WO2019127943A1 - 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途 - Google Patents

一种氮化硼团聚体、包含其的热固性树脂组合物及其用途 Download PDF

Info

Publication number
WO2019127943A1
WO2019127943A1 PCT/CN2018/080166 CN2018080166W WO2019127943A1 WO 2019127943 A1 WO2019127943 A1 WO 2019127943A1 CN 2018080166 W CN2018080166 W CN 2018080166W WO 2019127943 A1 WO2019127943 A1 WO 2019127943A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
thermosetting resin
resin composition
agglomerate
mass
Prior art date
Application number
PCT/CN2018/080166
Other languages
English (en)
French (fr)
Inventor
黄增彪
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to EP18896498.5A priority Critical patent/EP3733594A4/en
Priority to US16/770,004 priority patent/US11661378B2/en
Publication of WO2019127943A1 publication Critical patent/WO2019127943A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention belongs to the technical field of polymers, and in particular relates to a boron nitride agglomerate, a thermosetting resin composition comprising the same, and use thereof.
  • a resin composition or a composite material is gradually used to have a filler having a higher thermal conductivity, boron nitride and an alumina filler, so that a resin composition or a composite material can obtain a higher thermal conductivity.
  • a resin composition or a composite material can obtain a higher thermal conductivity.
  • the basic structure of the thin layered boron nitride is generally shown in FIG.
  • a thin layer of sheet-like boron nitride is easily agglomerated in the resin composition, is difficult to disperse, and also causes a decrease in peel strength between the resin polymer and other metals.
  • CN103249695A discloses a boron nitride agglomerate comprising thin layered hexagonal boron nitride primary particles agglomerated in a preferred orientation, the agglomerates being formed into a sheet, and the sheet agglomerates are used for polymerization.
  • the boron agglomerate is more directional, which will improve the dispersion and increase the addition amount and increase the thermal conductivity to some extent.
  • the boron nitride agglomerate will have a relatively large particle size, the aggregate particle size is difficult to control, and the peel strength is improved. limited.
  • CN106255721A discloses a thermally conductive composite material comprising a polymer and boron nitride, wherein the boron nitride is in the form of nanofibers, nanotubes, nanosheets or a combination thereof; or a thermally conductive composite material comprising a boron nitride of a hole and a polymer located in a pore of boron nitride;
  • CN102197069A discloses a heat conductive sheet containing plate-shaped boron nitride particles having an average particle diameter of more than 10 ⁇ m and not more than 60 ⁇ m; The boronized particles are oriented in such a manner that their long axis directions are along the thickness direction of the sheet.
  • boron nitride agglomerate a thermosetting resin composition comprising the same, and use thereof.
  • the boron nitride agglomerate provided by the present invention is added to a thermosetting resin composition, and a resin sheet, a resin composite metal foil, a prepreg, a laminate, a metal foil-clad laminate, and a printed wiring board obtained by the same are used. Both have higher boron nitride addition, high thermal conductivity and high peel strength.
  • the present invention provides a boron nitride agglomerate which is a multi-stage structure in which primary particles of flaky hexagonal boron nitride are arranged in a three-dimensional direction by an inorganic binder.
  • the three-dimensional direction of the boron nitride agglomerates is mainly composed of flaky hexagonal boron nitride primary particles by any one or at least two of a face-to-face connection, a face-to-end connection or an end-to-end connection.
  • the boron nitride agglomerate of the multi-stage structure is a secondary structure or/and a tertiary structure.
  • the primary structure is a flaky hexagonal boron nitride primary particle
  • the secondary structure is a flower-like structure, a staircase structure or an arch structure formed by the flaky hexagonal boron nitride primary particles radiating outward from the same center, and the tertiary structure It is a macroscopic agglomerate stacked by a flower structure, a staircase structure or an arch structure.
  • the secondary structure is a flower-like structure, a stair structure or an arch structure formed by flaking hexagonal boron nitride primary particles radiating outward from the same center, and the secondary structure is Many individual hexagonal boron nitride (hBN) platelets are bonded by an inorganic binder phase (Inorganic Binder).
  • hBN hexagonal boron nitride
  • the secondary structure is a flower-like structure composed of flaky hexagonal boron nitride primary particles radiating outward from the same center, which means that the hexagonal boron nitride (hBN) platelet is taken with the inorganic binder phase as a central pillar.
  • hBN hexagonal boron nitride
  • the hexagonal boron nitride (hBN) platelets are not in contact with each other, nor are they arranged in parallel, but are inclined at an angle, for example, a hexagonal boron nitride (hBN) platelet has an angle of 5 to 170 degrees, and the whole It seems to present a "flower-like structure", which mainly refers to the flower shape of the Rosaceae plant, such as rose flower, rose, etc., the "petal” can be single or multi-layer, the number of "petals” It can be between 2 and 6.
  • the hexagonal boron nitride (hBN) platelets are divided into two parts, "head end” and “tail end", through inorganic bonding.
  • the end of the first hexagonal boron nitride (hBN) platelet and the head end of the second hexagonal boron nitride (hBN) platelet are overlapped, and the third hexagonal boron nitride (hBN) platelet is further laminated.
  • the head end overlaps at the end of the second hexagonal boron nitride (hBN) platelet, so repeated, and after multiple combinations, a stair-like structure is formed.
  • the arc structure in which the secondary structure is composed of flaky hexagonal boron nitride primary particles means that hexagonal boron nitride (hBN) platelets are strung together with an inorganic binder phase as a central pillar, and hexagonal boron nitride is used.
  • the (hBN) platelets are not in contact with each other, nor are they arranged in parallel, but are inclined at an angle, and their openings are downward, and the whole appears to be "arched”.
  • the boron nitride agglomerates of the present invention are distinguished from non-agglomerated thin layered boron nitride primary particles, which are referred to in the English literature as "flaky boron nitride primary particles";
  • the thin layered hexagonal boron nitride primary particles which are mutually agglomerated in the preferred orientation disclosed in the prior art or whose major axis direction is oriented along the thickness direction of the sheet, are generally in a non-sheet or laminated structure.
  • the boron nitride agglomerate of the multistage structure is a tertiary structure.
  • the flaky hexagonal boron nitride primary particles have a particle diameter of 0.5 ⁇ m to 200 ⁇ m, for example, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m, further preferably 3 ⁇ m to 30 ⁇ m, more preferably 5 ⁇ m to 10 ⁇ m.
  • the inorganic binder is 0.02% to 20% by mass of the flaky hexagonal boron nitride primary particles, for example, 0.02%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4 %, 5%, 8%, 10%, 12%, 15%, 16%, 18% or 20%.
  • the inorganic binder is an inorganic filler having a dielectric constant D k ⁇ 9.0, for example, a dielectric constant D k of 1, 2, 3, 4, 5, 6, 7, 8, or 9.
  • the inorganic filler is any one or a mixture of at least two of silica, borosilicate glass, boron trioxide, cerium oxide, hollow glass microspheres or ceramics, of which typical but not limited The mixture is: silica and borosilicate glass; boron trioxide and cerium oxide; hollow glass microspheres and ceramics.
  • the present invention provides a method for preparing a boron nitride agglomerate according to the first aspect, which comprises: mixing flaky hexagonal boron nitride primary particles with an inorganic binder, and inorganic bonding
  • the mass of the agent accounts for 0.02% to 20% of the mass of the flaky hexagonal boron nitride primary particles, and the boron nitride agglomerate of the multistage structure is obtained.
  • the inorganic binder mass accounts for 0.02% to 20% of the mass of the flaky hexagonal boron nitride primary particles, thereby obtaining A boron nitride agglomerate as described in the first aspect.
  • the flower-like structure in the multi-stage structure gradually decreases, and the arch shape and the stair-like structure gradually increase.
  • the mass of the inorganic binder is less than 0.02% or more than 20% by mass of the flaky hexagonal boron nitride primary particles, the boron nitride agglomerate structure of the present invention cannot be obtained.
  • the inorganic binder is 0.02% to 20% by mass of the flaky hexagonal boron nitride primary particles, for example, 0.02%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 8%, 10%, 12%, 15%, 16%, 18% or 20%, preferably 0.5% to 10%, further preferably 1% to 5%.
  • the inorganic binder is an inorganic filler having a dielectric constant D k ⁇ 9.0, for example, a dielectric constant Dk of 1, 2, 3, 4, 5, 6, 7, 8, or 9.
  • the dielectric constant D k can be measured by using a 1 MHz test frequency and an IPC-2.5.5.9 plate capacitance method.
  • the inorganic filler is any one or a mixture of at least two of silica, borosilicate glass, boron trioxide, cerium oxide or hollow glass microspheres, wherein a typical but non-limiting mixture They are: silica and borosilicate glass; boron trioxide and cerium oxide; hollow glass microspheres and silica.
  • thermosetting resin composition comprising:
  • thermosetting resin (A) a thermosetting resin
  • the thermosetting resin is an epoxy resin, a polyphenylene ether resin, a polybutadiene, a polystyrene-butadiene block polymer, a cyanate resin, a bismaleimide-triazine resin, Any one or a mixture of at least two of polytetrafluoroethylene, polyimide, polyfunctional epoxy, liquid crystal epoxy or bismaleimide, wherein a typical but non-limiting mixture is: epoxy And polyphenylene ether resins; polybutadiene and polystyrene-butadiene block polymers; cyanate resins and bismaleimide-triazine resins.
  • the thermosetting resin has a mass of 5% to 85%, such as 5%, 8%, 10%, 12%, 15%, 20%, 22%, 25%, 31%, of the total mass of the thermosetting resin composition. , 38%, 40%, 42%, 45%, 50%, 55%, 60%, 68%, 70%, 75%, 80%, 82% or 85%.
  • the boron nitride agglomerate has a mass of 5% to 90%, such as 5%, 8%, 10%, 12%, 15%, 20%, 22%, 25%, of the total mass of the thermosetting resin composition. 31%, 38%, 40%, 42%, 45%, 50%, 55%, 60%, 68%, 70%, 75%, 80%, 82%, 85%, 88% or 90%, preferably 30% to 80%, further preferably 40% to 70%.
  • thermosetting resin composition further comprises (C) a curing agent.
  • the curing agent is any one or a mixture of at least two of an aliphatic amine, an alicyclic amine, an aromatic amine, a phenolic aldehyde, a carboxylic acid, a phenol, an ether, an active ester or an acid anhydride, of which typical but Non-limiting mixtures are: aliphatic amines and cycloaliphatic amines; aromatic amines and phenolic aldehydes; active esters and anhydrides; phenolic, carboxylic acids and phenols.
  • the curing agent has a mass of 0.5% to 40%, such as 0.5%, 1%, 2%, 5%, 10%, 12%, 15%, 20%, 25%, of the total mass of the thermosetting resin composition. , 30%, 32%, 35% or 40%.
  • thermosetting resin composition further comprises (D) an accelerator and/or (E) an initiator.
  • the initiator is a free radical initiator.
  • the promoter is any one or a mixture of at least two of imidazole, phenols, pyridines, triphenylphosphine or organometallic salts, wherein typical but non-limiting mixtures are: imidazoles and phenols Pyridines and triphenylphosphine; triphenylphosphine and organometallic salts.
  • the organometallic salt is any one or a mixture of at least two of tin octylate, zinc octoate, zinc isooctylate, tin isooctylate, dibutyltin dilaurate or aluminum acetylacetonate, of which typical but Non-limiting mixtures are: tin octoate and zinc octoate; zinc isooctylate and tin isooctylate; tin isooctylate and dibutyltin dilaurate.
  • the accelerator or initiator has a mass of 0.01% to 5%, such as 0.01%, 0.02%, 0.03%, 0.05%, 0.1%, 0.5%, 1%, 2%, of the total mass of the thermosetting resin composition. , 3%, 4% or 5%.
  • thermosetting resin composition further comprises (F) other filler.
  • the other filler is silica, fumed silica, calcium carbonate, titanium dioxide, kaolin, nano boron nitride, boron nitride fiber, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, talcum powder Any one or a mixture of at least two of aluminum nitride, silicon carbide, boron trioxide, silicate or hollow glass microspheres, wherein a typical but non-limiting mixture is: silica and gas phase dioxide Silicon; phase silica and calcium carbonate; boron nitride fiber and alumina; magnesium oxide and aluminum hydroxide.
  • the mass of the other filler is from 0.5% to 70%, such as 0.5%, 0.8%, 0.9%, 1%, 1.5%, 2%, 5%, 10%, 12%, of the total mass of the thermosetting resin composition. , 15%, 18%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%.
  • thermosetting resin composition further comprises (G) a flame retardant.
  • the flame retardant is an additive type organic flame retardant, and the organic flame retardant is preferably a phosphorus-containing and/or halogen-containing flame retardant.
  • the quality of the flame retardant is from 1% to 40%, such as 1%, 2%, 5%, 6%, 8%, 10%, 11%, 13%, 15% of the total mass of the thermosetting resin composition. %, 18%, 20%, 25%, 30%, 35%, 38% or 40%.
  • the present invention also provides a prepreg comprising a reinforcing material and a thermosetting resin composition as described in the third aspect attached thereto by dipping and drying.
  • the present invention also provides a laminate comprising at least one prepreg as described in the fourth aspect.
  • the present invention provides a high frequency circuit substrate, the substrate comprising at least one prepreg as described in the fourth aspect, and a metal covering one side or both sides of the laminated prepreg Foil.
  • the present invention has at least the following beneficial effects:
  • the invention provides a thermosetting resin composition excellent in drilling processability with high thermal conductivity, low dielectric constant and high peel strength, which solves the low thermal conductivity, high dielectric constant and low peel strength of a conventional printed circuit board. The problem.
  • 1 is a basic structure of a general thin layered boron nitride in the prior art
  • Figure 2 is a boron nitride agglomerate structure disclosed in CN103249695A;
  • SEM scanning electron microscope
  • FIG. 4 is a schematic view showing a multistage structure (staircase) boron nitride agglomerate structure prepared by an embodiment of the present invention.
  • a method for preparing a boron nitride agglomerate comprises the following steps:
  • the flaky hexagonal boron nitride primary particles are mixed with boron trioxide, wherein the mass of the boron trioxide accounts for 5% of the mass of the flaky hexagonal boron nitride primary particles, and the average particle diameter of the flaky hexagonal boron nitride primary particles is 10 ⁇ m.
  • the boron nitride agglomerate I is obtained.
  • Fig. 3 is an SEM spectrum of the boron nitride agglomerate obtained in the present example
  • the obtained product was a boron nitride agglomerate.
  • the morphology of the obtained product is shown in Fig. 3. It is formed by flaky hexagonal boron nitride primary particles arranged in three dimensions, which contains a flower-like shape formed by flaky hexagonal boron nitride primary particles radiating outward from the same center.
  • the main three-dimensional structure is formed by flaky hexagonal boron nitride primary particles arranged in three dimensions, which contains a flower-like shape formed by flaky hexagonal boron nitride primary particles radiating outward from the same center.
  • the boron nitride agglomerate II was obtained by controlling the quality of the boron trioxide to 1% of the mass of the flaky hexagonal boron nitride primary particles as compared with the preparation example 1.
  • the obtained product is formed by flaking hexagonal boron nitride primary particles arranged in three dimensions, and contains a three-dimensional structure mainly composed of a flaky hexagonal boron nitride primary particle radiating outward from the same center.
  • the quality of the boron trioxide was controlled to 10% of the mass of the flaky hexagonal boron nitride primary particles, and the average particle diameter of the flaky hexagonal boron nitride primary particles was 50 ⁇ m to obtain the boron nitride.
  • Agglomerate III was controlled to 10% of the mass of the flaky hexagonal boron nitride primary particles, and the average particle diameter of the flaky hexagonal boron nitride primary particles was 50 ⁇ m to obtain the boron nitride.
  • the obtained product is formed by flaking hexagonal boron nitride primary particles arranged in three dimensions, and comprises a three-dimensional structure mainly composed of stairs-like hexagonal boron nitride primary particles radiating outward from the same center (Fig. 4) Shown).
  • the quality of the boron trioxide was controlled to 15% of the mass of the flaky hexagonal boron nitride primary particles, and the average particle diameter of the flaky hexagonal boron nitride primary particles was 5 ⁇ m to obtain the boron nitride.
  • Agglomerate IV was controlled to 15% of the mass of the flaky hexagonal boron nitride primary particles, and the average particle diameter of the flaky hexagonal boron nitride primary particles was 5 ⁇ m to obtain the boron nitride.
  • the obtained product is formed by arranging hexagonal boron nitride primary particles in a three-dimensional direction, and contains an arch-shaped three-dimensional structure composed of flaky hexagonal boron nitride primary particles radiating outward from the same center.
  • boron trioxide was replaced by a mixture of silica and borosilicate glass, wherein the mass of silica accounted for 5% of the mass of the flaky hexagonal boron nitride primary particles, borosilicate The mass of the glass accounts for 15% of the mass of the flaky hexagonal boron nitride primary particles, and the boron nitride agglomerate V is obtained.
  • the obtained product is formed by arranging hexagonal boron nitride primary particles in a three-dimensional direction, and contains a three-dimensional structure mainly composed of a stair-like shape composed of flaky hexagonal boron nitride primary particles radiating outward from the same center.
  • the obtained product is formed by flaking hexagonal boron nitride primary particles arranged in three dimensions, and contains a three-dimensional structure mainly composed of a flaky hexagonal boron nitride primary particle radiating outward from the same center.
  • the boron trioxide was replaced with cerium oxide and hollow glass microspheres, and the quality of the cerium oxide was controlled to be 3% of the mass of the flaky hexagonal boron nitride primary particles, and the quality of the hollow glass microspheres was thin.
  • the boron nitride agglomerate VII is obtained by 16% of the mass of the hexagonal boron nitride primary particles.
  • the obtained product is formed by arranging hexagonal boron nitride primary particles in a three-dimensional direction, and contains a three-dimensional structure mainly composed of a stair-like shape composed of flaky hexagonal boron nitride primary particles radiating outward from the same center.
  • the quality of the boron trioxide was controlled to be 0.01% by mass of the flaky hexagonal boron nitride primary particles, and the others were the same as those in Preparation Example 1.
  • the resulting product was a random floc agglomerate shaped similar to the structure of Figure 1.
  • the quality of the boron trioxide was controlled to be 21% by mass of the flaky hexagonal boron nitride primary particles, and the others were the same as in Preparation Example 1.
  • the obtained product is mainly a layered structure supported by boron trioxide as a binder.
  • the shape of the obtained product was similar to that of Preparation Example 1, but because of its very high D k , it could not be used in the low dielectric field.
  • thermosetting resin compositions containing the above boron nitride agglomerates are thermosetting resin compositions containing the above boron nitride agglomerates.
  • the sum of the parts by weight of the SA9000, the styrene-butadiene block copolymer, the boron nitride agglomerate, the silica, the dicumyl peroxide and the decabromodiphenylethane is 100 parts.
  • the sum of the parts by weight of the SA9000, the styrene-butadiene block copolymer, the boron nitride agglomerate, the silica, the dicumyl peroxide and the decabromodiphenylethane is 100 parts.
  • the sum of the SA9000, the styrene-butadiene block copolymer, the boron nitride agglomerate, the silica, the dicumyl peroxide, and the SPB 100 parts by weight is 100 parts.
  • EPIKOTE 828EL 40 parts of EPIKOTE 828EL, 37.7 parts of boron nitride agglomerate IV prepared in Preparation 4, 3 parts of silica, 4.26 parts of dicyandiamide, 0.04 parts of 2-methylimidazole, and 15 parts of decabromodiphenylethane were used. N,N-dimethylformamide dissolves the above compound and prepares a suitable viscosity.
  • This type of glue was used to wet the 2116 type electronic grade glass cloth, and the solvent was removed in an oven at 115 ° C to obtain a B-stage prepreg sample having a resin content of 54%.
  • the sum of the parts by weight of the EPIKOTE 828EL, boron nitride agglomerate, silica, dicyandiamide, 2-methylimidazole and decabromodiphenylethane is 100 parts.
  • the sum of the parts by weight of the SA9000, styrene-butadiene block copolymer, flaky boron nitride group, silica, dicumyl peroxide and decabromodiphenylethane is 100 parts.
  • the sum of the parts by weight of the SA9000, styrene-butadiene block copolymer, flaky boron nitride group, silica, dicumyl peroxide and decabromodiphenylethane is 100 parts.
  • the sum of the SA9000, the styrene-butadiene block copolymer, the flake boron nitride, the silica, the dicumyl peroxide, and the SPB 100 parts by weight is 100 parts.
  • the lamination conditions are as follows: 1. When the feed temperature is between 80 ° C and 120 ° C, the heating rate is controlled at 0.5 ° C to 4.0 ° C / min; 2, the pressure is designed to be 20 kg / cm 2 ; 3, the curing temperature is 190 ° C, and maintained at 90 minute.
  • EPIKOTE 828EL 40 parts of EPIKOTE 828EL, 37.7 parts of tabular boron nitride prepared according to Preparation Example 1, 3 parts of silica, 4.26 parts of dicyandiamide, 0.04 parts of 2-methylimidazole, and 15 parts of decabromodiphenylethane were used. N,N-dimethylformamide dissolves the above compound and prepares a suitable viscosity. This type of glue was used to wet the 2116 type electronic grade glass cloth, and the solvent was removed in an oven at 115 ° C to obtain a B-stage prepreg sample having a resin content of 54%. The sum of the parts by weight of the EPIKOTE 828EL, boron nitride agglomerate, silica, dicyandiamide, 2-methylimidazole and decabromodiphenylethane is 100 parts.
  • Dielectric constant (Dk), dielectric loss (Df) The test uses the IPC-TM-6502.5.5.9 method;
  • Insulation layer thermal conductivity test method tested according to ASTM D5470 standard.
  • Example 1 Comparing Example 1 with Comparative Example 1, it can be seen that the laminate prepared in Example 1 has a D k value of 3.83, which is lower than the D k value (3.92) of Comparative Example 1, and the thermal conductivity of the insulating layer. It is 1.48 w/(mk), which is higher than the thermal conductivity (1.03 w/(mk)) of the insulating layer of Comparative Example 1, and the peeling strength is 1.16 N/mm, which is higher than the peeling strength (0.87 N/mm) of Comparative Example 1. Comparing Examples 2 to 4 with Comparative Examples 2 to 4, respectively, the same conclusion can be drawn.
  • the resin composition containing the boron nitride agglomerate produced by the present invention it is possible to use a resin composition containing a sheet-like boron nitride having no binder added thereto, which enables the laminate to be laminated. having more excellent dielectric properties (D k values less), (a higher thermal conductivity insulating layer) better thermal conductivity, the insulating layer and the copper foil peeling strength also at a higher level.
  • Example 1 Comparative Example 5
  • the laminate prepared in Example 1 has a D k value of 3.83, which is lower than the D k value (3.87) of Comparative Example 5, and the thermal conductivity of the insulating layer. It is 1.48 w/(mk), which is higher than the thermal conductivity (1.12 w/(mk)) of the insulating layer of Comparative Example 5, and the peeling strength is 1.16 N/mm, which is higher than the peeling strength of Comparative Example 5 (0.76 N/mm). .
  • Example 1 and Comparative Example 6 are compared it can be seen, although Comparative Example 6 was a laminate having a lower D k values and higher peel strength, however, it is much lower than the thermal conductivity in the insulating layer aspects Example 1.
  • Example 1 Comparative Example 7
  • the laminate prepared in Example 1 has a D k value of 3.83, which is much lower than the D k value (5.68) of Comparative Example 7, and the insulating layer is thermally conductive.
  • the ratio is 1.48 w/(mk), which is higher than the thermal conductivity (0.98 w/(mk)) of the insulating layer of Comparative Example 7, and the peeling strength is 1.16 N/mm, which is higher than the peeling strength of Comparative Example 7 (1.08 N/mm).
  • the comparison between Example 1 and Comparative Example 8 gave the same conclusion.
  • Example 1 Comparative As can be seen with Comparative Example 9, although having a lower D k value of Comparative Example 9, however the thermal conductivity and the peeling strength insulating layer are lower than Example 1; Example A comparison with Comparative Example 10 yields the same conclusion.
  • the resin composition containing the boron nitride agglomerate produced by the present invention the resin composition of the boron nitride agglomerate obtained by using CN103249695A and CN106255721A can make the laminate have More excellent overall performance, especially with better thermal conductivity (higher thermal conductivity of the insulation) and higher peel strength of the insulation layer and copper foil.
  • Example and test results from the comparative table can be drawn, the resin composition comprising boron nitride agglomerates according to the present invention, the laminate can have more excellent dielectric properties (D k values less)
  • the superior thermal conductivity (higher thermal conductivity of the insulating layer), the peeling strength of the insulating layer and the copper foil are also at a relatively high level, and the comprehensive performance of the sheet is relatively excellent for the customer.
  • thermosetting composition provided by the present invention can effectively control the thickness of the copper clad laminate under mild conditions, it is of great significance in terms of production and economic effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

提供了一种氮化硼团聚体,所述氮化硼团聚体为由薄片状六方氮化硼一次颗粒在三维方向通过无机粘结剂连接排列而成的多级结构;还提供一种制备所述氮化硼团聚体的方法,其通过将薄片状六方氮化硼一次颗粒与无机粘结剂混合,并控制无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%-20%,得到所述氮化硼团聚体;所提供的氮化硼团聚体可添加到热固性树脂组合物中,利用其制得的树脂片材、树脂复合金属箔、预浸料、层压板、覆金属箔层压板和印制线路板,均具有更高的氮化硼添加量、高热导率及高剥离强度。

Description

一种氮化硼团聚体、包含其的热固性树脂组合物及其用途 技术领域
本发明属于高分子技术领域,尤其涉及一种氮化硼团聚体、包含其的热固性树脂组合物及其用途。
背景技术
近年来,树脂组合物或复合材料为了获得更高的材料热导率,逐渐使用拥有更高导热系数的填料氮化硼和氧化铝填料,使树脂组合物或复合材料获得更高的热导率成为现实,进一步提高材料的散热能力。一般薄层状氮化硼基本结构如图1所示。然而,对于一般薄层片状氮化硼而言,其在树脂组合物中添加容易团聚,难以分散,另外还会导致树脂聚合物与其他金属间的剥离强度降低。
CN103249695A中公开了一种氮化硼团聚体,其包含以一种择优取向相互团聚的薄层状六方氮化硼一次颗粒,所述团聚体成型为片状,将该片状团聚体用于聚合物的合适填料,用于制造聚合物-氮化硼复合物,以及用于氮化硼烧结体的热压;和图1薄层状(flake-shaped)氮化硼相对比,该薄层氮化硼团聚物堆积更具有方向性,会在一定程度上改善分散和增加添加量,提高热导率,但是氮化硼团聚物相对会粒径过大,团聚体粒径难以控制,剥离强度提升有限。
CN106255721A中公开了一种导热复合材料,其包含聚合物和氮化硼,其中所述氮化硼为纳米纤维、纳米管、纳米片或其组合的形式;或者,一种导热复合材料,包含含有孔的氮化硼和位于氮化硼的孔中的聚合物;CN102197069A中公开了一种导热片材,其含有平均粒径超过10μm且为60μm以下的板状氮化硼粒子;该板状氮化硼粒子以其长轴方向沿着片材的厚度方向的方式取向。尽管上述公开的复合材料均具有较高的导热性,然而其对剥离强度的改善仍不足。
为了达到更高的添加量、更高热导率及更高剥离强度,目前需要开发一种具有氮化硼相当的热导率又具有较高剥离强度的新型氮化硼团聚物。
发明内容
鉴于目前存在的问题,本发明的目的在于提供一种氮化硼团聚体、包含其的热固性树脂组合物及其用途。将本发明所提供的氮化硼团聚体添加到热固性树脂组合物中,利用其制得的树脂片材、树脂复合金属箔、预浸料、层压板、覆金属箔层压板和印制线路板,均具有更高的氮化硼添加量、高热导率及高剥离强度。
为达此目的,本发明采用了如下技术方案:
第一方面,本发明提供了一种氮化硼团聚体,所述氮化硼团聚体为由薄片状六方氮化硼一次颗粒在三维方向通过无机粘结剂连接排列而成的多级结构。
优选地,所述氮化硼团聚体的三维方向主要由薄片状六方氮化硼一次颗粒通过面-面连接、面-端连接或端-端连接方式中的任意一种或至少两种构成。
优选地,所述多级结构的氮化硼团聚体,为二级结构或/和三级结构。其中,一级结构为薄片状六方氮化硼一次颗粒,二级结构为由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的花状结构、楼梯结构或拱形结构,三级结构为由花状结构、楼梯结构或拱形结构堆叠的宏观团聚体。
本发明中所述氮化硼团聚体中,二级结构为由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的花状结构、楼梯结构或拱形结构,该二级结构是由许多单独的六方氮化硼(hBN)片晶通过无机粘结相(Inorganic Binder)粘结而成的。
对于二级结构为由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的花状结构,其是指,以无机粘结相作为中心支柱,将六方氮化硼(hBN)片晶串 起来,六方氮化硼(hBN)片晶彼此之间不相互接触,也不是平行排列,而是呈一定角度倾斜,例如六方氮化硼(hBN)片晶之间呈5~170度角,整体看来呈现“花状结构”,该花状结构主要是指蔷薇科植物的花外形,例如月季花状、玫瑰花状等,其“花瓣”可以是单层或多层,“花瓣”个数可以是2~6之间。
对于二级结构为由薄片状六方氮化硼一次颗粒构成的楼梯结构,其是指,将六方氮化硼(hBN)片晶分成“头端”和“尾端”两部分,通过无机粘结相将第一个六方氮化硼(hBN)片晶的尾端和第二个六方氮化硼(hBN)片晶的头端重叠起来,再将第三个六方氮化硼(hBN)片晶的头端重叠在第二个六方氮化硼(hBN)片晶的尾端,如此反复,多次组合后形成楼梯状结构。
对于二级结构为由薄片状六方氮化硼一次颗粒构成的拱形结构,其是指,以无机粘结相作为中心支柱,将六方氮化硼(hBN)片晶串起来,六方氮化硼(hBN)片晶彼此之间不相互接触,也不是平行排列,而是呈一定角度倾斜,其开口向下,整体看来呈现“拱形”。
本发明所述的氮化硼团聚体区别于非团聚的薄层状氮化硼一次颗粒,后者在英文文献中被称为“薄片状的(flaky)氮化硼一次颗粒”;也区别于现有技术中公开的择优取向相互团聚的薄层状六方氮化硼一次颗粒或其长轴方向沿着片材的厚度方向的方式取向,其整体呈现为非片状或层叠结构。
优选地,所述多级结构的氮化硼团聚体为三级结构。
优选地,所述薄片状六方氮化硼一次颗粒的粒径为0.5μm~200μm,例如0.5μm、1μm、5μm、10μm、12μm、15μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、120μm、150μm、180μm、190μm或200μm,优选1μm~100μm,进一步优选3μm~30μm,更优选5μm~10μm。
优选地,所述无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的 0.02%~20%,例如0.02%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、8%、10%、12%、15%、16%、18%或20%。
优选地,所述无机粘结剂为介电常数D k≤9.0的无机填料,例如介电常数D k为1、2、3、4、5、6、7、8或9等。
优选地,所述无机填料为二氧化硅、硼硅酸盐玻璃、三氧化二硼、氧化铋、中空玻璃微球或陶瓷中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:二氧化硅和硼硅酸盐玻璃;三氧化二硼和氧化铋;中空玻璃微球和陶瓷。
第二方面,本发明还提供了如第一方面所述的氮化硼团聚体的制备方法,所述方法为:将薄片状六方氮化硼一次颗粒与无机粘结剂混合,且无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%~20%,得到所述多级结构的氮化硼团聚体。
本发明中,通过控制无机粘结剂与薄片状六方氮化硼一次颗粒的质量配比,即,无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%~20%,从而获得如第一方面所述的氮化硼团聚体。
本发明中,随着无机粘结剂质量比的增加,多级结构中花状结构逐渐减少,拱形和楼梯状结构逐渐增多。
当无机粘结剂质量占薄片状六方氮化硼一次颗粒的质量小于0.02%或大于20%时,其均无法获得本发明的氮化硼团聚体结构。
本发明中,所述无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%~20%,例如0.02%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、8%、10%、12%、15%、16%、18%或20%,优选0.5%~10%,进一步优选1%~5%。
优选地,所述无机粘结剂为介电常数D k≤9.0的无机填料,例如介电常数 Dk为1、2、3、4、5、6、7、8或9等。
本发明中,所述介电常数D k可以采用1MHz测试频率,IPC-2.5.5.9平板电容法进行测试得出。
优选地,所述无机填料为二氧化硅、硼硅酸盐玻璃、三氧化二硼、氧化铋或中空玻璃微球中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:二氧化硅和硼硅酸盐玻璃;三氧化二硼和氧化铋;中空玻璃微球和二氧化硅。
第三方面,本发明还提供了一种热固性树脂组合物,所述热固性树脂组合物包括:
(A)热固性树脂;
(B)第一方面所述的氮化硼团聚体。
优选地,所述热固性树脂为环氧树脂、聚苯醚树脂、聚丁二烯、聚苯乙烯-丁二烯嵌段聚合物、氰酸脂树脂、双马来酰亚胺-三嗪树脂、聚四氟乙烯、聚酰亚胺、多官能团环氧、液晶环氧或双马来酰亚胺中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:环氧树脂和聚苯醚树脂;聚丁二烯和聚苯乙烯-丁二烯嵌段聚合物;氰酸脂树脂和双马来酰亚胺-三嗪树脂。
优选地,所述热固性树脂的质量占热固性树脂组合物总质量的5%~85%,例如5%、8%、10%、12%、15%、20%、22%、25%、31%、38%、40%、42%、45%、50%、55%、60%、68%、70%、75%、80%、82%或85%。
优选地,所述氮化硼团聚体的质量占热固性树脂组合物总质量的5%~90%,例如5%、8%、10%、12%、15%、20%、22%、25%、31%、38%、40%、42%、45%、50%、55%、60%、68%、70%、75%、80%、82%、85%、88%或90%,优选30%~80%,进一步优选40%~70%。
优选地,所述热固性树脂组合物还包括(C)固化剂。
优选地,所述固化剂为脂肪族胺、脂环族胺、芳香胺、酚醛、羧酸、酚类、醚类、活性酯或酸酐中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:脂肪族胺和脂环族胺;芳香胺和酚醛;活性酯和酸酐;酚醛、羧酸和酚类。
优选地,所述固化剂的质量占热固性树脂组合物总质量的0.5%~40%,例如0.5%、1%、2%、5%、10%、12%、15%、20%、25%、30%、32%、35%或40%。
优选地,所述热固性树脂组合物还包括(D)促进剂和/或(E)引发剂。
优选地,所述引发剂为自由基引发剂。
优选地,所述促进剂为咪唑、酚类、吡啶类、三苯基磷或有机金属盐中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:咪唑和酚类;吡啶类和三苯基磷;三苯基磷和有机金属盐。
优选地,所述有机金属盐为辛酸锡、辛酸锌、异辛酸锌、异辛酸锡、二月桂酸二丁基锡或乙酰丙酮铝配位化合物中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:辛酸锡和辛酸锌;异辛酸锌和异辛酸锡;异辛酸锡和二月桂酸二丁基锡。
优选地,所述促进剂或引发剂的质量占热固性树脂组合物总质量的0.01%~5%,例如0.01%、0.02%、0.03%、0.05%、0.1%、0.5%、1%、2%、3%、4%或5%。
优选地,所述热固性树脂组合物还包括(F)其它填料。
优选地,所述其它填料为二氧化硅、气相二氧化硅、碳酸钙、二氧化钛、高岭土、纳米氮化硼、氮化硼纤维、氧化铝、氧化镁、氢氧化铝、氢氧化镁、滑石粉、氮化铝、碳化硅、三氧化二硼、硅酸盐或中空玻璃微球中的任意一种 或至少两种的混合物,其中典型但非限制性的混合物为:二氧化硅和气相二氧化硅;相二氧化硅和碳酸钙;氮化硼纤维和氧化铝;氧化镁和氢氧化铝。
优选地,所述其它填料的质量占热固性树脂组合物总质量的0.5%~70%,例如0.5%、0.8%、0.9%、1%、1.5%、2%、5%、10%、12%、15%、18%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%或70%。
优选地,所述热固性树脂组合物还包括(G)阻燃剂。
优选地,所述阻燃剂为添加型有机阻燃剂,所述有机阻燃剂优选含磷和/或含卤阻燃剂。
优选地,所述阻燃剂的质量占热固性树脂组合物总质量的1%~40%,例如1%、2%、5%、6%、8%、10%、11%、13%、15%、18%、20%、25%、30%、35%、38%或40%。
第四方面,本发明还提供了一种预浸料,其包括增强材料及通过浸渍干燥后附着在其上的如第三方面所述的热固性树脂组合物。
第五方面,本发明还提供了一种层压板,所述层压板含有至少一张如第四方面所述的预浸料。
第六方面,本发明还提供了一种高频电路基板,所述基板含有至少一张如第四方面所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
与现有技术方案相比,本发明至少具有以下有益效果:
本发明提供了一种具有高导热、低介电常数、高剥离强度的钻孔加工性优秀的热固性树脂组合物,其解决了传统印制电路基板低热导率、高介电常数和低剥离强度的问题。
附图说明
图1是现有技术中的一般薄层状氮化硼基本结构;
图2是CN103249695A中公开的氮化硼团聚体结构;
图3是本发明一种实施方式制备得到的多级结构(花状)氮化硼团聚体扫描电子显微镜(SEM)图,放大倍率为1,000;
图4是本发明一种实施方式制备得到的多级结构(楼梯状)氮化硼团聚体结构的示意图。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
制备例1
一种氮化硼团聚体的制备方法,包括如下步骤:
将薄片状六方氮化硼一次颗粒与三氧化二硼混合,其中三氧化二硼质量占薄片状六方氮化硼一次颗粒质量的5%,薄片状六方氮化硼一次颗粒的平均粒径为10μm,得到所述氮化硼团聚体I。
如图3(图3为本实施例制得的氮化硼团聚体的SEM谱图)所示,所得产物为氮化硼团聚体。
所得产物的形貌如图3可见,它是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以花状为主的三维结构。
制备例2
与制备例1相比,将三氧化二硼质量控制在占薄片状六方氮化硼一次颗粒质量的1%,得到所述氮化硼团聚体II。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以花状为主的三维结构。
制备例3
与制备例1相比,将三氧化二硼质量控制在占薄片状六方氮化硼一次颗粒质量的10%,薄片状六方氮化硼一次颗粒的平均粒径为50μm,得到所述氮化硼团聚体III。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以楼梯状为主的三维结构(如图4所示)。
制备例4
与制备例1相比,将三氧化二硼质量控制在占薄片状六方氮化硼一次颗粒质量的15%,薄片状六方氮化硼一次颗粒的平均粒径为5μm,得到所述氮化硼团聚体IV。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以拱形为主的三维结构。
制备例5
与制备例1相比,将三氧化二硼替换为二氧化硅和硼硅酸盐玻璃的混合物,其中二氧化硅的质量占薄片状六方氮化硼一次颗粒质量的5%,硼硅酸盐玻璃的质量占薄片状六方氮化硼一次颗粒质量的15%,得到所述氮化硼团聚体V。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以楼梯状为主的三维结构。
制备例6
与制备例1相比,将三氧化二硼替换为二氧化硅,即控制二氧化硅的质量占薄片状六方氮化硼一次颗粒质量的5%,得到所述氮化硼团聚体VI。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以花状为主的三维结构。
制备例7
与制备例1相比,将三氧化二硼替换为氧化铋和中空玻璃微球,并控制氧化铋的质量占薄片状六方氮化硼一次颗粒质量的3%,中空玻璃微球的质量占薄片状六方氮化硼一次颗粒质量的16%,得到所述氮化硼团聚体VII。
所得产物是由薄片状六方氮化硼一次颗粒在三维方向排列而成,其中含有由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的以楼梯状为主的三维结构。
对比制备例1
与制备例1相比,不添加粘结剂,得到的是片状氮化硼。
对比制备例2
与制备例1相比,控制三氧化二硼质量占薄片状六方氮化硼一次颗粒质量的0.01%,其它与制备例1相同。
所得产物为无规则的絮状团聚体,形状类似于图1结构。
对比制备例3
与制备例1相比,控制三氧化二硼质量占薄片状六方氮化硼一次颗粒质量的21%,其它与制备例1相同。
所得产物为以三氧化二硼为粘结剂支撑的层状结构为主。
对比制备例4
与制备例1相比,将三氧化二硼替换为碳酸钙,其它与制备例1相同。
对比制备例5
与制备例1相比,将三氧化二硼替换为二氧化钛,其它与制备例1相同。
所得产物形状与制备例1相似,但因其D k非常高,无法用于低介电领域。
以下实施例和对比例为含有上述氮化硼团聚体的热固性树脂组合物。
实施例1
使用21份SA9000聚苯醚、5份苯乙烯-丁二烯嵌段共聚物、50份制备例1制备的氮化硼团聚物I、3份二氧化硅、3份过氧化二异丙苯、18份十溴二苯乙烷,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、氮化硼团聚物、二氧化硅、过氧化二异丙苯和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
实施例2
使用23份SA9000聚苯醚、8份苯乙烯-丁二烯嵌段共聚物、45份制备例2 制备的氮化硼团聚物II、3份二氧化硅、3份过氧化二异丙苯、18份十溴二苯乙烷,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、氮化硼团聚物、二氧化硅、过氧化二异丙苯和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
实施例3
使用15份SA9000聚苯醚、3份苯乙烯-丁二烯嵌段共聚物、53份制备例3制备的氮化硼团聚物III、3份二氧化硅、3份过氧化二异丙苯、23份SPB100,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、氮化硼团聚物、二氧化硅、过氧化二异丙苯和SPB100重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
实施例4
使用40份EPIKOTE828EL、37.7份制备例4制备的氮化硼团聚物IV、3份二氧化硅、4.26份双氰双胺、0.04份2-甲基咪唑、15份十溴二苯乙烷,使用N,N-二甲基甲酰胺将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述EPIKOTE828EL、氮化硼团聚物、二氧化硅、双氰双胺、2-甲基咪唑和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
对比例1
使用21份SA9000聚苯醚、5份苯乙烯-丁二烯嵌段共聚物、50份对比制备例1制备的片状氮化硼、3份二氧化硅、3份过氧化二异丙苯、18份十溴二苯乙烷,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、片状氮化硼团、二氧化硅、过氧化二异丙苯和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
对比例2
使用23份SA9000聚苯醚、8份苯乙烯-丁二烯嵌段共聚物、45份对比制备例1制备的片状氮化硼、3份二氧化硅、3份过氧化二异丙苯、18份十溴二苯乙烷,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、片状氮化硼团、二氧化硅、过氧化二异丙苯和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
对比例3
使用15份SA9000聚苯醚、3份苯乙烯-丁二烯嵌段共聚物、53份对比制备例1制备的片状氮化硼、3份二氧化硅、3份过氧化二异丙苯、23份SPB100,使用甲苯将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述SA9000、苯乙烯-丁二烯嵌段共聚物、片状氮化硼、二氧化硅、过氧化二异丙苯和SPB100重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。
对比例4
使用40份EPIKOTE828EL、37.7份对比制备例1制备的片状氮化硼、3份二氧化硅、4.26份双氰双胺、0.04份2-甲基咪唑、15份十溴二苯乙烷,使用N,N-二甲基甲酰胺将上述化合物溶解,并调制成合适黏度的胶液。使用此胶液浸润2116型电子级玻璃布,并在115℃烘箱中,除去溶剂,获得树脂含量为54%的B-stage预浸料试样。所述EPIKOTE828EL、氮化硼团聚物、二氧化硅、双氰双胺、2-甲基咪唑和十溴二苯乙烷重量份数之和为100份。
将八片上述制备的预浸料和两片一盎司的电解铜箔叠合在一起,通过热压机进行层压得到双面覆铜箔层压板。层压条件如下:1、料温在80℃~120℃时,升温速度控制在0.5℃~4.0℃/分钟;2、压力设计为20kg/cm 2;3、固化温度为190℃,并保持90分钟。将所得双面覆铜箔层压板进行性能测试,相应性能见表1。
对比例5
与实施例1相比,将氮化硼团聚物I替换为对比制备例2制得的氮化硼团聚体。
对比例6
与实施例1相比,将氮化硼团聚物I替换为对比制备例3制得的氮化硼团聚体。
对比例7
与实施例1相比,将氮化硼团聚物I替换为对比制备例4制得的氮化硼团聚体。
对比例8
与实施例1相比,将氮化硼团聚物I替换为对比制备例5制得的氮化硼团聚 体。
对比例9
与实施例1相比,将氮化硼团聚物I替换为CN103249695A中的氮化硼团聚体。
对比例10
与实施例1相比,将氮化硼团聚体I替换为CN106255721A中的氮化硼团聚体。
表1热固性树脂组合物所得覆铜箔层压板的性能测试结果
Figure PCTCN2018080166-appb-000001
Figure PCTCN2018080166-appb-000002
表中在“对比氮化硼团聚物”这一行中使用的上标2、3、4、5、6、7分别表示对比例5、6、7、8、9、10制得的氮化硼团聚体。
以上性能测试方法如下:
(1)介电常数(Dk)、介电损耗(Df):测试使用IPC-TM-6502.5.5.9方法;
(2)剥离强度:按照IPC-TM-6502.4.8所规定的“热应力后”处理条件进行测定。
(3)绝缘层热导率测试方法:按照ASTM D5470标准进行测试。
由表1可以看出以下几点:
(1)将实施例1与对比例1进行比较可以看出,实施例1制得的层压板的D k值为3.83,低于对比例1的D k值(3.92),其绝缘层导热率为1.48w/(m.k),高于对比例1的绝缘层导热率(1.03w/(m.k)),其剥离强度为1.16N/mm,高于对比例1的剥离强度(0.87N/mm);将实施例2~4分别与对比例2~4进行比较可以得出相同的结论。
由此可以得出,通过使用含有本发明所制得的氮化硼团聚体的树脂组合物, 相比使用含未添加粘结剂的片状氮化硼的树脂组合物,其能使层压板具有更优异的介电性能(D k值更低),更优的导热性能(绝缘层热导率更高),绝缘层与铜箔的剥离强度也处于一个较高的水平。
(2)将实施例1与对比例5进行比较可以看出,实施例1制得的层压板的D k值为3.83,低于对比例5的D k值(3.87),其绝缘层导热率为1.48w/(m.k),高于对比例5的绝缘层导热率(1.12w/(m.k)),其剥离强度为1.16N/mm,高于对比例5的剥离强度(0.76N/mm)。
将实施例1与对比例6进行比较可以看出,尽管对比例6制得的层压板具有更低的D k值和更高的剥离强度,然而,其在绝缘层导热率方面要远低于实施例1。
由此可以得出,通过使用含有本发明所制得的氮化硼团聚体的树脂组合物,相比使用粘结剂含量不在本发明范围内制得的氮化硼团聚体的树脂组合物,其能使层压板具有更优异的综合性能,包括更优异的介电性能(D k值更低),更优的导热性能(绝缘层热导率更高)以及更高的绝缘层与铜箔的剥离强度。
(3)将实施例1与对比例7进行比较可以看出,实施例1制得的层压板的D k值为3.83,远低于对比例7的D k值(5.68),其绝缘层导热率为1.48w/(m.k),高于对比例7的绝缘层导热率(0.98w/(m.k)),其剥离强度为1.16N/mm,高于对比例7的剥离强度(1.08N/mm);将实施例1与对比例8进行比较可以得出相同的结论。
由此可以看出,通过使用含有本发明所制得的氮化硼团聚体的树脂组合物,相比使用粘结剂种类不在本发明范围内制得的氮化硼团聚体的树脂组合物,其能使层压板具有更优异的综合性能,包括更优异的介电性能(D k值更低),更优的导热性能(绝缘层热导率更高)以及更高的绝缘层与铜箔的剥离强度。
(4)将实施例1与对比例9进行比较可以看出,尽管对比例9具有更低的D k值,然而其在绝缘层导热率和剥离强度方面均低于实施例1;将实施例1与对比例10进行比较可以得出相同的结论。
由此可以看出,通过使用含有本发明所制得的氮化硼团聚体的树脂组合物,相比使用CN103249695A和CN106255721A制得的氮化硼团聚体的树脂组合物,其能使层压板具有更优异的综合性能,尤其具有更优的导热性能(绝缘层热导率更高)以及更高的绝缘层与铜箔的剥离强度。
从上表实施例和对比例的测试结果可以得出,使用本发明所述的含有氮化硼团聚体的树脂组合物,能使层压板具有更优异的介电性能(D k值更低),更优的导热性能(绝缘层热导率更高),绝缘层与铜箔的剥离强度也处于一个较高的水平,对于客户来说板材综合性能相对优异。
当然,以上所述之实施例,只是本发明的较佳实例而已,并非用来限制本发明的实施范围,故凡依本发明申请专利范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明申请专利范围内。
由于本发明提供的高导热低介电常数的热固性组合物还可在温和的条件下有效控制覆铜板层压板的厚度,因而在生产和经济效应方面具有重大意义。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种氮化硼团聚体,其特征在于,所述氮化硼团聚体为由薄片状六方氮化硼一次颗粒在三维方向通过无机粘结剂连接排列而成的多级结构。
  2. 如权利要求1所述的氮化硼团聚体,其特征在于,所述氮化硼团聚体的三维方向主要由薄片状六方氮化硼一次颗粒通过面-面连接、面-端连接或端-端连接方式中的任意一种或至少两种构成;
    优选地,所述多级结构的氮化硼团聚体,为二级结构或/和三级结构,二级结构为由薄片状六方氮化硼一次颗粒从同一中心向外辐射构成的花状结构、楼梯结构或拱形结构,三级结构为由花状结构、楼梯结构或拱形结构堆叠的宏观团聚体;
    优选地,所述多级结构的氮化硼团聚体为三级结构;
    优选地,所述薄片状六方氮化硼一次颗粒的粒径为0.5μm~200μm,优选1μm~100μm,进一步优选3μm~30μm,更优选5μm~10μm;
    优选地,所述无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%~20%;
    优选地,所述无机粘结剂为介电常数D k≤9.0的无机填料;
    优选地,所述无机填料为二氧化硅、硼硅酸盐玻璃、三氧化二硼、氧化铋、中空玻璃微球或陶瓷中的任意一种或至少两种的混合物。
  3. 一种如权利要求1或2所述的氮化硼团聚体的制备方法,其特征在于,所述方法为:将薄片状六方氮化硼一次颗粒与无机粘结剂混合,且无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.02%~20%,得到所述多级结构的氮化硼团聚体。
  4. 如权利要求3所述的方法,其特征在于,所述无机粘结剂质量占薄片状六方氮化硼一次颗粒质量的0.5%~10%,优选1%~5%;
    优选地,所述无机粘结剂为介电常数D k≤9.0的无机填料;
    优选地,所述无机填料为二氧化硅、硼硅酸盐玻璃、三氧化二硼、氧化铋或中空玻璃微球中的任意一种或至少两种的混合物。
  5. 一种热固性树脂组合物,其特征在于,所述热固性树脂组合物包括:
    (A)热固性树脂;
    (B)权利要求1或2所述的氮化硼团聚体。
  6. 如权利要求5所述的热固性树脂组合物,其特征在于,所述热固性树脂为环氧树脂、聚苯醚树脂、聚丁二烯、聚苯乙烯-丁二烯嵌段聚合物、氰酸脂树脂、双马来酰亚胺-三嗪树脂、聚四氟乙烯、聚酰亚胺、多官能团环氧、液晶环氧或双马来酰亚胺中的任意一种或至少两种的混合物;
    优选地,所述热固性树脂的质量占热固性树脂组合物总质量的5%~85%;
    优选地,所述氮化硼团聚体的质量占热固性树脂组合物总质量的5%~90%,优选30%~80%,进一步优选40%~70%。
  7. 如权利要求5或6所述的热固性树脂组合物,其特征在于,所述热固性树脂组合物还包括(C)固化剂;
    优选地,所述固化剂为脂肪族胺、脂环族胺、芳香胺、酚醛、羧酸、酚类、醚类、活性酯或酸酐中的任意一种或至少两种的混合物;
    优选地,所述固化剂的质量占热固性树脂组合物总质量的0.5%~40%;
    优选地,所述热固性树脂组合物还包括(D)促进剂和/或(E)引发剂;
    优选地,所述引发剂为自由基引发剂;
    优选地,所述促进剂为咪唑、酚类、吡啶类、三苯基磷或有机金属盐中的任意一种或至少两种的混合物;
    优选地,所述有机金属盐为辛酸锡、辛酸锌、异辛酸锌、异辛酸锡、二月 桂酸二丁基锡或乙酰丙酮铝配位化合物中的任意一种或至少两种的混合物;
    优选地,所述促进剂或引发剂的质量占热固性树脂组合物总质量的0.01%~5%;
    优选地,所述热固性树脂组合物还包括(F)其它填料;
    优选地,所述其它填料为二氧化硅、气相二氧化硅、碳酸钙、二氧化钛、高岭土、纳米氮化硼、氮化硼纤维、氧化铝、氧化镁、氢氧化铝、氢氧化镁、滑石粉、氮化铝、碳化硅、三氧化二硼、硅酸盐或中空玻璃微球中的任意一种或至少两种的混合物;
    优选地,所述其它填料的质量占热固性树脂组合物总质量的0.5%~70%;
    优选地,所述热固性树脂组合物还包括(G)阻燃剂;
    优选地,所述阻燃剂为添加型有机阻燃剂,所述有机阻燃剂优选含磷和/或含卤阻燃剂;
    优选地,所述阻燃剂的质量占热固性树脂组合物总质量的1%~40%。
  8. 一种预浸料,其特征在于,其包括增强材料及通过浸渍干燥后附着在其上的如权利要求5~7之一所述的热固性树脂组合物。
  9. 一种层压板,其特征在于,所述层压板含有至少一张如权利要求8所述的预浸料。
  10. 一种高频电路基板,其特征在于,所述基板含有至少一张如权利要求8所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
PCT/CN2018/080166 2017-12-29 2018-03-23 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途 WO2019127943A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18896498.5A EP3733594A4 (en) 2017-12-29 2018-03-23 BORNITRIDE AGGLOMERATE, THIS THERMAL CURING RESIN COMPOSITION, AND USES THEREOF
US16/770,004 US11661378B2 (en) 2017-12-29 2018-03-23 Boron nitride agglomerate, thermosetting resin composition containing same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711471842.5A CN109988409B (zh) 2017-12-29 2017-12-29 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
CN201711471842.5 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019127943A1 true WO2019127943A1 (zh) 2019-07-04

Family

ID=67064996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080166 WO2019127943A1 (zh) 2017-12-29 2018-03-23 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途

Country Status (5)

Country Link
US (1) US11661378B2 (zh)
EP (1) EP3733594A4 (zh)
CN (1) CN109988409B (zh)
TW (1) TWI677467B (zh)
WO (1) WO2019127943A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210070952A1 (en) * 2018-11-16 2021-03-11 Fuji Polymer Industries Co., Ltd. Heat-conductive sheet and method for manufacturing same
WO2021015580A1 (ko) * 2019-07-23 2021-01-28 한양대학교에리카산학협력단 방열복합소재 및 그 제조 방법
WO2021035383A1 (en) * 2019-08-23 2021-03-04 Evonik Specialty Chemicals (Shanghai) Co., Ltd. Thermal conductive filler and preparation method thereof
CN110982297B (zh) * 2019-12-17 2021-07-09 东莞市德发塑胶科技有限公司 一种5g低介电强度lcp复合材料及其制备方法
TWI766320B (zh) * 2020-07-23 2022-06-01 南亞塑膠工業股份有限公司 預浸片及金屬積層板
US20220186041A1 (en) * 2020-12-15 2022-06-16 TE Connectivity Services Gmbh Coating for improved flammability performance in electrical components
CN113735569B (zh) * 2021-09-16 2023-03-17 宁波思朴锐机械再制造有限公司 一种氧化镁氮化硼复合微球的制备方法
CN114898912B (zh) * 2022-05-25 2024-03-08 山东鹏程陶瓷新材料科技有限公司 一种耐高温绝缘的氮化硼块及其制造工艺
CN116082858A (zh) * 2022-12-29 2023-05-09 雅安百图高新材料股份有限公司 一种氮化硼改性方法及产品和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197069A (zh) 2008-10-21 2011-09-21 日立化成工业株式会社 导热片材、其制造方法以及使用了该导热片材的散热装置
CN103249695A (zh) 2010-11-10 2013-08-14 Esk陶瓷有限两合公司 氮化硼团聚体、其生产方法及其用途
CN104284860A (zh) * 2012-05-09 2015-01-14 Esk陶瓷有限两合公司 氮化硼团聚体、其制备方法及其用途
CN104479291A (zh) * 2014-12-04 2015-04-01 中国科学院过程工程研究所 一种导热绝缘环氧树脂组合物、制备方法及其用途
CN105308111A (zh) * 2013-06-19 2016-02-03 3M创新有限公司 通过聚合物/氮化硼复合物的热塑性加工所制备的组成部件、用于制备此类组成部件的聚合物/氮化硼复合物及其用途
CN105579511A (zh) * 2013-06-19 2016-05-11 3M创新有限公司 由聚合物/氮化硼复合物制备的组成部件、用于制备此类组成部件的聚合物/氮化硼复合物及其用途
CN106255721A (zh) 2014-04-30 2016-12-21 罗杰斯公司 导热复合材料及其制造方法以及包含所述复合材料的制品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059567B (zh) * 2013-01-23 2015-04-22 苏州大学 一种阻燃六方氮化硼/热固性树脂复合材料及其制备方法
KR20140110439A (ko) * 2013-03-08 2014-09-17 주식회사 신한세라믹 구형 질화붕소의 제조방법 및 그 질화붕소
TWI687393B (zh) 2014-02-05 2020-03-11 日商三菱化學股份有限公司 氮化硼凝集粒子、氮化硼凝集粒子之製造方法、含有該氮化硼凝集粒子之樹脂組成物、成形體及片材
JP6678999B2 (ja) 2015-09-03 2020-04-15 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6547537B2 (ja) * 2015-09-15 2019-07-24 三菱マテリアル株式会社 薄膜形成用窒化ホウ素凝集粒子、絶縁皮膜、該凝集粒子の製造方法、絶縁電着塗料の製造方法、エナメル線及びコイル
JP6319533B1 (ja) 2016-08-24 2018-05-09 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197069A (zh) 2008-10-21 2011-09-21 日立化成工业株式会社 导热片材、其制造方法以及使用了该导热片材的散热装置
CN103249695A (zh) 2010-11-10 2013-08-14 Esk陶瓷有限两合公司 氮化硼团聚体、其生产方法及其用途
CN104284860A (zh) * 2012-05-09 2015-01-14 Esk陶瓷有限两合公司 氮化硼团聚体、其制备方法及其用途
CN105308111A (zh) * 2013-06-19 2016-02-03 3M创新有限公司 通过聚合物/氮化硼复合物的热塑性加工所制备的组成部件、用于制备此类组成部件的聚合物/氮化硼复合物及其用途
CN105579511A (zh) * 2013-06-19 2016-05-11 3M创新有限公司 由聚合物/氮化硼复合物制备的组成部件、用于制备此类组成部件的聚合物/氮化硼复合物及其用途
CN106255721A (zh) 2014-04-30 2016-12-21 罗杰斯公司 导热复合材料及其制造方法以及包含所述复合材料的制品
CN104479291A (zh) * 2014-12-04 2015-04-01 中国科学院过程工程研究所 一种导热绝缘环氧树脂组合物、制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733594A4

Also Published As

Publication number Publication date
US11661378B2 (en) 2023-05-30
TWI677467B (zh) 2019-11-21
CN109988409B (zh) 2021-10-19
US20210221743A1 (en) 2021-07-22
EP3733594A4 (en) 2021-09-29
TW201930183A (zh) 2019-08-01
EP3733594A1 (en) 2020-11-04
CN109988409A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019127943A1 (zh) 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
TWI572656B (zh) A resin composition and a prepreg and a laminate using the resin composition
TWI228388B (en) Prepreg and laminate
TWI538955B (zh) 用於半導體封裝之熱固性樹脂組成物以及使用其之預浸材及覆金屬層合物
TWI535777B (zh) A thermosetting epoxy resin composition and use thereof
US9718941B2 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
US20160243798A1 (en) Thermosetting resin sandwich prepreg, preparation method thereof and copper clad laminate therefrom
JP5447355B2 (ja) 熱硬化性樹脂組成物の製造法、プリプレグおよび積層板の製造法
WO2012151820A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
WO2017092471A1 (zh) 热固性烷基多元醇缩水甘油醚树脂组合物及其应用
JP2014167053A (ja) 高熱伝導性プリプレグ、プリプレグを用いた配線板および多層配線板、ならびに多層配線板を用いた半導体装置
JP2012131947A (ja) プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、樹脂シート、プリント配線板及び半導体装置
WO2019203266A1 (ja) 絶縁シート、積層体、及び基板
TWI465513B (zh) 樹脂組合物及其應用
WO2019127391A1 (zh) 马来酰亚胺树脂组合物、预浸料、层压板和印刷电路板
CN109265654B (zh) 树脂组合物及其制成的预浸料、层压板
JP5740941B2 (ja) プリプレグ、金属張積層板、プリント配線板及び半導体装置
JP2012131946A (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置
WO2021031249A1 (zh) 预浸料、覆铜层压板及印刷电路板
JP5729336B2 (ja) エポキシ化合物、樹脂組成物、樹脂シート、積層板及びプリント配線板
JP2011046760A (ja) 酸化マグネシウム粉末の製造法、熱硬化性樹脂組成物、プリプレグおよび積層板の製造法
TWI526493B (zh) 樹脂組合物及其應用
TWI703180B (zh) 可撓性半固化片及其應用
TWI417339B (zh) Resin composition
CN112752394A (zh) 一种具有散热层的金属印刷电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896498

Country of ref document: EP

Effective date: 20200729