WO2019124268A1 - 処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム - Google Patents

処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム Download PDF

Info

Publication number
WO2019124268A1
WO2019124268A1 PCT/JP2018/046166 JP2018046166W WO2019124268A1 WO 2019124268 A1 WO2019124268 A1 WO 2019124268A1 JP 2018046166 W JP2018046166 W JP 2018046166W WO 2019124268 A1 WO2019124268 A1 WO 2019124268A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
circuit board
adhesive layer
layer
group
Prior art date
Application number
PCT/JP2018/046166
Other languages
English (en)
French (fr)
Inventor
細田 朋也
渉 笠井
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019561053A priority Critical patent/JPWO2019124268A1/ja
Priority to CN201880081369.6A priority patent/CN111492723B/zh
Priority to KR1020207006411A priority patent/KR102587268B1/ko
Publication of WO2019124268A1 publication Critical patent/WO2019124268A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes

Definitions

  • the present invention relates to a process circuit board, a multilayer circuit board, a method of manufacturing a circuit board with a coverlay film, and a film with an adhesive layer.
  • Patent Document 1 proposes a multilayer circuit board using a liquid crystal polymer film as an insulating material layer of the original circuit board, an adhesive agent sheet or a coverlay film.
  • Patent Document 2 discloses a flexible film having a polyimide film, a layer of a fluorine polymer having a melting point of 280 to 320 ° C. having an adhesive group, provided on the surface of the polyimide film, and a metal foil provided on the surface of the layer. A metal laminate and a flexible printed circuit using the same have been proposed.
  • Patent documents 3, 4, 5 and 6 propose a coverlay film having a polyimide film and an adhesive layer containing a fluorine polymer as a coverlay film excellent in electric properties and reducing transmission loss of a circuit board. ing.
  • the heat-resistant liquid crystal polymer has a high melting point of, for example, 270 ° C. or higher, it is necessary to thermo-compress the original circuit substrate and the adhesive substrate at a high temperature of 270 ° C. or higher is there. Therefore, when a liquid crystal polymer film is used, a typical pressing device used for an adhesive substrate having a thermosetting adhesive as the adhesive layer component has a low set temperature for thermocompression bonding, for example, less than 220 ° C. Therefore, it is not possible to cope with it, and a new pressing device is required which is compatible with high temperature thermocompression bonding. In addition, when thermocompression bonding is performed at a high temperature of 270 ° C. or more, the liquid crystal polymer film may be melted, and the position of the conductor circuit may be shifted.
  • thermocompression bonding there is a need for substrates having adhesiveness and electrical characteristics in relatively low temperature thermocompression bonding. That is, even in the coverlay film having an adhesive layer containing a fluoropolymer as described in Patent Documents 3, 4, 5 and 6, high temperature heating above the melting point of the fluoropolymer in thermocompression bonding is necessary in order to develop adhesiveness. However, it can not cope with a normal press, and a special press capable of high-temperature thermocompression bonding is required.
  • the present invention is a method of thermocompression bonding an adhesive substrate and a circuit board at a relatively low temperature to produce a multilayer circuit board, a circuit board with a coverlay film, etc., and a thermocompression bonding at an electrical property and a relatively low temperature.
  • the present invention has the following aspects. (1) Plasma processing the surface on the conductor circuit side of the circuit substrate having a polymer layer containing a tetrafluoroethylene-based polymer and a conductor circuit provided on the surface of the polymer layer to obtain a circuit substrate having a plasma treated surface And then thermally bonding the plasma-treated surface of the circuit board and the adhesive layer of the substrate having the adhesive layer at less than 260 ° C. to produce a treated circuit board. (2) The method according to (1), wherein the peeling strength of the thermocompression bonding surface of the processing circuit board is 5 N / cm or more.
  • the substrate having the adhesive layer is a coverlay film with an adhesive layer
  • the processing circuit board is a circuit board with a coverlay film
  • the substrate having the adhesive layer is an adhesive sheet
  • the adhesive layer is a thermosetting adhesive layer containing a rubber-modified epoxy resin and a curing agent.
  • the substrate having the adhesive layer has a plasma-treated surface of the circuit board and an adhesive layer of the substrate having the adhesive layer under the conditions of a press temperature of 160 ° C., a press pressure of 4 MPa and a press time of 90 minutes.
  • the thermal compression bonding surface has a peeling strength of 5 N / cm or more when the thermal compression bonding is performed.
  • a circuit board having a plasma-treated surface is obtained by plasma processing the surface on the conductor circuit side of a circuit board having a polymer layer containing a tetrafluoroethylene-based polymer and a conductor circuit provided on the surface of the polymer layer Then, the plasma treated surfaces of the circuit boards having the plurality of plasma treated surfaces are respectively opposed, an adhesive sheet is disposed between the respective plasma treated surfaces, and thermocompression bonding is carried out at less than 260 ° C.
  • a method for producing a multilayer circuit board comprising producing a multilayer circuit board having a circuit.
  • a circuit board having a plasma-treated surface is obtained by plasma-treating the surface on the conductor circuit side of a circuit board having a polymer layer containing a tetrafluoroethylene-based polymer and a conductor circuit provided on the surface of the polymer layer And then, the plasma treated surface of the circuit board and the adhesive layer of the coverlay film with adhesive layer are thermocompression bonded at less than 260 ° C. to produce a circuit board with coverlay film.
  • thermosetting adhesive layer was cured under the conditions of a press temperature of 160 ° C., a press pressure of 4 MPa and a press time of 90 minutes
  • Adhesive film with film (13) The film with an adhesive layer according to (11) or (12) above, wherein the melting point of the tetrafluoroethylene-based polymer is 260 ° C. or higher.
  • the circuit substrate and the adhesive substrate can be thermocompression bonded at a relatively low temperature to manufacture a processed circuit substrate such as a multilayer circuit substrate or a circuit substrate with a coverlay film.
  • a film with an adhesive layer which is useful as a coverlay film or an interlayer insulating film, can be obtained which is excellent in electrical properties and exhibits sufficient adhesion at a relatively low temperature.
  • the “temperature of thermocompression bonding” is a set temperature of the heating plate in the press device.
  • the “melting point” is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
  • “Wet tension” is a value measured in accordance with JIS K 6768: 1999 (corresponding international standard ISO 8296: 1987). In the measurement of wetting tension, a cotton swab soaked in a test solution with known wetting tension is quickly rubbed on the test piece to form a 6 cm 2 liquid film, and the state of the liquid film after 2 seconds of application is observed, and a break occurs. If it is not, it will be wet. The maximum wetting tension at which liquid film breakage does not occur is taken as the wetting tension of the test piece.
  • the lower limit of the wetting tension of the test solution specified in JIS K 6768: 1999 is 22.6 mN / m.
  • the “peel strength of the processing circuit board” is a value measured as follows. A processing circuit board is cut into a length of 150 mm and a width of 10 mm to prepare an evaluation sample. Peel between the polymer layer and the conductor circuit and the adhesive layer to a position of 50 mm from one end in the lengthwise direction of the evaluation sample. It peels so that it may be set to 90 degrees by 50 mm / min of tensile velocity using a tension tester, and let the average load from measurement distance 20 mm to 80 mm be peeling strength (N / cm).
  • the "peel strength of the film with an adhesive layer” is a value measured as follows.
  • the film with the adhesive layer after heat curing is cut into a length of 150 mm and a width of 10 mm to prepare an evaluation sample. Peel between the polymer layer and the thermosetting adhesive layer after thermosetting to a position of 50 mm from one end in the lengthwise direction of the evaluation sample. It peels so that it may be set to 90 degrees by 50 mm / min of tensile velocity using a tension tester, and let the average load from measurement distance 20 mm to 80 mm be peeling strength (N / cm).
  • Melt-moldable polymer means a polymer having a melt flow rate of 0.1 to 1000 g / 10 min at a load of 49 N and at a temperature 20 ° C. or more higher than the melting point of the resin .
  • the “melt flow rate” is a melt mass flow rate (MFR) defined in JIS K 7210-1: 2014 (corresponding international standard ISO 1133-1: 2011).
  • the “ten-point average roughness (Rz JIS )” is a value defined in Annex JA of JIS B 0601: 2013.
  • the “unit” is a general term for an atomic group formed directly by polymerization of one monomer molecule and an atomic group obtained by chemical conversion of a part of the atomic group. Units based on monomers are also simply referred to as “units”.
  • the value "pressure” indicates “absolute pressure”, unless stated otherwise. 1 to 18 are all schematic drawings, and the dimensional ratio in them is different from the actual one for convenience of explanation.
  • the processing circuit board in the present invention is a circuit having a polymer layer (hereinafter also referred to as F layer) containing a tetrafluoroethylene-based polymer (hereinafter also referred to as F polymer) and a conductor circuit provided on the surface of F layer
  • F layer a polymer layer
  • F polymer a tetrafluoroethylene-based polymer
  • F polymer a tetrafluoroethylene-based polymer
  • the surface on the conductor circuit side of a substrate (hereinafter also referred to as the original circuit board) is plasma treated to obtain a circuit board having a plasma treated surface, and a substrate having a plasma treated surface of the circuit board and an adhesive layer
  • the adhesive layer of the adhesive substrate may be obtained by thermocompression bonding at a temperature of less than 260 ° C.
  • the processing circuit board includes an F layer, a conductor circuit provided on the surface of the F layer, an adhesive layer in contact with the surface of the conductor circuit and the surface of the F layer other than the portion where the conductor circuit is provided (hereinafter referred to as an adhesive layer Note also).
  • the adhesive layer is a layer formed from an adhesive substrate by thermocompression bonding, and specifically, is a layer derived from an adhesive sheet described later or an adhesive layer of a coverlay film with an adhesive layer.
  • the adhesive substrate is a coverlay film with an adhesive layer and the processing circuit board is a circuit board with a coverlay film, or the adhesive substrate is an adhesive sheet and the processing circuit board is a circuit with an adhesive layer It is preferably a substrate.
  • the latter processing circuit board may further have a coverlay layer in contact with the surface of the processing circuit board.
  • a coverlay layer is a layer which protects a conductor circuit, and, specifically, the coverlay layer formed from the coverlay film with an adhesive layer mentioned later is mentioned.
  • the processing circuit board may have a heat-resistant substrate layer in contact with the surface of the F layer opposite to the side on which the conductor circuit is provided.
  • the processing circuit board may have two or more F layers, may have two or more heat resistant base layers, and may have two or more coverlay layers.
  • Through holes, via holes, etc. may be formed in the processing circuit board. 5 N / cm or more is preferable, 8 N / cm or more is more preferable, and 10 N / cm or more is especially preferable. If the peel strength is at least the lower limit value of the above range, the adhesiveness between the F layer and the adhesive layer is excellent. The higher the peel strength, the better, and the upper limit is not limited.
  • the thermocompression bonding surface is an interface between the F layer and the conductor circuit and the adhesive layer.
  • the heat resistant substrate layer is a layer including a heat resistant substrate, and may have a single layer structure or a multilayer structure.
  • polyimide aromatic polyimide etc.
  • polyarylate polysulfone
  • polyallyl sulfone polyether sulfone etc.
  • aromatic polyamide aromatic polyether amide
  • polyphenylene sulfide polyallyl ether ketone
  • polyamide Imide liquid crystal polyester
  • the fiber reinforced base material is a matrix resin (cured product of thermosetting resin such as epoxy resin, heat resistant resin, etc.) and reinforcing fibers embedded in the matrix resin (glass fiber, carbon fiber, aramid fiber, polybenzoxazole fiber, Polyarylate fibers, etc. It may be a woven or non-woven fabric.
  • the thickness of the heat resistant substrate layer is usually 5 to 150 ⁇ m, preferably 7.5 to 100 ⁇ m, and more preferably 12 to 75 ⁇ m.
  • a conductor circuit according to the present invention is a conductor circuit on which a predetermined circuit pattern is formed by etching or the like a metal foil of a metal-clad laminate having a metal foil, an F layer and, if necessary, a heat resistant substrate layer.
  • prescribed circuit pattern in which the metal foil of the said metal-clad laminated board was processed by SAP method or MSAP method mentioned later were formed are mentioned.
  • the material of the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy and the like.
  • copper foils such as rolled copper foils and electrolytic copper foils are widely used, and copper foils are also suitable as metal foils in the present invention.
  • an anticorrosive layer (oxide film such as chromate etc.), a heat resistant layer or the like may be formed on the surface of the metal foil.
  • the surface of the metal foil may be subjected to surface treatment (coupling agent treatment or the like) to enhance adhesion with the adhesive layer.
  • the ten-point average roughness (Rz JIS ) of the surface of the metal foil is preferably 0.2 to 2.0 ⁇ m, and more preferably 0.3 to 1.5 ⁇ m. In this case, it is easy to balance the adhesion with the adhesive layer and the reduction of the electrical transmission loss.
  • the thickness of the metal foil is preferably 5 to 75 ⁇ m.
  • the conductor circuit is preferably formed by processing the metal-clad laminate by a semi-additive method (SAP method) or a modified semi-additive method (MSAP method).
  • the first form of the SAP method includes a method having the following steps. Removing all of the metal foil of the metal-clad laminate by etching, Providing either or both of the through hole and the via hole; Desmearing the entire surface (including through holes and via holes); Providing an electroless plating layer on the entire surface (including through holes and via holes); Providing a plating resist on the non-circuit area of the surface of the electroless plating layer, Forming a conductor circuit by electrolytic plating after providing a plating resist, Removing the plating resist, Removing the plating resist and removing the exposed electroless plating layer by flash etching;
  • the second form of the SAP method includes the following steps. Providing one or both of through holes and via holes in the metal-clad laminate; Desmearing the entire surface (including through holes and via holes); Removing all of the metal foil by etching; Providing an electroless plating layer on the entire surface (including through holes and via holes); Providing a plating resist on the non-circuit area of the surface of the electroless plating layer, Forming a conductor circuit by electrolytic plating after providing a plating resist, Removing the plating resist, Removing the plating resist and removing the exposed electroless plating layer by flash etching;
  • the first form of the MSAP method includes a method having the following steps. Providing one or both of through holes and via holes in the metal-clad laminate; Desmearing the entire surface (including through holes and via holes); Providing an electroless plating layer on the entire surface (including through holes and via holes); Providing a plating resist on the non-circuit area of the surface of the electroless plating layer, Forming a conductor circuit by electrolytic plating after providing a plating resist, Removing the plating resist, Removing the plating resist and removing the exposed electroless plating layer and metal foil by flash etching;
  • a second form of the MSAP method includes a method having the following steps. Providing a plating resist on the non-circuit area of the surface of the metal foil of the metal-clad laminate, Forming a conductor circuit by electrolytic plating after providing a plating resist, Removing the plating resist, Removing the plating resist and removing the exposed metal foil by flash etching or the like.
  • the adhesive substrate in the present invention is preferably an adhesive sheet or a coverlay film with an adhesive layer.
  • the adhesive layer of the adhesive substrate may be thermoplastic or thermosetting, and thermosetting is preferable. That is, the adhesive substrate is preferably a substrate having a thermosetting adhesive layer.
  • the adhesive layer in the processing circuit board contains a cured product of these adhesive components (cured product of thermosetting adhesive).
  • An adhesive agent sheet is a sheet-like adhesive agent, may be a sheet which consists only of adhesives, and may be a sheet in which an adhesive agent layer is provided in both sides of a heat resistant resin film.
  • the adhesive in the adhesive sheet is a thermosetting adhesive
  • the thermosetting adhesive is preferably a semi-cured product in a semi-cured state.
  • the adhesively coated coverlay film has a coverlay layer (coverlay film) and an adhesive layer provided on one side of the coverlay layer.
  • the adhesive in the adhesive layer of the adhesively coated coverlay film is a thermosetting adhesive
  • the thermosetting adhesive is preferably a semi-cured product in a semi-cured state.
  • thermosetting adhesive layer As a material of a coverlay layer, heat resistant resin, F polymer, etc. are mentioned.
  • the thickness of the coverlay layer is preferably 12 to 100 ⁇ m.
  • the thickness of the adhesive layer of the adhesive substrate is preferably 5 to 50 ⁇ m.
  • the thermosetting adhesive layer preferably contains a thermosetting resin.
  • a thermosetting resin an epoxy resin, cyanate ester resin, polyfunctional maleimide resin, unsaturated polyphenylene ether resin, benzoxazine resin, vinyl ester resin etc. are mentioned. Two or more thermosetting resins may be used in combination. .
  • the thermosetting adhesive layer usually contains a curing agent and a curing accelerator.
  • the curing agent is appropriately selected according to the type of thermosetting resin.
  • a curing agent when the thermosetting resin is an epoxy resin, an amine curing agent, a phenol curing agent, an acid anhydride curing agent, dicyandiamide, a low molecular weight polyphenylene ether compound may be mentioned.
  • the curing agent may be used in combination of two or more.
  • the curing accelerator include imidazole, tertiary amine, organic phosphine, metal soap and the like.
  • the curing accelerator may be used in combination of two or more.
  • the thermosetting adhesive layer may further contain a filler, a thermoplastic resin, and other additives.
  • a filler silica, metal oxide (aluminum oxide, magnesium oxide, titanium oxide etc.), metal hydroxide (aluminum hydroxide, magnesium hydroxide etc.), barium sulfate, calcium carbonate, magnesium carbonate, boron nitride, Aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, talc, clay, mica powder, cured resin powder, rubber particles (acrylic rubber particles, core-shell type rubber particles, crosslinked acrylonitrile) And butadiene rubber particles, crosslinked styrene butadiene rubber particles, etc.).
  • the filler may be used in combination of two or more.
  • thermoplastic resin acrylic resin, phenoxy resin, polyvinyl acetal resin, polyphenylene ether resin, carbodiimide resin is mentioned.
  • Other additives include flame retardants, flame retardant aids, leveling agents, coloring agents and the like.
  • the thermosetting adhesive layer in the present invention is preferably a thermosetting adhesive layer containing a rubber-modified epoxy resin and a curing agent.
  • the rubber modified epoxy resin is an epoxy resin having two or more epoxy groups and having a rubber skeleton formed in a resin structure.
  • a rubber which forms a rubber frame polybutadiene, acrylonitrile butadiene rubber, a styrene system elastomer, urethane rubber, and acrylic rubber are mentioned.
  • the acrylonitrile butadiene rubber may have a carboxyl group end.
  • Styrene-based elastomers include styrene-butadiene block copolymer, styrene-ethylene-propylene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene butylene-styrene block copolymer And styrene-ethylenepropylene-styrene block copolymers.
  • Urethane rubber includes copolymers of polycarbonate diol and isocyanate.
  • Acrylic rubbers include copolymers of glycidyl (meth) acrylate, alkyl (meth) acrylate and aromatic vinyl compounds.
  • the epoxy equivalent of the rubber modified epoxy resin is preferably 200 to 350 g / eq.
  • the rubber-modified epoxy resin is preferably a glycidyl ether type epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin or an oxidation type epoxy resin.
  • the glycidyl ether type epoxy resin is preferably a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin or an alcohol type epoxy resin.
  • the glycidyl ester type epoxy resin is preferably a hydrophthalic acid type epoxy resin or a dimer acid type epoxy resin.
  • the curing agent is preferably dicyandiamide, aromatic diamine, aliphatic diamine, phenol novolak resin, naphthol novolak resin, aminotriazine novolak resin, or acid anhydride. From the viewpoint of heat resistance, aminotriazine novolac resins are preferred.
  • the F layer in the present invention is a layer containing a tetrafluoroethylene-based polymer (F polymer) having a unit based on tetrafluoroethylene (hereinafter also referred to as TFE) (hereinafter also referred to as TFE unit).
  • F polymer tetrafluoroethylene-based polymer
  • TFE unit tetrafluoroethylene
  • the F layer may contain an inorganic filler, a resin other than the F polymer, an additive, and the like.
  • the ratio of F polymer in F layer 90 mass% or more is more preferable, and the upper limit is 100 mass%.
  • the thickness of the F layer is usually 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 500 ⁇ m, still more preferably 10 to 300 ⁇ m, and particularly preferably 10 to 200 ⁇ m.
  • F polymer a melt-moldable F polymer is preferred.
  • the melt flow rate of the polymer F is preferably 0.1 to 1000 g / 10 min, more preferably 0.5 to 100 g / 10 min, and particularly preferably 5 to 20 g / 10 min.
  • the fluorine content of the F polymer is preferably 70 to 78% by mass.
  • the fluorine content is a ratio of the total mass of fluorine atoms to the total mass of the F polymer, and is determined by 19 F-NMR.
  • the F polymer has at least one functional group (hereinafter also referred to as a functional group) selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group. It does not have to have a functional group. From the viewpoint of further excellent adhesion between the F layer and other layers (adhesive layer, conductor circuit, heat resistant base layer, etc. The same applies hereinafter), F polymers having a functional group are preferred.
  • the F polymer having a functional group includes a unit based on a monomer having a functional group or an F polymer having an end group having a functional group. Specifically, copolymers of TFE and PAVE having a functional group, copolymers of TFE and HFP having a functional group, copolymers of ethylene and TFE having a functional group, and the like can be mentioned.
  • the types of functional groups in the F polymer may be two or more.
  • the functional group is preferably a carbonyl group-containing group in view of further excellent adhesion between the F layer and other layers.
  • Examples of the carbonyl group-containing group include keto group, carbonate group, carboxy group, haloformyl group, alkoxycarbonyl group and acid anhydride residue.
  • the keto group is preferably contained between carbon atoms in an alkylene group having 2 to 8 carbon atoms.
  • carbon number of the said alkylene group is carbon number which does not contain the carbon atom of a keto group.
  • the alkoxy group in the alkoxycarbonyl group is preferably an alkoxy group having 1 to 8 carbon atoms, and particularly preferably a methoxy group or an ethoxy group.
  • a carbonyl group-containing group an acid anhydride residue or a carboxy group is preferable.
  • the content of functional groups in the F polymer is preferably 10 to 60000, particularly preferably 300 to 5000, with respect to 1 ⁇ 10 6 carbon atoms of the main chain of the F polymer. In this case, the adhesion between the F layer and the other layers, in particular the low temperature adhesion, is excellent.
  • the content of the adhesive functional group can be measured by the method described in JP-A-2007-314720.
  • the functional group in the F polymer is preferably present as an end group of the main chain of the F polymer or a pendant group of the main chain of the F polymer from the viewpoint of adhesion between the F layer and the other layers. It is particularly preferred to be present as a pendant group of These F polymers can be manufactured by the method of copolymerizing TFE and the monomer which has a functional group, and the method of polymerizing TFE using the chain transfer agent and polymerization initiator which bring a functional group.
  • the monomer having a functional group is preferably a monomer having a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, or an isocyanate group, and a monomer having an acid anhydride residue or a carboxy group is particularly preferable.
  • Such monomers include maleic acid, itaconic acid, citraconic acid, undecylenic acid, itaconic anhydride (hereinafter also referred to as "IAH”), citraconic anhydride (hereinafter also referred to as CAH), 5-norbornene-2,3.
  • -Dicarboxylic acid anhydride hereinafter also referred to as NAH
  • maleic anhydride hydroxyalkyl vinyl ether
  • epoxy alkyl vinyl ether can be exemplified.
  • chain transfer agents that provide functional groups include acetic acid, acetic anhydride, methyl acetate, ethylene glycol and propylene glycol.
  • polymerization initiators that provide functional groups include di-n-propylperoxydicarbonate, diisopropylperoxycarbonate, tert-butylperoxyisopropylcarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethylhexylperoxydicarbonate. Carbonate can be illustrated.
  • F polymer having a functional group as a pendant group of the main chain TFE units, units based on a monomer having an acid anhydride residue, and units based on a fluoroolefin other than TFE from the viewpoint of adhesiveness It can be exemplified that it has F polymer.
  • the monomer is preferably IAH, CAH, NAH or maleic anhydride, more preferably IAH, CAH or NAH, particularly preferably IAH or NAH.
  • the F polymer may contain a 1,2-dicarboxylic acid residue which is formed by hydrolysis of part of the acid anhydride residue.
  • the content of 1,2-dicarboxylic acid units is included in the content of units based on the monomer having an acid anhydride residue.
  • fluoroolefins other than TFE vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene (hereinafter referred to as HFP), hexafluoroisobutylene, perfluoro (alkyl vinyl ether) (hereinafter referred to as PAVE),
  • the fluorovinyl ethers having functional groups, fluoro (divinyl ethers), polyfluoro (alkyl ethylenes) (hereinafter referred to as FAE), fluoromonomers having a ring structure, and formability of F polymer, flex resistance of F layer HFP, PAVE, and FAE are preferable from the viewpoint of being excellent in the like.
  • fluoromonomer having a ring structure perfluoro (2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2-methylene) -4-methyl-1,3-dioxolane) can be exemplified.
  • fluorovinyl ether having a functional group CF 2 CCFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F, CF 2 CCFOCF 2 CF 2 SO 2 F, CF 2 CCFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 3 H, CF 2 CCFOCF 2 CF 2 SO 3 H, CF 2 CCFO (CF 2 ) 3 COOCH 3 , and CF 2 CCFO (CF 2 ) 3 COOH can be exemplified.
  • the F polymer may further have units based on non-fluorinated monomers other than the above-mentioned monomers.
  • non-fluorinated monomers include ethylene, propylene, 1-butene and vinyl esters (vinyl acetate and the like).
  • F polymer examples include TFE / NAH / PPVE copolymer, TFE / IAH / PPVE copolymer, TFE / CAH / PPVE copolymer, TFE / IAH / HFP copolymer, TFE / CAH / HFP copolymer, TFE And copolymers of IAH and PFBE and ethylene, copolymers of TFE and CAH and PFBE and ethylene, copolymers of TFE and IAH and PFEE and ethylene, copolymers of TFE and CAH and PFEE and ethylene, TFE and IAH and HFP and PFBE and ethylene Can be illustrated.
  • the F polymer preferably contains 50 to 99.89% by mole (more preferably 50 to 98.9% by mole) of TFE units in all units constituting the polymer, and a unit based on a monomer having a functional group It is preferable to contain 0.01 to 5 mol% (more preferably 0.1 to 2 mol%), and 0.1 to 49.99 mol% (more preferably 1 to 4 mol%) of a unit based on HFP, PAVE or FAE. It is preferable to contain 49.9 mol%). In this case, the heat resistance, chemical resistance and high temperature elastic modulus of the F layer, the adhesiveness of the F layer and other layers, and the formability and flex resistance of the F polymer are excellent.
  • the F polymer contains a TFE unit, a unit based on a monomer having a functional group, a unit based on HFP, PAVE or FAE and a unit based on ethylene, 25 to 80 mol% of TFE units among all the units constituting the polymer It is preferable to contain (more preferably 45 to 63 mol%), and it is preferable to contain 0.01 to 5 mol% (more preferably 0.05 to 1 mol%) of a unit based on a monomer having a functional group, preferably HFP. , PAVE or FAE, preferably containing 0.2 to 20 mol% (more preferably 0.5 to 15 mol%), and 20 to 75 mol% (more preferably 37 to 50 mol%) units based on ethylene. 55 mol%) is preferable. In this case, the chemical resistance and the bending resistance of the F layer, the adhesiveness with the F layer and the adhesive layer, the conductor circuit, the heat resistant substrate layer and the like, and the formability of the F polymer are excellent.
  • a fluorine resin having no functional group a copolymer of TFE and PAVE, a copolymer of TFE and HFP, a copolymer of ethylene and TFE, a homopolymer of vinylidene fluoride, a homopolymer of chlorotrifluoroethylene, a copolymer of ethylene and chlorotrifluoroethylene Copolymer etc. are mentioned.
  • the surface on the conductor circuit side of the circuit substrate having the F layer and the conductor circuit provided on the surface of the F layer is plasma treated.
  • the plasma treatment atmospheric pressure plasma treatment, vacuum plasma treatment and the like can be mentioned, and vacuum plasma treatment is preferable.
  • Vacuum plasma processing is plasma processing by glow discharge in a pressure reduction container, and the applied voltage is lower than that of corona discharge, and power consumption can be reduced.
  • the treatment at a low pressure causes less oxidative degradation of the surface of the F polymer and less generation of contaminants (low molecular weight products that are decomposition products of F polymer etc.) due to the treatment, generation of WBL (Weak Boundary Layer) Can be suppressed, and the peel strength between the F layer and the adhesive layer can be further improved.
  • the processing gas may, for example, be helium gas, neon gas, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas, methane gas, carbon tetrafluoride gas, hydrogen gas or the like.
  • the processing gas may use a single gas or may use a mixed gas.
  • the processing gas is preferably argon gas, carbon dioxide gas, a mixed gas of nitrogen gas and hydrogen gas, or a mixed gas of argon gas and hydrogen gas from the viewpoint of formation of a plasma processing surface having a suitable wetting tension.
  • the gas pressure is preferably 0.1 to 1330 Pa, and more preferably 1 to 266 Pa.
  • a preferred combination of a processing gas and a processing pressure in plasma processing is a combination in which the processing gas is nitrogen gas or a mixed gas of argon gas and hydrogen gas or carbon dioxide gas, and the processing pressure is 1 to 266 Pa. Can be mentioned. In this case, it is particularly easy to form a plasma-treated surface excellent in wet tension, and a treated substrate having high peel strength is easily obtained. Glow discharge is stabilized by supplying power of 10 W to 100 kW at a high frequency of 10 kHz to 2 GHz, for example, between the electrodes under the gas pressure. As the frequency band, low frequency, microwave, direct current, etc. can be used besides high frequency.
  • an internal electrode type is preferable. In some cases, it may be an external electrode type, and may be a capacitive coupling type such as a coil furnace or an inductive coupling type.
  • the shape of the electrode may, for example, be flat, ring, rod, or cylinder.
  • the metal inner wall of the processing apparatus may be grounded as one of the electrodes.
  • an electrode exposed to a metal such as copper, iron, or aluminum, since arc discharge is likely to occur, it is preferable to apply a enamel coat, a glass coat, a ceramic coat or the like on the surface of the electrode.
  • the wet tension of the exposed surface of the F layer on the plasma-treated surface is preferably 30 mN / m or more, more preferably 30 to 60 mN / m, and still more preferably 30 to 50 mN / m or less.
  • the wetting tension of the exposed surface of the F layer on the plasma treated surface tends to be higher as the amount of the adhesive group on the surface of the F layer is larger. If the wetting tension is at least the lower limit value of the above range, the contact peel strength between the F layer and the adhesive layer is further improved even if the temperature of the thermocompression bonding is lowered. If the wetting tension is equal to or less than the upper limit value of the above range, the amount of contaminants due to the surface treatment is small, and the inhibition of adhesion due to the contaminants can be suppressed.
  • the plasma-treated surface of the circuit substrate having the plasma-treated surface and the adhesive layer of the adhesive substrate are thermocompression bonded at less than 260 ° C.
  • the plasma-treated surface and the adhesive sheet are thermocompression-bonded, or the plasma-treated surface and the adhesive layer of the coverlay film are thermocompression-bonded.
  • the temperature for thermocompression bonding is less than 260 ° C., preferably less than 220 ° C., and more preferably 200 ° C. or less. If the temperature of the thermocompression bonding is less than 260 ° C., the position of the conductor circuit and the like in the thermocompression bonding is unlikely to be displaced, and a pressing apparatus for a conventional adhesive substrate can be used.
  • the temperature for thermocompression bonding is preferably 120 ° C. or more, more preferably 140 ° C. or more, and still more preferably 160 ° C. or more, from the viewpoint of excellent peel strength between the F layer and the adhesive layer.
  • the pressure for thermocompression bonding is preferably 1 to 8 MPa, and more preferably 2 to 6 MPa.
  • the time of thermocompression bonding is preferably 30 to 150 minutes, and more preferably 60 to 120 minutes.
  • the surface on the conductor circuit side of the original circuit board is plasma treated to obtain a circuit board having a plasma treated surface, and a circuit board having a plurality of the plasma treated surfaces
  • FIG. 1 is a cross-sectional view showing an example of a multilayer circuit board.
  • the multilayer circuit board 1 includes a heat resistant base layer 10, an F layer 12 provided on both sides thereof, a conductor circuit 14 provided on the surface of the F layer 12, a surface of the conductor circuit 14 and a surface of the F layer 12 And a coverlay layer 18 in contact with the adhesive layer 16.
  • FIG. 2 is a cross-sectional view showing an example of a multilayer circuit board.
  • the multilayer circuit board 2 has two heat resistant substrate layers 10, an F layer 12 provided on each surface of the two layers, a conductor circuit 14 provided on the surface of the F layer 12, and both surfaces of the conductor circuit 14 And an adhesive layer 16A in contact with the surface of the F layer 12, an adhesive layer 16B in contact with the surface of the conductor circuit 14 and the surface of the F layer 12 on one side, and a coverlay layer 18 in contact with the adhesive layer 16B.
  • FIG. 3 is a cross-sectional view showing an example of a multilayer circuit board.
  • the multilayer circuit board 3 has two heat resistant substrate layers 10, an F layer 12 provided on each of the two sides, a conductor circuit 14 provided on the surface of the F layer 12, and one surface on the lower side.
  • An adhesive layer 16A in contact with the surface of the conductor circuit 14 and the surface of the F layer 12 with the other surface in contact with the upper heat resistant base layer 10, and an adhesive in one surface with the surface of the upper conductor circuit 14 and the surface of the F layer 12 It has a layer 16B and a coverlay layer 18 in contact with the adhesive layer 16B.
  • FIG. 4 is a cross-sectional view showing how the multilayer circuit board of FIG. 1 is manufactured.
  • the circuit board 20 has a heat resistant base layer 10, an F layer 12 provided on both sides thereof, and a conductor circuit 14 provided on the surface of the F layer 12. Both surfaces of the circuit board 20 are plasma treated.
  • the adhesively coated coverlay film 22 has a coverlay layer 18 composed of an F layer and an adhesive layer 26 provided on one side of the coverlay layer 18. After stacking the adhesively coated coverlay film 22, the circuit board 20, and the adhesively coated coverlay film 22 sequentially from the bottom, so that the adhesive layer 26 is in contact with the plasma-treated surface of the circuit board 20, Thermocompression bonding at less than ° C.
  • FIG. 5 is a cross-sectional view showing how the multilayer circuit board of FIG. 2 is manufactured.
  • the adhesive layer 26 is in contact with the plasma-treated surface of the circuit board 20.
  • the coverlay film 22 with adhesive layer, the circuit board 20, the adhesive sheet 24, the circuit board 20, and the coverlay film 22 with adhesive layer After stacking, they are thermocompression bonded at less than 260.degree. 6 is a cross-sectional view showing how the multilayer circuit board of FIG. 3 is manufactured.
  • the circuit board 30 has a heat resistant base layer 10, an F layer 12 provided on one side thereof, and a conductor circuit 14 provided on the surface of the F layer 12. The surface of the circuit board 30 on the side of the conductor circuit 14 is plasma-treated.
  • the circuit board 30, the adhesive sheet 24, the circuit board 30, and the cover lay film 22 with an adhesive layer are stacked in order from the bottom so that the adhesive layer 26 is in contact with the plasma treated surface of the circuit board 30 Thermocompression bonding at less than ° C.
  • the original circuit board on which the conductor circuit is provided is subjected to plasma processing, the original circuit board and the adhesive substrate are obtained even if the temperature is less than 260 ° C.
  • the adhesive layer of the above is sufficiently thermocompression-bonded.
  • the treated circuit board (multilayer circuit board, circuit board with a coverlay film, etc.) is excellent in the adhesiveness between the F layer and the adhesive layer and the peeling strength of the F layer and the conductor circuit is, for example, 5 N / cm or more. can get.
  • the film with an adhesive layer of the present invention (hereinafter, also referred to as adhesive film) is a film in which a film of F polymer (hereinafter, also referred to as F film) and a thermosetting adhesive layer are laminated in this order.
  • the thermosetting adhesive layer of the adhesive film is cured under the conditions of a pressing temperature of 160 ° C., a pressing pressure of 4 MPa and a pressing time of 90 minutes, and the interface between the F film and the thermosetting adhesive layer after curing Peeling strength is 5 N / cm or more.
  • the thermosetting adhesive layer may be laminated on only one side of the F film, or the thermosetting adhesive layer may be laminated on both sides of the F film.
  • the F film in which the thermosetting adhesive layer is laminated on only one side of the F film is useful as a coverlay film.
  • the F film in which the thermosetting adhesive layer is laminated on both sides of the F film is useful as an interlayer insulating film.
  • the peel strength at the interface between the F film and the thermosetting adhesive layer after curing is preferably 8 N / cm or more, more preferably 10 N / cm or more. If the said peeling strength is more than the lower limit of the said range, the adhesiveness of F film and the thermosetting adhesive layer after hardening is excellent. The higher the peel strength, the better, and the upper limit is not limited.
  • the thermosetting adhesive layer in the adhesive film contains a thermosetting adhesive.
  • the thickness of the thermosetting adhesive layer in the adhesive film is preferably 5 to 50 ⁇ m. When the adhesive film has a thermosetting adhesive layer on both sides of the F film, the thickness of each thermosetting adhesive layer is preferably in the above range.
  • the thermosetting adhesive layer preferably contains a thermosetting resin.
  • the thermosetting adhesive layer preferably further contains a curing agent and a curing accelerator.
  • the types of the thermosetting resin, the curing agent and the curing accelerator in the adhesive film are the same as those in the method for producing a treated circuit board of the present invention described above, and the preferred ranges thereof are also the same.
  • the F film in the adhesive film is a film containing a tetrafluoroethylene-based polymer (F polymer) having units based on tetrafluoroethylene.
  • the F film may contain an inorganic filler, a resin other than the F polymer, an additive, and the like.
  • the proportion of the F polymer in the F film is more preferably 90% by mass or more.
  • the upper limit of the proportion of the F polymer is 100% by mass.
  • the thickness of the F film is preferably 12 to 100 ⁇ m.
  • the F polymer in the adhesive film is the same as the F polymer in the method for producing a treated circuit board of the present invention described above, and the preferred range is also the same.
  • Examples of the method for producing the adhesive film include a method of applying a thermosetting adhesive to one or both surfaces of the F film, and a method of laminating a thermosetting adhesive sheet on one or both surfaces of the F film.
  • a thermosetting adhesive layer is formed on one surface of the F film.
  • a thermosetting adhesive layer is formed on both sides of the F film.
  • thermosetting adhesive As a method of applying a thermosetting adhesive, a die coating method, a spray method, a roll coating method, a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a fountain Mayer bar method, slot die coating method, etc. may be mentioned.
  • a method of laminating the F film and the thermosetting adhesive sheet a press, roll lamination, a double belt press, etc. may be mentioned.
  • the adhesive film it is preferable to plasma treat one or both surfaces of the F film and form a thermosetting adhesive layer on the plasma treated side of the F film. Thereby, the adhesiveness of F film and a thermosetting adhesive layer is further excellent.
  • the various conditions of the plasma processing are the same as the contents described in the plasma processing in the method of manufacturing a processing circuit board of the present invention, and the preferable ranges thereof are also the same.
  • the wet tension of the plasma-treated surface of the F film in the adhesive film is preferably 30 mN / m or more, more preferably 30 to 60 mN / m, and still more preferably 30 to 50 mN / m.
  • the wetting tension of the plasma-treated surface of the F film tends to increase as the amount of functional groups on the surface of the F film increases. If the wetting tension is at least the lower limit value of the above range, the adhesiveness between the F film and the thermosetting adhesive layer is further excellent even if the temperature of the thermocompression bonding is lowered. If the wetting tension is below the upper limit value of the above range, the amount of contaminants generated by the surface treatment is small, and adhesion inhibition by the contaminants is unlikely to occur.
  • the F film and the thermosetting adhesive layer are laminated. Since the F film is superior to the polyimide film in electrical characteristics, transmission loss can be reduced when it is used as a printed circuit board material for high frequency applications.
  • the adhesive film of the present invention is F-film and a thermosetting adhesive layer after curing when the thermosetting adhesive layer is cured by thermopressing under the conditions of temperature 160 ° C., pressure 4 MPa and time 90 minutes.
  • the peeling strength of the interface with is 5 N / cm or more. Therefore, the adhesive film of the present invention and the circuit board can be firmly bonded even by thermocompression bonding at a relatively low temperature (less than 260 ° C.).
  • the peel strength at the interface between the F film and the thermosetting adhesive layer after curing is adjusted to 5 N / cm or more.
  • the peel strength of the interface between the F film and the thermosetting adhesive layer after curing is 5N / Easy to adjust to cm or more.
  • the adhesive film of the present invention is preferably used as a coverlay film or an interlayer insulating film, and is particularly preferably used as an adhesive substrate in the method for producing a treated substrate of the present invention described above.
  • Adhesive film 10 has F film 12' and thermosetting adhesive layer 14 'provided on the surface of F film 12'.
  • the surface of the F film 12 'on the side of the thermosetting adhesive layer 14' is plasma treated.
  • FIG. 8 is a cross-sectional view showing an example of using an adhesive film as an interlayer insulating film.
  • Adhesive film 11 has F film 12' and thermosetting adhesive layer 14 'provided on both sides thereof.
  • the surface of the F film 12 'on the side of the thermosetting adhesive layer 14' is plasma treated.
  • FIG. 9 is a cross-sectional view showing an example of a circuit board with a coverlay film in which the adhesive film is a coverlay film.
  • the circuit board 1 ′ with a coverlay film includes an insulating layer 20 ′, a conductor circuit 22 ′ provided on both sides thereof, and an adhesive film 10 ′ after curing that is in contact with the surface of the conductor circuit 22 ′ and the surface of the insulating layer 20 ′.
  • an adhesive film 10 ′ ′ is the adhesive layer 14 ′ ′ formed by heat curing of the thermosetting adhesive layer 14 ′ of the adhesive film 10 ′ is the surface of the conductor circuit 22 ′ and the portion provided with the conductor circuit 22 ′ It is in contact with the surface of the other insulating layer 20 '.
  • FIG. 10 is a cross-sectional view showing another example of a circuit board with a coverlay film in which the adhesive film is a coverlay film.
  • the circuit board 2 ′ with the coverlay film has two insulating layers 20 ′, conductor circuits 22 ′ provided on both sides thereof, and an adhesive layer 24 in contact with the surface of the conductor circuit 22 ′ and the surface of the insulating layer 20 ′. And an adhesive film 10 '' in contact with the surface of the conductor circuit 22 'and the surface of the insulating layer 20'.
  • FIG. 11 is a cross-sectional view showing another example of a circuit board with a coverlay film in which the adhesive film is a coverlay film.
  • the circuit board 3 'with a coverlay film has two insulating layers 20', a conductor circuit 22 'provided on one side thereof, a surface of the lower conductor circuit 22' on one side and a surface of the insulating layer 20 '. , And the other surface of the adhesive layer 24 ′ ′ in contact with the upper insulating layer 20 ′ and the adhesive film 10 ′ ′ in contact with the surface of the upper conductor circuit 22 ′ and the surface of the insulating layer 20 ′.
  • FIG. 12 is a cross-sectional view showing an example of a multilayer circuit board with a coverlay film in which the adhesive film is a coverlay film and an interlayer insulating film.
  • a multilayer circuit board 4 'with a coverlay film is cured with two insulating layers 20', conductor circuits 22 'provided on both sides thereof, and both surfaces in contact with the surface of the conductor circuit 22' and the surface of the insulating layer 20 '. It has adhesive film 11 '' which is adhesive film 11 'later, and adhesive film 10''which touches the surface of conductor circuit 22', and the surface of insulating layer 20 '.
  • the adhesive layer 14 ′ ′ formed by heat curing of the thermosetting adhesive layer 14 ′ of the adhesive film 10 ′ is other than the surface of the conductor circuit 22 ′ and the portion where the conductor circuit 22 is provided. Contact with the surface of the insulating layer 20 '.
  • the adhesive layer 14 ′ ′ formed by thermosetting the thermosetting adhesive layers 14 on both sides of the adhesive film 11 is the surface of the conductor circuit 22 ′ and the insulating layer 20 ′, respectively. It is in contact with the surface.
  • FIG. 13 is a cross-sectional view showing another example of a multilayer circuit board with a coverlay film in which the adhesive film is a coverlay film and an interlayer insulating film.
  • the circuit board 5 with a coverlay film has two insulating layers 20 ', a conductor circuit 22' provided on each side thereof, a surface of the lower conductor circuit 22 'on one surface and a surface of the insulating layer 20'.
  • FIG. 14 is a cross-sectional view showing how the circuit board of FIG. 9 is manufactured.
  • the circuit board 30 ' has an insulating layer 20' and conductor circuits 22 'provided on both sides thereof.
  • the surface of the insulating layer 20 'on both sides of the circuit board 30' is plasma-treated.
  • the circuit board 30 ′ and the adhesive film 10 ′ After laminating the adhesive film 10 ′, the circuit board 30 ′ and the adhesive film 10 ′ in order from the bottom so that the thermosetting adhesive layer 14 ′ is in contact with the plasma treated surface of the circuit board 30 ′ .
  • FIG. 15 is a cross-sectional view showing how the circuit board of FIG. 10 is manufactured.
  • the adhesive film 10 ', the circuit board 30', the adhesive sheet 24 ', the circuit board 30' and the adhesive film 10 ' are arranged in order from the bottom, and the thermosetting adhesive layer 14' is in contact with the plasma treated surface of the circuit board 30 '. After stacking, thermo-compression these.
  • FIG. 16 is a cross-sectional view showing how the circuit board of FIG. 11 is manufactured.
  • the circuit board 32 ' has an insulating layer 20' and a conductor circuit 22 provided on one side thereof.
  • the surface of the insulating layer 20 'of the circuit board 32' on which the conductor circuit 22 'is provided is plasma-treated.
  • thermosetting adhesive layer 14 ′ is in contact with the plasma treated surface of the circuit board 32 ′ , Thermo-compression these.
  • FIG. 17 is a cross-sectional view showing how the circuit board of FIG. 12 is manufactured.
  • adhesive film 10 ', circuit board 30', adhesive film 11 ', circuit board 30', adhesive film 10 ', the thermosetting adhesive layer 14' is in contact with the plasma treated surface of circuit board 30 '
  • heat press them heat press them.
  • FIG. 18 is a cross-sectional view showing how the circuit board of FIG. 13 is manufactured. After stacking the circuit board 32 ′, the adhesive film 11 ′, the circuit board 32 ′ and the adhesive film 10 ′ in order from the bottom so that the thermosetting adhesive layer 14 ′ is in contact with the plasma treated surface of the circuit board 32 ′ These are thermocompression-bonded.
  • the circuit boards 30 'and 32' may be circuit boards having plasma treated surfaces obtained by plasma treatment of at least the surface on the conductor circuit side of the original circuit board in the manufacturing method of the present invention described above. preferable.
  • the adhesive film of the present invention can be used as a coverlay film, an interlayer insulating film, etc., and can reduce transmission loss even in high frequency applications excellent in electrical characteristics, and used at relatively low temperature (less than 260 ° C.) Is a film that can
  • the present invention will be described in detail by way of examples, but the present invention is not interpreted as being limited thereto.
  • the material used in the Example etc., a physical property, and an evaluation method are as follows. (Melting point of polymer) Using a differential scanning calorimeter (DSC-7020, manufactured by Seiko Instruments Inc.), record the melting peak when the polymer is heated at a rate of 10 ° C./min, and the temperature (° C.) corresponding to the maximum value is the melting point did.
  • melt flow rate of polymer The mass (g) of the polymer flowing out for 10 minutes from a nozzle with a diameter of 2 mm and a length of 8 mm was measured using a melt indexer (manufactured by TechnoSeven) under a load of 372 ° C. and 49 N to obtain a melt flow rate.
  • Weight tension The wet tension of the exposed surface of the polymer layer after plasma treatment was determined according to JIS K 6768: 1999 using a mixture for wet tension test (manufactured by Wako Pure Chemical Industries, Ltd.).
  • Peeling strength An object (film or processing circuit board) was cut into a length of 150 mm and a width of 10 mm to prepare an evaluation sample.
  • the polymer layer and the adhesive layer were peeled off to a position of 50 mm from one end in the lengthwise direction of the evaluation sample. It peeled so that it might be set to 90 degrees by 50 mm / min of tensile speeds using a tension tester, and made the average load of measurement distance 20 mm-80 mm the peeling strength (N / cm).
  • Film F1 A film (12 ⁇ m in thickness) obtained by extruding the polymer F1 into a film at a die temperature of 340 ° C. using a 65 mm single-screw extruder having a coat hanger die having a width of 750 mm.
  • Film F2 A film (12 ⁇ m in thickness) obtained by extruding polymer F2 into a film at a die temperature of 340 ° C. using a 65 mm single-screw extruder having a coat hanger die having a width of 750 mm.
  • Adhesive sheet 1 NIKAFLEX (trade name) SAFG (thickness: 25 ⁇ m) manufactured by Nikkan Kogyo Co., Ltd.
  • Adhesive sheet 11 Adhesive sheet (thickness: 15 ⁇ m) containing acrylonitrile butadiene modified epoxy resin, aluminum hydroxide, acrylic rubber, aminotriazine novolac resin (curing agent) and imidazole (curing accelerator).
  • Example 1 Production example and evaluation example of film with adhesive layer [Example 1-1] A high frequency voltage of 110 kHz was applied between the electrodes in a carbon dioxide gas atmosphere with a gas pressure of 20 Pa, and one side of the film F1 was plasma treated under the conditions of a discharge power of 300 W for 60 seconds. The wetting tension of the plasma-treated surface of the film F1 was 50 mN / m. The adhesive sheet 1 was stacked on the plasma-treated surface of the film F1 and laminated to obtain a thermosetting adhesive film with adhesive layer Ad1.
  • the film Ad1 was press-treated (temperature 160 ° C., pressure 4 MPa, time 90 minutes) by vacuum press, and the peel strength at the interface between the film F1 and the adhesive layer after curing in the film Ad1 after treatment was measured. It was / cm.
  • Thermosetting adhesive layer-included films Ad2 to Ad7 were obtained in the same manner as in Example 1-1 except that the film type and the plasma treatment conditions were changed.
  • the production conditions of each film with an adhesive layer, the wet tension and the peel strength are collectively shown in Table 1.
  • Example 1-3 when the film F1 after plasma processing and the adhesive agent sheet 1 are overlapped, and the press processing conditions are temperature 280 ° C., pressure 4 MPa, time 30 minutes, peeling of the interface
  • the strength was less than 0.2 N / cm. It is considered that this is because the temperature in the pressing process is 280 ° C. and the adhesive layer is thermally decomposed.
  • Example 2 Production example of processing circuit board and evaluation example (part 1) [Example 2-1] A copper foil, a film F1, a film PI, a film F1 and a copper foil were stacked in this order, and hot pressed under conditions of 320 ° C. for 30 minutes under vacuum to obtain a metal-clad laminate. One side of the metal-clad laminate was masked and immersed in an etching solution (H-1000A, ferric chloride aqueous solution manufactured by Sanhayato Co., Ltd.) to completely remove the copper foil on one side.
  • H-1000A ferric chloride aqueous solution manufactured by Sanhayato Co., Ltd.
  • a high frequency voltage of 110 kHz is applied between the electrodes in a carbon dioxide gas atmosphere with a gas pressure of 20 Pa, and the exposed surface of the film F1 layer is plasma treated under conditions of a discharge power of 300 W for 60 seconds.
  • the circuit board 1 having the same was obtained.
  • the wetting tension of the exposed surface of the film F1 layer on the plasma-treated surface was 50 mN / m.
  • the two circuit boards 1 are disposed such that their respective plasma-treated surfaces face each other, and the adhesive sheet 1 is inserted between them, stacked, and subjected to heat pressing (temperature 160 ° C., pressure 4 MPa, heat pressure bonding 90 minutes) By pressure bonding, a processed circuit board 1 was obtained in which the two circuit boards 1 were bonded via the cured product of the adhesive sheet 1.
  • the peel strength at the interface between the film F1 and the adhesive layer after curing was measured, and as a result, it was 8 N / cm.
  • Example 2-2] to [Example 2-7] Treated circuit boards 2 to 4 were obtained in the same manner as in Example 1-1 except that the film type and the plasma treatment conditions were changed. The production conditions of each treated circuit board, the wet tension of the film layer, and the peel strength are collectively shown in Table 2.
  • Example 2-3 (comparative example), two circuit boards 1 are disposed such that their respective plasma-treated surfaces face each other, the adhesive sheet 1 is inserted between them and stacked, and the heat press treatment condition is set to a temperature of 280 When pressed at a temperature of 4 MPa for 30 minutes, the peel strength at the interface was less than 0.2 N / cm. It is considered that the temperature in the press treatment is 280 ° C. and the adhesive layer is thermally decomposed.
  • Example 2 although evaluated, without providing a conductor circuit in the surface of a TFE type polymer layer, the same result is obtained also when a conductor circuit is provided in the surface of a TFE type polymer layer.
  • Example 3 Manufacturing example and evaluation example of processing circuit board (part 2) A copper foil, a film F1, a film PI, a film F1 and a copper foil were stacked in this order, and hot pressed under conditions of 320 ° C. for 30 minutes under vacuum to obtain a metal-clad laminate. One side of the metal-clad laminate is masked and immersed in an etching solution (H-1000A, ferric chloride aqueous solution manufactured by Sunhayato Co., Ltd.) to form a conductor circuit from copper foil on one side.
  • H-1000A ferric chloride aqueous solution manufactured by Sunhayato Co., Ltd.
  • a high frequency voltage of 110 kHz is applied between the electrodes in a carbon dioxide gas atmosphere with a gas pressure of 20 Pa, and the conductor circuit side (exposed surface of the film F1 layer) is plasma treated under the conditions of discharge power 300 W for 60 seconds to perform plasma treatment
  • a circuit board 11 having a surface is obtained.
  • the two plasma-treated surfaces of the circuit board 11 are arranged to face each other, the adhesive sheet 11 is inserted between them and stacked, and the heat pressing process (temperature 160 ° C., pressure 4 MPa, heat pressure bonding 90) is performed by vacuum press.
  • the thermal compression bonding was performed for a minute, and the processed circuit board 11 to which the two circuit boards 11 were adhered via the cured product of the adhesive sheet 11 was obtained. It is 9 N / cm as a result of measuring the peeling strength of the interface of the film F1 and the contact bonding layer after hardening.
  • the processing circuit board obtained by the manufacturing method of the present invention is useful as a circuit board of an electronic device and an electric device which are required to be downsized and to be highly functional as a multilayer circuit board, a circuit board with a coverlay film and the like.
  • the adhesive film of the present invention is useful as a coverlay film, an interlayer insulating film and the like used in the production of a multilayer circuit board, a circuit board with a coverlay film and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

処理回路基板の製造方法と接着剤層付きフィルムの提供。 テトラフルオロエチレン系ポリマーを含むポリマー層と前記ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、該前記回路基板のプラズマ処理面と接着剤層を有する基板の接着剤層とを260℃未満で熱圧着させる処理回路基板の製造方法と、テトラフルオロエチレン系ポリマーのフィルムと熱硬化性接着剤層がこの順に積層され、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で前記熱硬化性接着剤層を硬化させたときに、前記フィルムと硬化後の前記熱硬化性接着剤層との界面の剥離強度が5N/cm以上である接着剤層付きフィルム。

Description

処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム
 本発明は、処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルムに関する。
 電子機器、電気機器の小型化、高機能化に伴い、導体回路が多層化された多層回路基板やカバーレイフィルム付き回路基板の需要が増えている。これらの回路基板の製造には、ポリイミドフィルムの表面に導体回路が設けられた元の回路基板と、熱硬化性接着剤層を有する基板(接着剤シート(ボンディングシート)又はカバーレイフィルム。)とを、熱圧着させる手法が採用されている。
 さらに近年は、これらの回路基板には、高周帯域の周波数に対応する電気特性(低誘電率等)と、はんだリフローに耐え得る耐熱性との具備が求められる。しかし、従来のポリイミドフィルムは、電気特性が不充分である。
 そこで、特許文献1には、元の回路基板の絶縁材料層、接着剤シート又はカバーレイフィルムとして液晶ポリマーフィルムを用いた多層回路基板が提案されている。
 特許文献2には、ポリイミドフィルムと、ポリイミドフィルムの表面に設けられた、接着性基を有する融点280~320℃のフッ素ポリマーの層と、該層の表面に設けられた金属箔とを有するフレキシブル金属積層板、それを用いたフレキシブルプリント基板が提案されている。
 特許文献3、4、5及び6には、電気特性に優れ、回路基板の伝送損失が低減されるカバーレイフィルムとして、ポリイミドフィルムとフッ素ポリマーを含む接着剤層とを有するカバーレイフィルムが提案されている。
日本特開2014-042043号公報 国際公開第2015/080260号 日本特開2014-032980号公報 日本特開2014-197611号公報 日本特開2015-133480号公報 日本特開2015-176921号公報
 耐熱性の液晶ポリマーは、その融点が、例えば270℃以上と高いため、これらの回路基板の製造に際しては、元の回路基板と接着性の基板とを270℃以上の高温で熱圧着する必要がある。
 そのため、液晶ポリマーフィルムを用いた場合、熱硬化性接着剤を接着剤層成分とする接着性の基板に使用される通常のプレス装置は、その熱圧着の設定温度が、例えば220℃未満と低いため対応できず、高温の熱圧着に対応したプレス装置が新たに必要となる。また、270℃以上の高温で熱圧着すると、液晶ポリマーフィルムが溶融してしまい、導体回路の位置がずれる場合もある。
 特許文献2のフレキシブルプリント基板と接着性の基板とを熱圧着する際も、フッ素ポリマーの融点以上の高温(例えば280℃以上)が必要となり、液晶ポリマーを用いた場合と同様の問題が生じる。
 比較的低い温度にて、元の回路基板と接着性基板を熱圧着して、多層回路基板やカバーレイフィルム付き回路基板を製造する方法が求められている。
 カバーレイフィルム等の接着性の基板に関しても、比較的低い温度の熱圧着での接着性と電気特性とを具備する基板が求められている。つまり、特許文献3、4、5及び6の、フッ素ポリマーを含む接着剤層を有するカバーレイフィルムにおいても、接着性を発現させるために、熱圧着におけるフッ素ポリマーの融点以上の高温加熱が必要であり、通常のプレス装置では対応できず、高温熱圧着が可能な特殊なプレス装置が必要となる。
 本発明は、比較的低い温度で接着性の基板と回路基板を熱圧着して、多層回路基板やカバーレイフィルム付き回路基板等を製造できる方法と、電気特性及び比較的低い温度での熱圧着でも接着性を充分に発現する接着性の基板との提供を目的とする。
 本発明は、下記の態様を有する。
 (1)テトラフルオロエチレン系ポリマーを含むポリマー層と前記ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、該回路基板のプラズマ処理面と接着剤層を有する基板の接着剤層とを260℃未満で熱圧着させて処理回路基板を製造することを特徴とする、処理回路基板の製造方法。
 (2)前記処理回路基板における熱圧着面の剥離強度が5N/cm以上である上記(1)の製造方法。
 (3)前記接着剤層を有する基板が接着剤層付きカバーレイフィルムであり、前記処理回路基板がカバーレイフィルム付き回路基板であるか、又は前記接着剤層を有する基板が接着剤シートであり前記処理回路基板が接着層付き回路基板である上記(1)又は(2)の製造方法。
 (4)前記プラズマ処理によって、前記プラズマ処理面を有する回路基板の前記ポリマー層の露出面のぬれ張力を30mN/m以上とする上記(1)~(3)の製造方法。
 (5)前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有する上記(1)~(4)の製造方法。
 (6)前記テトラフルオロエチレン系ポリマーの融点が260℃以上である上記(1)~(5)の製造方法。
 (7)前記接着剤層が、ゴム変性エポキシ樹脂及び硬化剤を含む熱硬化性接着剤層である上記(1)~(6)の製造方法。
 (8)前記接着剤層を有する基板が、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で、前記回路基板のプラズマ処理面と前記接着剤層を有する基板の接着剤層とを熱圧着させたときに、前記処理回路基板における熱圧着面の剥離強度が5N/cm以上となる基板である上記(1)~(7)の製造方法。
 (9)テトラフルオロエチレン系ポリマーを含むポリマー層と該ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、複数の前記プラズマ処理面を有する回路基板のプラズマ処理面をそれぞれ対向させ、それぞれのプラズマ処理面の間に接着剤シートを配置して、260℃未満で熱圧着させて複数層の導体回路を有する多層回路基板を製造することを特徴とする、多層回路基板の製造方法。
 (10)テトラフルオロエチレン系ポリマーを含むポリマー層と前記ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、該回路基板のプラズマ処理面と接着剤層付きカバーレイフィルムの接着剤層とを260℃未満で熱圧着させてカバーレイフィルム付き回路基板を製造することを特徴とする、カバーレイフィルム付き回路基板の製造方法。
 (11)テトラフルオロエチレン系ポリマーのフィルムと熱硬化性接着剤層がこの順に積層され、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で前記熱硬化性接着剤層を硬化させたときに、前記フィルムと硬化後の前記熱硬化性接着剤層との界面の剥離強度が5N/cm以上であることを特徴とする、接着剤層付きフィルム。
 (12)前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有する上記(11)の接着剤層付きフィルム。
 (13)前記テトラフルオロエチレン系ポリマーの融点が、260℃以上である上記(11)又は(12)の接着剤層付きフィルム。
 (14)前記熱硬化性接着剤層が、ゴム変性エポキシ樹脂及び硬化剤を含む熱硬化性接着剤層である上記(11)~(13)の接着剤層付きフィルム。
 (15)カバーレイフィルム又は層間絶縁フィルムである上記(11)~(14)の接着剤層付きフィルム。
 本発明の製造方法によれば、比較的低い温度で回路基板と接着性の基板を熱圧着して、多層回路基板やカバーレイフィルム付き回路基板等の処理回路基板を製造できる。
 本発明によれば、比較的低い温度で、電気特性に優れ、充分な接着性を発現する、カバーレイフィルムや層間絶縁フィルムとして有用な接着剤層付きフィルムが得られる。
多層回路基板の一例を示す断面図である。 多層回路基板の他の例を示す断面図である。 多層回路基板の他の例を示す断面図である。 図1の多層回路基板を製造する様子を示す断面図である。 図2の多層回路基板を製造する様子を示す断面図である。 図3の多層回路基板を製造する様子を示す断面図である。 接着フィルムをカバーレイフィルムとする一例を示した断面図である。
接着フィルムを層間絶縁フィルムとする一例を示した断面図である。 カバーレイフィルム付き回路基板の一例を示す断面図である。 カバーレイフィルム付き回路基板の他の例を示す断面図である。 カバーレイフィルム付き回路基板の他の例を示す断面図である。 カバーレイフィルム付き多層回路基板の一例を示す断面図である。 カバーレイフィルム付き多層回路基板の他の例を示す断面図である。 図9の回路基板を製造する様子を示す断面図である。
図10の回路基板を製造する様子を示す断面図である。 図11の回路基板を製造する様子を示す断面図である。 図12の多層回路基板を製造する様子を示す断面図である。 図13の多層回路基板を製造する様子を示す断面図である。
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
 「熱圧着の温度」は、プレス装置における熱盤の設定温度である。
 「融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「ぬれ張力」は、JIS K 6768:1999(対応国際規格ISO 8296:1987)にしたがって測定される値である。ぬれ張力の測定においては、試験片上に、ぬれ張力既知の試験液に浸した綿棒を素早くこすりつけ、6cmの液膜を形成し、塗布2秒後の液膜の状態を観察し、破れが生じていなければ、ぬれているとする。液膜の破れが起こらない最大のぬれ張力が、その試験片のぬれ張力とされる。なお、JIS K 6768:1999で規定されている試験液のぬれ張力の下限は22.6mN/mである。
 「処理回路基板の剥離強度」は、次のようにして測定された値である。処理回路基板を長さ150mm、幅10mmに切り出し、評価サンプルを作製する。評価サンプルの長さ方向の一端から50mmの位置までポリマー層及び導体回路と接着層との間を剥離する。引張試験機を用いて引張速度50mm/分で90°となるように剥離し、測定距離20mmから80mmまでの平均荷重を剥離強度(N/cm)とする。
 「接着剤層付きフィルムの剥離強度」は、次のようにして測定された値である。熱硬化後の接着剤層付きフィルムを長さ150mm、幅10mmに切り出し、評価サンプルを作製する。評価サンプルの長さ方向の一端から50mmの位置までポリマー層と熱硬化後の熱硬化性接着層との間を剥離する。引張試験機を用いて引張速度50mm/分で90°となるように剥離し、測定距離20mmから80mmまでの平均荷重を剥離強度(N/cm)とする。
 「溶融成形可能なポリマー」とは、荷重49Nの条件下、樹脂の融点よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在するポリマーを意味する。
 「溶融流れ速度」は、JIS K 7210-1:2014(対応国際規格ISO 1133-1:2011)に規定されるメルトマスフローレイト(MFR)である。
 「十点平均粗さ(RzJIS)」は、JIS B 0601:2013の附属書JAで規定される値である。
 「単位」は、単量体1分子が重合して直接形成される原子団と、該原子団の一部を化学変換して得られる原子団との総称である。単量体に基づく単位を、単に、「単位」とも記す。
 「圧力」の値は、特に、言及のない限り、「絶対圧」を示す。
 図1~図18は、いずれも模式的図面であり、それらにおける寸法比は、説明の便宜上、実際のものとは異なる。
 本発明における処理回路基板は、テトラフルオロエチレン系ポリマー(以下、Fポリマーとも記す。)を含むポリマー層(以下、F層とも記す。)とF層の表面に設けられた導体回路とを有する回路基板(以下、元の回路基板とも記す。)の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、さらに前記回路基板のプラズマ処理面と接着剤層を有する基板(以下、接着性基板とも記す。)の接着剤層を260℃未満で熱圧着させて得られる。
 処理回路基板は、F層と、F層の表面に設けられた導体回路と、前記導体回路の表面及び前記導体回路が設けられた部分以外のF層の表面に接する接着層(以下、接着層とも記す。)を有する。接着層は、熱圧着により接着性基板から形成される層であり、具体的には、後述する接着剤シートや接着剤層付きカバーレイフィルムの接着剤層に由来する層である。
 処理回路基板は、接着性基板が接着剤層付きカバーレイフィルムであり処理回路基板がカバーレイフィルム付き回路基板であるか、又は接着性基板が接着剤シートであり処理回路基板が接着層付き回路基板であるのが好ましい。
 後者の処理回路基板においては、処理回路基板の表面に接するカバーレイ層をさらに有していてもよい。カバーレイ層は、導体回路を保護する層であり、具体的には、後述する接着剤層付きカバーレイフィルムから形成されるカバーレイ層が挙げられる。
 処理回路基板は、F層の導体回路が設けられた側とは反対側の表面に接する耐熱性基材層を有していてもよい。
 処理回路基板は、F層を2層以上有してもよく、耐熱性基材層を2層以上有してもよく、カバーレイ層を2層以上有してもよい。
 処理回路基板には、スルーホール、ビアホール等が形成されていてもよい。
 処理回路基板における熱圧着面の剥離強度は、5N/cm以上が好ましく、8N/cm以上がより好ましく、10N/cm以上が特に好ましい。剥離強度が前記範囲の下限値以上であれば、F層と接着層との接着性に優れる。剥離強度は高ければ高いほどよく、上限値は限定されない。なお、熱圧着面とは、F層及び導体回路と接着層との界面である。
 耐熱性基材層は、耐熱性基材を含む層であり、単層構造であってもよく、多層構造であってもよい。
 耐熱性基材としては、ポリイミド(芳香族ポリイミド等)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステル、繊維強化基材が挙げられる。
 繊維強化基材は、マトリックス樹脂(エポキシ樹脂等の熱硬化性樹脂の硬化物、耐熱性樹脂等)とマトリックス樹脂に埋設された強化繊維(ガラス繊維、カーボン繊維、アラミド繊維、ポリベンゾオキサゾール繊維、ポリアリレート繊維等。織布でもあってもよく、不織布であってもよい。)を有する基材である。
 耐熱性基材層の厚さは、通常5~150μmであり、7.5~100μmが好ましく、12~75μmがより好ましい。
 本発明における導体回路としては、金属箔とF層と必要に応じて耐熱性基材層とを有する金属張積層板の金属箔をエッチング等によって加工した所定の回路パターンが形成された導体回路、前記金属張積層板の金属箔を後述するSAP法又はMSAP法によって加工した所定の回路パターンが形成された電解銅めっきの導体回路等が挙げられる。
 金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金等が挙げられる。電子機器に用いられる通常の回路基板においては、圧延銅箔、電解銅箔等の銅箔が多用されており、本発明における金属箔も銅箔が好適である。
 金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されていてもよい。金属箔の表面には、接着層との接着性を高めるための表面処理(カップリング剤処理等)が施されていてもよい。
 金属箔の表面の十点平均粗さ(RzJIS)は、0.2~2.0μmが好ましく、0.3~1.5μmがより好ましい。この場合、接着層との接着力と、電気的伝送損失の低減とをバランスさせやすい。
 金属箔の厚さは、5~75μmが好ましい。
 導体回路は、前記金属張積層板を、セミアディティブ法(SAP法)又はモディファイドセミアディティブ法(MSAP法)によって加工して形成するのが好ましい。
 SAP法の第1の形態としては、下記の工程を有する方法が挙げられる。
 金属張積層板の金属箔のすべてをエッチングによって除去する工程、
 スルーホール及びビアホールのいずれか一方又は両方を設ける工程、
 全表面(スルーホール及びビアホールを含む)についてデスミア処理する工程、
 全表面(スルーホール及びビアホールを含む)について無電解めっき層を設ける工程、
 無電解めっき層の表面の非回路領域にめっきレジストを設ける工程、
 めっきレジストを設けた後、電解めっきによって導体回路を形成する工程、
 めっきレジストを除去する工程、
 めっきレジストを除去して露出した無電解めっき層をフラッシュエッチングによって除去する工程。
 SAP法の第2の形態としては、下記の工程を有する方法が挙げられる。
 金属張積層板にスルーホール及びビアホールのいずれか一方又は両方を設ける工程、
 全表面(スルーホール及びビアホールを含む)についてデスミア処理する工程、
 金属箔のすべてをエッチングによって除去する工程、
 全表面(スルーホール及びビアホールを含む)について無電解めっき層を設ける工程、
 無電解めっき層の表面の非回路領域にめっきレジストを設ける工程、
 めっきレジストを設けた後、電解めっきによって導体回路を形成する工程、
 めっきレジストを除去する工程、
 めっきレジストを除去して露出した無電解めっき層をフラッシュエッチングによって除去する工程。
 MSAP法の第1の形態としては、下記の工程を有する方法が挙げられる。
 金属張積層板にスルーホール及びビアホールのいずれか一方又は両方を設ける工程、
 全表面(スルーホール及びビアホールを含む)についてデスミア処理する工程、
 全表面(スルーホール及びビアホールを含む)について無電解めっき層を設ける工程、
 無電解めっき層の表面の非回路領域にめっきレジストを設ける工程、
 めっきレジストを設けた後、電解めっきによって導体回路を形成する工程、
 めっきレジストを除去する工程、
 めっきレジストを除去して露出した無電解めっき層及び金属箔をフラッシュエッチングによって除去する工程。
 MSAP法の第2の形態としては、下記の工程を有する方法が挙げられる。
 金属張積層板の金属箔の表面の非回路領域にめっきレジストを設ける工程、
 めっきレジストを設けた後、電解めっきによって導体回路を形成する工程、
 めっきレジストを除去する工程、
 めっきレジストを除去して露出した金属箔をフラッシュエッチング等によって除去する工程。
 本発明における接着性基板は、接着剤シート又は接着剤層付きカバーレイフィルムが好ましい。また、接着性基板の接着剤層は、熱可塑性であってもよく熱硬化性であってもよく、熱硬化性が好ましい。つまり、接着性基板は、熱硬化性接着剤層を有する基板が好ましい。この場合、処理回路基板における接着層には、これらの接着成分の硬化物(熱硬化性接着剤の硬化物。)が含まれる。
 接着剤シートは、シート状の接着剤であり、接着剤のみからなるシートであってもよく、耐熱性樹脂フィルムの両面に接着剤層が設けられてなるシートであってもよい。接着剤シートにおける接着剤が熱硬化性接着剤である場合、熱硬化性接着剤は半硬化状態の半硬化物が好ましい。
 接着剤層付きカバーレイフィルムは、カバーレイ層(カバーレイフィルム)と、カバーレイ層の片面に設けられた接着剤層とを有する。接着剤層付きカバーレイフィルムの接着剤層における接着剤が熱硬化性接着剤である場合、熱硬化性接着剤は半硬化状態の半硬化物が好ましい。
 カバーレイ層の材質としては、耐熱性樹脂、Fポリマー等が挙げられる。
 カバーレイ層の厚さは、12~100μmが好ましい。接着性基板の接着剤層の厚さは、5~50μmが好ましい。熱硬化性接着剤層は、熱硬化性樹脂を含むのが好ましい。
 熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、多官能性マレイミド樹脂、不飽和ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂等が挙げられる。熱硬化性樹脂は、2種以上を併用してもよい。  。
 熱硬化性接着剤層は、通常、硬化剤と硬化促進剤とを含む。
 硬化剤は、熱硬化性樹脂の種類に応じて適宜選択される。たとえば、熱硬化性樹脂がエポキシ樹脂である場合の硬化剤としては、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、ジシアンジアミド、低分子量ポリフェニレンエーテル化合物が挙げられる。 硬化剤は2種以上を併用してもよい。
 硬化促進剤としては、イミダゾール、3級アミン、有機ホスフィン、金属石鹸等が挙げられる。硬化促進剤は2種以上を併用してもよい。
 熱硬化性接着剤層は、フィラー、熱可塑性樹脂、他の添加剤を更に含んでいてもよい。
 フィラーとしては、シリカ、金属酸化物(酸化アルミニウム、酸化マグネシウム、酸化チタン等。)、金属水酸化物(水酸化アルミニウム、水酸化マグネシウム等。)、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、タルク、クレー、雲母粉、硬化樹脂粉、ゴム粒子(アクリルゴム粒子、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子等。)が挙げられる。フィラーは2種以上を併用してもよい。
 熱可塑性樹脂としては、アクリル樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリフェニレンエーテル樹脂、カルボジイミド樹脂が挙げられる。
 他の添加剤としては、難燃剤、難燃助剤、レベリング剤、着色剤等が挙げられる。
 本発明における熱硬化性接着剤層は、ゴム変性エポキシ樹脂及び硬化剤を含む熱硬化性接着剤層が好ましい。
 ゴム変性エポキシ樹脂は、エポキシ基を2個以上有し、樹脂構造にゴム骨格が形成されたエポキシ樹脂である。ゴム骨格を形成するゴムとしては、ポリブタジエン、アクリロニトリルブタジエンゴム、スチレン系エラストマー、ウレタンゴム、アクリルゴムが挙げられる。アクリロニトリルブタジエンゴムは、カルボキシル基末端を有していてもよい。スチレン系エラストマーはスチレン-ブタジエンブロック共重合体、スチレン-エチレンプロピレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-エチレンブチレン-スチレンブロック共重合体、スチレン-エチレンプロピレン-スチレンブロック共重合体が挙げられる。ウレタンゴムはポリカーボネートジオールとイソシアネートの共重合体が挙げられる。アクリルゴムはグリシジル(メタ)アクリレート、アルキル(メタ)アクリレート及び芳香族ビニル化合物の共重合体が挙げられる。
 ゴム変性エポキシ樹脂のエポキシ当量は、200~350g/eqが好ましい。
 ゴム変性エポキシ樹脂は、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂又は酸化型エポキシ樹脂が好ましい。
 グリシジルエーテル型エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂又はアルコール型エポキシ樹脂が好ましい。
 グリシジルエステル型エポキシ樹脂は、ヒドロフタル酸型エポキシ樹脂又はダイマー酸型エポキシ樹脂が好ましい。
 硬化剤は、ジシアンジアミド、芳香族ジアミン、脂肪族ジアミン、フェノールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、又は酸無水物が好ましい。耐熱性の観点から、アミノトリアジンノボラック樹脂が好ましい。
 本発明におけるF層は、テトラフルオロエチレン(以下、TFEとも記す。)に基づく単位(以下、TFE単位とも記す。)を有するテトラフルオロエチレン系ポリマー(Fポリマー)を含む層である。
 F層は、無機フィラー、Fポリマー以外の樹脂、添加剤等を含んでいてもよい。F層中のFポリマーの割合は、90質量%以上がより好ましく、その上限値は100質量%である。
 F層の厚さは、通常1~1000μmであり、5~500μmが好ましく、10~500μmがより好ましく、10~300μmが更に好ましく、10~200μmが特に好ましい。
 Fポリマーとしては、溶融成形可能なFポリマーが好ましい。前記Fポリマーの溶融流れ速度は、0.1~1000g/10分が好ましく、0.5~100g/10分がより好ましく、5~20g/10分が特に好ましい。
 Fポリマーの融点は、260℃以上が好ましく、260~325℃がより好ましく、280~320℃がさらに好ましく、280~315℃が特に好ましい。この場合、F層の耐熱性が優れ、導体回路等を形成する際の熱圧着における位置ずれを抑制しやすい。また、汎用的な装置を使用できる。
 Fポリマーのフッ素含有量は、70~78質量%が好ましい。なお、フッ素含有量は、Fポリマーの総質量に対するフッ素原子の合計質量の割合であり、19F-NMRによって求められる。
 Fポリマーは、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選択される少なくとも1種の官能基(以下、官能基とも記す。)を有していてもよく、官能基を有していなくてもよい。F層と、他の層(接着層、導体回路、耐熱性基材層等。以下同様。)との接着性がさらに優れる点から、官能基を有するFポリマーが好ましい。
 官能基を有するFポリマーとしては、官能基を有する単量体に基づく単位又は官能基を有する末端基を有するFポリマーが挙げられる。具体的には、官能基を有するTFEとPAVEのコポリマー、官能基を有するTFEとHFPのコポリマー、官能基を有するエチレンとTFEのコポリマー等が挙げられる。
 Fポリマー中の官能基の種類は、2種以上であってもよい。
 官能基としては、F層と他の層との接着性がさらに優れる点から、カルボニル基含有基が好ましい。カルボニル基含有基としては、ケト基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基を例示できる。なお、「酸無水物残基」とは、-C(=O)-O-C(=O)-で表される基を意味する。
 ケト基は、炭素数2~8のアルキレン基中の炭素原子間に含まれるのが好ましい。なお、前記アルキレン基の炭素数は、ケト基の炭素原子を含まない炭素数である。
 ハロホルミル基は、-C(=O)F、-C(=O)Cl、-C(=O)Br、-C(=O)Iを例示でき、-C(=O)Fが好ましい。
 アルコキシカルボニル基におけるアルコキシ基は、炭素数1~8のアルコキシ基が好ましく、メトキシ基又はエトキシ基が特に好ましい。
 カルボニル基含有基としては、酸無水物残基又はカルボキシ基が好ましい。
 Fポリマー中の官能基の含有量は、Fポリマーの主鎖炭素数1×10個に対し10~60000個が好ましく、300~5000個が特に好ましい。この場合、F層と他の層との接着性、特に低温接着性が優れる。
 接着性官能基の含有量は、日本特開2007-314720号公報に記載の方法によって測定できる。
 Fポリマー中の官能基は、F層と他の層の接着性の観点から、Fポリマーの主鎖の末端基又はFポリマーの主鎖のペンダント基として存在するのが好ましく、Fポリマーの主鎖のペンダント基として存在するのが特に好ましい。これらのFポリマーは、TFEと官能基を有する単量体を共重合させる方法や、官能基をもたらす連鎖移動剤や重合開始剤を用いてTFEを重合させる方法で製造できる。
 官能基を有するモノマーとしては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基、又はイソシアネート基を有するモノマーが好ましく、酸無水物残基又はカルボキシ基を有するモノマーが特に好ましい。かかるモノマーとしては、マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸、無水イタコン酸(以下、「IAH」とも記す。)、無水シトラコン酸(以下、CAHとも記す。)、5-ノルボルネン-2,3-ジカルボン酸無水物(以下、NAHとも記す。)、無水マレイン酸、ヒドロキシアルキルビニルエーテル、エポキシアルキルビニルエーテルを例示できる。
 官能基をもたらす連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコールを例示できる。
 官能基をもたらす重合開始剤としては、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、tert-ブチルペルオキシイソプロピルカーボネート、ビス(4-tert-ブチルシクロヘキシル)ペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネートを例示できる。
 官能基が主鎖のペンダント基として存在するFポリマーとしては、その接着性の観点から、TFE単位と、酸無水物残基を有するモノマーに基づく単位と、TFE以外のフルオロオレフィンに基づく単位とを有するFポリマーを例示できる。
 前記モノマーは、IAH、CAH、NAH、又は無水マレイン酸が好ましく、IAH、CAH又はNAHがより好ましく、IAH又はNAHが特に好ましい。この場合、F層と他の層の接着性に優れる。
 なお、前記Fポリマーには、酸無水物残基の一部が加水分解して形成される、1,2-ジカルボン酸残基が含まれる場合もある。この場合、1,2-ジカルボン酸単位の含有量は、酸無水物残基を有するモノマーに基づく単位の含有量に含まれるものとする。
 TFE以外のフルオロオレフィンとしては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、HFPとも記す。)、ヘキサフルオロイソブチレン、ペルフルオロ(アルキルビニルエーテル)(以下、PAVEとも記す。)、官能基を有するフルオロビニルエーテル、フルオロ(ジビニルエーテル)、ポリフルオロ(アルキルエチレン)(以下、FAEとも記す。)、環構造を有するフルオロモノマーが挙げられ、Fポリマーの成形性、F層の耐屈曲性等に優れる点から、HFP、PAVE、FAEが好ましい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、PPVEとも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFFを例示できる。
 FAEとしては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF(以下、PFEEとも記す。)、CH=CH(CFF(以下、PFBEとも記す。)、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFHを例示できる。
 環構造を有するフルオロモノマーとしては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)を例示できる。
 官能基を有するフルオロビニルエーテルとしては、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCFSOF、CF=CFOCFCF(CF)OCFCFSOH、CF=CFOCFCFSOH、CF=CFO(CFCOOCH、CF=CFO(CFCOOHを例示できる。
 フルオロ(ジビニルエーテル)としては、CF=CFCFCFOCF=CF、CF=CFCFOCF=CFを例示できる。
 Fポリマーは、前述したモノマー以外の非フッ素モノマーに基づく単位をさらに有していてもよい。
 非フッ素単量体としては、エチレン、プロピレン、1-ブテン、ビニルエステル(酢酸ビニル等)が挙げられる。
 Fポリマーの好ましい具体例としては、TFEとNAHとPPVEのコポリマー、TFEとIAHとPPVEのコポリマー、TFEとCAHとPPVEのコポリマー、TFEとIAHとHFPのコポリマー、TFEとCAHとHFPのコポリマー、TFEとIAHとPFBEとエチレンのコポリマー、TFEとCAHとPFBEとエチレンのコポリマー、TFEとIAHとPFEEとエチレンのコポリマー、TFEとCAHとPFEEとエチレンのコポリマー、TFEとIAHとHFPとPFBEとエチレンのコポリマーを例示できる。
 Fポリマーは、ポリマーを構成する全単位の内、TFE単位を50~99.89モル%(より好ましくは、50~98.9モル%)含むのが好ましく、官能基を有するモノマーに基づく単位を0.01~5モル%(より好ましくは、0.1~2モル%)含むのが好ましく、HFP、PAVE又はFAEに基づく単位を0.1~49.99モル%(より好ましくは、1~49.9モル%)含むのが好ましい。
 この場合、F層の耐熱性、耐薬品性及び高温弾性率と、F層及び他の層の接着性と、Fポリマーの成形性及び耐屈曲性とが優れる。
 FポリマーがTFE単位と官能基を有するモノマーに基づく単位とHFP、PAVE又はFAEに基づく単位とエチレンに基づく単位とを含む場合、ポリマーを構成する全単位の内、TFE単位を25~80モル%(より好ましくは、45~63モル%)含むのが好ましく、官能基を有するモノマーに基づく単位を0.01~5モル%(より好ましくは、0.05~1モル%)含むが好ましく、HFP、PAVE又はFAEに基づく単位を0.2~20モル%(より好ましくは、0.5~15モル%)含むのが好ましく、エチレンに基づく単位を20~75モル%(より好ましくは、37~55モル%)含むのが好ましい。
 この場合、F層の耐薬品性及び耐屈曲性と、F層及び接着層、導体回路、耐熱性基材層等との接着性と、Fポリマーの成形性により優れる。
 官能基を有しないフッ素樹脂としては、TFEとPAVEのコポリマー、TFEとHFPのコポリマー、エチレンとTFEのコポリマー、フッ化ビニリデンのホモポリマー、クロロトリフルオロエチレンのホモポリマー、エチレンとクロロトリフルオロエチレンのコポリマー等が挙げられる。
 本発明の製造方法においては、F層とF層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理する。
 プラズマ処理としては、大気圧プラズマ処理、真空プラズマ処理等が挙げられ、真空プラズマ処理が好ましい。
 真空プラズマ処理は、減圧容器内のグロー放電によるプラズマ処理であり、コロナ放電に比べて印加電圧が低く、消費電力を低減できる。また、低圧での処理のため、Fポリマー表面の酸化劣化が少なく、処理による汚染物質(Fポリマーの分解物である低分子量体等。)の発生が少ないため、WBL(Weak Boundary Layer)の発生を抑制でき、F層と接着層との剥離強度がさらに向上できる。
 処理ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス、酸素ガス、二酸化炭素ガス、メタンガス、四フッ化炭素ガス、水素ガス等が挙げられる。処理ガスは単独のガスを使用してもよく、混合ガスを使用してもよい。処理ガスは、好適なぬれ張力を有するプラズマ処理面が形成される観点から、アルゴンガス、二酸化炭素ガス、窒素ガスと水素ガスとの混合ガス、アルゴンガスと水素ガスとの混合ガスが好ましい。
 ガス圧力は、0.1~1330Paが好ましく、1~266Paがより好ましい。
 プラズマ処理における処理ガスと処理圧力の好適な組み合せとしては、処理ガスが窒素ガス又はアルゴンガスと水素ガスとの混合ガスであるか又は二酸化炭素ガスであり、処理圧力が1~266Paである、組み合せが挙げられる。この場合、濡れ張力に優れたプラズマ処理面を特に形成し易く、剥離強度の高い処理基板が得られやすい。
 前記ガス圧力下において電極間に、例えば、周波数10kHz~2GHzの高周波で10W~100kWの電力を与えれば、グロー放電が安定する。周波数帯域としては、高周波以外に低周波、マイクロ波、直流等も使用できる。
 F層の露出面のぬれ張力を好適な範囲とするためには、放電電力を10~500Wとし、処理時間を10~100秒とすることが好ましい。
 真空プラズマ発生装置としては、内部電極型が好ましい。場合によっては、外部電極型であってもよく、コイル炉等の容量結合型又は誘導結合型であってもよい。
 電極の形状としては、平板状、リング状、棒状、シリンダー状等が挙げられる。処理装置の金属内壁を一方の電極としてアースした形状であってもよい。
 電極間に1000V以上の電圧を印加し、安定なプラズマ状態を維持するためには、入力電極にかなりの耐電圧を持った絶縁被覆を施すのが好ましい。銅、鉄、アルミニウム等の金属むき出しの電極の場合、アーク放電となりやすいため、電極の表面にホーローコート、ガラスコート、セラミックコート等を施すことが好ましい。
 プラズマ処理面におけるF層の露出面のぬれ張力は、30mN/m以上が好ましく、30~60mN/mがより好ましく、30~50mN/m以下がさらに好ましい。プラズマ処理面におけるF層の露出面のぬれ張力は、F層の表面における接着性基の量が多いほど高くなる傾向がある。濡れ張力が前記範囲の下限値以上であれば、熱圧着の温度を低くしてもF層と接着層との接剥離強度がさらに向上する。濡れ張力が前記範囲の上限値以下であれば、表面処理による汚染物質が少なく、汚染物質による密着阻害を抑制できる。
 本発明の製造方法においては、さらにプラズマ処理面を有する回路基板のプラズマ処理面と接着性基板の接着剤層とを260℃未満で熱圧着させる。たとえば、前記プラズマ処理面と接着剤シートとを熱圧着させるか、前記プラズマ処理面とカバーレイフィルムの接着剤層とを熱圧着させる。
 熱圧着の温度は、260℃未満であり、220℃未満が好ましく、200℃以下がより好ましい。熱圧着の温度が260℃未満であれば、熱圧着における導体回路等の位置がずれにくく、また、従来の接着性基板を対象とするプレス装置を使用できる。
 熱圧着の温度は、F層と接着層との剥離強度に優れる点から、120℃以上が好ましく、140℃以上がより好ましく、160℃以上がさらに好ましい。熱圧着の圧力は、1~8MPaが好ましく、2~6MPaがより好ましい。熱圧着の時間は、30~150分間が好ましく、60~120分間がより好ましい。
 本発明の製造方法の好適な第1態様としては、元の回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、複数の前記プラズマ処理面を有する回路基板のプラズマ処理面をそれぞれ対向させ、それぞれのプラズマ処理面の間に接着剤シートを配置して、260℃未満で熱圧着させる、複数層の導体回路を有する多層回路基板の製造方法が挙げられる。
 本発明の製造方法の好適な第2態様としては、元の回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、さらに前記回路基板のプラズマ処理面と接着剤層付きカバーレイフィルムの接着剤層とを260℃未満で熱圧着させる、カバーレイフィルム付き回路基板の製造方法が挙げられる。
 図1は、多層回路基板の一例を示す断面図である。多層回路基板1は、耐熱性基材層10と、その両面に設けられたF層12と、F層12の表面に設けられた導体回路14と、導体回路14の表面及びF層12の表面に接する接着層16と、接着層16に接するカバーレイ層18とを有する。
 図2は、多層回路基板の一例を示す断面図である。多層回路基板2は、2層の耐熱性基材層10と、その各両面に設けられたF層12と、F層12の表面に設けられた導体回路14と、両面が導体回路14の表面及びF層12の表面に接する接着層16Aと、片面が導体回路14の表面及びF層12の表面に接する接着層16Bと、接着層16Bに接するカバーレイ層18とを有する。
 図3は、多層回路基板の一例を示す断面図である。多層回路基板3は、2層の耐熱性基材層10と、その各片面に設けられたF層12と、F層12の表面に設けられた導体回路14と、片方の表面が下側の導体回路14の表面及びF層12の表面に接し他方の表面が上側の耐熱性基材層10に接する接着層16Aと、片面が上側の導体回路14の表面及びF層12の表面に接する接着層16Bと、接着層16Bに接するカバーレイ層18とを有する。
 図4は、図1の多層回路基板を製造する様子を示す断面図である。
 回路基板20は、耐熱性基材層10と、その両面に設けられたF層12と、F層12の表面に設けられた導体回路14とを有する。回路基板20の両方の表面はプラズマ処理がされている。
 接着剤層付きカバーレイフィルム22は、F層からなるカバーレイ層18と、カバーレイ層18の片面に設けられた接着剤層26とを有する。
 下から順に、接着剤層付きカバーレイフィルム22、回路基板20、接着剤層付きカバーレイフィルム22を、回路基板20のプラズマ処理面に接着剤層26が接するように積み重ねた後、これらを260℃未満で熱圧着する。
 図5は、図2の多層回路基板を製造する様子を示す断面図である。
 下から順に、接着剤層付きカバーレイフィルム22、回路基板20、接着剤シート24、回路基板20、接着剤層付きカバーレイフィルム22を、回路基板20のプラズマ処理面に接着剤層26が接するように積み重ねた後、これらを260℃未満で熱圧着する。
 図6は、図3の多層回路基板を製造する様子を示す断面図である。
 回路基板30は、耐熱性基材層10と、その片面に設けられたF層12と、F層12の表面に設けられた導体回路14とを有する。回路基板30の導体回路14側の表面はプラズマ処理がされている。
 下から順に、回路基板30、接着剤シート24、回路基板30、接着剤層付きカバーレイフィルム22を、回路基板30のプラズマ処理面に接着剤層26が接するように積み重ねた後、これらを260℃未満で熱圧着する。
 以上説明した本発明の製造方法においては、元の回路基板の、導体回路が設けられた側の表面をプラズマ処理しているため、260℃未満であっても、元の回路基板と接着性基板の接着剤層とが充分に熱圧着する。その結果、F層と接着層との接着性に優れ、F層及び導体回路の剥離強度が、例えば5N/cm以上である処理回路基板(多層回路基板、カバーレイフィルム付き回路基板等。)が得られる。
 本発明の接着剤層付きフィルム(以下、接着フィルムとも記す。)は、Fポリマーのフィルム(以下、Fフィルムとも記す。)と熱硬化性接着剤層がこの順に積層されたフィルムである。接着フィルムの熱硬化性接着剤層を、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で硬化させたときの、Fフィルムと硬化後の前記熱硬化性接着剤層との界面の剥離強度は、5N/cm以上である。
 接着フィルムは、Fフィルムの片面のみに熱硬化性接着剤層が積層されていてもよく、Fフィルムの両面に熱硬化性接着剤層が積層されていてもよい。Fフィルムの片面のみに熱硬化性接着剤層が積層されたFフィルムは、カバーレイフィルムとして有用である。Fフィルムの両面に熱硬化性接着剤層が積層されたFフィルムは、層間絶縁フィルムとして有用である。接着フィルムがFフィルムの両面に熱硬化性接着剤層を有する場合、いずれの熱硬化性接着剤層についても、Fフィルムと硬化後の熱硬化性接着剤層との界面の剥離強度は5N/cm以上である。
 Fフィルムと硬化後の前記熱硬化性接着剤層との界面の剥離強度は、8N/cm以上が好ましく、10N/cm以上がより好ましい。前記剥離強度が前記範囲の下限値以上であれば、Fフィルムと硬化後の熱硬化性接着剤層との接着性が優れる。前記剥離強度は高ければ高いほどよく、上限値は限定されない。
 接着フィルムにおける熱硬化性接着剤層は、熱硬化性接着剤を含む。
 接着フィルムにおける熱硬化性接着剤層の厚さは、5~50μmが好ましい。接着フィルムがFフィルムの両面に熱硬化性接着剤層を有する場合、それぞれの熱硬化性接着剤層の厚さは、前記範囲であることが好ましい。
 熱硬化性接着剤層は、熱硬化性樹脂を含むのが好ましい。熱硬化性接着剤層は、硬化剤と硬化促進剤とを、さらに含むのが好ましい。
 接着フィルムにおける熱硬化性樹脂、硬化剤及び硬化促進剤の種類は、上述した本発明の処理回路基板の製造方法における、それらと同様であり、その好適な範囲も同様である。
 接着フィルムにおけるFフィルムは、テトラフルオロエチレンに基づく単位を有するテトラフルオロエチレン系ポリマー(Fポリマー)を含むフィルムである。
 Fフィルムは、無機フィラー、Fポリマー以外の樹脂、添加剤等を含んでいてもよい。Fフィルム中のFポリマーの割合は、90質量%以上がより好ましい。Fポリマーの割合の上限値は100質量%である。
 Fフィルムの厚さは、12~100μmが好ましい。
 接着フィルムにおけるFポリマーは、上述した本発明の処理回路基板の製造方法におけるFポリマーと同様であり、その好適な範囲も同様である。
 接着フィルムの製造方法としては、Fフィルムの一方又は両方の表面に熱硬化性接着剤を塗布する方法、Fフィルムの一方又は両方の表面に熱硬化性接着剤シートを積層する方法が挙げられる。接着フィルムをカバーレイフィルムとして使用する場合は、Fフィルムの一方の表面に熱硬化性接着剤層を形成する。接着フィルムを層間絶縁フィルムとして使用する場合は、Fフィルムの両方の面に熱硬化性接着剤層を形成する。
 熱硬化性接着剤の塗布方法としては、ダイコート法、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ファウンテンメイヤーバー法、スロットダイコート法等が挙げられる。
 Fフィルムと熱硬化性接着剤シートとを積層する方法としては、プレス、ロールラミネート、ダブルベルトプレス等が挙げられる。
 接着フィルムの製造においては、Fフィルムの一方又は両方の表面にプラズマ処理し、Fフィルムのプラズマ処理された側の表面に熱硬化性接着剤層を形成することが好ましい。これにより、Fフィルムと熱硬化性接着剤層との接着性がさらに優れる。プラズマ処理の諸条件は、本発明の処理回路基板の製造方法におけるプラズマ処理で記載した内容と同様であり、その好適な範囲も同様である。
 接着フィルムにおけるFフィルムのプラズマ処理面のぬれ張力は、30mN/m以上が好ましく、30~60mN/mがより好ましく、30~50mN/mがさらに好ましい。Fフィルムのプラズマ処理面のぬれ張力は、Fフィルムの表面における官能基の量が多いほど高くなる傾向がある。ぬれ張力が前記範囲の下限値以上であれば、熱圧着の温度を低くしてもFフィルムと熱硬化性接着剤層との接着性がさらに優れる。ぬれ張力が前記範囲の上限値以下であれば、表面処理により生成する汚染物質が少なく、汚染物質による密着阻害が起こりにくい。
 以上説明したように、本発明の接着フィルムは、Fフィルムと熱硬化性接着剤層とが積層されている。Fフィルムはポリイミドフィルムに比べて電気特性に優れるため、高周波数用途のプリント基板材料として使用した場合に、伝送損失を低減できる。また、本発明の接着フィルムは、温度160℃、圧力4MPa及び時間90分間の条件で熱プレスして熱硬化性接着剤層を硬化したときに、Fフィルムと硬化後の熱硬化性接着剤層との界面の剥離強度が5N/cm以上である。そのため、本発明の接着フィルムと回路基板とは比較的低温(260℃未満)の熱圧着であっても、強固に接着できる。
 さらに、本発明の接着フィルムにおいては、Fポリマーとして官能基を有するFポリマーを使用すれば、Fフィルムと硬化後の熱硬化性接着剤層との界面の剥離強度を5N/cm以上に調整しやすい。また、プラズマ処理により表面の濡れ性が調整されたFフィルムの表面に熱硬化性接着剤層を形成すれば、Fフィルムと硬化後の熱硬化性接着剤層との界面の剥離強度を5N/cm以上に調整しやすい。
 本発明の接着フィルムは、カバーレイフィルム又は層間絶縁フィルムとして使用するのが好ましく、上述した本発明の処理基板の製造方法における接着性基材として使用するのが特に好ましい。
 図7は、接着フィルムをカバーレイフィルムとして使用する一例を示す断面図である。接着フィルム10’は、Fフィルム12’と、Fフィルム12’の表面に設けられた熱硬化性接着剤層14’とを有する。Fフィルム12’の熱硬化性接着剤層14’側の表面はプラズマ処理されている。
 図8は、接着フィルムを層間絶縁フィルムとして使用する一例を示す断面図である。接着フィルム11’は、Fフィルム12’と、その両面に設けられた熱硬化性接着剤層14’とを有する。Fフィルム12’の熱硬化性接着剤層14’側の表面はプラズマ処理されている。
 図9は、接着フィルムをカバーレイフィルムとするカバーレイフィルム付き回路基板の一例を示す断面図である。カバーレイフィルム付き回路基板1’は、絶縁層20’と、その両面に設けられた導体回路22’と、導体回路22’の表面及び絶縁層20’の表面に接する硬化後の接着フィルム10’である接着フィルム10’’とを有する。接着フィルム10’’では、接着フィルム10’の熱硬化性接着剤層14’が熱硬化して形成された接着層14’’が導体回路22’の表面及び導体回路22’が設けられた部分以外の絶縁層20’の表面に接している。
 図10は、接着フィルムをカバーレイフィルムとするカバーレイフィルム付き回路基板の他の例を示す断面図である。カバーレイフィルム付き回路基板2’は、2つの絶縁層20’と、その両面に設けられた導体回路22’と、両面が導体回路22’の表面及び絶縁層20’の表面に接する接着層24’ ’と、導体回路22’の表面及び絶縁層20’の表面に接する接着フィルム10’’とを有する。
 図11は、接着フィルムをカバーレイフィルムとするカバーレイフィルム付き回路基板の他の例を示す断面図である。カバーレイフィルム付き回路基板3’は、2つの絶縁層20’と、その片面に設けられた導体回路22’と、片方の表面が下側の導体回路22’の表面及び絶縁層20’の表面に接し、他方の表面が上側の絶縁層20’に接する接着層24’ ’と、上側の導体回路22’の表面及び絶縁層20’の表面に接する接着フィルム10’’とを有する。
 図12は、接着フィルムをカバーレイフィルム及び層間絶縁フィルムとするカバーレイフィルム付き多層回路基板の一例を示す断面図である。カバーレイフィルム付き多層回路基板4’は、2つの絶縁層20’と、その各両面に設けられた導体回路22’と、両面が導体回路22’の表面及び絶縁層20’の表面に接する硬化後の接着フィルム11’である接着フィルム11’’と、導体回路22’の表面及び絶縁層20’の表面に接する接着フィルム10’’を有する。
 接着フィルム10’’では、接着フィルム10’の熱硬化性接着剤層14’が熱硬化して形成された接着層14’’が導体回路22’の表面及び導体回路22が設けられた部分以外の絶縁層20’の表面に接している。
 接着フィルム11’’ の両面では、接着フィルム11の両面の熱硬化性接着剤層14が熱硬化して形成された接着層14’’が導体回路22’の表面及び絶縁層20’のそれぞれの表面に接している。
 図13は、接着フィルムをカバーレイフィルム及び層間絶縁フィルムとするカバーレイフィルム付き多層回路基板の他の例を示す断面図である。カバーレイフィルム付き回路基板5は、2つの絶縁層20’と、その各片面に設けられた導体回路22’と、一方の表面が下側の導体回路22’の表面及び絶縁層20’の表面に接し、他方の表面が上側の絶縁層20’に接する接着フィルム11’’と、上側の導体回路22’の表面及び絶縁層20’の表面に接する接着フィルム10’’とを有する。
 図14は、図9の回路基板を製造する様子を示す断面図である。
 回路基板30’は、絶縁層20’と、その両面に設けられた導体回路22’とを有する。回路基板30’の両面の絶縁層20’の表面はプラズマ処理されている。下から順に、接着フィルム10’、回路基板30’、接着フィルム10’を、回路基板30’のプラズマ処理面に熱硬化性接着剤層14’が接するように積み重ねた後、これらを熱圧着する。
 図15は、図10の回路基板を製造する様子を示す断面図である。
 下から順に、接着フィルム10’、回路基板30’、接着剤シート24’、回路基板30’、接着フィルム10’を、回路基板30’のプラズマ処理面に熱硬化性接着剤層14’が接するように積み重ねた後、これらを熱圧着する。
 図16は、図11の回路基板を製造する様子を示す断面図である。
 回路基板32’は、絶縁層20’と、その片面に設けられた導体回路22とを有する。回路基板32’の絶縁層20’の導体回路22’が設けられた側の表面は、プラズマ処理されている。下から順に、回路基板32’、接着剤シート24’、回路基板32’、接着フィルム10’を、回路基板32’のプラズマ処理面に熱硬化性接着剤層14’が接するように積み重ねた後、これらを熱圧着する。
 図17は、図12の回路基板を製造する様子を示す断面図である。
 下から順に、接着フィルム10’、回路基板30’、接着フィルム11’、回路基板30’、接着フィルム10’を、回路基板30’のプラズマ処理面に熱硬化性接着剤層14’が接するように積み重ねた後、これらを熱圧着する。
 図18は、図13の回路基板を製造する様子を示す断面図である。
 下から順に、回路基板32’、接着フィルム11’、回路基板32’、接着フィルム10’を、回路基板32’のプラズマ処理面に熱硬化性接着剤層14’が接するように積み重ねた後、これらを熱圧着する。
 なお、回路基板30’及び32’としては、上述した本発明の製造方法における元の回路基板の導体回路側の表面を少なくともプラズマ処理して得られる、プラズマ処理面を有する回路基板であるのが好ましい。
 以上説明したように、本発明の接着フィルムは、カバーレイフィルム、層間絶縁フィルム等として、電気特性に優れた、高周波数用途においても伝送損失を低減でき、また比較的低温使用(260℃未満)が可能なフィルムである。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定して解釈されない。なお、実施例などで使用した材料と、物性及び評価方法は、以下の通りである。
 (ポリマーの融点)
 示差走査熱量計(セイコーインスツル社製、DSC-7020)を用い、ポリマーを10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点とした。
 (ポリマーの溶融流れ速度)
 メルトインデクサー(テクノセブン社製)を用い、372℃、49N荷重下で、直径2mm、長さ8mmのノズルから10分間に流出するポリマーの質量(g)を測定して溶融流れ速度とした。
 (ぬれ張力)
 プラズマ処理後のポリマー層の露出面のぬれ張力は、ぬれ張力試験用混合液(和光純薬工業社製)を用い、JIS K 6768:1999にしたがって求めた。
 (剥離強度)
 対象物(フィルム又は処理回路基板)を長さ150mm、幅10mmに切り出し、評価サンプルを作製した。評価サンプルの長さ方向の一端から50mmの位置までポリマー層と接着層との間を剥離した。引張試験機を用いて引張速度50mm/分で90°となるように剥離し、測定距離20mmから80mmの平均荷重を剥離強度(N/cm)とした。
 <TFE系ポリマー>
 ポリマーF1:国際公開第2016/104297号の段落[0111]~[0113]の記載にしたがって製造したポリマー(各単位の割合(モル比):TFE単位/NAH単位/PPVE単位=97.9/0.1/2.0、接着性基の含有量:ポリマーの主鎖炭素数1×10個に対し1000個、融点:305℃、溶融流れ速度:11.0g/10分、フッ素含有量:75質量%。)。
 ポリマーF2:市販のPFA(各単位の割合(モル比):TFE単位/PPVE単位=98.0/2.0、融点:310℃、溶融流れ速度:11.0g/10分、フッ素含有量:75質量%)。
 <フィルムF1>
 フィルムF1:750mm巾のコートハンガーダイを有する65mmφ単軸押出機を用い、ダイ温度340℃でポリマーF1をフィルム状に押出成形して得られるフィルム(厚さ12μm)。
 <フィルムF2>
 フィルムF2:750mm巾のコートハンガーダイを有する65mmφ単軸押出機を用い、ダイ温度340℃でポリマーF2をフィルム状に押出成形して得られるフィルム(厚さ12μm)。
 <ポリイミドフィルム>
 フィルムPI:東レ・デュポン社製のカプトン(商品名)100EN (厚さ:25μm)。
 <銅箔>
 銅箔:電解銅箔(福田金属箔粉工業社製、CF-T4X-SV-12、厚さ:12μm、表面の算術平均粗さ(RzJIS):1.1μm)。
 <熱硬化性接着剤シート>
 接着剤シート1:ニッカン工業社製のNIKAFLEX(商品名)SAFG(厚さ:25μm)。
 接着剤シート11:アクリロニトリルブタジエン変性エポキシ樹脂、水酸化アルミニウム、アクリルゴム、アミノトリアジンノボラック樹脂(硬化剤)及びイミダゾール(硬化促進剤)を含む、接着剤シート(厚さ:15μm)。
 [例1]接着層付フィルムの製造例及び評価例
 [例1-1]
 ガス圧力20Paの二酸化炭素ガス雰囲気下、110kHzの高周波電圧を電極間に印加し、放電電力300W、60秒間の条件でフィルムF1の片面をプラズマ処理した。フィルムF1のプラズマ処理面のぬれ張力は、50mN/mであった。
 フィルムF1のプラズマ処理面に接着剤シート1を重ねて積層し、熱硬化性の接着層付きフィルムAd1を得た。真空プレスによって、フィルムAd1をプレス処理(温度160℃、圧力4MPa、時間90分)し、処理後のフィルムAd1における、フィルムF1と硬化後の接着層との界面の剥離強度を測定した結果、8N/cmであった。
 [例1-2]~[例1-7]
 フィルムの種類とプラズマ処理条件を変更する以外は、例1-1と同様にして、熱硬化性の接着層付きフィルムAd2~Ad7をそれぞれ得た。
 それぞれの接着層付きフィルムの製造条件と、ぬれ張力と、剥離強度とを、まとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、例1-3(比較例)では、プラズマ処理後のフィルムF1と接着剤シート1を重ね、プレス処理条件を温度280℃、圧力4MPa、時間30分としてプレス処理した場合、その界面の剥離強度は0.2N/cm未満であった。これは、プレス処理における温度が280℃であり、接着層が熱分解したためと思われる。
 [例2]処理回路基板の製造例及び評価例(その1)
 [例2-1]
 銅箔、フィルムF1、フィルムPI、フィルムF1、銅箔の順に積み重ね、真空下、320℃、30分間の条件にて、熱プレスして金属張積層板を得た。
 金属張積層板の片面をマスキングし、エッチング液(サンハヤト社製、H-1000A、塩化第二鉄水溶液)に浸漬し、片面の銅箔を完全に除去した。
 つぎに、ガス圧力20Paの二酸化炭素ガス雰囲気下で110kHzの高周波電圧を電極間に印加し、放電電力300W、60秒間の条件で、フィルムF1層の露出面をプラズマ処理して、プラズマ処理面を有する回路基板1を得た。プラズマ処理面のフィルムF1層の露出面のぬれ張力は、50mN/mであった。
 2枚の回路基板1をそれぞれのプラズマ処理面が対向するように配置し、その間に接着剤シート1を差し入れて重ね、熱プレス処理(温度160℃、圧力4MPa、熱圧着90分間)して熱圧着し、2枚の回路基板1が接着剤シート1の硬化物を介して接着された処理回路基板1を得た。フィルムF1と硬化後の接着層との界面の剥離強度を測定した結果、8N/cmであった。
 [例2-2]~[例2-7]
 フィルムの種類とプラズマ処理条件を変更する以外は、例1-1と同様にして、処理回路基板2~4をそれぞれ得た。
 それぞれの処理回路基板の製造条件と、フィルム層のぬれ張力と、剥離強度とを、まとめて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、例2-3(比較例)では、2枚の回路基板1をそれぞれのプラズマ処理面が対向するように配置し、その間に接着剤シート1を差し入れて重ね、熱プレス処理条件を温度280℃、圧力4MPa、時間30分としてプレス処理した場合、その界面の剥離強度は0.2N/cm未満であった。プレス処理における温度が280℃であり、接着層が熱分解したためと思われる。
 なお、例2においては、TFE系ポリマー層の表面に導体回路を設けずに評価したが、TFE系ポリマー層の表面に導体回路を設けた場合でも、同様の結果が得られる。
 [例3]処理回路基板の製造例及び評価例(その2)
 銅箔、フィルムF1、フィルムPI、フィルムF1、銅箔の順に積み重ね、真空下、320℃、30分間の条件にて、熱プレスして金属張積層板を得た。
 金属張積層板の片面をマスキングし、エッチング液(サンハヤト社製、H-1000A、塩化第二鉄水溶液)に浸漬し、片面の銅箔から導体回路を形成する。
 ガス圧力20Paの二酸化炭素ガス雰囲気下で110kHzの高周波電圧を電極間に印加し、放電電力300W、60秒間の条件で、導体回路側(フィルムF1層の露出面)をプラズマ処理して、プラズマ処理面を有する回路基板11を得る。
 2枚の回路基板11の、それぞれのプラズマ処理面が対向するように配置し、その間に接着剤シート11を差し入れて重ね、真空プレスによって、熱プレス処理(温度160℃、圧力4MPa、熱圧着90分間)して熱圧着し、2枚の回路基板11が接着剤シート11の硬化物を介して接着された処理回路基板11を得た。フィルムF1と硬化後の接着層との界面の剥離強度を測定した結果、9N/cmである。
 なお、アクリロニトリルブタジエン変性エポキシ樹脂にかえて、ブタジエン変性エポキシ樹脂ゴム、スチレン系エラストマー変性エポキシ樹脂、ウレタン変性エポキシ樹脂又はアクリル変性エポキシ樹脂を使用した場合でも、同様の結果が得られる。
 本発明の製造方法により得られる処理回路基板は、多層回路基板、カバーレイフィルム付き回路基板等として、小型化、高機能化が要求される電子機器、電気機器の回路基板として有用である。本発明の接着性フィルムは、多層回路基板、カバーレイフィルム付き回路基板等の製造に使用される、カバーレイフィルム、層間絶縁フィルム等として有用である。
 なお、2017年12月19日に出願された日本特許出願2017-243191号及び2018年1月18日に出願された日本特許出願2018-006324号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1、2、3:多層回路基板、10:耐熱性基材層、12:F層、14:導体回路、16、16A、16B:接着層、18:カバーレイ層、20、30:回路基板、22:接着剤層付きカバーレイフィルム、24:接着剤シート、26:接着剤層、1’、2’、3’:カバーレイフィルム付き回路基板、4’5’:カバーレイフィルム付き多層回路基板、10’、11’:接着フィルム、10’’、11’’:硬化後の接着フィルム、12’:Fフィルム、14’:熱硬化性接着剤層、14’’:熱硬化性接着剤層、20’:絶縁層、22’:導体回路、24’:接着剤シート、30’、32’:回路基板

Claims (15)

  1.  テトラフルオロエチレン系ポリマーを含むポリマー層と前記ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、該回路基板のプラズマ処理面と接着剤層を有する基板の接着剤層とを260℃未満で熱圧着させて処理回路基板を製造することを特徴とする、処理回路基板の製造方法。
  2.  前記処理回路基板における熱圧着面の剥離強度が5N/cm以上である、請求項1に記載の製造方法。
  3.  前記接着剤層を有する基板が接着剤層付きカバーレイフィルムであり、前記処理回路基板がカバーレイフィルム付き回路基板であるか、又は前記接着剤層を有する基板が接着剤シートであり前記処理回路基板が接着層付き回路基板である、請求項1又は2に記載の製造方法。
  4.  前記プラズマ処理によって、前記プラズマ処理面を有する回路基板の前記ポリマー層の露出面のぬれ張力を30mN/m以上とする、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有する、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記テトラフルオロエチレン系ポリマーの融点が260℃以上である、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記接着剤層が、ゴム変性エポキシ樹脂及び硬化剤を含む熱硬化性接着剤層である、請求項1~6のいずれか1項に記載の製造方法。
  8.  前記接着剤層を有する基板が、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で、前記回路基板のプラズマ処理面と前記接着剤層を有する基板の接着剤層とを熱圧着させたときに、前記処理回路基板における熱圧着面の剥離強度が5N/cm以上となる基板である、請求項1~7のいずれか1項に記載の製造方法。
  9.  テトラフルオロエチレン系ポリマーを含むポリマー層と該ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、複数の前記プラズマ処理面を有する回路基板のプラズマ処理面をそれぞれ対向させ、それぞれのプラズマ処理面の間に接着剤シートを配置して、260℃未満で熱圧着させて複数層の導体回路を有する多層回路基板を製造することを特徴とする、多層回路基板の製造方法。
  10.  テトラフルオロエチレン系ポリマーを含むポリマー層と前記ポリマー層の表面に設けられた導体回路とを有する回路基板の導体回路側の表面をプラズマ処理してプラズマ処理面を有する回路基板を得て、次いで、該回路基板のプラズマ処理面と接着剤層付きカバーレイフィルムの接着剤層とを260℃未満で熱圧着させてカバーレイフィルム付き回路基板を製造することを特徴とする、カバーレイフィルム付き回路基板の製造方法。
  11.  テトラフルオロエチレン系ポリマーのフィルムと熱硬化性接着剤層がこの順に積層され、プレス温度160℃、プレス圧力4MPa、プレス時間90分間の条件で前記熱硬化性接着剤層を硬化させたときに、前記フィルムと硬化後の前記熱硬化性接着剤層との界面の剥離強度が5N/cm以上であることを特徴とする、接着剤層付きフィルム。
  12.  前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有する、請求項11に記載の接着剤層付きフィルム。
  13.  前記テトラフルオロエチレン系ポリマーの融点が、260℃以上である、請求項11又は12に記載の接着剤層付きフィルム。
  14.  前記熱硬化性接着剤層が、ゴム変性エポキシ樹脂及び硬化剤を含む熱硬化性接着剤層である、請求項11~13のいずれか1項に記載の接着剤層付きフィルム。
  15.  カバーレイフィルム又は層間絶縁フィルムである、請求項11~14のいずれか1項に記載の接着剤層付きフィルム。
PCT/JP2018/046166 2017-12-19 2018-12-14 処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム WO2019124268A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561053A JPWO2019124268A1 (ja) 2017-12-19 2018-12-14 処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム
CN201880081369.6A CN111492723B (zh) 2017-12-19 2018-12-14 处理电路基板、多层电路基板及带覆层膜的电路基板的制造方法、以及带粘接剂层的膜
KR1020207006411A KR102587268B1 (ko) 2017-12-19 2018-12-14 처리 회로 기판, 다층 회로 기판 및 커버레이 필름이 형성된 회로 기판의 제조 방법, 그리고 접착제층이 형성된 필름

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017243191 2017-12-19
JP2017-243191 2017-12-19
JP2018006324 2018-01-18
JP2018-006324 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019124268A1 true WO2019124268A1 (ja) 2019-06-27

Family

ID=66994094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046166 WO2019124268A1 (ja) 2017-12-19 2018-12-14 処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム

Country Status (5)

Country Link
JP (1) JPWO2019124268A1 (ja)
KR (1) KR102587268B1 (ja)
CN (1) CN111492723B (ja)
TW (1) TWI806943B (ja)
WO (1) WO2019124268A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301222B1 (ko) * 2020-11-27 2021-09-09 박현배 대기압 플라즈마를 이용한 인쇄회로기판의 제조방법
CN115254792B (zh) * 2022-07-26 2023-05-30 江苏富乐华功率半导体研究院有限公司 一种电子陶瓷浆料流延用pet膜带清洗方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815235B2 (ja) * 1986-06-14 1996-02-14 松下電工株式会社 多層プリント配線板
JP2817947B2 (ja) * 1989-05-11 1998-10-30 ジャパンゴアテックス株式会社 多層印刷回路基板用接着シート
JP2000022334A (ja) * 1998-06-26 2000-01-21 Ibiden Co Ltd 多層プリント配線板およびその製造方法
JP2004155911A (ja) * 2002-11-06 2004-06-03 Kanegafuchi Chem Ind Co Ltd 熱可塑ポリイミド樹脂、樹脂組成物、絶縁接着シートおよびプリント配線基板
JP2006202889A (ja) * 2005-01-19 2006-08-03 Fujikura Ltd リジッドフレックス多層プリント配線板の製造方法
JP2007157965A (ja) * 2005-12-05 2007-06-21 Junkosha Co Ltd 弗素樹脂積層基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014406B2 (ja) 2012-08-01 2016-10-25 東レ・デュポン株式会社 高周波回路基板用カバーレイの取り付け方法及びそのカバーレイ
JP6235787B2 (ja) 2013-03-29 2017-11-22 東レ・デュポン株式会社 高周波回路基板用カバーレイ
JP5893596B2 (ja) 2013-10-01 2016-03-23 株式会社クラレ 接着性熱可塑性液晶ポリマーフィルム、多層回路基板およびその製造方法
TWI691576B (zh) * 2013-11-29 2020-04-21 日商Agc股份有限公司 接著薄膜及撓性金屬積層板
JP6507607B2 (ja) 2013-12-10 2019-05-08 Agc株式会社 カバーレイ用接着フィルム、カバーレイ、配線板、及び電子機器の製造方法
JP6388483B2 (ja) 2014-03-13 2018-09-12 東レ・デュポン株式会社 高周波回路基板用カバーレイ及びフレキシブルフラットケーブル用基材
JP6639775B2 (ja) * 2014-10-21 2020-02-05 住友電工プリントサーキット株式会社 樹脂フィルム、プリント配線板用カバーレイ、プリント配線板用基板及びプリント配線板
WO2016104297A1 (ja) * 2014-12-26 2016-06-30 旭硝子株式会社 積層板およびフレキシブルプリント基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815235B2 (ja) * 1986-06-14 1996-02-14 松下電工株式会社 多層プリント配線板
JP2817947B2 (ja) * 1989-05-11 1998-10-30 ジャパンゴアテックス株式会社 多層印刷回路基板用接着シート
JP2000022334A (ja) * 1998-06-26 2000-01-21 Ibiden Co Ltd 多層プリント配線板およびその製造方法
JP2004155911A (ja) * 2002-11-06 2004-06-03 Kanegafuchi Chem Ind Co Ltd 熱可塑ポリイミド樹脂、樹脂組成物、絶縁接着シートおよびプリント配線基板
JP2006202889A (ja) * 2005-01-19 2006-08-03 Fujikura Ltd リジッドフレックス多層プリント配線板の製造方法
JP2007157965A (ja) * 2005-12-05 2007-06-21 Junkosha Co Ltd 弗素樹脂積層基板

Also Published As

Publication number Publication date
KR20200100592A (ko) 2020-08-26
TW201934710A (zh) 2019-09-01
CN111492723A (zh) 2020-08-04
TWI806943B (zh) 2023-07-01
KR102587268B1 (ko) 2023-10-10
CN111492723B (zh) 2023-04-14
JPWO2019124268A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6816722B2 (ja) 配線基板の製造方法
TWI766021B (zh) 氟樹脂膜及積層體以及熱壓積層體之製造方法
JP6819579B2 (ja) プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
JP6461532B2 (ja) フッ素樹脂基材の製造方法及びプリント配線板の製造方法
US10729018B2 (en) Process for producing laminate and process for producing printed board
JP6379038B2 (ja) キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法
TWI735477B (zh) 配線基板之製造方法、配線基板及天線
WO2007116793A1 (ja) 離型フィルム、離型性クッション材およびプリント基板の製造方法
WO2016021666A1 (ja) 高周波回路用に適した両面回路用基板
JP2015097257A (ja) フッ素樹脂基材、プリント配線板、及び回路モジュール
JP6275200B2 (ja) 高周波回路に適した両面回路用基板
WO2019124268A1 (ja) 処理回路基板、多層回路基板及びカバーレイフィルム付き回路基板の製造方法、並びに接着剤層付きフィルム
WO2016121397A1 (ja) アンテナ、およびアンテナを有する電子装置
WO2020059606A1 (ja) 積層体、プリント基板及びその製造方法
WO2021006258A1 (ja) 長尺フィルム、長尺フィルムの製造方法、長尺積層体の製造方法及び長尺積層体
JP2005324511A (ja) 積層体及びその製造方法
JP7482104B2 (ja) 積層体及び積層体の製造方法
WO2014171553A1 (ja) 金属張積層体
JP2007273615A (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019561053

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891893

Country of ref document: EP

Kind code of ref document: A1