WO2019124352A1 - 眼鏡レンズ製造方法および眼鏡レンズ - Google Patents

眼鏡レンズ製造方法および眼鏡レンズ Download PDF

Info

Publication number
WO2019124352A1
WO2019124352A1 PCT/JP2018/046520 JP2018046520W WO2019124352A1 WO 2019124352 A1 WO2019124352 A1 WO 2019124352A1 JP 2018046520 W JP2018046520 W JP 2018046520W WO 2019124352 A1 WO2019124352 A1 WO 2019124352A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectacle lens
base
resin
mold
optical element
Prior art date
Application number
PCT/JP2018/046520
Other languages
English (en)
French (fr)
Inventor
雄治 星
Original Assignee
ホヤ レンズ タイランド リミテッド
雄治 星
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 雄治 星 filed Critical ホヤ レンズ タイランド リミテッド
Priority to EP18890962.6A priority Critical patent/EP3730997A4/en
Priority to JP2019561099A priority patent/JP7421934B2/ja
Priority to CN201880082734.5A priority patent/CN111512216A/zh
Priority to US16/650,600 priority patent/US11460716B2/en
Priority to CN202210002612.9A priority patent/CN114506102A/zh
Publication of WO2019124352A1 publication Critical patent/WO2019124352A1/ja
Priority to US17/696,015 priority patent/US20220206318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • B29C33/123Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels for centering the inserts
    • B29C33/126Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels for centering the inserts using centering means forming part of the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • B29C33/14Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels against the mould wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00413Production of simple or compound lenses made by moulding between two mould parts which are not in direct contact with one another, e.g. comprising a seal between or on the edges
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings

Definitions

  • the present invention relates generally to a spectacle lens manufacturing method and a spectacle lens, and in particular to a spectacle lens manufacturing method and a spectacle lens in which an optical element is embedded.
  • a lens in which an optical element is embedded inside the spectacle lens has been proposed.
  • plastic glasses in which a large number of hemispherical (flat-convex) small beads (optical elements) having a diameter of about 1 mm are disposed at predetermined portions of the spectacle lens.
  • a lens has been proposed (Patent Document 1).
  • Patent Document 1 In addition to the structure by which many small bead parts are arrange
  • Patent Document 2 proposes an eyeglass lens (optical device) in which a light guide member (diffraction grating) as an optical element is embedded inside without being exposed to the outside in order to use as an eyeglass lens for a wearable terminal. It is done.
  • a light guide member diffiffraction grating
  • the lens material is poured or injected into a mold having a large number of minute recesses formed on one molding surface. Manufacturing methods are adopted.
  • the eyeglass lens in which a large number of small beads are embedded in the eyeglass lens can not adopt the above-described manufacturing method, so that it is not easy to mass-produce it. I had it.
  • the spectacle lens embedded in the optical element without being exposed to the outside as proposed in the cited document 2 is not easy to arrange the optical element at a predetermined position inside, so a large amount of It had the subject that it was difficult to produce.
  • the present invention has been made in view of the above problems, and provides an eyeglass lens manufacturing method capable of easily and mass producing an eyeglass lens having an optical element embedded therein. With the goal.
  • An eyeglass lens comprising: a base formed of a resin material and having a convex object side surface and a concave eye surface; and an optical element formed of a material different from the material forming the base and embedded in the base
  • a manufacturing method Providing the optical element to be disposed in a mold cavity comprising a first mold that can be opened and closed and a second mold; Introducing a resin material which constitutes the base of the spectacle lens into the cavity of the mold; Curing the resin material of the resin that constitutes the base to obtain the spectacle lens; Disassembling the mold; Removing the spectacle lens from the mold.
  • Lens manufacturing method characterized by
  • a spectacle lens in which the optical element is embedded can be easily and mass-produced.
  • the optical element is a plurality of small beads formed of a resin different from the resin that constitutes the base, and embedded in the base in a state where a part is exposed from the base
  • the step of providing the optical element comprises Placing the resin material of the resin forming the small bead portion at a predetermined position on the surface of the first mold of the mold; Curing the resin material of the resin forming the small bead portion.
  • the bead portion is cured at a predetermined position on the surface of the first mold of the mold, and the base constitutes the base Since it is taken in in the resin material to be made, it becomes possible to manufacture the eyeglass lens by which the small bead part is arrange
  • Each of the small beads has a larger refractive power than the base.
  • the diameter r of the small bead portion is 0.8 to 2.0 mm.
  • the small bead portion is made of a thiourethane material.
  • the power of the bead is 2.00 to 5.00 diopters greater than the power of the base.
  • the distance between the adjacent small beads is set to a distance equal to the radius (r / 2) of the small beads.
  • the step of providing the optical element comprises Placing a pedestal for the optical element at a predetermined position on the surface of the first mold of the mold; Placing the optical element on the pedestal.
  • the optical element can be disposed at a predetermined position in the cavity by a simple operation of placing the optical element on the pedestal disposed on the surface of the first mold. It is possible to easily manufacture a resin-made spectacle lens in which an optical element is disposed at a predetermined position in the inside.
  • the pedestal is made of the same resin as the resin that constitutes the spectacle lens, After the step of mounting the optical element on the pedestal, there is a step of curing the resin constituting the pedestal.
  • the optical element is a strip-like light guide element.
  • the base has refractive power to correct myopia.
  • a base formed of a resin material, And a plurality of small beads which are formed of a resin different from the resin constituting the base and are completely embedded in the base.
  • An eyeglass lens is provided that is characterized.
  • the base has refractive power to correct myopia
  • Each of the small beads has a larger refractive power than the base.
  • the power of the bead is 2.00 to 5.00 diopters greater than the power of the base.
  • the diameter r of the small bead portion is 0.8 to 2.0 mm.
  • the distance between the adjacent small beads is set to a distance equal to the radius (r / 2) of the small beads.
  • an eyeglass lens manufacturing method capable of easily and mass producing an eyeglass lens in which an optical element is embedded in the inside.
  • an eyeglass lens manufactured by such an eyeglass lens manufacturing method is also provided.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG. It is a flowchart which shows the process of the 2nd spectacle lens manufacturing method of this invention. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG. It is a schematic diagram for demonstrating the spectacle lens manufacturing method shown in FIG.
  • FIG. 1 It is a typical sectional view of an eyeglass lens manufactured by an eyeglass lens manufacturing method of a 3rd embodiment of the present invention. It is a schematic diagram for demonstrating the method to manufacture the eyeglass lens shown in FIG. It is a schematic diagram for demonstrating the method to manufacture the eyeglass lens shown in FIG. It is a schematic diagram for demonstrating the effect
  • FIG. 1 is a schematic plan view of an eyeglass lens 1 manufactured by the eyeglass lens manufacturing method according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the eyeglass lens 1.
  • the spectacle lens 1 comprises a spectacle lens body (base) 2.
  • the spectacle lens body (base) 2 is provided with a convex object side (outer side) 4 and a concave eye side (inner side) 6.
  • the hard coat layer 8 and the antireflective film (AR film) 10 are provided on the object side surface 4.
  • a large number of hemispherical small bead portions (optical elements) 12 are disposed in a state of being embedded in the spectacle lens body 2.
  • the small bead portion 12 is regularly arranged in an annular region of the central portion of the spectacle lens body 2 in a plan view.
  • each of the small beads 12 is partially in detail, specifically, the flat portion 12 a is flush with the convex object side surface 4 of the spectacle lens main body 2 in the cross sectional view. It is arranged to be exposed.
  • the progression of refractive error such as myopia of the spectacle wearer It is known that it can suppress
  • the principle will be described in detail below, but by using a small bead having a refractive power greater than that of the base of the spectacle lens for correcting myopia, an image is formed also in front of the retina to suppress the progress of myopia .
  • the refractive power of the small bead portion is preferably 2.00 to 5.00 diopter greater than the refractive power of the base of the spectacle lens.
  • the spectacle lens body 2 is formed of, for example, a thiourethane resin (thermosetting resin) having a refractive index of about 1.590 to 1.578.
  • the small bead portion 12 is made of, for example, a thiourethane resin (thermosetting resin) having a refractive index of about 1.5955 and excellent adhesion to the resin forming the spectacle lens body 2.
  • the type of resin forming the spectacle lens body 2 and the type of resin forming the small bead portion 12 may be another thermosetting resin selected appropriately in consideration of the refractive index.
  • the hemispherical bead portion 12 is set to have a diameter r of about 0.8 to 2.0 mm and a thickness of about 0.1 to 1.15 mm. Further, it is preferable that the distance between the small bead portions 12 be set to about the radius (r / 2) of the small bead portions 12.
  • the first mold 20 used for manufacturing the spectacle lens 1 is prepared (S1).
  • the first mold 20 is made of a material such as glass similar to a known mold used to manufacture a plastic eyeglass lens, and as shown in FIG. A concave molding surface 22 for molding the object side 4 of the present invention.
  • a resin material (raw material monomer M2) of the resin that constitutes the bead portion 12 at a predetermined position of the concave molding surface 22 of the first mold 20 It arranges (drops) at a predetermined position every predetermined amount (S2).
  • the dropped raw material monomer M2 has a substantially hemispherical (plano-convex lens) form on the molding surface 22 due to surface tension or the like.
  • the viscosity, amount, and the like of the raw material monomer M2 disposed on the molding surface 22 are set so as to form small beads 12 of a desired size and shape after the disposed raw material monomer M2 is cured.
  • the hemispherical raw material monomer M2 dropped onto the molding surface 22 is cured (S3).
  • the dropped raw material monomer M2 is cured by being left at room temperature for a predetermined time.
  • the raw material monomer M2 may be cured by heat or the like according to the type of the raw material monomer, the work environment and the like.
  • the first mold 20 in which the raw material monomer M2 dropped at a predetermined position on the molding surface 22 is cured is combined with other molds 24, 25 etc. 26 are assembled to close the cavity 28 inside the mold 26 (S4).
  • the molding surface 22 of the first mold 20 constitutes a part of the cavity 28 (FIG. 6).
  • a raw material monomer (resin material) M1 constituting the spectacle lens body 2 is poured or introduced into the cavity 28 (S5).
  • the raw material monomer M2 constituting the small bead portion 12 is hardened and becomes the small bead portion 12. Therefore, the small bead portion 12 is introduced into the cavity 28.
  • the raw material monomer M1 constituting the spectacle lens main body 2 is taken in.
  • the raw material monomer (resin material) M1 constituting the spectacle lens body 2 introduced into the cavity 28 is cured in the cavity 28 by heating to a predetermined temperature (S6).
  • a predetermined temperature S6
  • an eyeglass lens having a structure in which the small bead portion 12 is embedded in the inside of the eyeglass lens body 2 is formed in the cavity 28.
  • the surface of the bead 12 in contact with the molding surface 22 is flush with the object side 4 of the spectacle lens body 2 in contact with the molding surface 22, and the bead 12 is the glasses in this portion (planar portion 22a)
  • the lens body 2 is exposed to the outside.
  • the hard coat layer 8 and the anti-reflection film 10 are formed on the convex surface 3 of the spectacle lens body 2, and the spectacle lens 1 is finally completed.
  • thermosetting resin is used as a resin for forming the spectacle lens main body and the small bead portion.
  • thermoplastic used for a spectacle lens in place of the thermosetting resin Resin may be used.
  • the first mold 20 is provided with a concave molding surface 22 for molding the convex object side surface 4 of the spectacle lens 1, and the convex molding lens 22 is projected on the concave molding surface 22.
  • the first mold has a convex molding surface for molding the concave eye surface of the spectacle lens, and the convex molding surface is a concave molding surface of the spectacle lens.
  • the side surface may be formed.
  • FIG. 9 is a schematic perspective view of an eyeglass lens 1 manufactured by the eyeglass lens manufacturing method according to the second embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along line XX in FIG. is there.
  • the spectacle lens 1 comprises a spectacle lens body 202.
  • the spectacle lens body 202 is formed of a thermosetting resin, and has a convex object side surface 204 and a concave eye surface 206.
  • a strip-like diffraction grating 208 which is an optical element, is disposed in a state of being embedded in the spectacle lens body 202.
  • the diffraction grating 208 is disposed so as to extend in the radial direction at a position offset from the center of the spectacle lens body 202 in a plan view, as shown in FIG.
  • the diffraction grating 8 is not exposed to the outside from the object side surface (outside surface) 204 and the eyeball side surface (inner side surface) 206 of the spectacle lens body 202 in cross section. That is, it is disposed in a state of being completely surrounded by the resin forming the spectacle lens body 202.
  • the first mold 220 used for manufacturing the spectacle lens 201 is prepared (S21).
  • the first mold 220 is made of a material such as glass similar to a known mold used to manufacture a plastic eyeglass lens, and as shown in FIG.
  • a pedestal 224 for mounting the diffraction grating (optical element) 208 is disposed at a predetermined position on the concave molding surface 222 of the first mold 220 (S22).
  • the pedestal 224 is formed of the same kind of thermosetting resin as the thermosetting resin constituting the spectacle lens main body 202. Therefore, in this step, the resin material (monomer) of the resin constituting the spectacle lens main body 202 is disposed on the molding surface 222 of the first mold 220 in a substantially rectangular parallelepiped whose top portion is a horizontal surface to form the pedestal 224 .
  • the diffraction grating 208 which is an optical element, is placed on the top of the pedestal 224 (S23). As a result, the diffraction grating 208 is held apart from the molding surface 222 of the first mold 220. In the spectacle lens manufacturing method of this embodiment, the diffraction grating 208 is mounted on the pedestal 224 in a state where the resin forming the pedestal 224 is uncured.
  • the resin constituting the pedestal 224 is cured (S24). Curing of the resin is carried out by leaving at room temperature or heating.
  • a first mold 220 provided on the molding surface 222 with a pedestal 224 on which the diffraction grating 208 is mounted is combined with other molds 226, 228, etc. 230 is assembled, and the cavity 232 inside the mold 230 is closed (S25).
  • the diffraction grating 208 mounted on the top of the pedestal 224 on the molding surface 222 of the first mold 220 is disposed at a position apart from the molding surface 234 of the other mold 226 and the like.
  • the cavity 232 is filled with a resin material (raw material monomer) M of the resin that constitutes the spectacle lens body 202 (S26). Since the diffraction grating 208 is spaced apart from the molding surface 222 of the first mold 220 and the inner surface of the cavity 232 such as the molding surface 234 of the other mold 226 in the cavity 232, the filled resin material M is It is in an enclosed state, that is, a state in which the resin material M is not exposed to the outside.
  • the resin material M constituting the spectacle lens body 202 introduced into the cavity 232 is cured in the cavity 232 by heating to a predetermined temperature (S27).
  • a predetermined temperature S27
  • an eyeglass lens in which the diffraction grating 208 as an optical element is surrounded by resin in the eyeglass lens body 202 is formed in the cavity 232.
  • the mold 230 is disassembled, and the spectacle lens 201 molded in the cavity 232 is removed or released from the mold 230 (S28).
  • thermosetting resin is used as the resin in the above embodiment
  • thermoplastic resin may be used.
  • the spectacle lens manufacturing method in which the diffraction grating is adopted as the embedded optical element the present invention can be applied to a spectacle lens manufacturing method in which another optical element is embedded.
  • a small bead 344 formed of a resin having a refractive index different from that of the resin constituting the base 342 is embedded (ie It is also applicable to the spectacle lens manufacturing method arranged without being exposed to In this spectacle lens, the base has refractive power for correcting myopia, and the small bead has higher refractive power than the base.
  • the small bead portion has a refractive power higher than that of the base, so that defocusing can be generated to suppress the progress of refractive error such as myopia of the wearer of the glasses.
  • thermosetting resin forming the main body (base) 342 of the eyeglass lens at a predetermined position of the molding surface 322 of the first mold 320 A pedestal 346 formed of a resin material identical to the resin material of the base resin and having a predetermined size and shape is provided.
  • thermosetting resin having a refractive index different from that of the thermosetting resin constituting the base 342 of the spectacle lens is dropped onto the pedestal 346 by a dispenser or the like at a plurality of predetermined positions.
  • the resin material M2 has a hemispherical shape by surface tension, and becomes a small bead portion 344 after curing.
  • the first mold 320 is combined with the other molds 326, 328, etc. to form the mold 330, as in the manufacturing method of the above embodiment. Assemble and close the cavity 332 inside the mold 330.
  • the cavity 332 is filled with a resin material of a thermosetting resin that constitutes the base 342 of the spectacle lens, and the small ball portion 344 is embedded or not exposed outside.
  • An eyeglass lens 340 disposed inside is obtained.
  • the hemispherical bead portion 344 preferably has a diameter r of about 0.8 to 2.0 mm and a thickness of about 0.1 to 1.15 mm.
  • the distance between the adjacent small bead portions 344 is set to about the radius (r / 2) of the small bead portion 244.
  • the refractive index of the small bead portion 244 is preferably 2.00 to 5.00 diopter greater than the refractive power of the base 42.
  • the base 342 of the spectacle lens 340 is formed of, for example, a thiourethane resin (thermosetting resin) having a refractive index of about 1.590 to 1.578, and the small bead 344 has a refractive index of about 1.5955, for example. It is formed of a thiourethane resin (thermosetting resin) excellent in adhesion to the resin forming the resin 342.
  • the type of resin forming the base 342 of the spectacle lens 340 and the type of resin forming the small bead portion 344 may be another thermosetting resin or thermoplastic resin selected as appropriate in consideration of the refractive index.
  • the spectacle lens in which a plurality of small bead portions 344 formed of a resin having a refractive index different from that of the resin constituting the base 342 of the spectacle lens embeds defocusing. It is known that it is possible to suppress the progression of refractive error such as myopia of the wearer of the glasses.
  • FIG. 20 is a view showing a ray of light passing through the spectacle lens 340 and entering the eye, and more specifically, a locus of a ray passing through the base 342 and a locus of a ray passing through the small ball portion 344.
  • a ray passing through the base 342 of the spectacle lens 340 having refractive power to correct myopia is focused on the position f on the retina R, and a small ball 344 having a refractive power larger than that of the base 342.
  • the rays passing through are focused at a position f 'in front of the retina R. That is, the light beam passing through the spectacle lens 340 forms an image on the retina R, and the light beam passing through the plurality of small beads 344 forms a plurality of images in front of the retina R (lens side).
  • the wearer of the spectacles using the spectacles lens 340 can suppress the progress of myopia while visually recognizing the image of the object.
  • thermosetting resin is used as the resin in the above embodiment
  • thermoplastic resin may be used.
  • Eyeglass lens 2 Eyeglass lens body (base) 4: Object side of eyeglass lens body (base) 6: Eyeball side 8 of eyeglass lens body (base): Hard coat layer 10: Antireflection film (AR film) 12: Small bead portion 12a: Flat portion 20 of the small bead portion: first mold 22: molding surface of the first mold 24: other mold 26: molding die 28: cavity
  • M1 raw material monomer constituting the eyeglass lens body (resin material)
  • M2 Raw material monomer (resin material) constituting the small bead
  • 201 eyeglass lens 202: eyeglass lens body 204: object side 206 of eyeglass lens body: eye side 208 of eyeglass lens body: optical element 220: first mold 222: molding surface of first mold 224: pedestal 226: other Mold 230: mold 232: cavity

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Eyeglasses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

光学素子が埋設された眼鏡レンズを、容易かつに生産すること。 本発明の眼鏡レンズ製造方法は、樹脂材料で形成され凸状の物体側面および凹状の眼球側面によって構成された基部2と、基部を構成する材料とは異なる材料で形成され基部に埋設された光学素子12とを備えている眼鏡レンズ2の製造方法であって、開閉可能な第1のモールド20と第2のモールド24とを含む成形型のキャビティ28内に配置されるように光学素子を設けるステップと、成形型のキャビティ内に眼鏡レンズの基部を構成する樹脂材料を導入するステップと、基部を構成する樹脂の樹脂材料を硬化させ眼鏡レンズを得るステップと、成型型を分解するステップと、眼鏡レンズを成形型から取り外すステップと、を備えているレンズ製造方法。

Description

眼鏡レンズ製造方法および眼鏡レンズ
 本発明は、概略的には、眼鏡レンズ製造方法および眼鏡レンズに関し、詳細には、光学要素が内部に埋設されている眼鏡レンズ製造方法および眼鏡レンズに関する。
 種々の付加的な機能を眼鏡レンズに付与するため、眼鏡レンズの内部に光学素子を埋設したレンズが提案されている。
 例えば、近視等の屈折異常の進行を抑制するために、眼鏡レンズの所定部分に、例えば、直径1mm程度の半球(平凸)状の多数の小玉部(光学素子)を配置したプラスチック製の眼鏡レンズが提案されている(特許文献1)。特許文献1では、多数の小玉部が眼鏡レンズの凸面上に配置されている構成に加え、多数の小玉部が眼鏡レンズ内に埋設された状態で配置されている構成も提案されている。
 さらに、特許文献2では、ウエアラブル端末用の眼鏡レンズとして利用するために、光学素子としての導光部材(回折格子)を、外部に露出させることなく内部に埋設した眼鏡レンズ(光学デバイス)が提案されている。
米国出願公開第2017/131567号 国際公開WO2017/030207号
 光学素子である多数の小玉部が凸面上に配置された眼鏡レンズを大量に生産する場合には、一方の成形面に多数の微小な凹部が形成された成形型にレンズ材料を流し込む、あるいは注入する製造方法が採用される。しかしながら、多数の小玉部が眼鏡レンズ内に埋設された状態で配置されている眼鏡レンズは、上記のような製造方法を採用することができないため、大量に生産することが容易ではないという課題を有していた。
 また、引用文献2で提案されているような、光学素子が外部に露出することなく内部に埋設された眼鏡レンズは、光学素子を内部の所定位置に配置することが容易ではないため、大量に生産することが困難であるという課題を有していた。
 本発明は、上記の課題に鑑みなされたものであり、内部に光学素子が埋設された状態で配置されている眼鏡レンズを、容易かつ大量に生産することができる眼鏡レンズ製造方法を提供することを目的とする。
 さらに、本発明は、このような眼鏡レンズ製造方法で製造された眼鏡レンズを提供することも目的とする。
 また、そのような眼鏡レンズ製造方法によって製造された眼鏡レンズが提供することを目的とする。
 本発明によれば、
 樹脂材料で形成され凸状の物体側面および凹状の眼球側面によって構成された基部と、前記基部を構成する材料とは異なる材料で形成され前記基部に埋設された光学素子とを備えている眼鏡レンズ製造方法であって、
 開閉可能な第1のモールドと第2のモールドとを含む成形型のキャビティ内に配置されるように光学素子を設けるステップと、
 前記成形型のキャビティ内に前記眼鏡レンズの基部を構成する樹脂材料を導入するステップと、
 前記基部を構成する樹脂の樹脂材料を硬化させ前記眼鏡レンズを得るステップと、
 前記成型型を分解するステップと、
 前記眼鏡レンズを成形型から取り外すステップと、を備えている、
 ことを特徴とするレンズ製造方法。
 このような構成によれば、光学素子が埋設された眼鏡レンズを容易かつ大量に生産することができる。
 本発明の他の好ましい態様によれば、
 前記光学素子が、前記基部を構成する樹脂とは異なる樹脂で形成され一部分が前記基部から露出した状態で前記基部内に埋設された複数の小玉部であり、
 前記光学素子を設けるステップが、
 前記小玉部を構成する樹脂の樹脂材料を、前記成形型の第1のモールドの表面の所定位置に配置するステップと、
 前記小玉部を構成する樹脂の樹脂材料を硬化させるステップと、を有している。
 このような構成によれば、基部を構成する樹脂の樹脂材料が成形型のキャビティ内に導入されたとき、成形型の第1のモールドの表面の所定位置で硬化され小玉部が、基部を構成する樹脂材料内に取り込まれるため、モールド等に特別な加工等を施すことなく、小玉部が基部内に埋設状態で配置された眼鏡レンズを製造することが可能となる。
 本発明の他の好ましい態様によれば、
 前記各小玉部は、前記基部より大きな屈折力を有している。
 本発明の他の好ましい態様によれば、
 前記小玉部の直径rが0.8乃至2.0mmである。
 本発明の他の好ましい態様によれば、
 前記小玉部が、チオウレタン材料で構成されている。
 本発明の他の好ましい態様によれば、
 前記小玉部の屈折力は、前記基部の屈折力より2.00から5.00ディオプター大きい。
 本発明の他の好ましい態様によれば、
 隣接する前記小玉部の間隔は、該小玉部の半径(r/2)と等しい距離に設定されている。
 本発明の他の好ましい態様によれば、
 前記光学素子を設けるステップが、
 成形型の第1のモールドの表面の所定位置に前記光学素子のための台座を配置するステップと、
 前記台座上に前記光学素子を載置するステップと、を有している。
 このような構成によれば、第1のモールドの表面に配置する台座上に光学素子を載置するという簡単な作業で、キャビティ内の所定位置に光学素子を配置することができるので、眼鏡レンズ内の所定位置に光学素子が配置された樹脂製の眼鏡レンズを容易に製造することができる。
 本発明の他の好ましい態様によれば、
 前記台座が、前記眼鏡レンズを構成する樹脂と同一の樹脂で構成され、
 前記台座上に前記光学素子を載置するステップの後、前記台座を構成する樹脂を硬化させるステップを有している。
 本発明の他の好ましい態様によれば、
 前記光学素子が、短冊状の導光素子である。
 本発明の他の好ましい態様によれば、
 前記基部は近視を矯正する屈折力を有している。
 本発明の他の態様によれば、
 樹脂材料で形成された基部と、
 前記基部を構成する樹脂とは異なる樹脂で形成され、前記基部の内部に完全に埋設された複数の小玉部と、を備えている、
 ことを特徴とする眼鏡レンズが提供される。
 本発明の他の好ましい態様によれば、
 前記基部は近視を矯正する屈折力を有し、
 前記各小玉部は、前記基部より大きな屈折力を有している。
 本発明の他の好ましい態様によれば、
 前記小玉部の屈折力は、前記基部の屈折力より2.00から5.00ディオプター大きい。
 本発明の他の好ましい態様によれば、
 前記小玉部の直径rは0.8乃至2.0mmである。
 本発明の他の好ましい態様によれば、
 隣接する前記小玉部の間隔は、該小玉部の半径(r/2)と等しい距離に設定されている。
 本発明によれば、内部に光学素子が埋設された状態で配置されている眼鏡レンズを、容易かつ大量に生産することができる眼鏡レンズ製造方法を提供することができる。
 また、そのような眼鏡レンズ製造方法によって製造された眼鏡レンズが提供される。
本発明の一実施形態の眼鏡レンズ製造方法により製造される眼鏡レンズの模式的な平面図である。 本発明の一実施形態の眼鏡レンズ製造方法により製造される眼鏡レンズの模式的な断面図である。 本発明の一実施形態の眼鏡レンズ製造方法の工程を示すフローチャートである。 図3に示す眼鏡レンズ製造方法を説明するための模式図である。 図3に示す眼鏡レンズ製造方法を説明するための模式図である。 図3に示す眼鏡レンズ製造方法を説明するための模式図である。 図3に示す眼鏡レンズ製造方法を説明するための模式図である。 図3に示す眼鏡レンズ製造方法を説明するための模式図である。 本発明の第2の実施形態の眼鏡レンズ製造方法により製造された眼鏡レンズの模式的な斜視図である。 図1のX-X線に沿った断面図である。 本発明の第2の眼鏡レンズ製造方法の工程を示すフローチャートである。 図11に示す眼鏡レンズ製造方法を説明するための模式図である。 図11に示す眼鏡レンズ製造方法を説明するための模式図である。 図11に示す眼鏡レンズ製造方法を説明するための模式図である。 図11に示す眼鏡レンズ製造方法を説明するための模式図である。 図11に示す眼鏡レンズ製造方法を説明するための模式図である。 本発明の第3の実施形態の眼鏡レンズ製造方法により製造された眼鏡レンズの模式的な断面図である。 図17に示す眼鏡レンズを製造する方法を説明するための模式図である。 図17に示す眼鏡レンズを製造する方法を説明するための模式図である。 図17に示す眼鏡レンズの作用を説明するための模式図である。
 以下、図面を参照しながら、本発明の第1の実施形態の眼鏡レンズ製造方法を詳細に説明する。図1は、本発明の第1の実施形態の眼鏡レンズ製造方法により製造される眼鏡レンズ1の模式的な平面図であり、図2は、眼鏡レンズ1の模式的な断面図である。
 図1および図2に示されているように、眼鏡レンズ1は、眼鏡レンズ本体(基部)2を備えている。眼鏡レンズ本体(基部)2は、凸状の物体側面(外側面)4、および凹状の眼球側面(内側面)6を備えている。さらに、本実施態様では、物体側面4上に、ハードコート層8と、反射防止膜(AR膜)10とが設けられている。
 眼鏡レンズ本体2の物体側面4側には、多数の半球状の小玉部(光学素子)12が、眼鏡レンズ本体2内に埋設された状態で配置されている。小玉部12は、図1に示されているように、平面視において眼鏡レンズ本体2の中心部の環状領域に規則的に配置されている。さらに、各小玉部12は、図1に示されているように、断面視においては、一部分、詳細には平面部12aが眼鏡レンズ本体2の凸状の物体側面4と面一となって外部に露出するように配置されている。
 上述した特許文献1にも記載されているように、多数の小玉部が眼鏡レンズ内に埋設された状態で配置された眼鏡レンズを使用することで、眼鏡装着者の近視等の屈折異常の進行を抑制できることが知られている。その原理は、下記で詳細に説明するが、近視を矯正する眼鏡レンズの基部より大きな屈折力を有する小玉部により、網膜の手前にも像を結ばせ、近視の進行が抑制するというものである。ここで、小玉部の屈折力は、眼鏡レンズの基部の屈折力より2.00から5.00ディオプター大きいことが好適である。
 本実施態様においては、眼鏡レンズ本体2は、例えば屈折率が1.590ないし1.578程度のチオウレタン系の樹脂(熱硬化性樹脂)で形成されている。また、小玉部12は、例えば屈折率が1.5955程度で、眼鏡レンズ本体2を形成する樹脂との密着性に優れたチオウレタン系の樹脂(熱硬化性樹脂)で形成されている。眼鏡レンズ本体2を形成する樹脂および小玉部12を形成する樹脂の種類は、屈折率も考慮し適宜、選択された他の熱硬化性樹脂でもよい。
 また、本実施態様では、半球状の小玉部12は、直径rが0.8乃至2.0mm程度、厚さが0.1乃至1.15mm程度に設定されている。また、小玉部12の間隔は、小玉部12の半径(r/2)程度に設定されているのが好ましい。
 次に、眼鏡レンズ1の製造方法について説明する。
 まず、眼鏡レンズ1の製造に使用する第1のモールド20を準備する(S1)。第1のモールド20は、プラスチック製の眼鏡レンズを製造するために使用される公知のモールドと同様にガラス等の材料で構成され、図4に示されているように、眼鏡レンズ1の凸状の物体側面4をモールドするための凹状の成形面22を備えている。
 次いで、図5に示されているように、第1のモールド20の凹状の成形面22の所定位置に、小玉部12を構成する樹脂の樹脂材料(原料モノマーM2)を、ディスペンサを用いて、所定量ずつ所定位置に配置(滴下)していく(S2)。滴下された原料モノマーM2は、表面張力等によって、成形面22上で略半球状(平凸レンズ状)の形態をとる。成形面22に配置される原料モノマーM2の粘度、量等は、配置した原料モノマーM2が硬化後に、所望の寸法形状の小玉部12となるように設定される。
 次いで、成形面22上に滴下された半球状の原料モノマーM2を硬化させる(S3)。本実施形態の製造方法では、滴下された原料モノマーM2を、室温下で所定時間、放置することによって硬化させた。しかしながら、原料モノマーの種類、作業環境等に応じ、熱等によって、原料モノマーM2を硬化させても良い。
 さらに、図6に示されているように、成形面22上の所定位置で滴下された原料モノマーM2が硬化している第1のモールド20を、他のモールド24、25等と組み合わせて成形型26を組み立て、成形型26の内部のキャビティ28を閉鎖する(S4)。このとき、第1のモールド20の成形面22は、キャビティ28の一部を構成することになる(図6)。
 次いで、図7に示されているように、キャビティ28内に、眼鏡レンズ本体2を構成する原料モノマー(樹脂材料)M1を流し込む即ち導入する(S5)。このとき、第1のモールド20の成形面22の所定位置では、小玉部12を構成する原料モノマーM2は硬化し小玉部12となっているので、この小玉部12は、キャビティ28内に導入された眼鏡レンズ本体2を構成する原料モノマーM1内に取り込まれる。
 さらに、キャビティ28内に導入された眼鏡レンズ本体2を構成する原料モノマー(樹脂材料)M1を、所定温度まで加熱することによってキャビティ28内で硬化させる(S6)。この結果、小玉部12が眼鏡レンズ本体2の内部に埋設された構造を有している眼鏡レンズが、キャビティ内28に形成される。成形面22と接触している小玉部12の面は、成形面22と接触している眼鏡レンズ本体2の物体側面4と面一となり、小玉部12は、この部分(平面部22a)で眼鏡レンズ本体2から外部に露出することになる。
 最後に、成形型26を分解し、キャビティ28内で成形された眼鏡レンズ1を成形型26から取り外す即ち離型させる(S7)。
 その後、眼鏡レンズ本体2の凸面3上にハードコート層8、および反射防止膜10を形成し、眼鏡レンズ1が、最終的に完成する。
 上記第1の本実施形態では、眼鏡レンズ本体および小玉部を形成する樹脂として、熱硬化性樹脂が使用されたが、熱硬化性樹脂に代えて、眼鏡レンズに使用される一般的な熱可塑性樹脂を使用してもよい。
 また、上記第1の実施形態では、第1のモールド20が眼鏡レンズ1の凸状の物体側面4をモールドするための凹状の成形面22を備え、この凹状の成形面22で眼鏡レンズの凸状の物体側面4を成形する構成であったが、第1のモールドが眼鏡レンズの凹状の眼球側面をモールドする凸状の成形面を備え、この凸状の成形面で眼鏡レンズの凹状の眼球側面を成形する構成でもよい。
 次に、本発明の第2の実施形態の眼鏡レンズ製造方法を詳細に説明する。
 まず、本発明の第2の実施形態の眼鏡レンズ製造方法によって製造された眼鏡レンズの構成を説明する。図9は、本発明の第2の実施形態の眼鏡レンズ製造方法により製造された眼鏡レンズ1の模式的な斜視図であり、図10は、図9のX-X線に沿った断面図である。
 図9および図10に示されているように、眼鏡レンズ1は、眼鏡レンズ本体202を備えている。眼鏡レンズ本体202は、熱硬化性樹脂によって形成され、凸状の物体側面204および凹状の眼球側面206を備えている。
 眼鏡レンズ本体202の内部には、光学素子である短冊状の回折格子208が、眼鏡レンズ本体202内に埋設された状態で配置されている。回折格子208は、図9に示されているように、平面視において眼鏡レンズ本体202の中心からオフセットした位置で、径方向に延びるように配置されている。さらに、回折格子8は、図2に示されているように、断面視においては、眼鏡レンズ本体202の物体側面(外側面)204および眼球側面(内側面)206から外部に露出しないように、即ち、眼鏡レンズ本体202を形成する樹脂で完全に包囲された状態で配置されている。
 次に、眼鏡レンズ201の製造方法について説明する。
 まず、眼鏡レンズ201の製造に使用する第1のモールド220を準備する(S21)。第1のモールド220は、プラスチック製の眼鏡レンズを製造するために使用される公知のモールドと同様にガラス等の材料で構成され、図12に示されているように、眼鏡レンズ201の凸状の物体側面204をモールドするための凹状の成形面222を備えている。
 次いで、図13に示されているように、第1のモールド220の凹状の成形面222上の所定位置に、回折格子(光学素子)208を載置するための台座224を配置する(S22)。本実施態様の眼鏡レンズ製造方法では、台座224は、眼鏡レンズ本体202を構成する熱硬化性樹脂と同一種類の熱硬化性樹脂で形成されている。したがって、このステップでは、第1のモールド220の成形面222上に、眼鏡レンズ本体202を構成する樹脂の樹脂材料(モノマー)を頂部が水平面となる略直方体状に配置し、台座224を形成する。
 次いで、図14に示されているように、台座224の頂部に、光学素子である回折格子208を載置する(S23)。この結果、回折格子208は、第1のモールド220の成形面222から離間した状態で保持されることになる。本実施態様の眼鏡レンズ製造方法では、台座224を形成する樹脂が未硬化の状態で、回折格子208が台座224上に載置される。
 次いで、台座224を構成する樹脂を硬化させる(S24)。樹脂の硬化は、室温下での放置、あるいは加熱等によって行なわれる。
 さらに、図15に示されているように、回折格子208が載置された台座224が成形面222に設けられている第1のモールド220を、他のモールド226、228等と組み合わせて成形型230を組み立て、成形型230の内部のキャビティ232を閉鎖する(S25)。第1のモールド220の成形面222上の台座224の頂部に載置されている回折格子208は、他のモールド226の成形面234等からも離間した位置に配置されることになる。
 次いで、図16に示されているように、キャビティ232内に、眼鏡レンズ本体202を構成する樹脂の樹脂材料(原料モノマー)Mを充填する(S26)。回折格子208は、キャビティ232内で、第1のモールド220の成形面222、および他のモールド226の成形面234等のキャビティ232の内面から離間した状態であるので、充填された樹脂材料Mに包囲された状態、即ち樹脂材料Mから外部に露出しない状態となる。
 さらに、キャビティ232内に導入された眼鏡レンズ本体202を構成する樹脂材料Mを、所定温度まで加熱することによってキャビティ232内で硬化させる(S27)。この結果、光学素子である回折格子208が、眼鏡レンズ本体202内で樹脂に包囲されている眼鏡レンズが、キャビティ内232に形成される。
 最後に、成形型230を分解し、キャビティ232内で成形された眼鏡レンズ201を成形型230から取り外す即ち離型させる(S28)。
 本発明の前記実施形態に限定されることなく、特許請求の範囲に記載された技術的思想の範囲内で種々の変更、変形が可能である。
 上記実施形態では、樹脂として熱硬化性樹脂を使用したが、熱可塑性樹脂を使用してもよい。
 上記実施形態では、埋設される光学素子として回折格子が採用された眼鏡レンズ製造方法であったが、本発明は、他の光学素子を埋設した眼鏡レンズ製造方法にも適用できる。
 例えば、図17に示されているような、眼鏡レンズ340の本体即ち基部342内に、基部342を構成する樹脂と異なった屈折率を有する樹脂で形成された小玉部344が埋設(即ち、外部に露出することなく配置)された眼鏡レンズ製造方法にも適用できる。尚、この眼鏡レンズでは、基部が近視を矯正する屈折力を備え、小玉部は基部より高い屈折力を有する。小玉部は基部より高い屈折力を有するため、焦点ずれを発生させて、眼鏡の装用者の近視等の屈折異常の進行を抑制できる。
 このような眼鏡レンズ340を製造する場合には、図18に示されているように、第1のモールド320の成形面322の所定位置に、眼鏡レンズの本体(基部)342を構成する熱硬化性樹脂の樹脂材料と同一の樹脂材料で所定の寸法形状で形成された台座346を設ける。
 次いで、この台座346上に、眼鏡レンズの基部342を構成する熱硬化性樹脂とは異なる屈折率を有する熱硬化性樹脂の樹脂材料M2を、複数の所定位置にディスペンサ等で滴下していく。この樹脂材料M2は、表面張力で半球状となり、硬化後には小玉部344となる。
 さらに、樹脂材料M2を硬化させた後、図19に示されるように、上記実施形態の製造方法と同様に、第1のモールド320を、他のモールド326、328等と組み合わせて成形型330を組み立て、成形型330の内部のキャビティ332を閉鎖する。
 さらに、上記実施形態のS26と同様に、キャビティ332内に、眼鏡レンズの基部342を構成する熱硬化性樹脂の樹脂材料を充填し、小玉部344が埋設即ち外部に露出することなく基部242の内部に配置された眼鏡レンズ340を得る。
 半球状の小玉部344は、直径rが0.8乃至2.0mm程度、厚さが0.1乃至1.15mm程度に設定されているのが好ましい。また、隣接する小玉部344の間隔は、小玉部244の半径(r/2)程度 に設定されているのが好ましい。さらに、小玉部244の屈折率は、基部42の屈折力より2.00から5.00ディオプター大きいことが好ましい。
 眼鏡レンズ340の基部342は、例えば屈折率が1.590ないし1.578程度のチオウレタン系の樹脂(熱硬化性樹脂)で形成され、小玉部344は、例えば屈折率が1.5955程度で、眼鏡レンズ340の基部342を形成する樹脂との密着性に優れたチオウレタン系の樹脂(熱硬化性樹脂)によって形成されている。眼鏡レンズ340の基部342を形成する樹脂および小玉部344を形成する樹脂の種類は、屈折率も考慮し適宜、選択された他の熱硬化性樹脂、あるいは熱可塑性樹脂でもよい。
 また、図17に示されるような、眼鏡レンズの基部342を構成する樹脂と異なった屈折率を有する樹脂で形成された複数の小玉部344が埋設された眼鏡レンズは、焦点ずれを発生させて、眼鏡の装用者の近視等の屈折異常の進行を抑制できることが知られている。
 図20は、眼鏡レンズ340を通過して眼球に入射する光線、詳細には、基部342を通過する光線の軌跡と小玉部344を通過する光線の軌跡を示す図面である。
 図20に示されるように、近視を矯正する屈折力を有する眼鏡レンズ340の基部342を通過する光線は、網膜R上の位置fに合焦され、基部342より大きな屈折力を有する小玉部344を通過する光線は網膜Rの手前の位置f’に合焦される。即ち、眼鏡レンズ340を通過する光線は、網膜R上に像を結び、複数の小玉部344を通過する光線は、網膜Rの手前(レンズ側)に複数の像を結ぶ。この結果、眼鏡レンズ340を用いた眼鏡の装用者は物体の像を視認しながら、近視の進行が抑制されることになる。
 上記実施形態では、樹脂として熱硬化性樹脂を使用したが、熱可塑性樹脂を使用してもよい。
1:眼鏡レンズ
2:眼鏡レンズ本体(基部)
4:眼鏡レンズ本体(基部)の物体側面
6:眼鏡レンズ本体(基部)の眼球側面
8:ハードコート層
10:反射防止膜(AR膜)
12:小玉部
12a:小玉部の平面部
20:第1のモールド
22:第1のモールドの成形面
24:他のモールド
26:成形型
28:キャビティ
M1:眼鏡レンズ本体を構成する原料モノマー(樹脂材料)
M2:小玉部を構成する原料モノマー(樹脂材料)
201:眼鏡レンズ
202:眼鏡レンズ本体
204:眼鏡レンズ本体の物体側面
206:眼鏡レンズ本体の眼球側面
208:光学素子
220:第1のモールド
222:第1のモールドの成形面
224:台座
226:他のモールド
230:成形型
232:キャビティ

Claims (16)

  1.  樹脂材料で形成され凸状の物体側面および凹状の眼球側面によって構成された基部と、前記基部を構成する材料とは異なる材料で形成され前記基部に埋設された光学素子とを備えている眼鏡レンズ製造方法であって、
     開閉可能な第1のモールドと第2のモールドとを含む成形型のキャビティ内に配置されるように光学素子を設けるステップと、
     前記成形型のキャビティ内に前記眼鏡レンズの基部を構成する樹脂材料を導入するステップと、
     前記基部を構成する樹脂の樹脂材料を硬化させ前記眼鏡レンズを得るステップと、
     前記成型型を分解するステップと、
     前記眼鏡レンズを成形型から取り外すステップと、を備えている、
     ことを特徴とするレンズ製造方法。
  2.  前記光学素子が、前記基部を構成する樹脂とは異なる樹脂で形成され一部分が前記基部から露出した状態で前記基部内に埋設された複数の小玉部であり、
     前記光学素子を設けるステップが、
     前記小玉部を構成する樹脂の樹脂材料を、前記成形型の第1のモールドの表面の所定位置に配置するステップと、
     前記小玉部を構成する樹脂の樹脂材料を硬化させるステップと、を有している、
     請求項1に記載のレンズ製造方法。
  3.  前記各小玉部は、前記基部より大きな屈折力を有している、
     請求項1または2記載の眼鏡レンズ。
  4.  前記小玉部の直径rが0.8乃至2.0mmである、
     請求項2または3に記載の眼鏡レンズ。
  5.  前記小玉部が、チオウレタン材料で構成されている、
     請求項3または4に記載の眼鏡レンズ。
  6.  前記小玉部の屈折力は、前記基部の屈折力より2.00から5.00ディオプター大きい、
     請求項3ないし5のいずれか1項に記載の眼鏡レンズ。
  7.  隣接する前記小玉部の間隔は、該小玉部の半径(r/2)と等しい距離に設定されている、
     請求項3ないし6のいずれか1項に記載の眼鏡レンズ。
  8.  前記光学素子を設けるステップが、
     成形型の第1のモールドの表面の所定位置に前記光学素子のための台座を配置するステップと、
     前記台座上に前記光学素子を載置するステップと、を有している、
     請求項1に記載の眼鏡レンズ製造方法。
  9.  前記台座が、前記眼鏡レンズを構成する樹脂と同一の樹脂で構成され、
     前記台座上に前記光学素子を載置するステップの後、前記台座を構成する樹脂を硬化させるステップを有している、
     請求項8に記載の眼鏡レンズ製造方法。
  10.  前記光学素子が、短冊状の導光素子である、
     請求項8または9に記載の眼鏡レンズ製造方法。
  11.  前記基部は近視を矯正する屈折力を有している、
     請求項1ないし10のいずれか1項に記載の眼鏡レンズ製造方法。
  12.  樹脂材料で形成された基部と、
     前記基部を構成する樹脂とは異なる樹脂で形成され、前記基部の内部に完全に埋設された複数の小玉部と、を備えている、
     ことを特徴とする眼鏡レンズ。
  13.  前記基部は近視を矯正する屈折力を有し、
     前記各小玉部は、前記基部より大きな屈折力を有している、
     請求項12に記載の眼鏡レンズ。
  14.  前記小玉部の屈折力は、前記基部の屈折力より2.00から5.00ディオプター大きい、
     請求項13に記載の眼鏡レンズ。
  15.  前記小玉部の直径rは0.8乃至2.0mmである、
     請求項12ないし14のいずれか1項に記載の眼鏡レンズ。
  16.  隣接する前記小玉部の間隔は、該小玉部の半径(r/2)と等しい距離に設定されている、
     請求項12ないし15のいずれか1項に記載の眼鏡レンズ。
PCT/JP2018/046520 2017-12-19 2018-12-18 眼鏡レンズ製造方法および眼鏡レンズ WO2019124352A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18890962.6A EP3730997A4 (en) 2017-12-19 2018-12-18 PROCESS FOR MANUFACTURING SPECTACLE GLASS AND SPECTACLE GLASS
JP2019561099A JP7421934B2 (ja) 2017-12-19 2018-12-18 眼鏡レンズ製造方法および眼鏡レンズ
CN201880082734.5A CN111512216A (zh) 2017-12-19 2018-12-18 眼镜镜片制造方法和眼镜镜片
US16/650,600 US11460716B2 (en) 2017-12-19 2018-12-18 Spectacle lens production method and spectacle lens
CN202210002612.9A CN114506102A (zh) 2017-12-19 2018-12-18 眼镜镜片制造方法和眼镜镜片
US17/696,015 US20220206318A1 (en) 2017-12-19 2022-03-16 Spectacle lens production method and spectacle lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017242805 2017-12-19
JP2017-242805 2017-12-19
JP2017242804 2017-12-19
JP2017-242804 2017-12-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/650,600 A-371-Of-International US11460716B2 (en) 2017-12-19 2018-12-18 Spectacle lens production method and spectacle lens
US17/696,015 Division US20220206318A1 (en) 2017-12-19 2022-03-16 Spectacle lens production method and spectacle lens

Publications (1)

Publication Number Publication Date
WO2019124352A1 true WO2019124352A1 (ja) 2019-06-27

Family

ID=66992979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046520 WO2019124352A1 (ja) 2017-12-19 2018-12-18 眼鏡レンズ製造方法および眼鏡レンズ

Country Status (5)

Country Link
US (2) US11460716B2 (ja)
EP (1) EP3730997A4 (ja)
JP (1) JP7421934B2 (ja)
CN (2) CN111512216A (ja)
WO (1) WO2019124352A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067028A1 (ja) * 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 曲面形状評価方法、眼鏡レンズの製造方法および眼鏡レンズ
JPWO2021059887A1 (ja) * 2019-09-25 2021-04-01
CN115202070A (zh) * 2022-07-15 2022-10-18 阿尔玻科技有限公司 新型复合近视防控眼镜片及成型方法
WO2023127731A1 (ja) * 2021-12-27 2023-07-06 株式会社ニコン・エシロール 眼鏡レンズ及び眼鏡レンズの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089473A1 (en) 2021-05-10 2022-11-16 Carl Zeiss Vision International GmbH Spectacle lens design, spectacle lens kit, method of manufacturing a spectacle lens and method of providing a spectacle lens design
CN113352660B (zh) * 2021-05-14 2023-05-26 明月镜片股份有限公司 一种离焦镜片的制备方法
CN113391464A (zh) * 2021-05-14 2021-09-14 复旦大学 一种离焦型眼镜镜片
WO2023152338A1 (en) 2022-02-14 2023-08-17 Essilor International Method for manufacturing a spectacle lens
EP4357115A1 (en) 2022-10-19 2024-04-24 BARBERINI, S.p.A. Method for manufacturing a transparent plastic lens with embedded decorative elements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134612A (ja) * 1988-07-21 1990-05-23 Allergan Inc 成形色付コンタクトレンズの製造方法
JPH07137158A (ja) * 1993-11-17 1995-05-30 Kazuo Nozawa 装飾物が埋入された合成樹脂製装飾レンズの製造方法
JP2002501626A (ja) * 1997-05-27 2002-01-15 ノバルティス アクチエンゲゼルシャフト 複合眼用レンズ
WO2004109369A1 (ja) * 2003-06-09 2004-12-16 Asahi Lite Optical Co., Ltd. 2焦点プラスチックレンズ
JP2014182394A (ja) * 2013-03-15 2014-09-29 Johnson & Johnson Vision Care Inc 乱視患者の視力矯正用コンタクトレンズ内への剛性インサートの封入方法及び装置
WO2017030207A1 (ja) 2015-08-20 2017-02-23 ホヤ レンズ タイランド リミテッド 光学デバイス
US20170068095A1 (en) * 2015-09-04 2017-03-09 Thalmic Labs Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623012B2 (ja) * 2006-02-22 2011-02-02 セイコーエプソン株式会社 多焦点レンズの製造方法
US20070238804A1 (en) * 2006-04-11 2007-10-11 Encai Ho UV-curable hard coating compositions
CN103596522A (zh) * 2011-03-08 2014-02-19 E-视觉智能光学公司 先进的电活性光学装置
CN102692730B (zh) 2012-06-15 2013-12-04 戴明华 控制离焦及眼屈光度的多元镜片及其应用
CN104678572B (zh) 2013-11-29 2018-04-27 豪雅镜片泰国有限公司 眼镜片
SG10201400920RA (en) 2014-03-24 2015-10-29 Menicon Singapore Pte Ltd Apparatus and methods for controlling axial growth with an ocular lens
TWI698326B (zh) * 2015-01-14 2020-07-11 德商科思創德意志股份有限公司 以全相光學元件製備光學鑄件之方法及光學鑄件
CA2981888A1 (en) 2015-04-15 2016-10-20 Vision Ease, Lp Ophthalmic lens with graded microlenses
US10877294B2 (en) * 2015-06-23 2020-12-29 Johnson & Johnson Vision Care, Inc. Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression
TWI559043B (zh) * 2016-03-16 2016-11-21 Extinction lenses and their production methods
TW202244570A (zh) 2016-08-01 2022-11-16 華盛頓大學 用於治療近視的眼用鏡片
KR102619407B1 (ko) * 2016-10-25 2024-01-02 브리엔 홀덴 비전 인스티튜트 리미티드 근시 제어를 위한 장치, 시스템 및/또는 방법
CN110914743B (zh) * 2017-05-08 2021-08-13 视窗视觉公司 用于降低近视的接触镜片及用于制造该接触镜片的方法
US20190025593A1 (en) * 2017-07-18 2019-01-24 Thalmic Labs Inc. Systems, devices, and methods for embedding a diffractive element in an eyeglass lens
CN117970539A (zh) * 2018-10-15 2024-05-03 依视路国际公司 包含光学元件的改进的光学制品及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134612A (ja) * 1988-07-21 1990-05-23 Allergan Inc 成形色付コンタクトレンズの製造方法
JPH07137158A (ja) * 1993-11-17 1995-05-30 Kazuo Nozawa 装飾物が埋入された合成樹脂製装飾レンズの製造方法
JP2002501626A (ja) * 1997-05-27 2002-01-15 ノバルティス アクチエンゲゼルシャフト 複合眼用レンズ
WO2004109369A1 (ja) * 2003-06-09 2004-12-16 Asahi Lite Optical Co., Ltd. 2焦点プラスチックレンズ
JP2014182394A (ja) * 2013-03-15 2014-09-29 Johnson & Johnson Vision Care Inc 乱視患者の視力矯正用コンタクトレンズ内への剛性インサートの封入方法及び装置
WO2017030207A1 (ja) 2015-08-20 2017-02-23 ホヤ レンズ タイランド リミテッド 光学デバイス
US20170068095A1 (en) * 2015-09-04 2017-03-09 Thalmic Labs Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730997A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067028A1 (ja) * 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 曲面形状評価方法、眼鏡レンズの製造方法および眼鏡レンズ
JPWO2020067028A1 (ja) * 2018-09-28 2021-08-30 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 曲面形状評価方法、眼鏡レンズの製造方法および眼鏡レンズ
JP7181306B2 (ja) 2018-09-28 2022-11-30 ホヤ レンズ タイランド リミテッド 曲面形状評価方法、眼鏡レンズの製造方法
US11934042B2 (en) 2018-09-28 2024-03-19 Hoya Lens Thailand Ltd. Curved face shape evaluation method, eyeglass lens manufacturing method, and eyeglass lens
JPWO2021059887A1 (ja) * 2019-09-25 2021-04-01
WO2021059887A1 (ja) * 2019-09-25 2021-04-01 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよびその製造方法
CN114222945A (zh) * 2019-09-25 2022-03-22 豪雅镜片泰国有限公司 眼镜镜片及其制造方法
JP7232927B2 (ja) 2019-09-25 2023-03-03 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよびその製造方法
EP4036634A4 (en) * 2019-09-25 2023-10-18 Hoya Lens Thailand Ltd. SPECTACLE LENS AND ASSOCIATED MANUFACTURING METHOD
CN114222945B (zh) * 2019-09-25 2024-03-19 豪雅镜片泰国有限公司 眼镜镜片及其制造方法
WO2023127731A1 (ja) * 2021-12-27 2023-07-06 株式会社ニコン・エシロール 眼鏡レンズ及び眼鏡レンズの製造方法
CN115202070A (zh) * 2022-07-15 2022-10-18 阿尔玻科技有限公司 新型复合近视防控眼镜片及成型方法

Also Published As

Publication number Publication date
JPWO2019124352A1 (ja) 2021-02-25
JP7421934B2 (ja) 2024-01-25
US11460716B2 (en) 2022-10-04
CN114506102A (zh) 2022-05-17
US20220206318A1 (en) 2022-06-30
US20200326559A1 (en) 2020-10-15
CN111512216A (zh) 2020-08-07
EP3730997A4 (en) 2022-01-26
EP3730997A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019124352A1 (ja) 眼鏡レンズ製造方法および眼鏡レンズ
US20230391028A1 (en) Optical articles comprising encapsulated microlenses and methods of making the same
CA2253786C (en) Refractive index gradient lens
KR101998550B1 (ko) 안경 렌즈 및 이를 제조하기 위한 방법
JP2017510851A (ja) 眼用レンズを用いた軸方向成長制御のための器具及び方法
CN101272896B (zh) 成型透镜
CN105142886A (zh) 制造具有嵌入式掩膜的人工晶状体的方法
JP2009540347A (ja) 光学部品の度数の修正用円盤
CN102958684B (zh) 用于提供光学显示器的眼镜片的制造方法
CN106019596A (zh) 一种用于虚拟现实显示设备的光学系统
RU2612679C2 (ru) Способ литьевого формования переменной мультифокальной контактной линзы
JP5795186B2 (ja) 眼鏡用プラスチックレンズおよびその製造方法
CN111465890B (zh) 用于具有优化的厚度的眼科镜片的确定方法
JP5717364B2 (ja) プラスチックレンズ成形用成形型およびプラスチックレンズの製造方法
JP2006215216A (ja) 眼鏡レンズの製造方法及び眼鏡レンズ
JP5748597B2 (ja) プラスチックレンズの製造方法
JPH08510966A (ja) 薄い累進加入レンズの製造方法
WO2023152338A1 (en) Method for manufacturing a spectacle lens
JP2013028080A (ja) プラスチックレンズの製造方法
JP2006215217A (ja) 眼鏡レンズの製造方法及び眼鏡レンズ
JP2010264621A (ja) プラスチックレンズの製造方法
JP2013028079A (ja) プラスチックレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890962

Country of ref document: EP

Effective date: 20200720