WO2019124353A1 - 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 - Google Patents
眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 Download PDFInfo
- Publication number
- WO2019124353A1 WO2019124353A1 PCT/JP2018/046521 JP2018046521W WO2019124353A1 WO 2019124353 A1 WO2019124353 A1 WO 2019124353A1 JP 2018046521 W JP2018046521 W JP 2018046521W WO 2019124353 A1 WO2019124353 A1 WO 2019124353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- manufacturing
- lens
- spectacle lens
- eyeglass lens
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00317—Production of lenses with markings or patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00317—Production of lenses with markings or patterns
- B29D11/00326—Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00413—Production of simple or compound lenses made by moulding between two mould parts which are not in direct contact with one another, e.g. comprising a seal between or on the edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/0048—Moulds for lenses
- B29D11/00528—Consisting of two mould halves joined by an annular gasket
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00865—Applying coatings; tinting; colouring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/757—Moulds, cores, dies
Definitions
- the present disclosure relates to a method of manufacturing an eyeglass lens mold and a method of manufacturing an eyeglass lens, and more particularly to a method of manufacturing an eyeglass lens mold having a convex portion on the surface and a method of manufacturing an eyeglass lens having a convex portion on the surface.
- Patent Document 1 discloses an eyeglass lens that suppresses the progress of refractive error such as myopia in which micro convexes (segments) having a surface shape of a substantially hemispherical surface with a diameter of about 1 mm, for example, are formed on the convex surface of a plastic lens.
- micro convexes small-shaped, substantially hemispherical surface with a diameter of about 1 mm, for example, are formed on the convex surface of a plastic lens.
- a method of manufacturing a spectacle lens a method of using a thermosetting resin as a material of the spectacle lens and using a mold made of a glass material as a mold is known.
- the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a method capable of producing a molding die for molding an eyeglass lens having minute recesses with high precision.
- Another object of the present invention is to provide a large number of molds for producing lenses in a cast process inexpensively and quickly.
- a mold manufacturing method for manufacturing a mold for manufacturing an eyeglass lens having a minute convex portion formed on one surface thereof A master mold preparation step of preparing a master mold having a base material and a coating portion made of a nickel alloy and coated with the base material and having a surface formed in a shape corresponding to the shape of the one surface of the spectacle lens , A cutting step of cutting a concave portion corresponding to the convex portion on the surface of the covering portion of the master mold; A transfer mold manufacturing step of performing electroforming on a coated portion of the master mold in which the concave portion is cut, and manufacturing a transfer mold having a surface complementary to the surface of the coated portion; And D. a first mold manufacturing step of electroforming the surface of the transfer mold to manufacture a first mold having a surface complementary to the surface of the transfer mold.
- a method of manufacturing a spectacle lens mold is provided.
- the surface of the covering portion made of a nickel alloy which is a ductile material is cut to form a minute concave portion in the master mold, and a transfer mold is manufactured by electroforming from the master mold.
- the first mold is manufactured by electroforming from the mold. Therefore, no chipping or the like occurs as in the case of processing the recess directly on the surface of the mold material made of a relatively brittle material such as a glass material. As a result, it is possible to create a mold for molding an eyeglass lens with high precision, which has minute recesses.
- the manufacturing method of the eyeglass lens mold of the present invention it is possible to provide inexpensively and quickly a large number of molds for producing the eyeglass lens by a cast manufacturing method.
- a method of manufacturing an eyeglass lens by a molding die manufactured by the above molding die manufacturing method Holding a predetermined distance between the first mold and a second mold whose surface is formed in a shape corresponding to the other surface shape of the spectacle lens to define a lens molding space; Filling the resin in a space between the first mold and the second mold; Removing a spectacle lens made of a cured resin from the first and second molds; An eyeglass lens manufacturing method is provided.
- the method further comprises an HC material application step of applying a hard coat material to the surface of at least one of the molds.
- the surface of the convex portion has a substantially hemispherical shape.
- the resin is a thermosetting resin.
- FIG. 13 is a third diagram illustrating the method of manufacturing the first mold of the mold shown in FIG. 2;
- FIG. 13 is a fourth diagram illustrating the method of manufacturing the first mold of the mold shown in FIG.
- FIG. 13 is a fifth diagram illustrating the method of manufacturing the first mold of the mold shown in FIG. 2;
- FIG. 13 is a diagram (No. 6) for explaining the method of manufacturing the first mold of the mold shown in FIG. 2;
- FIG. 13 is a diagram (No. 7) for explaining the method of manufacturing the first mold of the mold shown in FIG. 2;
- FIG. 13 is a diagram (No. 8) for explaining the method of manufacturing the first mold of the mold shown in FIG. 2;
- the 2) for demonstrating the method to manufacture an eyeglass lens using the shaping
- FIG. 1 is a cross-sectional view showing the shape of an eyeglass lens 1 molded with a mold manufactured by the method of manufacturing an eyeglass lens mold according to a preferred embodiment of the present invention.
- the spectacle lens 1 includes a spectacle lens body 2, and the spectacle lens body 2 has a convex surface 3 and a concave surface 4.
- the eyeglass lens 1 further includes a hard coat layer 8 formed on the convex surface 3 and the concave surface 4 of the eyeglass lens main body 2, and an antireflective film (AR film) 10 formed on the surface of each hard coat layer 8.
- AR film antireflective film
- a plurality of minute convex portions 6 are arranged at equal intervals in the circumferential direction and the radial direction centering on the central axis of the spectacle lens 1.
- the surface of the convex portion 6 has a substantially hemispherical shape with a diameter of 1 mm, a height of 0.8 ⁇ m, and a curvature of 86 mR.
- the spectacle lens body 2 is made of, for example, a thermosetting resin such as thiourethane, allyl, acrylic, or epithio.
- resin which comprises the spectacles lens main body 2 you may select other resin in which desired refractive index is obtained.
- thermoplastic resin or UV curable resin can be used, for example.
- the refractive power of the minute convex portion is 2.00 to 5.00 diopter larger than the refractive power of the base of the spectacle lens.
- the diameter of the minute convex portion is preferably about 0.8 to 2.0 mm.
- the refractive power of the lens is determined by the refractive index of the material, the curve of the surface (curvature radius), the curve of the back surface (curvature radius), and the thickness of the lens. Therefore, the curve (curvature radius) of the minute convex portion and the thickness (height of the minute convex portion) of the minute convex portion are preferably such that the refractive power of the minute convex portion is 2.00 to 5. It is decided to be 00 diopter larger.
- the height of the micro-convex portion is 0.1 to 10 ⁇ m, and the curvature of the micro-convex portion is 50 to 250 mmR.
- the distance between the adjacent minute convex portion and the minute convex portion is approximately the same as the value of the radius of the minute convex portion.
- the plurality of minute convex portions be arranged substantially uniformly in the vicinity of the center of the lens.
- FIG. 2 is a schematic cross-sectional view showing a mold manufactured according to a preferred embodiment of the present invention.
- the mold 12 used to manufacture the spectacle lens 1 has a first mold 14 having a concave molding surface 14A and a second mold having a convex molding surface 16A.
- a mold 16 and a cylindrical gasket 18 are provided.
- the first mold 14 and the second mold 16 are disposed inside the gasket 18 such that the molding surfaces 14A, 16A face each other.
- the first mold 14 is manufactured by electroforming, and is mainly made of, for example, a nickel alloy, and the molding surface 14A has a predetermined shape.
- a concave portion 14B having a shape corresponding to the convex portion 6 formed on the convex surface 3 of the spectacle lens body 2 is formed.
- the second mold 16 is made of glass, and the gasket 18 is made of a lens forming tape made of PET, a silicon-based adhesive, and low density polyethylene.
- 3A to 3H are diagrams for explaining a method of manufacturing the first mold of the mold shown in FIG. 2 .
- a cylindrical (disc) base material 20 made of stainless steel is prepared.
- one surface (the lower surface in FIG. 3B) of the base material 20 is cut to form a concave surface 20A.
- Ni—P electroless nickel plating
- the covering layer 22 is cut so that the surface has a desired curvature corresponding to the convex surface 3 of the spectacle lens 1.
- the surface (concave surface) 22A of the covering layer 22 has a shape complementary to the convex surface 3 of the spectacle lens 1.
- the master mold preparation step is not limited to the above-described step, and any step may be used as long as it is possible to prepare a mold in which the final curvature of the surface of the covering layer 22 has a desired curvature corresponding to the convex surface 3 of the spectacle lens 1. May be.
- the surface of the substrate is precisely cut so as to have a desired curvature corresponding to the convex surface 3 of the spectacle lens 1, and the precisely cut substrate
- Ni—P electroless nickel plating
- a substantially hemispherical surface at a position corresponding to the convex portion 6 of the spectacle lens 1 on the concave surface 22A of the covering layer 22 made of Ni-P (ductile material) by ultra-precision micromachining Form a concave portion 22B.
- the master mold 23 is manufactured by these processes. This process corresponds to the cutting step.
- electroforming is performed on the concave surface 22A of the covering layer 22 of the master mold 23, and a nickel alloy is deposited along the concave surface 22A to form the transfer mold 24.
- This process corresponds to a transfer mold manufacturing step.
- the surface (convex surface) 24A in contact with the covering layer 22 of the transfer mold 24 has the concave surface 22A of the covering layer 22 transferred thereon and has a shape complementary to the concave surface 22A. Therefore, the convex portion 24B corresponding to the concave portion 22B is formed on the concave surface 22A.
- the transfer mold 24 is removed from the master mold 23.
- the support member 26 is attached to the back of the transfer mold 24 with an adhesive.
- the support member 26 for example, a member made of stainless steel or the like is used.
- a nickel alloy 28 is deposited on the surface of the convex surface 24A of the transfer mold 24 by electroforming to form a first mold 14.
- This process corresponds to the first mold manufacturing step.
- the convex surface 24A of the transfer mold 24 is transferred to the surface (concave surface) 14A in contact with the transfer mold 24 of the first mold 14 and has a complementary shape.
- concave part 14B corresponding to convex part 24B is formed in concave 14A.
- the first mold 14 is removed from the transfer mold 24 to obtain a first mold 14W. In the case of manufacturing a plurality of spectacle lenses having the same structure in parallel, this process may be repeated a plurality of times to manufacture a plurality of first molds.
- the first mold 14 of the mold shown in FIG. 2 can be manufactured.
- the second mold 16 and the gasket 18 are manufactured.
- the second mold 16 can be manufactured, for example, by grinding and polishing one surface of a cylindrical glass base material to a shape corresponding to the concave surface 4 of the spectacle lens. This process corresponds to the second mold preparation step.
- the recess 22B is formed in the master mold 23 by cutting the surface of the coating layer 22 made of a nickel alloy which is a ductile material, the transfer mold 24 is manufactured from the master mold 23 by electroforming, and from the transfer mold 24 by electroforming. Since the first mold 14 is manufactured, the first mold 14 is unlikely to be chipped. For this reason, the shaping
- FIG. 4A to 4F are views for explaining a method of molding the spectacle lens 1 using the molding die shown in FIG.
- the first mold 14, the second mold 16, and the gasket 18 are combined to form the mold 12, and thermosetting is performed in the internal space (cavity) of the mold 12.
- the resin 30 is filled. This process corresponds to the resin filling step.
- the mold 12 is heated until the thermosetting resin 30 cures.
- the semi-finished lens 32 composed of the cured curable resin 30 is released from the mold 12.
- This process corresponds to the releasing step.
- One surface 34 of the semi-finished lens 32 is a convex surface 34 to which the shape of the molding surface 14 A of the first mold 14 is transferred.
- a plurality of convex portions 34A are formed.
- the other surface 36 of the semi-finished lens 32 is a concave surface 36 to which the convex surface 16A of the second mold 16 is transferred.
- the concave surface 36 of the semi-finished lens 32 is cut and polished until the thickness of the semi-finished lens 32 becomes the thickness of the lens body 2.
- the spectacle lens body 2 having the convex surface 3 and the concave surface 4 and having the convex portion 6 formed on the convex surface 3 is manufactured.
- the process for producing a semi-finished lens for cutting and polishing the concave surface has been described, but the present invention is also applicable to a finished lens for which the concave surface is not cut and polished.
- the hard coat layer 8 is formed on the convex surface 3 and the concave surface 4 of the spectacle lens body 2.
- the hard coat layer 8 can be formed by, for example, a method (dip coat) in which the spectacle lens main body 2 is dipped in a hard coat solution such as silicone resin, or by spin coat.
- the antireflective film 10 is formed on the surface of the hard coat layer 8.
- the antireflective film 10 can be formed, for example, by depositing an antireflective agent such as ZrO 2, MgF 2 or AL 2 O 3 by vacuum deposition.
- An eyeglass lens is manufactured by the above process.
- the plurality of first molds 14 having the same shape can be replicated from the transfer mold 24, it is possible to easily manufacture spectacle lenses having the same shape in parallel.
- FIG. 5 is a schematic cross-sectional view of an eyeglass lens 101 manufactured by another eyeglass lens manufacturing method using a mold manufactured by the eyeglass lens mold manufacturing method according to a preferred embodiment of the present invention.
- the spectacle lens 101 comprises a spectacle lens body 102.
- the spectacle lens body 102 has a convex surface 103 and a concave surface 104 which are formed to have a predetermined curvature.
- the eyeglass lens 101 further includes hard coat layers 108 and 109 formed on the convex surface 103 and the concave surface 104 of the eyeglass lens main body 102, and an antireflective film (AR film) formed on the surface of each hard coat layer 108 and 109. 110, and 111.
- AR film antireflective film
- convex portions 108A are formed at equal intervals circumferentially and axially around the central axis.
- the convex portion 108A has, for example, a hemispherical surface having a diameter of 1 mm, a height of 0.8 ⁇ m, and a curvature of 86 mR.
- the spectacle lens body 102 is made of, for example, a thermosetting resin such as thiourethane, allyl, acrylic, or epithio.
- the resin which comprises the spectacles lens main body 102 may select other resin from which desired refractive index is obtained.
- FIG. 6A are diagrams for explaining this spectacle lens manufacturing method.
- a hard coating solution is applied to the molding surface 14A of the first mold 14, spread over the entire molding surface 14A by spin coating or dip coating, and then cured.
- This process corresponds to the HC material application step.
- the hard coat layer 108 is formed on the molding surface 14A of the first mold 14.
- the convex portions 108A are formed on the surface of the hard coating layer 108 where the hard coating solution is cured.
- the first mold 14, the second mold 16, and the gasket 18 are assembled to form the mold 12, and the inside of the mold 12 is thermally cured. Resin 40 is filled. This process corresponds to the resin filling step. Then, the mold 12 is heated until the thermosetting resin 40 is cured.
- the semi-finished lens 42 constituted of the cured thermosetting resin 40 is released from the mold 12. This process corresponds to the releasing step.
- the hard coat layer 108 is integrated on the convex surface 44 side of the semi-finished lens 42.
- the concave surface 46 of the semi-finished lens 42 is cut and polished until the thickness of the semi-finished lens 42 becomes the thickness of the spectacle lens body 102.
- the spectacle lens body 102 having the convex surface 103 and the concave surface 105 is manufactured.
- the hard coat layer 109 is formed on the concave surface 104 of the spectacle lens body 102.
- the hard coat layer 109 can be formed, for example, by spin coating.
- the antireflective films 110 and 111 are formed on the surfaces of the hard coat layers 108 and 109.
- the antireflective films 110 and 111 can be formed, for example, by depositing an antireflective agent such as ZrO 2, MgF 2 or AL 2 O 3 by vacuum deposition.
- An eyeglass lens is manufactured by the above process.
- the following additional effects are achieved.
- the hard coat solution is applied to the first mold 14 to form the hard coat layer 108, and then the thermosetting resin 40 is filled in the mold 12 so that the convex portion 108A of the spectacle lens 101 is formed. Can be formed reliably.
- this invention is not limited to the said embodiment etc. You may change suitably in the range of the technical idea of this indication.
- the shape of the convex portion 6 is not limited to the hemispherical shape. Also, a convex portion may be formed on the concave surface 4.
- the spectacle lens is manufactured by a cast method using a thermosetting resin as a resin material, but the present invention is also applicable to a case where a spectacle lens is manufactured by an injection method using a thermoplastic resin as a resin material. It is applicable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Eyeglasses (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
微小な凹部を有する成形型を高い精度で作成できる方法等を提供する。 本発明によれば、一方の表面に微小な凸部6が形成された眼鏡レンズ1を製造するための成形型を製造する成形型製造方法であって、基材20と、ニッケル合金からなり基材を被覆し表面が眼鏡レンズの一方の表面の形状に対応する形状に形成された被覆部22と、を有するマスターモールド23を準備するマスターモールド準備ステップと、マスターモールドの被覆部の表面に、凸部に対応する凹部を切削加工する切削加工ステップと、凹部が切削加工されたマスターモールドの被覆部に対して電鋳を行い、被覆部の表面と相補的な表面を有する転写モールド24を製造する転写モールド製造ステップと、転写モールドの表面に対して電鋳を行い、転写モールドの表面と相補的な表面を有する第1のモールド14を製造する第1のモールド製造ステップと、を備えている眼鏡レンズ成形型の製造方法。
Description
本開示は、眼鏡レンズ成形型の製造方法、及び、眼鏡レンズの製造方法に関し、特に、表面に凸部を有する眼鏡レンズ成形型の製造方法及び表面に凸部を有する眼鏡レンズの製造方法に関する。
特許文献1には、プラスチックレンズの凸面に、例えば直径1mm程度の略半球面の表面形状を有する微小凸部(セグメント)を形成した近視等の屈折異常の進行を抑制する眼鏡レンズが開示されている。一般に、眼鏡レンズを製造する方法として、眼鏡レンズの材料に熱硬化性樹脂を用い、成形型にガラス材料からなる型を用いる方法が知られている。
特許文献1に開示されているような凸面に微小凸部を有する眼鏡レンズを、ガラス材料製の成形型を用いて製造する場合には、ガラス材料製の成形型の一方の成形面に、微小凸部と相補的な微小な凹部を形成する方法が挙げられる。
ガラス材料製の成形型の成形面に、微小な凹部を形成する方法としては、研削・研磨加工、レーザ加工等が挙げられる。
しかしながら、これらの方法では、加工時にガラス材料に欠け等が生じてしまう可能性が高く、微小な凹部に必要な曲面の加工精度、表面粗さ、寸法精度等の条件を満たすことができず、凸面に微小凸部を有する眼鏡レンズをガラス材料製の成形型に必要な精度を達成することが困難であった。
しかしながら、これらの方法では、加工時にガラス材料に欠け等が生じてしまう可能性が高く、微小な凹部に必要な曲面の加工精度、表面粗さ、寸法精度等の条件を満たすことができず、凸面に微小凸部を有する眼鏡レンズをガラス材料製の成形型に必要な精度を達成することが困難であった。
また、レンズをキャスト製法で大量生産する場合には、大量の成形型が必要となるが、大量の成形型を安価且つ迅速に提供することは困難であった。
本発明は、上記の課題に鑑みなされたものであり、高精度の微小凹部を有する眼鏡レンズ成形用の成形型を作成できる方法を提供すること等を目的とする。
本発明は、また、レンズをキャスト製法で生産するための大量の成形型を、安価且つ迅速に提供することを目的とする。
本発明によれば、
一方の表面に微小な凸部が形成された眼鏡レンズを製造するための成形型を製造する成形型製造方法であって、
基材と、ニッケル合金からなり前記基材を被覆し表面が前記眼鏡レンズの前記一方の表面の形状に対応する形状に形成された被覆部と、を有するマスターモールドを準備するマスターモールド準備ステップと、
前記マスターモールドの被覆部の表面に、前記凸部に対応する凹部を切削加工する切削加工ステップと、
前記凹部が切削加工されたマスターモールドの被覆部に対して電鋳を行い、前記被覆部の表面と相補的な表面を有する転写モールドを製造する転写モールド製造ステップと、
前記転写モールドの表面に対して電鋳を行い、前記転写モールドの表面と相補的な表面を有する第1のモールドを製造する第1のモールド製造ステップと、を備えている、
ことを特徴とする眼鏡レンズ成形型の製造方法が提供される。
一方の表面に微小な凸部が形成された眼鏡レンズを製造するための成形型を製造する成形型製造方法であって、
基材と、ニッケル合金からなり前記基材を被覆し表面が前記眼鏡レンズの前記一方の表面の形状に対応する形状に形成された被覆部と、を有するマスターモールドを準備するマスターモールド準備ステップと、
前記マスターモールドの被覆部の表面に、前記凸部に対応する凹部を切削加工する切削加工ステップと、
前記凹部が切削加工されたマスターモールドの被覆部に対して電鋳を行い、前記被覆部の表面と相補的な表面を有する転写モールドを製造する転写モールド製造ステップと、
前記転写モールドの表面に対して電鋳を行い、前記転写モールドの表面と相補的な表面を有する第1のモールドを製造する第1のモールド製造ステップと、を備えている、
ことを特徴とする眼鏡レンズ成形型の製造方法が提供される。
上記のような構成によれば、延性材料であるニッケル合金からなる被覆部の表面を切削加工することによりマスターモールドに微小な凹部を形成し、マスターモールドから電鋳により転写モールドを製造し、転写モールドから電鋳により第1のモールドを製造している。このため、ガラス材料のような比較的脆い材料からなる成形型材料の表面に直接、凹部を加工する場合のように欠け等が生じることがない。この結果、微小な凹部を有する高い精度の眼鏡レンズ成形用の成形型を作成することができる。
また、本発明の眼鏡レンズ成形型の製造方法によれば、眼鏡レンズをキャスト製法で生産するための大量の成形型を、安価且つ迅速に提供することができる。
本発明の他の態様によれば、
上記成形型製造方法により製造された成形型によって眼鏡レンズを製造する方法であって、
前記第1のモールドと、表面が前記眼鏡レンズの他方の表面形状に対応する形状に形成された第2のモールドとを所定の間隔に保持してレンズ成形用の空間を画定するステップと、
前記第1のモールドと前記第2のモールドとの間の空間に樹脂を充填する樹脂充填ステップと、
硬化した樹脂によって構成された眼鏡レンズを前記第1および第2のモールドから取外す離型ステップと、を備えている、
ことを特徴とする眼鏡レンズ製造方法が提供される。
上記成形型製造方法により製造された成形型によって眼鏡レンズを製造する方法であって、
前記第1のモールドと、表面が前記眼鏡レンズの他方の表面形状に対応する形状に形成された第2のモールドとを所定の間隔に保持してレンズ成形用の空間を画定するステップと、
前記第1のモールドと前記第2のモールドとの間の空間に樹脂を充填する樹脂充填ステップと、
硬化した樹脂によって構成された眼鏡レンズを前記第1および第2のモールドから取外す離型ステップと、を備えている、
ことを特徴とする眼鏡レンズ製造方法が提供される。
本発明の他の好ましい態様によれば、
前記樹脂充填ステップの前に、
少なくとも前記一方のモールドの表面にハードコート材料を塗布するHC材料塗布ステップを、さらに、備えている。
前記樹脂充填ステップの前に、
少なくとも前記一方のモールドの表面にハードコート材料を塗布するHC材料塗布ステップを、さらに、備えている。
前記凸部の表面は、略半球面形状を有する。
前記樹脂は、熱硬化性樹脂である。
本発明によれば、高精度の微小凹部を有する眼鏡レンズ製造用の成形型を作成することができる成形型製造方法を提供することを目的とする。
本発明によれば、また、眼鏡レンズをキャスト製法で生産するための大量の成形型を、安価且つ迅速に提供することができる。
以下、本発明の好ましい実施形態の眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法を、図面を参照しながら詳細に説明する。
図1は、本発明の好ましい実施形態の眼鏡レンズ成形型の製造方法により製造された成形型で成形された眼鏡レンズ1の形状を示す断面図である。
図1は、本発明の好ましい実施形態の眼鏡レンズ成形型の製造方法により製造された成形型で成形された眼鏡レンズ1の形状を示す断面図である。
図1に示すように、眼鏡レンズ1は、眼鏡レンズ本体2を備え、眼鏡レンズ本体2は、凸面3と凹面4とを有している。眼鏡レンズ1は、さらに、眼鏡レンズ本体2の凸面3及び凹面4上に形成されたハードコート層8と、各ハードコート層8の表面に形成された反射防止膜(AR膜)10と、を有している。
眼鏡レンズ本体2の凸面3には、複数の微小な凸部6が、眼鏡レンズ1の中心軸を中心に周方向および径方向に等間隔に配置されている。凸部6は、表面が、直径1mm、高さ0.8μm、曲率86mRの略半球面状を有している。
眼鏡レンズ本体2は、例えば、チオウレタン、アリル、アクリル、エピチオ等の熱硬化性樹脂からなる。なお、眼鏡レンズ本体2を構成する樹脂として、所望の屈折度が得られる他の樹脂を選択してもよい。
また、ハードコート層8の材料としては、例えば、熱可塑性樹脂、またはUV硬化性樹脂を用いることができる。
上述した特許文献1に記載されているように、眼鏡レンズの凸面(物体側面)に微小凸部(セグメント)を形成することで、眼鏡装用者の近視等の屈折異常の進行を抑制できることが知られている。その原理は、表面の曲率が、眼鏡レンズの凸面の曲率と異なる微小凸部を形成することで、網膜以外の位置にも焦点が結ばれ、近視の進行が抑制されるというものである。
ここで、微小凸部の屈折力は、眼鏡レンズの基部の屈折力より2.00から5.00ディオプター大きいことが好適である。また、微小凸部の直径は0.8~2.0mm程度が好適である。なお、レンズの屈折力は、材料の屈折率、表面のカーブ(曲率半径)、裏面のカーブ(曲率半径)、および、レンズの肉厚で決まる。そのため、微小凸部のカーブ(曲率半径)とその肉厚(微小凸部の高さ)は、好適には、微小凸部の屈折力が眼鏡レンズの基部の屈折力より2.00から5.00ディオプター大きくなるように決定される。具体的には、微小凸部の高さは0.1~10μm、微小凸部の曲率は50~250mmRであることが好適である。また、隣り合う微小凸部と微小凸部との距離は、微小凸部の半径の値と同じ程度であることが好適である。また、複数の微小凸部はレンズの中心付近にほぼ均一に配置されることが好適である。
次に、本発明の好ましい実施形態の成形型製造方法により製造され、眼鏡レンズ1を製造するために用いられる成形型について説明する。
図2は、本発明の好ましい実施形態により製造された成形型を示す模式的な断面図である。図2に示されているように、眼鏡レンズ1を製造するために用いられる成形型12は、凹状の成形面14Aを有する第1のモールド14と、凸状の成形面16Aを有する第2のモールド16と、円筒状のガスケット18と、を備えている。第1のモールド14および第2のモールド16は、成形面14A、16Aが対向するように、ガスケット18の内側に配置されている。
図2は、本発明の好ましい実施形態により製造された成形型を示す模式的な断面図である。図2に示されているように、眼鏡レンズ1を製造するために用いられる成形型12は、凹状の成形面14Aを有する第1のモールド14と、凸状の成形面16Aを有する第2のモールド16と、円筒状のガスケット18と、を備えている。第1のモールド14および第2のモールド16は、成形面14A、16Aが対向するように、ガスケット18の内側に配置されている。
第1のモールド14は、電鋳によって製造され、例えば、主にニッケル合金からなり、成形面14Aが所定形状とされている。詳細には、第1のモールド14の成形面14Aには、眼鏡レンズ本体2の凸面3に形成された凸部6に対応する形状の凹部14Bが形成されている。
第2のモールド16はガラスにより、ガスケット18は、PET、シリコン系粘着剤、低密度ポリエチレンからなるレンズ成形用テープにより、それぞれ、構成されている。
第2のモールド16はガラスにより、ガスケット18は、PET、シリコン系粘着剤、低密度ポリエチレンからなるレンズ成形用テープにより、それぞれ、構成されている。
以下、図2に示された成形型の第1のモールドを製造する方法を説明する。図3A~図3Hは、図2に示す成形型の第1のモールドの製造方法を説明するための図である。
まず、図3Aに示すように、ステンレス製の円柱(円板)状の基材20を準備する。
次に、図3Bに示すように、基材20の一方の面(図3Bでは下面)を切削加工し、凹面20Aを形成する。
次に、図3Bに示すように、基材20の一方の面(図3Bでは下面)を切削加工し、凹面20Aを形成する。
次に、基材20の凹面20AにNi-P(無電解ニッケルめっき)を施し、凹面20Aにニッケル合金からなる被覆層22を形成する。さらに、図3Cに示すように、被覆層22を、表面が眼鏡レンズ1の凸面3に対応する所望の曲率になるように切削加工する。この結果、被覆層22の表面(凹面)22Aは、眼鏡レンズ1の凸面3と相補的な形状となる。図3A~図3Cを参照して説明した工程が、マスターモールド準備ステップに相当する。
尚、マスターモールド準備ステップは上述した工程に限定されず、被覆層22の表面の最終的な曲率が、眼鏡レンズ1の凸面3に対応する所望の曲率となるモールドを準備できれば、どのような工程でもよい。
例えば、基材を切削する工程(図3B)において、基材の表面を、眼鏡レンズ1の凸面3に対応する所望の曲率を有するように精密に切削し、この精密に切削された基材の表面にNi-P(無電解ニッケルめっき)を均等に施すことで、表面が所望の曲率を有する被覆層22を得る方法でも良い。この方法では、Ni-P(無電解ニッケルめっき)による被覆層22の切削加工が省略される。
次に、図3Dに示すように、超精密微小加工により、Ni-P(延性材料)からなる被覆層22の凹面22A上において、眼鏡レンズ1の凸部6に対応する位置に、略半球面状の凹部22Bを形成する。これら工程により、マスターモールド23が製造される。本工程が、切削加工ステップに該当する。
次に、図3Eに示すように、マスターモールド23の被覆層22の凹面22Aに対して電鋳を行い、凹面22Aに沿ってニッケル合金を析出させて、転写モールド24を形成する。本工程が転写モールド製造ステップに相当する。
転写モールド24の被覆層22と接触する表面(凸面)24Aは、被覆層22の凹面22Aが転写され、凹面22Aと相補的な形状を有している。したがって、凹面22Aには、凹部22Bに対応する凸部24Bが形成される。
転写モールド24の被覆層22と接触する表面(凸面)24Aは、被覆層22の凹面22Aが転写され、凹面22Aと相補的な形状を有している。したがって、凹面22Aには、凹部22Bに対応する凸部24Bが形成される。
次に、図3Fに示すように、転写モールド24をマスターモールド23から取り外す。そして、転写モールド24の背部にサポート部材26を接着剤により取り付ける。なお、サポート部材26としては、例えば、ステンレス等からなる部材が用いられる。
次に、図3Gに示すように、電鋳により転写モールド24の凸面24Aの表面にニッケル合金28を析出させて第1のモールド14を形成する。本工程が第1のモールド製造ステップに相当する。第1のモールド14の転写モールド24と接触する表面(凹面)14Aは、転写モールド24の凸面24Aが転写され、相補的な形状となっている。そして、凹面14Aには、凸部24Bに対応する凹部14Bが形成されている。図3Hに示すように、転写モールド24から第1のモールド14を取り外し、第1のモールド14W得る。
なお、同一構造の眼鏡レンズを複数、並行して製造する場合には、この工程を複数回、繰り返し、複数の第1のモールドを製造すればよい。
以上の方法により、図2に示す成形型の第1のモールド14が製造されることができる。
なお、同一構造の眼鏡レンズを複数、並行して製造する場合には、この工程を複数回、繰り返し、複数の第1のモールドを製造すればよい。
以上の方法により、図2に示す成形型の第1のモールド14が製造されることができる。
また、これらの作業と並行して、第2のモールド16及びガスケット18を製造する。第2のモールド16は、例えば、円柱状のガラス製の基材の一方の面を眼鏡レンズの凹面4に対応する形状に研削、研磨で加工することにより製造することができる。本工程が、第2の成形型準備ステップに相当する。
好ましい実施形態の成形型製造方法によれば、以下の効果が奏される。
延性材料であるニッケル合金からなる被覆層22の表面を切削加工することによりマスターモールド23に凹部22Bを形成し、マスターモールド23から電鋳により転写モールド24を製造し、転写モールド24から電鋳により第1のモールド14を製造するため、第1のモールド14に欠けが生じ難い。このため、微小な凹部14Bを有する眼鏡レンズ成形用の成形型12を高い精度で作成することができる。
延性材料であるニッケル合金からなる被覆層22の表面を切削加工することによりマスターモールド23に凹部22Bを形成し、マスターモールド23から電鋳により転写モールド24を製造し、転写モールド24から電鋳により第1のモールド14を製造するため、第1のモールド14に欠けが生じ難い。このため、微小な凹部14Bを有する眼鏡レンズ成形用の成形型12を高い精度で作成することができる。
次に、このようにして製造した成形型を用いて眼鏡レンズ1を成形する方法を説明する。図4A~図4Fは、図2に示す成形型を用いて眼鏡レンズ1を成形する方法を説明するための図である。
まず、図4Aに示すように、第1のモールド14と、第2のモールド16と、ガスケット18とを組み合わせて成形型12を形成し、成形型12の内部空間(キャビティ)内に熱硬化性樹脂30を充填する。本工程が樹脂充填ステップに相当する。そして、成形型12を、熱硬化性樹脂30が硬化するまで加熱する。
次に、図4Bに示すように、成形型12を冷却した後、成形型12から、硬化した硬化性樹脂30で構成されたセミフィニッシュドレンズ32を離型する。本工程が離型ステップに相当する。セミフィニッシュドレンズ32の一方の面34は、第1のモールド14の成形面14Aの形状が転写された凸面34とされている。凸面34の中央部には複数の凸部34Aが形成されている。セミフィニッシュドレンズ32の他方の面36は、第2のモールド16の凸面16Aが転写された凹面36とされている。
次に、図4Cに示すように、セミフィニッシュドレンズ32の凹面36を、セミフィニッシュドレンズ32の厚さがのレンズ本体2の厚さになるまで切削し、研磨する。これにより、凸面3及び凹面4を有し、凸面3に凸部6が形成された眼鏡レンズ本体2が製造される。
なお、本実施の形態では、凹面を切削および研磨加工するセミフィニッシュドレンズを作成する工程について説明したが、本発明は、凹面を切削および研磨加工しないフィニッシュドレンズにも適用可能である。
次に、図4Dに示すように、眼鏡レンズ本体2の凸面3及び凹面4上にハードコート層8を形成する。ハードコート層8は、例えば、シリコン系樹脂などのハードコート液に眼鏡レンズ本体2を浸漬させる方法(ディップコート)や、スピンコートなどで形成することができる。
次に、図4Eに示すように、ハードコート層8の表面に反射防止膜10を形成する。反射防止膜10は、例えば、ZrO2,MgF2、AL2O3等の反射防止剤を真空蒸着により成膜することにより行うことができる。
以上の工程により、眼鏡レンズが製造される。
以上の工程により、眼鏡レンズが製造される。
また、本実施形態によれば、転写モールド24から同一形状の複数の第1のモールド14を複製することができるため、同一形状の眼鏡レンズを並行して製造することが容易にできる。
次に、上記実施形態の成形型製造方法によって製造された成形型を使用する、他の眼鏡レンズ製造方法について説明する。
図5は、本発明の好ましい実施形態の眼鏡レンズ成形型の製造方法によって製造された成形型を用いた他の眼鏡レンズ製造方法により製造された眼鏡レンズ101の模式的な断面図である。
図5に示されているように、眼鏡レンズ101は、眼鏡レンズ本体102を備えている。眼鏡レンズ本体102は、所定の曲率に形成された凸面103と、凹面104とを有している。眼鏡レンズ101は、更に、眼鏡レンズ本体102の凸面103及び凹面104上に形成されたハードコート層108、109と、各ハードコート層108、109の表面に形成された反射防止膜(AR膜)110、111と、を有している。
図5に示されているように、眼鏡レンズ101は、眼鏡レンズ本体102を備えている。眼鏡レンズ本体102は、所定の曲率に形成された凸面103と、凹面104とを有している。眼鏡レンズ101は、更に、眼鏡レンズ本体102の凸面103及び凹面104上に形成されたハードコート層108、109と、各ハードコート層108、109の表面に形成された反射防止膜(AR膜)110、111と、を有している。
凸面103側のハードコート層108の表面には、中心軸の周囲に周方向および軸方向に等間隔に凸部108Aが形成されている。凸部108Aは、表面が例えば、直径1mm、高さ0.8μm、曲率86mRの半球面状になっている。眼鏡レンズ本体102は、例えば、例えば、チオウレタン、アリル、アクリル、エピチオ等の熱硬化性樹脂からなる。なお、眼鏡レンズ本体102を構成する樹脂は、所望の屈折度が得られる他の樹脂を選択してもよい。
次に、眼鏡レンズ101を製造する眼鏡レンズ製造方法を説明する。図6A~図6Fは、この眼鏡レンズ製造方法を説明する図である。
まず、図6Aに示すように、第1のモールド14の成形面14Aにハードコート液を塗布し、スピンコートやディップコートにより成形面14A全体に広げ、硬化させる。本工程がHC材料塗布ステップに相当する。この工程により、第1のモールド14の成形面14A上にハードコート層108が形成される。この際、ハードコート液が成形面14Aの凹部14Bに入り込むため、ハードコート液が硬化したハードコート層108の表面には凸部108Aが形成されることになる。
まず、図6Aに示すように、第1のモールド14の成形面14Aにハードコート液を塗布し、スピンコートやディップコートにより成形面14A全体に広げ、硬化させる。本工程がHC材料塗布ステップに相当する。この工程により、第1のモールド14の成形面14A上にハードコート層108が形成される。この際、ハードコート液が成形面14Aの凹部14Bに入り込むため、ハードコート液が硬化したハードコート層108の表面には凸部108Aが形成されることになる。
次に、図6Bに示すように、第1のモールド14と、第2のモールド16と、ガスケット18とを組み立てて成形型12を形成し、成形型12の内部空間(キャビティ)内に熱硬化性樹脂40を充填する。本工程が樹脂充填ステップに相当する。そして、成形型12を、熱硬化性樹脂40が硬化するまで加熱する。
次に、図6Cに示すように、成形型12を冷却した後、成形型12から、硬化した熱硬化性樹脂40によって構成されたセミフィニッシュドレンズ42を離型する。本工程が離型ステップに相当する。セミフィニッシュドレンズ42の凸面44側には、ハードコート層108が一体となっている。
次に、図6Dに示すように、セミフィニッシュドレンズ42の凹面46を、セミフィニッシュドレンズ42の厚さが眼鏡レンズ本体102の厚さとなるまで切削し、研磨する。これにより、凸面103及び凹面105を有する眼鏡レンズ本体102が製造される。
次に、図6Eに示すように、眼鏡レンズ本体102の凹面104上にハードコート層109を形成する。ハードコート層109の形成は、例えば、スピンコートにより行うことができる。
次に、図6Fに示すように、ハードコート層108、109の表面に反射防止膜110、111を形成する。反射防止膜110、111は、例えば、ZrO2,MgF2、AL2O3等の反射防止剤を真空蒸着により成膜することにより行うことができる。
以上の工程により、眼鏡レンズが製造される。
以上の工程により、眼鏡レンズが製造される。
この眼鏡レンズ製造方法によれば、以下の付加的な効果が奏される。
HC材料塗布ステップにおいて、第1のモールド14にハードコート液を塗布してハードコート層108を形成し、その後、熱硬化性樹脂40を成形型12に充填するため、眼鏡レンズ101の凸部108Aを確実に形成することができる。
HC材料塗布ステップにおいて、第1のモールド14にハードコート液を塗布してハードコート層108を形成し、その後、熱硬化性樹脂40を成形型12に充填するため、眼鏡レンズ101の凸部108Aを確実に形成することができる。
なお、本発明は、上記実施形態等に限定されず、本開示の技術的思想の範囲において適宜変更してもよい。
例えば、上記実施形態では、眼鏡レンズ本体2の凸面3に半球面状の凸部6が形成された場合について説明したが、凸部6の形状は半球面状に限られない。また、凹面4に凸部を形成してもよい。
さらに、上記実施形態では、熱硬化性樹脂を樹脂材料として用いたキャスト法によって眼鏡レンズを製造したが、本発明は、樹脂材料として熱可塑性樹脂を用いるインジェクション法によって眼鏡レンズを製造する場合にも適用可能である。
1 眼鏡レンズ
2 眼鏡レンズ本体
3 凸面
4 凹面
6 凸部
8 ハードコート層
10 反射防止膜
12 成形型
14 第1のモールド
14A 成形面
14B 凹部
16 第2のモールド
16A 凸面(成形面)
18 ガスケット
20 基材
20A 凹面
22 被覆層
22A 凹面
22B 凹部
23 マスターモールド
24 転写モールド
24A 凸面
24B 凸部
26 サポート部材
28 ニッケル合金
30 熱硬化性樹脂
32 セミフィニッシュドレンズ
34 凸面
34A 凸部
36 凹面
40 熱硬化性樹脂
42 セミフィニッシュドレンズ
44 凸面
46 凹面
102 眼鏡レンズ本体
103 凸面
104 凹面
105 凹面
108 ハードコート層
108A 凸部
109 ハードコート層
110 反射防止膜
2 眼鏡レンズ本体
3 凸面
4 凹面
6 凸部
8 ハードコート層
10 反射防止膜
12 成形型
14 第1のモールド
14A 成形面
14B 凹部
16 第2のモールド
16A 凸面(成形面)
18 ガスケット
20 基材
20A 凹面
22 被覆層
22A 凹面
22B 凹部
23 マスターモールド
24 転写モールド
24A 凸面
24B 凸部
26 サポート部材
28 ニッケル合金
30 熱硬化性樹脂
32 セミフィニッシュドレンズ
34 凸面
34A 凸部
36 凹面
40 熱硬化性樹脂
42 セミフィニッシュドレンズ
44 凸面
46 凹面
102 眼鏡レンズ本体
103 凸面
104 凹面
105 凹面
108 ハードコート層
108A 凸部
109 ハードコート層
110 反射防止膜
Claims (5)
- 一方の表面に微小な凸部が形成された眼鏡レンズを製造するための成形型を製造する成形型製造方法であって、
基材と、ニッケル合金からなり前記基材を被覆し表面が前記眼鏡レンズの前記一方の表面の形状に対応する形状に形成された被覆部と、を有するマスターモールドを準備するマスターモールド準備ステップと、
前記マスターモールドの被覆部の表面に、前記凸部に対応する凹部を切削加工する切削加工ステップと、
前記凹部が切削加工されたマスターモールドの被覆部に対して電鋳を行い、前記被覆部の表面と相補的な表面を有する転写モールドを製造する転写モールド製造ステップと、
前記転写モールドの表面に対して電鋳を行い、前記転写モールドの表面と相補的な表面を有する第1のモールドを製造する第1のモールド製造ステップと、を備えている、
ことを特徴とする眼鏡レンズ成形型の製造方法。 - 請求項1に記載の成形型製造方法により製造された成形型によって眼鏡レンズを製造する方法であって、
前記第1のモールドと、表面が前記眼鏡レンズの他方の表面形状に対応する形状に形成された第2のモールドとを所定の間隔に保持してレンズ成形用の空間を画定するステップと、
前記第1のモールドと前記第2のモールドとの間の空間に樹脂を充填する樹脂充填ステップと、
硬化した樹脂によって構成された眼鏡レンズを前記第1および第2のモールドから取外す離型ステップと、を備えている、
ことを特徴とする眼鏡レンズ製造方法。 - 前記樹脂充填ステップの前に、
少なくとも前記一方のモールドの表面にハードコート材料を塗布するHC材料塗布ステップを、さらに、備えている、
請求項2に記載の眼鏡レンズ製造方法。 - 前記凸部の表面は、略半球面形状を有する、
請求項2又は3に記載の眼鏡レンズ製造方法。 - 前記樹脂は、熱硬化性樹脂である、
請求項2から4の何れか1項に記載の眼鏡レンズ製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880082575.9A CN111511515A (zh) | 2017-12-19 | 2018-12-18 | 眼镜镜片成型模具的制造方法以及眼镜镜片的制造方法 |
JP2019561100A JP7216666B2 (ja) | 2017-12-19 | 2018-12-18 | 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 |
US16/650,734 US20210370553A1 (en) | 2017-12-19 | 2018-12-18 | Production method for spectacle lens molding mold and production method for spectacle lens |
EP18891593.8A EP3730270A4 (en) | 2017-12-19 | 2018-12-18 | METHOD OF MANUFACTURING A MOLD FOR EYEGLASSES AND METHOD FOR MANUFACTURING EYEGLASSES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-242803 | 2017-12-19 | ||
JP2017242803 | 2017-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124353A1 true WO2019124353A1 (ja) | 2019-06-27 |
Family
ID=66993391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046521 WO2019124353A1 (ja) | 2017-12-19 | 2018-12-18 | 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210370553A1 (ja) |
EP (1) | EP3730270A4 (ja) |
JP (1) | JP7216666B2 (ja) |
CN (2) | CN111511515A (ja) |
WO (1) | WO2019124353A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021051006A (ja) * | 2019-09-25 | 2021-04-01 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 光学特性評価方法、眼鏡レンズの製造方法および眼鏡レンズ |
EP3895879A1 (en) * | 2020-04-14 | 2021-10-20 | Essilor International | Casting a lens with surface microstructures |
WO2021209291A1 (en) * | 2020-04-14 | 2021-10-21 | Essilor International | Method for producing a mold |
WO2022209382A1 (ja) | 2021-03-31 | 2022-10-06 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズの製造方法、および眼鏡レンズ |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4091790A1 (en) * | 2021-05-18 | 2022-11-23 | Essilor International | Method and device for optical lens fabrication |
EP4094932B1 (en) * | 2021-05-26 | 2024-09-04 | Essilor International | Composite mold for manufacturing a microstructured thermoset article, manufacturing method and method for obtaining the mold |
EP4108438A1 (en) * | 2021-06-25 | 2022-12-28 | Essilor International | Method for manufacturing a lens element |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168701U (ja) * | 1982-05-04 | 1983-11-10 | 日本ビクター株式会社 | フレネルレンズ |
JPH01310918A (ja) * | 1988-06-10 | 1989-12-15 | Asahi Optical Co Ltd | プラスチックレンズの製造方法 |
JPH0985749A (ja) * | 1995-09-28 | 1997-03-31 | Washi Kosan Kk | 眼鏡レンズ用モールド |
JP2003181851A (ja) * | 2001-12-17 | 2003-07-02 | Nidek Co Ltd | プラスチックレンズ製造方法及び該製造方法に使用されるモールド成形型 |
JP2013123884A (ja) * | 2011-12-15 | 2013-06-24 | Konica Minolta Advanced Layers Inc | 成形用型の製造方法 |
US20170131567A1 (en) | 2015-11-06 | 2017-05-11 | Hoya Lens Thailand Ltd. | Spectacle Lens |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000326348A (ja) * | 1999-05-21 | 2000-11-28 | Asahi Optical Co Ltd | レンズ成形型,その作製方法,及びレンズ製造方法 |
US20070138667A1 (en) * | 2005-12-21 | 2007-06-21 | Dang Hoa T | In-mold coating compositions for optical lenses |
US8523354B2 (en) | 2008-04-11 | 2013-09-03 | Pixeloptics Inc. | Electro-active diffractive lens and method for making the same |
CN104678572B (zh) * | 2013-11-29 | 2018-04-27 | 豪雅镜片泰国有限公司 | 眼镜片 |
SG10201400920RA (en) * | 2014-03-24 | 2015-10-29 | Menicon Singapore Pte Ltd | Apparatus and methods for controlling axial growth with an ocular lens |
TWM530231U (zh) * | 2016-06-29 | 2016-10-11 | ying-hui Zhuang | 鏡片結構及其成型模具 |
-
2018
- 2018-12-18 US US16/650,734 patent/US20210370553A1/en not_active Abandoned
- 2018-12-18 EP EP18891593.8A patent/EP3730270A4/en active Pending
- 2018-12-18 CN CN201880082575.9A patent/CN111511515A/zh active Pending
- 2018-12-18 CN CN202011404813.9A patent/CN112659601A/zh active Pending
- 2018-12-18 JP JP2019561100A patent/JP7216666B2/ja active Active
- 2018-12-18 WO PCT/JP2018/046521 patent/WO2019124353A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168701U (ja) * | 1982-05-04 | 1983-11-10 | 日本ビクター株式会社 | フレネルレンズ |
JPH01310918A (ja) * | 1988-06-10 | 1989-12-15 | Asahi Optical Co Ltd | プラスチックレンズの製造方法 |
JPH0985749A (ja) * | 1995-09-28 | 1997-03-31 | Washi Kosan Kk | 眼鏡レンズ用モールド |
JP2003181851A (ja) * | 2001-12-17 | 2003-07-02 | Nidek Co Ltd | プラスチックレンズ製造方法及び該製造方法に使用されるモールド成形型 |
JP2013123884A (ja) * | 2011-12-15 | 2013-06-24 | Konica Minolta Advanced Layers Inc | 成形用型の製造方法 |
US20170131567A1 (en) | 2015-11-06 | 2017-05-11 | Hoya Lens Thailand Ltd. | Spectacle Lens |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021051006A (ja) * | 2019-09-25 | 2021-04-01 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 光学特性評価方法、眼鏡レンズの製造方法および眼鏡レンズ |
JP7366673B2 (ja) | 2019-09-25 | 2023-10-23 | ホヤ レンズ タイランド リミテッド | 光学特性評価方法および眼鏡レンズの製造方法 |
EP3895879A1 (en) * | 2020-04-14 | 2021-10-20 | Essilor International | Casting a lens with surface microstructures |
WO2021209291A1 (en) * | 2020-04-14 | 2021-10-21 | Essilor International | Method for producing a mold |
WO2021209497A1 (en) * | 2020-04-14 | 2021-10-21 | Essilor International | Casting a lens with surface microstructures |
WO2022209382A1 (ja) | 2021-03-31 | 2022-10-06 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズの製造方法、および眼鏡レンズ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019124353A1 (ja) | 2021-02-12 |
EP3730270A4 (en) | 2021-09-15 |
US20210370553A1 (en) | 2021-12-02 |
JP7216666B2 (ja) | 2023-02-01 |
EP3730270A1 (en) | 2020-10-28 |
CN112659601A (zh) | 2021-04-16 |
CN111511515A (zh) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019124353A1 (ja) | 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 | |
JP7216667B2 (ja) | 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法 | |
JP6861792B2 (ja) | 眼鏡レンズ及びその製造方法 | |
JP2019521397A5 (ja) | ||
EP3126112B1 (en) | Additive manufacturing of molds and methods of making molds and devices therefrom | |
US20080055736A1 (en) | Optical element and production device for producing same | |
US10274749B2 (en) | Producing microstructured spectacle lenses by means of transfer layer | |
GB1601327A (en) | Method and apparatus for moulding ophthalmic plastic lenses of the standard and bifocal type | |
US20220244567A1 (en) | Spectacle lens and method for manufacturing same | |
JP2016500842A (ja) | 保護された微細構造を有する眼鏡レンズの作製 | |
WO2009069940A1 (en) | Device and method for fabricating lens | |
US5067800A (en) | Composite optical article and method of manufacture thereof | |
EP4316769A1 (en) | Mold manufacturing method, optical member manufacturing method, and spectacle lens | |
KR20110055630A (ko) | 구조화 물체의 제조하기 위한 방법 및 장치, 그리고 구조화 물체 | |
JP4820871B2 (ja) | 反射防止構造体及びその製造方法 | |
JP3810456B2 (ja) | 眼鏡レンズ用モールド | |
JP4814938B2 (ja) | 反射防止構造体及びその製造方法 | |
CN111465890B (zh) | 用于具有优化的厚度的眼科镜片的确定方法 | |
WO2024104367A1 (en) | A mold appartus for manufacturing a spectacle lens and relevant methods | |
JP4108722B2 (ja) | 光学素子および光学素子製造方法 | |
CN115461211A (zh) | 用于生产模具的方法 | |
JP2022136683A (ja) | 眼鏡用偏光レンズ、眼鏡用偏光レンズの製造方法、フレーム付き眼鏡の製造方法、および、眼鏡用偏光レンズの検査方法 | |
JPH01271130A (ja) | 樹脂製光学素子の非球面金型加工方法 | |
JP2010264621A (ja) | プラスチックレンズの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18891593 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019561100 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018891593 Country of ref document: EP Effective date: 20200720 |