1 is different from that of the back dielectric layer 150 except the main gate line region R1. The pattern of the pattern of the other region R2 is, for example, changing the width of the pattern.

請一併參照圖1、圖2以及圖4A,詳細而言,背面介電層150位於P型矽晶片110的背面S2上,並且背面介電層150具有位於主柵線區域R1的第一開口圖案152以及位於其他區域R2的第二開口圖案154,第一開口圖案152與第二開口圖案154暴露出P型矽晶片110。此外,第一背面電極160a位於背面介電層150上,並填入第一開口圖案152內。第二背面電極170a位於背面介電層150上,並填入第二開口圖案154內。 Referring to FIG. 1 , FIG. 2 and FIG. 4A , in detail, the back dielectric layer 150 is located on the back surface S2 of the P-type germanium wafer 110 , and the back dielectric layer 150 has a first opening in the main gate line region R1 . The pattern 152 and the second opening pattern 154 located in the other region R2, the first opening pattern 152 and the second opening pattern 154 exposing the P-type wafer 110. In addition, the first back surface electrode 160a is located on the back dielectric layer 150 and is filled in the first opening pattern 152. The second back surface electrode 170a is located on the back dielectric layer 150 and is filled in the second opening pattern 154.

請參照圖4A,在本實施例中,位於主柵線區域R1的第一開口圖案152的寬度不同於位於其他區域R2的第二開口圖案154。詳言之,在背面局部放大的區域中,如本案4A所示,第一 開口圖案152包括彼此獨立的兩個第一子圖案152a,而第二開口圖案154包括彼此獨立的四個第二子圖案154a,其中這些第一子圖案152a與這些第二子圖案154a大體上互相平行。值得注意的是,在本實施例中,第一子圖案152a與第二子圖案154a皆為條狀圖案,在其他實施例中,第一子圖案152a與第二子圖案154a的圖形亦可以是線、點、線段或其組合,本發明並不以此為限。 Referring to FIG. 4A, in the present embodiment, the width of the first opening pattern 152 located in the main gate line region R1 is different from the second opening pattern 154 located in the other region R2. In detail, in the area partially enlarged on the back side, as shown in FIG. 4A, the first The opening pattern 152 includes two first sub-patterns 152a independent of each other, and the second opening pattern 154 includes four second sub-patterns 154a independent of each other, wherein the first sub-patterns 152a and the second sub-patterns 154a substantially correspond to each other parallel. It should be noted that, in this embodiment, the first sub-pattern 152a and the second sub-pattern 154a are strip patterns. In other embodiments, the patterns of the first sub-pattern 152a and the second sub-pattern 154a may also be The lines, points, line segments or a combination thereof are not limited thereto.

此外,如圖4A所示,第一子圖案152a的第一寬度W1與第二子圖案154a的第二寬度W2不同,具體而言例如是第一子圖案152a的第一寬度W1大於第二子圖案154a的第二寬度W2,當然在其他實施例中亦可以使第一子圖案152a的第一寬度W1小於第二子圖案154a的第二寬度W2,同樣可以達到增加附著力的效果,詳見後文的實施例。 In addition, as shown in FIG. 4A, the first width W1 of the first sub-pattern 152a is different from the second width W2 of the second sub-pattern 154a, specifically, for example, the first width W1 of the first sub-pattern 152a is greater than the second sub- The second width W2 of the pattern 154a, of course, in other embodiments, the first width W1 of the first sub-pattern 152a may be smaller than the second width W2 of the second sub-pattern 154a, and the adhesion effect may also be achieved. The following examples.

進一步而言,在第一實施例中,藉由調整第一子圖案152a的第一寬度W1,使其與第二子圖案154a的第二寬度W2不同的具體態樣,藉此實現背面介電層150位於主柵線區域R1的第一開口圖案152不同於位於其他區域R2的第二開口圖案154的技術手段。如此一來,藉由將背面介電層150的位於主柵線區域R1的第一開口圖案152與位於其他區域R2的第二開口圖案154具有不同的形態分布,可以有效增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中第一背面電極160a與焊條180之間以及第一背面電極160a與P型矽晶片110之間的附著力,避免太陽能電池100串接成太陽能電池模組10時自第一背面電極160a處脫落,在使 太陽能電池的效率維持一定的前提下,並進一步增加太陽能電池模組的可靠度與良率。 Further, in the first embodiment, the back surface dielectric is realized by adjusting the first width W1 of the first sub-pattern 152a to be different from the second width W2 of the second sub-pattern 154a. The first opening pattern 152 of the layer 150 located in the main gate line region R1 is different from the second opening pattern 154 located in the other region R2. In this way, the passivation emitter back electrode can be effectively enhanced by disposing the first opening pattern 152 of the back dielectric layer 150 in the main gate line region R1 and the second opening pattern 154 located in the other region R2. The adhesion between the first back electrode 160a and the electrode 180 and the first back electrode 160a and the P-type germanium wafer 110 in the subsequent module process prevents the solar cell 100 from being serially connected into the solar cell module 10 When it comes off from the first back electrode 160a, Under the premise of maintaining the efficiency of the solar cell, the reliability and yield of the solar cell module are further increased.

值得一提的是,背面介電層150的第一開口圖案152與第二開口圖案154的總面積相對於背面S2之面積的比率較佳為0.5%至15%之間,藉此可以使太陽能電池發揮最佳的效率。 It is worth mentioning that the ratio of the total area of the first opening pattern 152 and the second opening pattern 154 of the back dielectric layer 150 to the area of the back surface S2 is preferably between 0.5% and 15%, thereby enabling solar energy. The battery works best.

當然,除了上述第一實施例之外,也可以其它方式來實現背面介電層位於主柵線區域的圖案不同於其位於其他區域的圖案的技術手段。當然,設計者亦可依據產品實際需求而以第一實施例之改變寬度併用下述實施例之部分或全部技術,以更進一步增強背面銀電極與焊條之間以及背面銀電極與矽晶片之間的附著力。亦或者,設計者亦可僅選用下述實施例中的任一種技術,即可發揮增強附著力,提高太陽能電池模組可靠率以及良率的效果。 Of course, in addition to the first embodiment described above, other means for realizing the pattern in which the back dielectric layer is located in the main gate line region is different from the pattern in which the other regions are located. Of course, the designer can also use the modified width of the first embodiment and some or all of the following embodiments according to the actual needs of the product to further enhance the between the back silver electrode and the electrode and between the back silver electrode and the germanium wafer. Adhesion. Alternatively, the designer can use only one of the following embodiments to enhance the adhesion and improve the reliability and yield of the solar cell module.

[第二實施例][Second embodiment]

圖4B是圖3中一實施例的太陽能電池背面上視圖在B部分的第二實施例的局部放大圖。 Figure 4B is a partial enlarged view of the second embodiment of the back side view of the solar cell of Figure 3 in a portion B of Figure 3;

本實施例之背面介電層250與第一實施例之背面介電層150類似,惟,不同之處在於本實施例之背面介電層250是藉由改變第一開口圖案252的分布密度(即數量)來實現背面介電層位於主柵線區域的圖案不同於其位於其他區域的圖案的技術手段。 The back dielectric layer 250 of this embodiment is similar to the back dielectric layer 150 of the first embodiment, except that the back dielectric layer 250 of the present embodiment is formed by changing the distribution density of the first opening pattern 252 ( That is, the number) is a technical means for realizing that the pattern of the back dielectric layer in the main gate line region is different from the pattern of the other region.

具體而言,在本實施例中,在與第一實施例之主柵線區域R1相同的範圍內,以增加第一開口圖案252的數量但不改變寬 度來代替第一實施例中增加第一開口圖案252寬度的作法。詳言之,本實施例之第一開口圖案252包括彼此獨立的四個第一子圖案252a,而第二開口圖案254包括彼此獨立的四個第二子圖案254a,其中這些第一子圖案252a與第二子圖案254a分別為條狀圖案且彼此大體上互相平行。 Specifically, in the present embodiment, in the same range as the main gate line region R1 of the first embodiment, the number of the first opening patterns 252 is increased without changing the width. Instead of the first embodiment, the width of the first opening pattern 252 is increased. In detail, the first opening pattern 252 of the present embodiment includes four first sub-patterns 252a independent of each other, and the second opening pattern 254 includes four second sub-patterns 254a independent of each other, wherein the first sub-patterns 252a The second sub-patterns 254a are respectively in a stripe pattern and are substantially parallel to each other.

此外,在本發明中,也可以視需求調整第一子圖案252a與第二子圖案254a的數量,本發明並不以此為限,只要可使第一子圖案252a與第二子圖案254a的分布密度不同,即達到增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中第一背面電極與焊條以及第一背面電極與P型矽晶片之間的附著力的效果。 In addition, in the present invention, the number of the first sub-pattern 252a and the second sub-pattern 254a may be adjusted as needed, and the present invention is not limited thereto, as long as the first sub-pattern 252a and the second sub-pattern 254a may be The distribution density is different, that is, the effect of enhancing the adhesion between the first back electrode and the electrode and the first back electrode and the P-type germanium wafer in the subsequent passivation process of the passivated emitter back electrode twin solar cell.

更具體而言,如圖4B所示,本實施例中任兩相鄰第一子圖案252a之間的第一間距P1例如是小於任兩相鄰第二子圖案254a之間的第二間距P2,當然在其他實施例中亦可以使第一間距P1大於第二間距P2,同樣可以達到增加附著力的效果。 More specifically, as shown in FIG. 4B, the first pitch P1 between any two adjacent first sub-patterns 252a in this embodiment is, for example, smaller than the second pitch P2 between any two adjacent second sub-patterns 254a. In other embodiments, the first pitch P1 may be greater than the second pitch P2, and the effect of increasing the adhesion may be achieved.

換言之,在本發明之第二實施例中,是藉由任兩相鄰第一子圖案252a之間的第一間距P1不同於任兩相鄰第二子圖案254a之間的第二間距P2,藉此實現背面介電層250的位於主柵線區域R1的第一開口圖案252不同於位於其他區域R2的第二開口圖案254的技術手段。如此一來,可以有效增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中第一背面電極與焊條以及第一背面電極與P型矽晶片之間的附著力,避免太陽能電池串接成太陽能電池模組時自第一背面電極處脫落,在使太陽能電池的效 率維持一定的前提下,並進一步增加太陽能電池模組的可靠度與良率。 In other words, in the second embodiment of the present invention, the first pitch P1 between any two adjacent first sub-patterns 252a is different from the second pitch P2 between any two adjacent second sub-patterns 254a. Thereby, the technical means of the first opening pattern 252 of the back surface dielectric layer 250 located in the main gate line region R1 is different from the second opening pattern 254 located in the other region R2. In this way, the adhesion between the first back electrode and the electrode and the first back electrode and the P-type germanium wafer in the subsequent module process of the passivated emitter back electrode twin solar cell can be effectively enhanced to prevent the solar cell from being connected in series. When the solar cell module is detached from the first back electrode, the solar cell is effective. Under the premise of maintaining a certain rate, and further increase the reliability and yield of solar cell modules.

值得一提的是,雖然在本實施例之背面介電層250中,是以單獨採用改變第一開口圖案之數量的方式來進行說明,但設計者亦可視產品需求而併用前述實施例之改變第一開口圖案之寬度的方式來發揮增強附著力的效果,提高太陽能電池模組可靠率以及良率的效果,本發明不以此為限。 It should be noted that although in the back surface dielectric layer 250 of the embodiment, the number of the first opening patterns is changed by using the same, the designer can also use the changes of the foregoing embodiments according to the product requirements. The effect of enhancing the adhesion by the width of the first opening pattern and the effect of improving the reliability and yield of the solar cell module are not limited thereto.

[第三實施例][Third embodiment]

圖4C是圖3中一實施例的太陽能電池背面上視圖在B部分的第三實施例的局部放大圖。 Fig. 4C is a partial enlarged view of the third embodiment of the upper side view of the solar cell of Fig. 3 in the portion B.

本實施例之背面介電層350與第一實施例之背面介電層150類似,惟,不同之處在於本實施例之背面介電層350是藉由改變第一開口圖案352的圖形來實現背面介電層位於主柵線區域的圖案不同於其位於其他區域的圖案的技術手段。 The back dielectric layer 350 of this embodiment is similar to the back dielectric layer 150 of the first embodiment, except that the back dielectric layer 350 of the present embodiment is implemented by changing the pattern of the first opening pattern 352. The pattern in which the back dielectric layer is located in the main gate line region is different from the pattern in which the pattern is located in other regions.

具體而言,在與第一實施例之主柵線區域R1相同的範圍內,以改變第一開口圖案352的形狀但不改變寬度以及數量的方式來代替第一實施例中增加第一開口圖案152寬度的作法。詳言之,本實施例之第一開口圖案352包括多個呈線段狀的第一子圖案352a,且第二開口圖案354包括彼此獨立呈條狀的四個第二子圖案354a。巨觀來看,本實施例之呈線段狀的第一子圖案352a在主柵線區域R1中呈現如兩條虛線之條狀圖案的分布形態,而第二 子圖案354a在其他區域R2中呈現四條如實線之條狀圖案的分布形態。 Specifically, in the same range as the main gate line region R1 of the first embodiment, the first opening pattern is added instead of the first embodiment in such a manner that the shape of the first opening pattern 352 is changed without changing the width and the number. 152 width practice. In detail, the first opening pattern 352 of the present embodiment includes a plurality of first sub-patterns 352a in the shape of a line, and the second opening pattern 354 includes four second sub-patterns 354a that are strip-shaped independently of each other. In a giant view, the first sub-pattern 352a in the form of a line segment of the present embodiment exhibits a distribution pattern of strip patterns such as two broken lines in the main gate line region R1, and the second The sub-pattern 354a presents a distribution pattern of four strip patterns such as solid lines in the other regions R2.

值得一提的是,本實施例之第一子圖案352a在主柵線區域R1中所佔的比例小於第二子圖案354a在其他區域R2中所佔的比例,藉此可使背面S2的背面介電層150的總面積增加,即延長載子存活時間的效果增加,進而增加太陽能電池的效率。 It is worth mentioning that the proportion of the first sub-pattern 352a in the main gate line region R1 in this embodiment is smaller than the proportion of the second sub-pattern 354a in the other region R2, thereby making the back surface of the back surface S2 The increase in the total area of the dielectric layer 150, that is, the effect of prolonging the survival time of the carrier, increases the efficiency of the solar cell.

換言之,在本發明之第三實施例中,是藉由調整第一子圖案352a的形狀與第二子圖案354a的形狀不同,以實現背面介電層350位於主柵線區域R1的第一開口圖案352不同於位於其他區域R2的第二開口圖案354,藉此可維持第一背面電極與焊條以及第一背面電極與P型矽晶片之間的附著力,亦即在維持太陽能電池模組的可靠度及良率的前提下,進一步增加太陽能電池的效率。 In other words, in the third embodiment of the present invention, by adjusting the shape of the first sub-pattern 352a and the shape of the second sub-pattern 354a, the first opening of the back dielectric layer 350 in the main gate line region R1 is realized. The pattern 352 is different from the second opening pattern 354 located in the other region R2, thereby maintaining the adhesion between the first back electrode and the electrode and the first back electrode and the P-type wafer, that is, maintaining the solar cell module. Under the premise of reliability and yield, the efficiency of solar cells is further increased.

值得一提的是,雖然在本實施例之背面介電層350中,是以單獨採用改變第一開口圖案之圖形的方式來進行說明,但設計者亦可視產品需求而併用前述實施例之改變第一開口圖案之寬度、分布數量、間距等方式來發揮增強附著力,提高太陽能電池模組可靠率以及良率的效果,本發明不以此為限。 It should be noted that although the back surface dielectric layer 350 of the present embodiment is described by separately changing the pattern of the first opening pattern, the designer can also use the changes of the foregoing embodiments according to the product requirements. The width, the number of distributions, the spacing, and the like of the first opening pattern exert an effect of enhancing the adhesion and improving the reliability and yield of the solar cell module, and the invention is not limited thereto.

[第四實施例][Fourth embodiment]

圖4D是圖3中一實施例的太陽能電池背面上視圖在B部分的第四實施例的局部放大圖。 Figure 4D is a partial enlarged view of the fourth embodiment of the back side view of the solar cell of Figure 3 in a portion B of Figure 3;

本實施例之背面介電層450在位於主柵線區域R1為全面 覆蓋P型矽晶片。具體而言,背面介電層450在位於主柵線區域R1不具有開口。相對於此,背面介電層450在位於其他區域R2的第二開口圖案454,例如是前述實施例的第二開口圖案454a。具體來說,第二開口圖案454包括多個呈圓形的第二子圖案454a。這些第二子圖案454a在巨觀上於其他區域R2中呈現出多條分別由多個點所構成的直線彼此並排的分布形態。 The back surface dielectric layer 450 of this embodiment is comprehensive in the main gate line region R1. Cover the P-type germanium wafer. Specifically, the back dielectric layer 450 does not have an opening in the main gate line region R1. On the other hand, the second dielectric pattern 450 of the back surface dielectric layer 450 in the other region R2 is, for example, the second opening pattern 454a of the foregoing embodiment. Specifically, the second opening pattern 454 includes a plurality of second sub-patterns 454a that are circular. These second sub-patterns 454a exhibit a plurality of distribution patterns in which the straight lines each composed of a plurality of points are arranged side by side in the other region R2.

換言之,在本發明之第三實施例中,藉由使主柵線區域R1中的背面介電層450不具有開口,並使位於其他區域R2之第二開口圖案454第二子圖案454a呈圓形,因此,如同上述實施例,可藉此可使背面的背面介電層的總面積增加,即延長載子存活時間的效果增加,進而增加太陽能電池的效率。 In other words, in the third embodiment of the present invention, the back surface dielectric layer 450 in the main gate line region R1 does not have an opening, and the second sub-pattern 454a of the second opening pattern 454 located in the other region R2 is rounded. Therefore, as in the above embodiment, the total area of the back surface dielectric layer can be increased, that is, the effect of prolonging the carrier survival time is increased, thereby increasing the efficiency of the solar cell.

值得一提的是,雖然在本實施例之背面介電層450中,是使主柵線區域R1中的背面介電層450不具有開口併用改變第二開口圖案之圖形的方式來進行說明,但設計者亦可視產品需求而併用前述實施例之改變第二開口圖案之寬度、分布數量、間距、圖形等方式來提高太陽能電池的效率,本發明不以此為限。 It is to be noted that, in the back surface dielectric layer 450 of the present embodiment, the back dielectric layer 450 in the main gate line region R1 is not provided with an opening and is changed by changing the pattern of the second opening pattern. However, the designer can also improve the efficiency of the solar cell by changing the width, the number of distributions, the spacing, the pattern, and the like of the second opening pattern according to the product requirements, and the invention is not limited thereto.

以下以前述第一實施例為例進一步說明本發明之矽晶太陽能電池的製造方法。 Hereinafter, a method of manufacturing the twinned solar cell of the present invention will be further described by taking the first embodiment as an example.

圖5A至圖5C是依照本發明的第一實施例的一種矽晶太陽能電池的製造方法的示意圖。 5A through 5C are schematic views of a method of fabricating a twinned solar cell in accordance with a first embodiment of the present invention.

請參照圖5A。首先,提供P型矽晶片110,其具有受光面S1與背面S2。P型矽晶片110於背面S2上具有主柵線區域R1 以及除主柵線區域R1以外的其他區域R2(如圖3所示)。此外,P型矽晶片110例如是硼摻雜或鎵摻雜的矽晶片。接著,以例如熱擴散(thermal diffusion)或離子植入法(ion implantation)於P型矽晶片110的受光面S1進行N型摻雜(例如磷摻雜或砷摻雜等V族元素),以於受光面S1上形成N型摻雜層120。 Please refer to FIG. 5A. First, a P-type germanium wafer 110 having a light receiving surface S1 and a back surface S2 is provided. The P-type germanium wafer 110 has a main gate line region R1 on the back surface S2 And a region R2 other than the main gate line region R1 (as shown in FIG. 3). Further, the P-type germanium wafer 110 is, for example, a boron-doped or gallium-doped germanium wafer. Next, N-type doping (for example, a group V element such as phosphorus doping or arsenic doping) is performed on the light-receiving surface S1 of the P-type germanium wafer 110 by, for example, thermal diffusion or ion implantation. An N-type doping layer 120 is formed on the light receiving surface S1.

然後,以例如化學氣相沉積法(Chemical Vapor Deposition,CVD)或電漿增強式化學氣相沉積法(Plasma Enhanced Chemical Vapor Deposition,PECVD)於受光面S1的N型摻雜層120上形成正面介電層130,其中正面介電層130例如是SiO2、SixNy、SixNyHz、SixOyNz或SiC組合的單層或多層結構。 Then, a positive electrode is formed on the N-doped layer 120 of the light receiving surface S1 by, for example, Chemical Vapor Deposition (CVD) or Plasma Enhanced Chemical Vapor Deposition (PECVD). The electrical layer 130, wherein the front dielectric layer 130 is, for example, a single layer or a multilayer structure of a combination of SiO 2 , Si x N y , Si x N y H z , Si x O y N z or SiC.

接著,以化學氣相沉積法或電漿增強式化學氣相沉積法於P型矽晶片110的背面S2形成背面介電層150,其中背面介電層150例如是AlxOy、SiO2、SixNy、SixNyHz、SixOyNz或SiC組合的單層或多層結構。 Next, the back surface dielectric layer 150 is formed on the back surface S2 of the P-type germanium wafer 110 by chemical vapor deposition or plasma enhanced chemical vapor deposition, wherein the back dielectric layer 150 is, for example, Al x O y , SiO 2 , A single layer or multilayer structure of a combination of Si x N y , Si x N y H z , Si x O y N z or SiC.

接下來,請參照圖5B,接著對背面介電層150進行圖案化,以於背面介電層150之位於主柵線區域R1形成第一開口圖案152,並於背面介電層150之位於其他區域R2形成第二開口圖案154,其中第一開口圖案152與第二開口圖案154暴露出P型矽晶片110。值得注意的是,對背面介電層150進行圖案化的方法包括蝕刻膠(etching paste)、雷射蝕刻法(laser-etching method)、微影蝕刻製程(photolithography process)等方法。 Next, referring to FIG. 5B, the back dielectric layer 150 is then patterned to form a first opening pattern 152 in the main gate line region R1 of the back dielectric layer 150, and the other in the back dielectric layer 150. The region R2 forms a second opening pattern 154, wherein the first opening pattern 152 and the second opening pattern 154 expose the P-type germanium wafer 110. It should be noted that the method of patterning the back dielectric layer 150 includes an etching paste, a laser-etching method, a photolithography process, and the like.

然後,請參照圖5C,於正面介電層130上形成正面電極 組成物140,舉例而言,例如是網印一正面電極組成物140,其中正面電極組成物140例如是銀漿。 Then, referring to FIG. 5C, a front electrode is formed on the front dielectric layer 130. The composition 140 is, for example, a screen printed front electrode composition 140, wherein the front electrode composition 140 is, for example, a silver paste.

接著,將第一背面電極組成物160以及第二背面電極組成物170分別網印於第一開口圖案152內以及第二開口圖案154內。第一背面電極組成物160例如是銀漿,並且第二背面電極組成物170例如是鋁漿。 Next, the first back electrode composition 160 and the second back electrode composition 170 are respectively screen printed in the first opening pattern 152 and in the second opening pattern 154. The first back electrode composition 160 is, for example, a silver paste, and the second back electrode composition 170 is, for example, an aluminum paste.

接著,對已形成有正面電極組成物140、第一背面電極組成物160以及第二背面電極組成物170的上述結構進行高溫共燒製程,以分別形成正面電極140a、第一背面電極160a以及第二背面電極170a。值得注意的是,高溫共燒製程的最高溫度大於600℃。 Next, the above structure in which the front electrode composition 140, the first back electrode composition 160, and the second back electrode composition 170 are formed is subjected to a high-temperature co-firing process to form the front surface electrode 140a, the first back surface electrode 160a, and the first surface, respectively. Two back electrodes 170a. It is worth noting that the maximum temperature of the high temperature co-firing process is greater than 600 °C.

接著,將焊條180焊接於第一背面電極160a上,藉此焊條180與第一背面電極160a以及第二背面電極170a互相接觸。構成前述圖1、圖2所示的太陽能電池100的結構。 Next, the electrode 180 is welded to the first back surface electrode 160a, whereby the electrode 180 is in contact with the first back surface electrode 160a and the second back surface electrode 170a. The structure of the solar cell 100 shown in FIG. 1 and FIG. 2 is comprised.

值得注意的是,N型摻雜層120對應於正面電極140a的區域可以是高濃度磷摻雜,且其表面電阻為小於或等於70ohm/sq.。又,N型摻雜層120對應於除了正面電極140a以外的區域可以是低濃度磷摻雜,且其表面電阻為大於70ohm/sq.。此外,N型摻雜層120對應於正面電極140a以外的區域的一部分也可以是高濃度磷摻雜。 It is to be noted that the region of the N-type doping layer 120 corresponding to the front surface electrode 140a may be a high concentration of phosphorus doping, and its surface resistance is less than or equal to 70 ohm/sq. Further, the region of the N-type doping layer 120 corresponding to the surface other than the front surface electrode 140a may be low-concentration phosphorus doping, and its surface resistance is more than 70 ohm/sq. Further, a part of the region other than the front electrode 140a of the N-type doping layer 120 may also be doped with a high concentration of phosphorus.

圖6是依照本發明第一實施例的太陽能電池模組示意圖。太陽能電池模組10可包括多個太陽能電池100以及焊條180,其中焊條180電性連接於兩相鄰的太陽能電池100之間。具體而 言,焊條180的兩端分別連結太陽能電池100的電極與另一個太陽能電池100的電極。如此一來,焊條180便可收集來自電極的電流,並將電流傳導到另一個太陽能電池100。 Figure 6 is a schematic view of a solar cell module in accordance with a first embodiment of the present invention. The solar cell module 10 can include a plurality of solar cells 100 and an electrode 180, wherein the electrode 180 is electrically connected between two adjacent solar cells 100. Specifically In other words, both ends of the electrode 180 are connected to the electrodes of the solar cell 100 and the electrodes of the other solar cell 100, respectively. As such, the electrode 180 can collect current from the electrode and conduct current to the other solar cell 100.

<太陽能電池評價><Solar cell evaluation>

在以下實例中,對鈍化發射極背電極矽晶太陽能電池來進行評價,其結果如表1及表2所示。 In the following examples, the passivated emitter back electrode twin solar cells were evaluated, and the results are shown in Tables 1 and 2.

-實例1--Example 1

導電漿A是由銀粉(50~60wt.%)、酯醇(40~50wt.%)、樹脂(1~10wt.%)及玻璃粉A(1~10wt.%)所組成,其結果如表1所示。 Conductive paste A is composed of silver powder (50~60wt.%), ester alcohol (40~50wt.%), resin (1~10wt.%) and glass powder A (1~10wt.%). The results are shown in the table. 1 is shown.

-實例2--Example 2

導電漿B是由銀粉(50~60wt.%)、酯醇(40~50wt.%)、樹脂(1~10wt.%)及玻璃粉B(1~10wt.%)所組成,其結果如表2所示。 Conductive paste B is composed of silver powder (50~60wt.%), ester alcohol (40~50wt.%), resin (1~10wt.%) and glass frit B (1~10wt.%). The results are shown in the table. 2 is shown.

[評價方式][Evaluation method] -效率--effectiveness-

使用太陽電池效率量測機台,針對不同實施例之鈍化發射極背電極矽晶太陽能電池進行電池效率評估。太陽電池效率量測機台為endeas所製造之QuickSun-120CA型太陽電池效率量測機。 Cell efficiency evaluations were performed on passivated emitter back electrode twin solar cells of different embodiments using a solar cell efficiency measuring machine. The solar cell efficiency measuring machine is a QuickSun-120CA solar cell efficiency measuring machine manufactured by Endeas.

-拉力測試-- Pull test -

將焊條(Ribbon)(鍍錫銅帶,其鍍錫成份比例為Sn/Pb/Ag=62%/36%/2%)於60℃下預熱,再以溫度約為360℃的焊 槍將焊條焊接在背面電極上(如圖1所示)。接著,以相對於基板的反方向(180度)進行拉力測試,測量將焊條與表面電極分離所需的拉力,其中拉力的速度為20mm/sec,且拉力越高代表附著力越高。 A ribbon (tinned copper strip with a tin-plated composition ratio of Sn/Pb/Ag=62%/36%/2%) is preheated at 60 ° C, and then welded at a temperature of about 360 ° C. The gun welds the electrode to the back electrode (as shown in Figure 1). Next, a tensile test was performed with respect to the opposite direction (180 degrees) of the substrate, and the tensile force required to separate the electrode from the surface electrode was measured, wherein the pulling force was 20 mm/sec, and the higher the pulling force, the higher the adhesion.

[評價結果][Evaluation results]

表1及表2分別繪示以導電漿A與導電漿B作為第一背面電極,並以上述第一實施例為基礎,測量改變背面介電層在主柵線區域的蝕刻面積(即第一開口圖案面積以及第二開口圖案面積)比率(%)對太陽能電池之效率以及拉力的影響。 Table 1 and Table 2 respectively show that the conductive paste A and the conductive paste B are used as the first back surface electrode, and based on the first embodiment described above, the etching area of the back surface dielectric layer in the main gate line region is measured (ie, the first The ratio of the opening pattern area and the second opening pattern area (%) to the efficiency of the solar cell and the tensile force.

請參看表1以及表2,背面介電層在主柵線區域的蝕刻面積比率(%)大於1%時,不論背面介電層在主柵線區域中之第一開口圖案的面積是大於、小於或等於其他區域中之第二開口圖案的面積,正規化拉力皆大於1(正規化拉力的分母為一般太陽能電池拉力的最低要求)。這說明了藉由將背面介電層的位於主柵線區域的第一開口圖案以及位於其他區域的第二開口圖案設計為不相同,可以符合太陽能電池模組可靠率以及良率的效果。又,當背面介電層在主柵線區域的蝕刻面積(即第一開口圖案的面積)比率(%)增加時,太陽能電池的效率雖稍微降低但仍能維持一定的水準,而拉力卻大幅地提升,代表第一背面電極與背面介電層之間以及第一背面電極與P型矽晶片之間的附著面積增加,以提升太陽能電池模組可靠率以及良率的效果。因此可依據對拉力的需求 不同,在不嚴重影響電池效率之下,調整主柵線區域的第一開口圖案比率。 Referring to Table 1 and Table 2, when the etching area ratio (%) of the back dielectric layer in the main gate line region is greater than 1%, the area of the first opening pattern in the main gate line region of the back dielectric layer is greater than Less than or equal to the area of the second opening pattern in other regions, the normalized pulling force is greater than 1 (the denominator of the normalized pulling force is the minimum requirement for the general solar cell pulling force). This shows that by designing the first opening pattern of the back dielectric layer in the main gate line region and the second opening pattern in other regions to be different, the solar cell module reliability and yield can be met. Moreover, when the ratio (%) of the etching area of the back surface dielectric layer in the main gate line region (ie, the area of the first opening pattern) is increased, the efficiency of the solar cell is slightly lowered, but still maintains a certain level, and the pulling force is large. The ground lift increases the adhesion area between the first back electrode and the back dielectric layer and between the first back electrode and the P-type germanium wafer to improve the reliability and yield of the solar cell module. Therefore, it can be based on the demand for tension Differently, the ratio of the first opening pattern of the main gate line region is adjusted without seriously affecting the battery efficiency.

此外,使用導電漿B的拉力結果比導電漿A高,表示導電漿B與與背面介電層之間以及導電漿B與P型矽晶片之間有較好的附著力。 In addition, the tensile force using the conductive paste B is higher than that of the conductive paste A, indicating that there is good adhesion between the conductive paste B and the back dielectric layer and between the conductive paste B and the P-type germanium wafer.

綜合上述,本發明之一實施例中藉由將背面介電層的位於主柵線區域的第一開口圖案以及位於其他區域的第二開口圖案設計為不相同,可以有效增強鈍化發射極背電極矽晶太陽能電池在後續模組製程中背面銀電極與焊條以及背面銀電極與基板之間的附著力,避免鈍化發射極背電極矽晶太陽能電池串接成鈍化發射極背電極矽晶太陽能電池模組時自背面銀電極處脫落,在可使太陽能電池的效率維持一定水準的前提下,有效地增加太陽能電池模組的可靠度與良率。並且,在本發明之另一實施例中,藉由藉由使主柵線區域中的背面介電層不具有開口,並使其他區域具有第二開口圖案,藉此亦可以使太陽能電池的效率提升。 In summary, in one embodiment of the present invention, the passivation emitter back electrode can be effectively enhanced by designing the first opening pattern of the back dielectric layer in the main gate line region and the second opening pattern in other regions to be different. The adhesion between the back silver electrode and the electrode and the back silver electrode and the substrate in the subsequent module process, avoiding passivation of the emitter back electrode, the twinned solar cell is connected in series to passivate the emitter back electrode, the twin solar cell module When it is set, it will fall off from the back silver electrode, and the reliability and yield of the solar cell module can be effectively increased under the premise that the efficiency of the solar cell can be maintained at a certain level. Moreover, in another embodiment of the present invention, the efficiency of the solar cell can also be achieved by making the back dielectric layer in the main gate line region have no opening and the other regions have the second opening pattern. Upgrade.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的 精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art without departing from the invention. In the spirit and scope, the scope of protection of the present invention is subject to the definition of the appended patent application.

100‧‧‧太陽能電池 100‧‧‧ solar cells

110‧‧‧P型矽晶片 110‧‧‧P type silicon wafer

120‧‧‧N型摻雜層 120‧‧‧N-doped layer

130‧‧‧正面介電層 130‧‧‧Positive dielectric layer

140a‧‧‧正面電極 140a‧‧‧front electrode

150‧‧‧背面介電層 150‧‧‧Back dielectric layer

152‧‧‧第一開口圖案 152‧‧‧first opening pattern

154‧‧‧第二開口圖案 154‧‧‧Second opening pattern

152a‧‧‧第一子圖案 152a‧‧‧The first sub-pattern

154a‧‧‧第二子圖案 154a‧‧‧Second sub-pattern

160a‧‧‧第一背面電極 160a‧‧‧First back electrode

170a‧‧‧第二背面電極 170a‧‧‧second back electrode

180‧‧‧焊條 180‧‧‧ welding rod

S1‧‧‧受光面 S1‧‧‧Stained surface

S2‧‧‧背面 S2‧‧‧Back

Claims (31)

一種鈍化發射極背電極矽晶太陽能電池,包括:一P型矽晶片,其具有一受光面與一背面,所述P型矽晶片於所述背面上具有一主柵線區域以及除所述主柵線區域以外的其他區域;一N型摻雜層,位於所述P型矽晶片的所述受光面上;一正面介電層,位於所述N型摻雜層上;一正面電極,位於所述正面介電層上;一背面介電層,位於所述P型矽晶片的所述背面上,所述背面介電層具有位於所述主柵線區域的一第一開口圖案以及位於所述其他區域的一第二開口圖案,其中所述第一開口圖案與所述第二開口圖案暴露出所述P型矽晶片,且所述背面介電層的所述第一開口圖案不同於所述第二開口圖案;一第一背面電極,位於所述背面介電層上,並填入所述第一開口圖案內;以及一第二背面電極,位於所述背面介電層上,並填入所述第二開口圖案內。 A passivated emitter back electrode twin solar cell comprising: a P-type germanium wafer having a light receiving surface and a back surface, the P-type germanium wafer having a main gate line region on the back surface and a region other than the gate line region; an N-type doped layer on the light receiving surface of the P-type germanium wafer; a front dielectric layer on the N-type doped layer; and a front electrode located at On the front dielectric layer; a back dielectric layer on the back surface of the P-type germanium wafer, the back dielectric layer having a first opening pattern in the main gate line region and located at the a second opening pattern of the other region, wherein the first opening pattern and the second opening pattern expose the P-type germanium wafer, and the first opening pattern of the back dielectric layer is different from a second opening pattern; a first back electrode on the back dielectric layer and filled in the first opening pattern; and a second back electrode on the back dielectric layer and filled in Into the second opening pattern. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一開口圖案包括彼此獨立的多個第一子圖案,且所述第二開口圖案包括彼此獨立的多個第二子圖案。 The passivated emitter back electrode twin solar cell of claim 1, wherein the first opening pattern comprises a plurality of first sub-patterns independent of each other, and the second opening pattern comprises a plurality of independent patterns Second sub-pattern. 如申請專利範圍第2項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一子圖案的第一寬度不同於所述第二子圖案 的第二寬度。 The passivated emitter back electrode twin solar cell of claim 2, wherein the first sub-pattern has a first width different from the second sub-pattern The second width. 如申請專利範圍第3項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一子圖案與所述第二子圖案分別為條狀圖案。 The passivated emitter back electrode twin solar cell of claim 3, wherein the first sub-pattern and the second sub-pattern are strip patterns, respectively. 如申請專利範圍第2項所述的鈍化發射極背電極矽晶太陽能電池,其中任兩相鄰所述第一子圖案之間的第一間距不同於任兩相鄰所述第二子圖案之間的第二間距。 The passivated emitter back electrode twin solar cell of claim 2, wherein a first pitch between any two adjacent first sub-patterns is different from any two adjacent second sub-patterns The second spacing between. 如申請專利範圍第5項所述的鈍化發射極背電極矽晶太陽能電池,其中第一間距小於第二間距。 The passivated emitter back electrode twin solar cell of claim 5, wherein the first pitch is less than the second pitch. 如申請專利範圍第2項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一子圖案在所述主柵線區域中呈現虛線的分布形態,所述第二子圖案在其他區域中呈現實線的分布形態,且所述第一子圖案在所述主柵線區域中所佔的比例小於所述第二子圖案在其他區域中所佔的比例。 The passivated emitter back electrode twinned solar cell of claim 2, wherein the first sub-pattern exhibits a dotted distribution pattern in the main gate line region, and the second sub-pattern is in other regions. A distribution pattern of solid lines is present, and a proportion of the first sub-pattern in the main gate line region is smaller than a ratio of the second sub-pattern in other regions. 如申請專利範圍第2項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一子圖案的形狀不同於所述第二子圖案。 The passivated emitter back electrode twin solar cell of claim 2, wherein the shape of the first sub-pattern is different from the second sub-pattern. 如申請專利範圍第2項所述的鈍化發射極背電極矽晶太陽能電池,其中所述第一子圖案與所述第二子圖案分別是線、點、線段或其組合。 The passivated emitter back electrode twin solar cell of claim 2, wherein the first sub-pattern and the second sub-pattern are respectively a line, a point, a line segment or a combination thereof. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,更包括一焊條,其中所述焊條與所述第一背面電極連接。 The passivated emitter back electrode twin solar cell of claim 1, further comprising an electrode, wherein the electrode is connected to the first back electrode. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太 陽能電池,其中所述p型矽晶片包括硼摻雜或鎵摻雜的矽晶片。 Passivated emitter back electrode twins as described in claim 1 A solar cell, wherein the p-type germanium wafer comprises a boron doped or gallium doped germanium wafer. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述背面介電層中所述第一開口圖案與所述第二開口圖案的總面積相對於所述背面之面積的比率為0.5%至15%之間。 The passivated emitter back electrode twinned solar cell of claim 1, wherein a total area of the first opening pattern and the second opening pattern in the back dielectric layer is opposite to the back surface The ratio of the area is between 0.5% and 15%. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述背面介電層為AlxOy、SiO2、SixNy、SixNyHz、SixOyNz或SiC組合的單層或多層結構。 The passivated emitter back electrode twin solar cell of claim 1, wherein the back dielectric layer is Al x O y , SiO 2 , Si x N y , Si x N y H z , Si x Single or multi-layer structure of O y N z or SiC combination. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述正面介電層為SiO2、SixNy或SixNyHz、SixOyNz或SiC組合的單層或多層結構。 The passivated emitter back electrode twinned solar cell of claim 1, wherein the front dielectric layer is SiO 2 , Si x N y or Si x N y H z , Si x O y N z or Single or multi-layer structure of SiC combination. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述N型摻雜層對應於所述正面電極的區域為高濃度磷摻雜,且其表面電阻為小於或等於70ohm/sq.。 The passivated emitter back electrode twinned solar cell of claim 1, wherein the region of the N-type doped layer corresponding to the front electrode is doped with a high concentration of phosphorus, and the surface resistance thereof is less than or Equal to 70 ohm/sq. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述N型摻雜層對應於除了所述正面電極以外的區域為低濃度磷摻雜,且其表面電阻為大於70ohm/sq.。 The passivated emitter back electrode twinned solar cell according to claim 1, wherein the N-type doped layer corresponds to a region other than the front electrode and is doped with a low concentration of phosphorus, and the surface resistance thereof is More than 70 ohm/sq. 如申請專利範圍第1項所述的鈍化發射極背電極矽晶太陽能電池,其中所述N型摻雜層對應於所述正面電極以外的區域的一部分為高濃度磷摻雜。 The passivated emitter back electrode twinned solar cell of claim 1, wherein the N-doped layer is doped with a high concentration of phosphorus corresponding to a portion of the region other than the front electrode. 一種鈍化發射極背電極矽晶太陽能電池,包括:一P型矽晶片,其具有一受光面與一背面,所述P型矽晶片 於所述背面上具有一主柵線區域以及除所述主柵線區域以外的其他區域;一N型摻雜層,位於所述P型矽晶片的所述受光面上;一正面介電層,位於所述N型摻雜層上;一正面電極,位於所述正面介電層上;一背面介電層,位於所述P型矽晶片的所述背面上,所述背面介電層在位於所述主柵線區域的圖案不同於所述背面介電層在位於所述其他區域的圖案;一第一背面電極,位於所述背面介電層上;以及一第二背面電極,位於所述背面介電層上,並填入所述背面介電層之位於所述其他區域的圖案內。 A passivated emitter back electrode twin solar cell comprising: a P-type germanium wafer having a light receiving surface and a back surface, the P-type germanium wafer Having a main gate line region and other regions besides the main gate line region on the back surface; an N-type doped layer on the light receiving surface of the P-type germanium wafer; a front dielectric layer On the N-type doped layer; a front electrode on the front dielectric layer; a back dielectric layer on the back surface of the P-type germanium wafer, the back dielectric layer a pattern in the main gate line region is different from a pattern of the back dielectric layer in the other region; a first back electrode on the back dielectric layer; and a second back electrode in the The back dielectric layer is filled in the pattern of the back dielectric layer in the other regions. 如申請專利範圍第18項所述的鈍化發射極背電極矽晶太陽能電池,其中所述背面介電層在位於所述主柵線區域為全面覆蓋所述P型矽晶片,而所述背面介電層在位於所述其他區域具有開口圖案。 The passivated emitter back electrode twinned solar cell of claim 18, wherein the back dielectric layer covers the P-type germanium wafer in a region of the main gate line, and the backside dielectric The electrical layer has an open pattern in the other regions. 一種太陽能電池模組,其包括:多個如申請專利範圍第1項或第19項中任一項所述的鈍化發射極背電極矽晶太陽能電池;以及焊條,電性連接於兩相鄰所述鈍化發射極背電極矽晶太陽能電池之間。 A solar cell module comprising: a plurality of passivated emitter back electrode twin solar cells according to any one of claim 1 or claim 19; and an electrode electrically connected to two adjacent places The passivated emitter back electrode is between the twinned solar cells. 一種鈍化發射極背電極矽晶太陽能電池的製造方法,包括: 提供一P型矽晶片,其具有一受光面與一背面,所述P型矽晶片於所述背面上具有一主柵線區域以及除所述主柵線區域以外的其他區域;於所述P型矽晶片的所述受光面上形成一N型摻雜層;於所述N型摻雜層上形成一正面介電層;於所述正面介電層上形成一正面電極;於所述P型矽晶片的所述背面上形成一背面介電層,以於所述背面介電層之位於所述主柵線區域形成一第一開口圖案,並於所述背面介電層之位於所述其他區域形成一第二開口圖案,其中所述第一開口圖案與所述第二開口圖案暴露出所述P型矽晶片,且所述背面介電層的所述第一開口圖案不同於所述第二開口圖案;於所述背面介電層上形成一第一背面電極,以使所述第一背面電極填入所述第一開口圖案內;以及於所述背面介電層上形成一第二背面電極,以使所述第二背面電極填入所述第二開口圖案內。 A method for manufacturing a passivated emitter back electrode twinned solar cell, comprising: Providing a P-type germanium wafer having a light-receiving surface and a back surface, the P-type germanium wafer having a main gate line region and other regions than the main gate line region on the back surface; Forming an N-type doped layer on the light-receiving surface of the 矽-type wafer; forming a front dielectric layer on the N-type doped layer; forming a front electrode on the front dielectric layer; Forming a back dielectric layer on the back surface of the NMOS wafer, wherein a first opening pattern is formed on the back gate dielectric layer in the main gate line region, and the back dielectric layer is located on the back surface dielectric layer The other regions form a second opening pattern, wherein the first opening pattern and the second opening pattern expose the P-type germanium wafer, and the first opening pattern of the back dielectric layer is different from the a second opening pattern; a first back surface electrode is formed on the back dielectric layer to fill the first back surface electrode; and a first dielectric layer is formed on the back surface dielectric layer Two back electrodes such that the second back electrode fills the second opening Inside the pattern. 如申請專利範圍第21項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一開口圖案包括彼此獨立的多個第一子圖案,且所述第二開口圖案包括彼此獨立的多個第二子圖案。 The method of manufacturing the passivated emitter back electrode twinned solar cell of claim 21, wherein the first opening pattern comprises a plurality of first sub-patterns independent of each other, and the second opening pattern comprises each other A plurality of second sub-patterns that are independent. 如申請專利範圍第22項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一子圖案的第一寬度不同於所 述第二子圖案的第二寬度。 The method of manufacturing a passivated emitter back electrode twinned solar cell according to claim 22, wherein the first sub-pattern has a first width different from that of The second width of the second sub-pattern is described. 如申請專利範圍第23項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一子圖案與所述第二子圖案分別為條狀圖案。 The method for manufacturing a passivated emitter back electrode twinned solar cell according to claim 23, wherein the first sub-pattern and the second sub-pattern are strip patterns, respectively. 如申請專利範圍第22項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中任兩相鄰所述第一子圖案之間的第一間距不同於任兩相鄰所述第二子圖案之間的第二間距。 The method for manufacturing a passivated emitter back electrode twinned solar cell according to claim 22, wherein a first pitch between any two adjacent first sub-patterns is different from any two adjacent ones The second spacing between the sub-patterns. 如申請專利範圍第25項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中第一間距小於第二間距。 The method of manufacturing a passivated emitter back electrode twinned solar cell according to claim 25, wherein the first pitch is smaller than the second pitch. 如申請專利範圍第22項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一子圖案在所述主柵線區域中呈現虛線的分布形態,所述第二子圖案在其他區域中呈現實線的分布形態,且所述第一子圖案在所述主柵線區域中所佔的比例小於所述第二子圖案在其他區域中所佔的比例。 The method of manufacturing a passivated emitter back electrode twinned solar cell according to claim 22, wherein the first sub-pattern exhibits a dotted distribution pattern in the main gate line region, and the second sub-pattern A distribution pattern of solid lines is presented in other regions, and a proportion of the first sub-pattern in the main gate line region is smaller than a ratio of the second sub-pattern in other regions. 如申請專利範圍第22項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一子圖案的形狀不同於所述第二子圖案。 The method of manufacturing a passivated emitter back electrode twinned solar cell according to claim 22, wherein the shape of the first sub-pattern is different from the second sub-pattern. 如申請專利範圍第22項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述第一子圖案與所述第二子圖案分別是線、點、線段或其組合。 The method for manufacturing a passivated emitter back electrode twinned solar cell according to claim 22, wherein the first sub-pattern and the second sub-pattern are respectively a line, a point, a line segment or a combination thereof. 如申請專利範圍第21項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,其中所述背面介電層中所述第一開口圖案 與所述第二開口圖案的總面積相對於所述背面之面積的比率為0.5%至15%之間。 The method of manufacturing a passivated emitter back electrode twinned solar cell according to claim 21, wherein the first opening pattern in the back dielectric layer is A ratio of a total area of the second opening pattern to an area of the back surface is between 0.5% and 15%. 如申請專利範圍第21項所述的鈍化發射極背電極矽晶太陽能電池的製造方法,更包括於所述第一背面電極上形成一焊條。 The method for manufacturing a passivated emitter back electrode twinned solar cell according to claim 21, further comprising forming an electrode on the first back electrode.
TW102132443A 2013-09-09 2013-09-09 Passivated emitter rear contact solar cell and method of manufacturing the same TW201511306A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102132443A TW201511306A (en) 2013-09-09 2013-09-09 Passivated emitter rear contact solar cell and method of manufacturing the same
CN201310728746.XA CN104425634A (en) 2013-09-09 2013-12-20 Passivated emitter back electrode silicon crystal solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102132443A TW201511306A (en) 2013-09-09 2013-09-09 Passivated emitter rear contact solar cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW201511306A true TW201511306A (en) 2015-03-16

Family

ID=52974103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102132443A TW201511306A (en) 2013-09-09 2013-09-09 Passivated emitter rear contact solar cell and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN104425634A (en)
TW (1) TW201511306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206770A (en) * 2015-03-27 2016-12-07 新日光能源科技股份有限公司 Solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146737B1 (en) * 2009-06-29 2012-05-18 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR20130096822A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
CN202601627U (en) * 2012-05-04 2012-12-12 浙江尖山光电股份有限公司 Cirrus-type back electrode solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206770A (en) * 2015-03-27 2016-12-07 新日光能源科技股份有限公司 Solar cell
CN106206770B (en) * 2015-03-27 2017-11-10 新日光能源科技股份有限公司 Solar cell

Also Published As

Publication number Publication date
CN104425634A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
USRE46515E1 (en) Solar cell
US9722101B2 (en) Solar cell, solar cell manufacturing method, and solar cell module
US8981208B2 (en) Solar cell
KR101889775B1 (en) Solar cell and method for manufacturing the smae
JP2006332273A (en) Backside contact solar cell
US20120291860A1 (en) Solar cell and method of manufacturing the same
US20120118372A1 (en) Solar cell
US9000291B2 (en) Solar cell and method for manufacturing the same
US9997647B2 (en) Solar cells and manufacturing method thereof
TWI424582B (en) Method of fabricating solar cell
EP2605285B1 (en) Photovoltaic device
RU2590284C1 (en) Solar cell
JP7228561B2 (en) Solar cell manufacturing method
US20120192942A1 (en) Solar cell and method for manufacturing the same
TWI506801B (en) Solar battery
JP7221276B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP7281444B2 (en) Solar cell manufacturing method
JP5645734B2 (en) Solar cell element
KR101863068B1 (en) Solar Cell and method of manufacturing the same
TW201511306A (en) Passivated emitter rear contact solar cell and method of manufacturing the same
JPWO2019163784A1 (en) How to manufacture solar cells
WO2012014806A1 (en) Process for producing solar cell
TWI552360B (en) Solar cell
KR101738785B1 (en) Silicon solar cell, and method for manufacturing same
KR101642153B1 (en) Solar cell and method for manufacturing the same