WO2019124099A1 - 成膜装置 - Google Patents
成膜装置 Download PDFInfo
- Publication number
- WO2019124099A1 WO2019124099A1 PCT/JP2018/044925 JP2018044925W WO2019124099A1 WO 2019124099 A1 WO2019124099 A1 WO 2019124099A1 JP 2018044925 W JP2018044925 W JP 2018044925W WO 2019124099 A1 WO2019124099 A1 WO 2019124099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supply pipe
- chamber
- film forming
- carrier gas
- gas
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims abstract description 132
- 239000012159 carrier gas Substances 0.000 claims abstract description 59
- 239000002994 raw material Substances 0.000 claims abstract description 39
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 11
- 239000003607 modifier Substances 0.000 claims description 51
- 238000000151 deposition Methods 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- FBSNEJXXSJHKHX-UHFFFAOYSA-N CC1=C(C(C=C1)([Pt]C)C)C Chemical compound CC1=C(C(C=C1)([Pt]C)C)C FBSNEJXXSJHKHX-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4587—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45534—Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45546—Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45548—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67313—Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67754—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
Definitions
- the present invention relates to a film forming apparatus.
- Patent Document 1 discloses a film forming method and a film forming apparatus by atomic layer deposition.
- a Zr source gas dispersion nozzle for supplying the source gas into the processing container is provided to face the exhaust port.
- the source gas easily flows toward the exhaust port, and the time for which the source gas stays in the processing container is short. Due to the short residence time, the time for which the source gas is retained on the workpiece to be subjected to the film forming process is also short, and the proportion of the source gas exhausted without being deposited on the workpiece surface is large. Therefore, there is a problem that the waste of the source gas is large and the film forming time is long. In addition, there is also a problem that film formation can not be uniformly performed on a workpiece.
- the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a film forming apparatus capable of uniformly forming a film on a work in a short film forming time.
- the film forming apparatus of the present invention is a film forming apparatus by atomic layer deposition, and the film forming apparatus is a cylindrical chamber capable of holding the inside of a vacuum, and a work to be treated, the main work of the work Work holder which arranges and holds a plurality of stages so that the surface extends in the vertical direction, a film forming raw material supply pipe for supplying a film forming raw material into the chamber, and a modifier supply pipe for supplying a modifier to the chamber And a carrier gas supply pipe for supplying a carrier gas into the chamber, and an exhaust mechanism for exhausting the inside of the chamber, and the cross section obtained by cutting the chamber in a direction parallel to the main surface of the work
- the exhaust mechanism is located on the opposite side to the opening direction of the gas outlet of the film forming material supply pipe, the above-mentioned modifier supply pipe, and the above-mentioned carrier gas supply pipe, and the film forming material supply pipe, reforming Agent supply pipe and The total amount of the gas stream blown from Yariagas
- the film forming raw material supply pipe supplies a mixed gas of a film forming raw material and a carrier gas into the chamber
- the modifying agent supply pipe is a mixed gas of a modifier and a carrier gas. It is preferable to supply the carrier gas into the chamber at all times from the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe.
- the opening for the gas outlet of the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe in a cross section obtained by cutting the chamber in a direction parallel to the main surface of the work.
- the direction is upward, and the exhaust mechanism is positioned below the workpiece at a lower portion of the chamber.
- the opening area of the suction port of the exhaust mechanism is larger than the opening areas of the film forming raw material supply pipe, the modifier supply pipe, and the gas outlet of the carrier gas supply pipe. Is preferred.
- a flow straightening member for changing the direction of the gas flow blown out from the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe toward the exhaust mechanism is further provided. It is preferable to have.
- the present invention it is possible to provide a film forming apparatus capable of uniformly forming a film on a work in a short film forming time.
- FIG. 1 is a perspective view schematically showing a film forming apparatus according to an embodiment of the present invention.
- FIG. 2 is a perspective view schematically showing a state in which the chamber is opened in the film forming apparatus shown in FIG.
- FIG. 3 is a perspective view schematically showing an example of the work holder in a state where the work is held.
- FIG. 4 is a cross-sectional view of the film forming apparatus shown in FIG. 1, taken along line AA.
- FIG. 5 is a cross-sectional view schematically showing the positional relationship between the opening direction of the gas outlet of the gas supply pipe and the exhaust mechanism.
- the “horizontal direction” may not be the exact horizontal direction, and may be inclined, for example, by about ⁇ 10 ° with respect to the horizontal direction.
- the “vertical direction” may not be the exact vertical direction, and may be inclined by, for example, about ⁇ 10 ° with respect to the vertical direction.
- FIG. 1 is a perspective view schematically showing a film forming apparatus according to an embodiment of the present invention.
- FIG. 2 is a perspective view schematically showing a state in which the chamber is opened in the film forming apparatus shown in FIG.
- the film forming apparatus 1 shown in FIGS. 1 and 2 includes a chamber 10 capable of holding the inside of a vacuum, a work holder 20 for arranging work pieces W to be processed in multiple stages and holding the inside of the chamber 10, and heating the inside of the chamber 10. And a heater 15 for the purpose.
- the chamber 10 is formed of a horizontal cylindrical body. As shown in FIG. 1, the chamber 10 includes an inner chamber 11 in which a work holder 20 (see FIG. 2) is installed, and an outer chamber 12 accommodating the inner chamber 11. Although FIG. 1 and FIG. 2 show a double chamber structure comprising an inner chamber and an outer chamber, the chamber may be single in the film forming apparatus of the present invention.
- the film forming apparatus 1 is provided with a guide 13, and the chamber 10 can move in the horizontal direction on the guide 13 by driving by a motor (not shown). After moving these to a predetermined position, the chamber 10 is opened by stopping the driving.
- the chamber is horizontal and movable in the horizontal direction, a space for installing the work can be secured, so that the work can be easily attached and removed. Further, even when the number of workpieces is large, the size of the film forming apparatus can be reduced in the height direction, and therefore, it becomes difficult to be restricted by the environment in which the film forming apparatus is installed.
- the work holder 20 is placed in the open chamber.
- the work holder 20 can align and hold the work W in a plurality of stages such that the main surface of the work W to be processed is along the vertical direction.
- the plurality of workpieces are arranged such that the main surfaces face each other and are separated from each other.
- FIG. 2 shows a right side gas supply pipe group 30 provided on the right side of the work holder 20 and a left side gas supply pipe group 40 provided on the left side of the work holder 20. Further, an exhaust mechanism 50 provided below the work holder 20 is also shown.
- the right, left, and lower sides of the work holder are the work holder when the work holder 20, the right gas supply pipe group 30, the left gas supply pipe group 40, and the exhaust mechanism 50 are viewed in the direction shown in FIG. Position relationship with The right side gas supply pipe group 30, the left side gas supply pipe group 40, and the exhaust mechanism 50 will be described in detail later.
- FIG. 3 is a perspective view schematically showing an example of the work holder in a state where the work is held.
- the work holder 20 shown in FIG. 3 includes a pair of support plates 20a and 20b, and a plurality of columns 20c 1 , 20c 2 , 20c 3 and 20c 4 connected to the support plates 20a and 20b.
- a plurality of grooves 25 are respectively formed in the columns 20 c 1 , 20 c 2 , 20 c 3 and 20 c 4 , and the grooves 25 hold the work W.
- the workpiece W is held such that the main surface is along the vertical direction.
- post 20c 1 is detachable.
- the position at which the heater is provided is not particularly limited as long as the inside of the chamber can be heated, but the heater is preferably attached to the outer wall of the inner chamber and is detachably attached to the outer wall of the inner chamber. Is more preferred.
- the heater is preferably attached to the outer wall of the inner chamber and is detachably attached to the outer wall of the inner chamber. Is more preferred.
- FIG. 4 is a cross-sectional view of the film forming apparatus shown in FIG. 1, taken along line AA.
- the arrangement of the gas supply pipe for supplying gas into the chamber of the film forming apparatus and the arrangement of the exhaust mechanism for exhausting the inside of the chamber will be described with reference to FIG.
- the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe are referred to as “gas supply pipe” when they are described without distinction.
- a work holder 20 holding a work W is shown.
- the orientation of the main surface of the work is the same as the orientation of the surface of the paper in the present specification.
- the right side gas supply pipe group 30 is provided on the right side of the work holder 20, and the left side gas supply pipe group 40 is provided on the left side of the work holder 20.
- the right gas supply pipe group 30 and the left gas supply pipe group 40 each include four gas supply pipes.
- a gas supply pipe included in the right side gas supply pipe group 30 and the left side gas supply pipe group 40 three kinds of film forming raw material supply pipes, a modifier supply pipe, and a carrier gas supply pipe can be mentioned.
- the plurality of gas supply pipes (total eight in FIG. 4) included in the right side gas supply pipe group 30 and the left side gas supply pipe group 40 it is not limited what kind of pipes are provided. Although not preferred, it is preferable to have the most carrier gas supply pipes.
- the four gas supply pipes included in the right gas supply pipe group 30 are a combination of the film forming raw material supply pipe 31, the carrier gas supply pipe 32, the carrier gas supply pipe 33 and the carrier gas supply pipe 34. It is.
- the four gas supply pipes included in the left gas supply pipe group 40 are a combination of the modifier supply pipe 41, the carrier gas supply pipe 42, the carrier gas supply pipe 43, and the carrier gas supply pipe 44.
- the film-forming source supply pipe is a supply pipe for supplying a gas of a film-forming source, which is a precursor of a compound for film formation purpose, in film formation by the atomic layer deposition method.
- a gas of a film-forming source which is a precursor of a compound for film formation purpose, in film formation by the atomic layer deposition method.
- metal oxides such as alumina (Al 2 O 3 ) and silica (SiO 2 ); metal nitrides such as titanium nitride (TiN); metals such as platinum (Pt) can be formed. .
- TMA trimethylaluminum: Al (CH 3 ) 3
- SiH [N (CH 3 ) trisdimethylaminosilane
- TiCl 4 titanium tetrachloride
- MeCpPtMe 3 (trimethyl) methylcyclopentadienyl platinum) used to form platinum, and the like.
- a carrier gas is also supplied to the film forming raw material supply pipe together with the film forming raw material. It is preferable to prepare a mixed gas of a film forming raw material and a carrier gas outside the film forming apparatus and supply the mixed gas from the film forming raw material supply pipe into the chamber.
- the modifier supply pipe is a supply for supplying a gas serving as a modifier for reforming a precursor of a compound for film formation purpose to obtain a compound for film formation in film formation by atomic layer deposition. It is a tube.
- a gas as a modifier ozone, oxygen, water (steam), ammonia etc. are mentioned.
- alumina When alumina is deposited, alumina can be deposited on a work by using TMA as a precursor and ozone gas or water as a modifier.
- silica can be formed on a work by using trisdimethylaminosilane as a precursor and using an ozone gas as a modifier.
- titanium nitride When titanium nitride is deposited, titanium nitride can be deposited on a work by using titanium tetrachloride as a precursor and ammonia gas as a modifier.
- titanium tetrachloride When forming the platinum, MeCpPtMe 3 as a precursor, by using oxygen gas as a modifier, it is possible to form a platinum onto the workpiece.
- a carrier gas is also supplied to the modifier supply pipe together with the modifier.
- a mixed gas of a modifier and a carrier gas is prepared outside the film forming apparatus, and the mixed gas is supplied from the modifier supply pipe into the chamber.
- the carrier gas supply pipe is a film formed by an atomic layer deposition method, a purge gas after depositing a film forming material on a workpiece, and a reaction between a modifier and a film forming material to form a compound for film formation on the workpiece.
- a purge gas after deposition on the supply pipe for supplying a carrier gas.
- the carrier gas include inert gases such as nitrogen gas and argon gas. It is preferable to flow the same kind of carrier gas as the carrier gas supplied from the carrier gas supply pipe also to the film forming raw material supply pipe and the modifier supply pipe, and to always flow the carrier gas from the three types of gas supply pipes. preferable. By always flowing the carrier gas from the three types of gas supply pipes, clogging of the gas supply pipes by the film forming raw material or the modifier can be prevented.
- An example of the film forming step in the atomic layer deposition method will be described by using, as an example, the case of forming alumina on a work using TMA and ozone gas.
- a film forming raw material (TMA) is supplied from a film forming raw material supply pipe to form a film of TMA for one layer.
- TMA film forming raw material
- a modifier ozone gas
- a modifier is supplied from a modifier supply pipe and reacted with TMA to form an alumina film of one layer.
- the total amount of gas flow blown out from the deposition source supply pipe, the modifier supply pipe, and the carrier gas supply pipe is parallel to the vertical direction of the work It is arranged to be symmetrical with respect to the central line.
- the center line parallel to the vertical direction of the workpiece is a line (dotted line C in FIG. 4) which passes through the center of gravity G of the workpiece W in FIG. 4 and is parallel to the vertical direction of the workpiece.
- the vertical direction of the work is determined naturally if the film forming apparatus is installed.
- the total amount of gas flow blown out from the deposition source supply pipe, the modifier supply pipe, and the carrier gas supply pipe is determined by the size of the gas outlet provided in each gas supply pipe.
- the total amount of gas flow is symmetrical.
- the amount of gas flow blown out from each gas outlet is determined for each gas supply pipe, and the left side with respect to the center line parallel to the vertical direction of the work It is sufficient to add together the area of and the area on the right.
- the deposition source supply pipe, the modifier supply pipe, and the carrier gas supply pipe are all the same, the area on the left side and the right side with respect to the center line parallel to the vertical direction of the workpiece If the total number of the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe in the region is the same, the total amount of gas flow is symmetrical with respect to the center line parallel to the vertical direction of the workpiece.
- the work holder is a component of the film forming apparatus of the present invention, and the shape of the work held by the work holder is determined from the shape of the work holder. That is, a workpiece having a shape assumed to be held by the workpiece holder, which is determined from the shape of the workpiece holder, is taken as a "workpiece” for obtaining the "center line parallel to the vertical direction of the workpiece".
- the center of gravity of the work is determined from the shape of the “work of the shape assumed to be held by the work holder, which is determined from the shape of the work holder”, and the center line parallel to the vertical direction of the work passing through the center of gravity of the work You can draw Therefore, even in the film forming apparatus in a state where the work is not held, it is possible to set the "center line parallel to the vertical direction of the work” defined in the present invention. That is, it is possible to determine whether the constituent requirements of the film forming apparatus of the present invention are satisfied even for the film forming apparatus in a state in which the workpiece is not held. Further, also in the case of defining the “main surface of the work” defined in the present invention, the main surface of “a work of a shape assumed to be held by the work holder which is determined from the shape of the work holder” is similarly considered. Can be determined.
- FIG. 4 shows an example in which the film forming raw material supply pipe 31 is provided in the right side gas supply pipe group 30, and the modifier supply pipe 41 is provided in the left side gas supply pipe group 40.
- Both the tube group and the left gas supply pipe group are provided with the film forming raw material supply pipe and the modifier supply pipe, and the right gas supply pipe group and the left gas supply pipe group have the same kind and number of gas supply pipes. It is preferable that the configuration is such that the symmetry of the gas flow is further enhanced.
- the right side gas supply pipe group and the left side gas supply pipe group each have a combination of one film forming raw material supply pipe, one modifier supply pipe, and two carrier gas supply pipes. It can be mentioned.
- FIG. 5 is a cross-sectional view schematically showing the positional relationship between the opening direction of the gas outlet of the gas supply pipe and the exhaust mechanism.
- the opening direction of the gas outlet is upward.
- the direction of gas flow from the gas supply pipes included in the right side gas supply pipe group 30 and the left side gas supply pipe group 40 is indicated by an arrow.
- the opposite side of the gas blowout opening direction is a hatched area B located below the gas supply pipe in FIG.
- the exhaust mechanism 50 is located somewhere in this area B, the exhaust mechanism is opposite to the opening direction of the gas outlet of the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe. It can be said that it is located on the side.
- the exhaust mechanism be below the work holder when the opening direction of the gas outlet is upward.
- the exhaust mechanism be above the work holder.
- the exhaust mechanism is preferably a pipe provided with a plurality of intake ports, and is connected to an exhaust device such as a vacuum pump at the connection destination of the pipe (outside of the chamber) so that the inside of the chamber can be exhausted. ing.
- the exhaust mechanism is a pipe provided with a plurality of intake ports
- the opening area of the intake port is larger than the opening area of each of the film forming raw material supply pipe, the modifier supply pipe, and the gas blowout port of the carrier gas supply pipe. It is preferable to be large. If the opening area of the intake port is large, clogging of the intake port and the exhaust mechanism can be prevented even if the film forming raw material and the modifier adhere to the intake port and the vicinity thereof.
- the direction of the air intake is not particularly limited, and the air intake may be upward, sideways, or downward.
- FIG. 4 the directions of the gas flow blown out from the gas outlet of the gas supply pipe are schematically shown by dotted arrows (reference signs F R and F L in FIG. 4). Since the opening direction of the gas outlet of the gas supply pipe included in the right side gas supply pipe group 30 and the left side gas supply pipe group 40 shown in FIG. 4 is upward, the gas is the inner wall of the chamber (in FIG. It flows toward the top of the chamber along 11a).
- the film forming apparatus further includes a flow straightening member for changing the direction of the gas flow blown out from the film forming raw material supply pipe, the modifier supply pipe, and the carrier gas supply pipe toward the exhaust mechanism. Is preferred.
- FIG. 4 shows the flow straightening member 60 and also shows how the direction of the gas flow that has collided with the flow straightening member 60 changes.
- the rectifying member is a member having a T-shaped cross section, and can change the direction of gas flow from the top of the chamber to the bottom of the chamber.
- a work holder 20 is located below the flow straightening member 60, and a work W is held by the work holder 20. Then, the exhaust mechanism 50 is located below the work holder 20. Therefore, when the direction of the gas flow is changed downward by the flow straightening member 60, the gas stagnates on the work W and is thereafter exhausted from the exhaust mechanism 50.
- the inner wall of the chamber is preferably lapped.
- the film forming material is less likely to adhere to the inner wall of the chamber. Further, even if the film forming material adheres to the inner wall of the chamber, it becomes easy to peel off.
- the inner wall of the chamber means the inner wall of the inner chamber in the case where the chamber comprises a double chamber of an inner chamber and an outer chamber.
- the film forming apparatus of the present invention is not limited to the above embodiment.
- the configuration and the like of the film forming apparatus can be variously applied and modified within the scope of the present invention.
- the inner chamber and the outer chamber be movable independently in the horizontal direction.
- the inner and outer chambers may move together in the horizontal direction, or only the inner chamber may move in the horizontal direction.
- the film forming apparatus of the present invention is not limited to the double chamber structure as described above, but may be a single chamber structure. Also, a triple or more chamber structure may be employed. In any case, the chamber is preferably movable horizontally.
- the chamber in addition to being movable in the horizontal direction, it is more preferable that the chamber be capable of rotating in the horizontal direction. If the chamber can be pivoted in the horizontal direction, the direction of the chamber can be changed to an easy-to-work position, which facilitates maintenance work.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本発明の成膜装置は、原子層堆積法による成膜装置であって、上記成膜装置は、内部を真空保持可能な筒状体のチャンバーと、処理対象であるワークを、上記ワークの主面が鉛直方向に沿うように複数段に並べて保持するワークホルダーと、成膜原料を上記チャンバー内に供給する成膜原料供給管と、改質剤を上記チャンバー内に供給する改質剤供給管と、キャリアガスを上記チャンバー内に供給するキャリアガス供給管と、上記チャンバー内を排気する排気機構と、を備えており、上記チャンバーを、ワークの主面と平行方向に切断した断面において、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管のガス吹き出し口の開口方向に対して、排気機構は反対側に位置しており、かつ、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量が、ワークの鉛直方向に平行な中心線に対して対称となることを特徴とする。
Description
本発明は、成膜装置に関する。
半導体ウエハ等の被処理基板上に酸化膜を成膜する装置として、原子層堆積(ALD)法による成膜装置が知られている。
特許文献1には、原子層堆積法による成膜方法及び成膜装置が開示されている。
特許文献1には、原子層堆積法による成膜方法及び成膜装置が開示されている。
特許文献1に記載の成膜装置では、処理容器内に原料ガスを供給するZrソースガス分散ノズルが排気口と対向させて設けられている。このような構成であると原料ガスは排気口に向かって流れやすく、原料ガスが処理容器内に滞留する時間が短い。この滞留時間の短さに起因して、成膜処理対象であるワーク上に原料ガスが滞留する時間も短く、ワーク面に着膜せずに排気される原料ガスの割合が大きい。
そのため、原料ガスの無駄が多く、また、成膜時間が長くなるという問題があった。
また、ワークに対して均一に成膜ができないという問題もあった。
そのため、原料ガスの無駄が多く、また、成膜時間が長くなるという問題があった。
また、ワークに対して均一に成膜ができないという問題もあった。
本発明は上記の問題を解決するためになされたものであり、短い成膜時間でワークに対して均一に成膜を行うことのできる成膜装置を提供することを目的とする。
本発明の成膜装置は、原子層堆積法による成膜装置であって、上記成膜装置は、内部を真空保持可能な筒状体のチャンバーと、処理対象であるワークを、上記ワークの主面が鉛直方向に沿うように複数段に並べて保持するワークホルダーと、成膜原料を上記チャンバー内に供給する成膜原料供給管と、改質剤を上記チャンバー内に供給する改質剤供給管と、キャリアガスを上記チャンバー内に供給するキャリアガス供給管と、上記チャンバー内を排気する排気機構と、を備えており、上記チャンバーを、ワークの主面と平行方向に切断した断面において、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管のガス吹き出し口の開口方向に対して、排気機構は反対側に位置しており、かつ、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量が、ワークの鉛直方向に平行な中心線に対して対称となることを特徴とする。
本発明の成膜装置において、上記成膜原料供給管は、成膜原料とキャリアガスの混合ガスを上記チャンバー内に供給し、上記改質剤供給管は、改質剤とキャリアガスの混合ガスを上記チャンバー内に供給し、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管の全てからキャリアガスを上記チャンバー内に常時供給することが好ましい。
本発明の成膜装置において、上記チャンバーを、ワークの主面と平行方向に切断した断面において、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管のガス吹き出し口の開口方向が上向きであり、上記排気機構は上記チャンバーの下部で上記ワークに対して下に位置していることが好ましい。
本発明の成膜装置において、上記排気機構の吸気口の開口面積が、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管のガス吹き出し口のそれぞれの開口面積よりも大きいことが好ましい。
本発明の成膜装置において、上記成膜原料供給管、上記改質剤供給管及び上記キャリアガス供給管から吹き出されるガス流の向きを、上記排気機構に向かう向きに変更する整流部材をさらに備えることが好ましい。
本発明によれば、短い成膜時間でワークに対して均一に成膜を行うことのできる成膜装置を提供することができる。
以下、本発明の成膜装置について説明する。
しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
本明細書において、「水平方向」とは、厳密な水平方向でなくてもよく、例えば、水平方向に対して±10°程度傾いていてもよい。同様に、「鉛直方向」とは、厳密な鉛直方向でなくてもよく、例えば、鉛直方向に対して±10°程度傾いていてもよい。
図1は、本発明の一実施形態に係る成膜装置を模式的に示す斜視図である。図2は、図1に示す成膜装置において、チャンバーを開放した状態を模式的に示す斜視図である。
図1及び図2に示す成膜装置1は、内部を真空保持可能なチャンバー10と、処理対象であるワークWを複数段に並べてチャンバー10内に保持するワークホルダー20と、チャンバー10内を加熱するためのヒーター15と、を備えている。
成膜装置1において、チャンバー10は、横型の筒状体からなる。図1に示すように、チャンバー10は、内部にワークホルダー20(図2参照)が設置される内チャンバー11と、内チャンバー11を収容する外チャンバー12と、を備えている。
図1及び図2には内チャンバーと外チャンバーからなる2重チャンバー構造を示しているが、本発明の成膜装置においてチャンバーは1重であってもよい。
図1及び図2には内チャンバーと外チャンバーからなる2重チャンバー構造を示しているが、本発明の成膜装置においてチャンバーは1重であってもよい。
成膜装置1にはガイド13が設けられており、チャンバー10は、ガイド13上をモーター(図示せず)による駆動にて水平方向に移動することが可能である。これらを所定の位置まで移動させた後、駆動を停止することで、チャンバー10が開放される。
このように、チャンバーが横型であり、かつ、水平方向に移動可能であると、ワークを設置するスペースを確保することができるため、ワークの着脱が容易になる。また、ワークの数量が多い場合であっても、成膜装置のサイズを高さ方向に抑えることができるため、成膜装置を設置する環境の制限を受けにくくなる。
図2に示すように、開放した状態のチャンバー内にワークホルダー20が設置される。
ワークホルダー20は、処理対象であるワークWの主面が鉛直方向に沿うようにワークWを複数段に並べて保持することができる。この場合、複数のワークは、主面同士が対向し、かつ、互いに離間するように配置される。
ワークの主面が鉛直方向に沿うようにワークを置いて成膜を行うことにより、ワークの主面に不純物となるパーティクルが残りにくくなる。また、ワークを鉛直方向に積み重ねる場合と比べて、チャンバーの上部からワークが落下する危険性がないため、安全に作業することができる。
ワークホルダー20は、処理対象であるワークWの主面が鉛直方向に沿うようにワークWを複数段に並べて保持することができる。この場合、複数のワークは、主面同士が対向し、かつ、互いに離間するように配置される。
ワークの主面が鉛直方向に沿うようにワークを置いて成膜を行うことにより、ワークの主面に不純物となるパーティクルが残りにくくなる。また、ワークを鉛直方向に積み重ねる場合と比べて、チャンバーの上部からワークが落下する危険性がないため、安全に作業することができる。
また、図2には、ワークホルダー20の右側に設けられる右側ガス供給管群30及びワークホルダー20の左側に設けられる左側ガス供給管群40を示している。
また、ワークホルダー20の下側に設けられる排気機構50も示している。
なお、ワークホルダーの右側、左側、下側は、後述する図4に示す向きでワークホルダー20、右側ガス供給管群30、左側ガス供給管群40及び排気機構50を見た場合の、ワークホルダーに対する位置関係である。
右側ガス供給管群30、左側ガス供給管群40及び排気機構50については後で詳細に説明する。
また、ワークホルダー20の下側に設けられる排気機構50も示している。
なお、ワークホルダーの右側、左側、下側は、後述する図4に示す向きでワークホルダー20、右側ガス供給管群30、左側ガス供給管群40及び排気機構50を見た場合の、ワークホルダーに対する位置関係である。
右側ガス供給管群30、左側ガス供給管群40及び排気機構50については後で詳細に説明する。
図3は、ワークが保持された状態のワークホルダーの一例を模式的に示す斜視図である。
図3に示すワークホルダー20は、一対の支え板20a及び20bと、支え板20a及び20bに連結された複数の支柱20c1、20c2、20c3及び20c4と、を備える。支柱20c1、20c2、20c3及び20c4には複数の溝25がそれぞれ形成されており、溝25によりワークWが保持されるように構成されている。ワークWは、主面が鉛直方向に沿うように保持される。なお、支柱20c1は着脱可能である。
図3に示すワークホルダー20は、一対の支え板20a及び20bと、支え板20a及び20bに連結された複数の支柱20c1、20c2、20c3及び20c4と、を備える。支柱20c1、20c2、20c3及び20c4には複数の溝25がそれぞれ形成されており、溝25によりワークWが保持されるように構成されている。ワークWは、主面が鉛直方向に沿うように保持される。なお、支柱20c1は着脱可能である。
チャンバー内を加熱することができる限り、ヒーターが設けられる位置は特に限定されないが、ヒーターは、内チャンバーの外壁に取り付けられていることが好ましく、内チャンバーの外壁に着脱可能に取り付けられていることがより好ましい。
内チャンバーの外壁にヒーターを取り付けることにより、内チャンバー内が安定した温度となるため、成膜を均一化することができる。特に、ヒーターが着脱可能である場合には、メンテナンスが容易になる。
内チャンバーの外壁にヒーターを取り付けることにより、内チャンバー内が安定した温度となるため、成膜を均一化することができる。特に、ヒーターが着脱可能である場合には、メンテナンスが容易になる。
図4は、図1に示す成膜装置のA-A線断面図である。
図4を参照して、成膜装置のチャンバー内にガスを供給するガス供給管の配置と、チャンバー内を排気する排気機構の配置について説明する。
なお、本明細書において、成膜原料供給管、改質剤供給管及びキャリアガス供給管を区別せずに説明する場合「ガス供給管」という。
図4を参照して、成膜装置のチャンバー内にガスを供給するガス供給管の配置と、チャンバー内を排気する排気機構の配置について説明する。
なお、本明細書において、成膜原料供給管、改質剤供給管及びキャリアガス供給管を区別せずに説明する場合「ガス供給管」という。
図4の中央にはワークWを保持しているワークホルダー20が示されている。ワークの主面の向きは本明細書の紙面の面の向きと同じである。
ワークホルダー20の右側には右側ガス供給管群30が設けられており、ワークホルダー20の左側には左側ガス供給管群40が設けられている。
右側ガス供給管群30及び左側ガス供給管群40にはそれぞれに4本のガス供給管が含まれている。なお、ワークホルダーの左右に位置するガス供給管の本数は同じであることが好ましい。
ワークホルダー20の右側には右側ガス供給管群30が設けられており、ワークホルダー20の左側には左側ガス供給管群40が設けられている。
右側ガス供給管群30及び左側ガス供給管群40にはそれぞれに4本のガス供給管が含まれている。なお、ワークホルダーの左右に位置するガス供給管の本数は同じであることが好ましい。
右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管としては、成膜原料供給管、改質剤供給管、キャリアガス供給管の3種類が挙げられる。
右側ガス供給管群30及び左側ガス供給管群40に含まれる複数本のガス供給管(図4においては計8本)のうち、どの種類の管がそれぞれ何本あるかは限定されるものではないが、キャリアガス供給管が最も多くあることが好ましい。
右側ガス供給管群30及び左側ガス供給管群40に含まれる複数本のガス供給管(図4においては計8本)のうち、どの種類の管がそれぞれ何本あるかは限定されるものではないが、キャリアガス供給管が最も多くあることが好ましい。
図4に示す例では、右側ガス供給管群30に含まれる4本のガス供給管が、成膜原料供給管31、キャリアガス供給管32、キャリアガス供給管33、キャリアガス供給管34の組み合わせである。また、左側ガス供給管群40に含まれる4本のガス供給管が、改質剤供給管41、キャリアガス供給管42、キャリアガス供給管43、キャリアガス供給管44の組み合わせである。
成膜原料供給管は、原子層堆積法による成膜において、成膜目的の化合物の前駆体である成膜原料のガスを供給するための供給管である。
ALD法により、例えば、アルミナ(Al2O3)、シリカ(SiO2)等の金属酸化物;窒化チタン(TiN)等の金属窒化物;白金(Pt)等の金属を成膜することができる。
成膜原料としては、例えば、アルミナを成膜するために用いられるTMA(トリメチルアルミニウム:Al(CH3)3)、シリカを成膜するために用いられるトリスジメチルアミノシラン(SiH[N(CH3)2]3)、窒化チタンを成膜するために用いられる四塩化チタン(TiCl4)、白金を成膜するために用いられるMeCpPtMe3((トリメチル)メチルシクロペンタジエニル白金)等が挙げられる。
成膜原料供給管には、成膜原料とともにキャリアガスも供給される。
成膜装置の外で成膜原料とキャリアガスの混合ガスを調製して、混合ガスを成膜原料供給管からチャンバー内に供給することが好ましい。
ALD法により、例えば、アルミナ(Al2O3)、シリカ(SiO2)等の金属酸化物;窒化チタン(TiN)等の金属窒化物;白金(Pt)等の金属を成膜することができる。
成膜原料としては、例えば、アルミナを成膜するために用いられるTMA(トリメチルアルミニウム:Al(CH3)3)、シリカを成膜するために用いられるトリスジメチルアミノシラン(SiH[N(CH3)2]3)、窒化チタンを成膜するために用いられる四塩化チタン(TiCl4)、白金を成膜するために用いられるMeCpPtMe3((トリメチル)メチルシクロペンタジエニル白金)等が挙げられる。
成膜原料供給管には、成膜原料とともにキャリアガスも供給される。
成膜装置の外で成膜原料とキャリアガスの混合ガスを調製して、混合ガスを成膜原料供給管からチャンバー内に供給することが好ましい。
改質剤供給管は、原子層堆積法による成膜において、成膜目的の化合物の前駆体を改質して成膜目的の化合物とするための改質剤となるガスを供給するための供給管である。
改質剤としてのガスとしては、オゾン、酸素、水(水蒸気)、アンモニア等が挙げられる。
アルミナを成膜する場合、TMAを前駆体として、オゾンガスや水を改質剤として使用することによって、アルミナをワーク上に成膜することができる。
シリカを成膜する場合、トリスジメチルアミノシランを前駆体として、オゾンガスを改質剤として使用することによって、シリカをワーク上に成膜することができる。
窒化チタンを成膜する場合、四塩化チタンを前駆体として、アンモニアガスを改質剤として使用することによって、窒化チタンをワーク上に成膜することができる。
白金を成膜する場合、MeCpPtMe3を前駆体として、酸素ガスを改質剤として使用することによって、白金をワーク上に成膜することができる。
改質剤供給管には、改質剤とともにキャリアガスも供給される。
成膜装置の外で改質剤とキャリアガスの混合ガスを調製して、混合ガスを改質剤供給管からチャンバー内に供給することが好ましい。
改質剤としてのガスとしては、オゾン、酸素、水(水蒸気)、アンモニア等が挙げられる。
アルミナを成膜する場合、TMAを前駆体として、オゾンガスや水を改質剤として使用することによって、アルミナをワーク上に成膜することができる。
シリカを成膜する場合、トリスジメチルアミノシランを前駆体として、オゾンガスを改質剤として使用することによって、シリカをワーク上に成膜することができる。
窒化チタンを成膜する場合、四塩化チタンを前駆体として、アンモニアガスを改質剤として使用することによって、窒化チタンをワーク上に成膜することができる。
白金を成膜する場合、MeCpPtMe3を前駆体として、酸素ガスを改質剤として使用することによって、白金をワーク上に成膜することができる。
改質剤供給管には、改質剤とともにキャリアガスも供給される。
成膜装置の外で改質剤とキャリアガスの混合ガスを調製して、混合ガスを改質剤供給管からチャンバー内に供給することが好ましい。
キャリアガス供給管は、原子層堆積法による成膜において、成膜原料をワーク上に堆積させた後のパージガス、及び、改質剤と成膜原料を反応させて成膜目的の化合物をワーク上に堆積させた後のパージガスとして、キャリアガスを供給するための供給管である。
キャリアガスとしては、窒素ガス、アルゴンガス等の不活性ガスが挙げられる。
成膜原料供給管及び改質剤供給管にも、キャリアガス供給管から供給されるキャリアガスと同じ種類のキャリアガスを流すことが好ましく、3種類のガス供給管からキャリアガスを常時流すことが好ましい。
3種類のガス供給管からキャリアガスを常時流すことによってガス供給管の成膜原料又は改質剤による詰まりを防止することができる。
キャリアガスとしては、窒素ガス、アルゴンガス等の不活性ガスが挙げられる。
成膜原料供給管及び改質剤供給管にも、キャリアガス供給管から供給されるキャリアガスと同じ種類のキャリアガスを流すことが好ましく、3種類のガス供給管からキャリアガスを常時流すことが好ましい。
3種類のガス供給管からキャリアガスを常時流すことによってガス供給管の成膜原料又は改質剤による詰まりを防止することができる。
原子層堆積法における成膜工程の例について、TMAとオゾンガスを使用してワークにアルミナを成膜する場合を例にして説明する。
まず、ワークホルダーにワークをセットし、チャンバー内を真空にする。そして以下の工程(1)~(4)を繰り返して行うことにより1レイヤーずつ成膜を行う。
(1)成膜原料供給管から成膜原料(TMA)を供給して、1レイヤー分のTMAを成膜する。
(2)チャンバー内をキャリアガスによりパージして、チャンバー内にTMAが残らないようにする。
(3)改質剤供給管から改質剤(オゾンガス)を供給してTMAと反応させて1レイヤー分のアルミナ膜を成膜する。
(4)チャンバー内をキャリアガスによりパージして、チャンバー内にオゾンガスが残らないようにする。
まず、ワークホルダーにワークをセットし、チャンバー内を真空にする。そして以下の工程(1)~(4)を繰り返して行うことにより1レイヤーずつ成膜を行う。
(1)成膜原料供給管から成膜原料(TMA)を供給して、1レイヤー分のTMAを成膜する。
(2)チャンバー内をキャリアガスによりパージして、チャンバー内にTMAが残らないようにする。
(3)改質剤供給管から改質剤(オゾンガス)を供給してTMAと反応させて1レイヤー分のアルミナ膜を成膜する。
(4)チャンバー内をキャリアガスによりパージして、チャンバー内にオゾンガスが残らないようにする。
成膜原料供給管、改質剤供給管及びキャリアガス供給管は、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量が、ワークの鉛直方向に平行な中心線に対して対称となるように配置されている。
ワークの鉛直方向に平行な中心線は、図4においてワークWの重心Gを通り、ワークの鉛直方向に平行な線として示される線(図4中の点線C)である。ワークの鉛直方向は成膜装置が設置されれば自ずと定まる。
成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量は、各ガス供給管に設けられたガス吹き出し口の大きさによって定まる。同じ大きさのガス吹き出し口がワークの鉛直方向に平行な中心線に対して対称に同じ数設けられていれば、ガス流の総量が対称であるといえる。
また、ガス吹き出し口の大きさがガス供給管により異なる場合は、各ガス吹き出し口から吹き出されるガス流の量をガス供給管ごとに求め、ワークの鉛直方向に平行な中心線に対して左側の領域と右側の領域で足し合わせればよい。
成膜原料供給管、改質剤供給管及びキャリアガス供給管に設けられるガス吹き出し口の大きさが全て同じである場合、ワークの鉛直方向に平行な中心線に対して左側の領域と右側の領域における成膜原料供給管、改質剤供給管及びキャリアガス供給管の合計本数が同じであれば、ガス流の総量はワークの鉛直方向に平行な中心線に対して対称となる。
ワークの鉛直方向に平行な中心線は、図4においてワークWの重心Gを通り、ワークの鉛直方向に平行な線として示される線(図4中の点線C)である。ワークの鉛直方向は成膜装置が設置されれば自ずと定まる。
成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量は、各ガス供給管に設けられたガス吹き出し口の大きさによって定まる。同じ大きさのガス吹き出し口がワークの鉛直方向に平行な中心線に対して対称に同じ数設けられていれば、ガス流の総量が対称であるといえる。
また、ガス吹き出し口の大きさがガス供給管により異なる場合は、各ガス吹き出し口から吹き出されるガス流の量をガス供給管ごとに求め、ワークの鉛直方向に平行な中心線に対して左側の領域と右側の領域で足し合わせればよい。
成膜原料供給管、改質剤供給管及びキャリアガス供給管に設けられるガス吹き出し口の大きさが全て同じである場合、ワークの鉛直方向に平行な中心線に対して左側の領域と右側の領域における成膜原料供給管、改質剤供給管及びキャリアガス供給管の合計本数が同じであれば、ガス流の総量はワークの鉛直方向に平行な中心線に対して対称となる。
ガス流の総量がワークの鉛直方向に平行な中心線に対して対称になるようにすることにより、ワークに対するガスの当たり方のムラがなくなり、ワークに対して均一な成膜をすることができる。
なお、ワークWは本発明の成膜装置を構成する構成要件ではないが、成膜装置内にワークが保持されていない状態でも、本発明で規定する「ワークの鉛直方向に平行な中心線」を定めることは可能であるので、以下にその考え方を説明する。
ワークホルダーは本発明の成膜装置を構成する構成要件であり、ワークホルダーの形状から、ワークホルダーにより保持されるワークの形状が定まる。
すなわち、ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワークを、「ワークの鉛直方向に平行な中心線」を求めるための「ワーク」とする。
この「ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワーク」の形状から、ワークの重心を求めて、ワークの重心を通りワークの鉛直方向に平行な中心線を引くことができる。
そのため、ワークが保持されていない状態の成膜装置においても、本発明で規定する「ワークの鉛直方向に平行な中心線」を定めることは可能である。すなわち、ワークが保持されていない状態の成膜装置に対しても、本発明の成膜装置としての構成要件を満たすかどうかを判断することは可能である。
また、本発明で規定する「ワークの主面」を定める場合についても、同様に「ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワーク」の主面を考えて定めることができる。
ワークホルダーは本発明の成膜装置を構成する構成要件であり、ワークホルダーの形状から、ワークホルダーにより保持されるワークの形状が定まる。
すなわち、ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワークを、「ワークの鉛直方向に平行な中心線」を求めるための「ワーク」とする。
この「ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワーク」の形状から、ワークの重心を求めて、ワークの重心を通りワークの鉛直方向に平行な中心線を引くことができる。
そのため、ワークが保持されていない状態の成膜装置においても、本発明で規定する「ワークの鉛直方向に平行な中心線」を定めることは可能である。すなわち、ワークが保持されていない状態の成膜装置に対しても、本発明の成膜装置としての構成要件を満たすかどうかを判断することは可能である。
また、本発明で規定する「ワークの主面」を定める場合についても、同様に「ワークホルダーの形状から定められる、ワークホルダーに保持されることが想定される形状のワーク」の主面を考えて定めることができる。
また、図4には、右側ガス供給管群30に成膜原料供給管31が、左側ガス供給管群40に改質剤供給管41が設けられている例を示しているが、右側ガス供給管群と左側ガス供給管群にともに成膜原料供給管及び改質剤供給管が設けられ、右側ガス供給管群と左側ガス供給管群が備えるガス供給管の種類及びそれぞれの本数が全く同じになるような構成であると、ガスの流れの対称性がより高まるので好ましい。
具体的には、右側ガス供給管群及び左側ガス供給管群が、それぞれ成膜原料供給管が1本、改質剤供給管が1本、キャリアガス供給管が2本の組み合わせである例が挙げられる。
具体的には、右側ガス供給管群及び左側ガス供給管群が、それぞれ成膜原料供給管が1本、改質剤供給管が1本、キャリアガス供給管が2本の組み合わせである例が挙げられる。
成膜装置にはチャンバー内を排気する排気機構が設けられている。
排気機構は、成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口の開口方向に対して、反対側に位置している。
図5は、ガス供給管のガス吹き出し口の開口方向と排気機構の位置関係を模式的に示す断面図である。
図5に示す、右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管において、ガス吹き出し口の開口方向は上方向である。図5には、右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管からのガス吹き出し方向を矢印で示している。
この場合、「ガス吹き出し口の開口方向の反対側」は、図5において、ガス供給管よりも下に位置している、ハッチングを付した領域Bである。
そして、排気機構50がこの領域Bのどこかに位置している場合に、排気機構は成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口の開口方向に対して反対側に位置しているといえる。
排気機構は、成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口の開口方向に対して、反対側に位置している。
図5は、ガス供給管のガス吹き出し口の開口方向と排気機構の位置関係を模式的に示す断面図である。
図5に示す、右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管において、ガス吹き出し口の開口方向は上方向である。図5には、右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管からのガス吹き出し方向を矢印で示している。
この場合、「ガス吹き出し口の開口方向の反対側」は、図5において、ガス供給管よりも下に位置している、ハッチングを付した領域Bである。
そして、排気機構50がこの領域Bのどこかに位置している場合に、排気機構は成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口の開口方向に対して反対側に位置しているといえる。
また、排気機構とワークホルダーとの位置関係は、ガス吹き出し口の開口方向が上方向である場合、ワークホルダーに対して排気機構が下にあることが好ましい。
一方、ガス吹き出し口の開口方向が下方向である場合にはワークホルダーに対して排気機構が上にあることが好ましい。
このような配置であるとガス吹き出し口から吹き出された原料ガス(成膜原料及び改質剤)がワークホルダーに保持されたワーク上に滞留したのちに排気機構に到達するので、ワーク面に着膜する原料ガスの割合が多くなる。その結果、原料ガスの無駄を減らすことができ、成膜時間を短くすることができる。
一方、ガス吹き出し口の開口方向が下方向である場合にはワークホルダーに対して排気機構が上にあることが好ましい。
このような配置であるとガス吹き出し口から吹き出された原料ガス(成膜原料及び改質剤)がワークホルダーに保持されたワーク上に滞留したのちに排気機構に到達するので、ワーク面に着膜する原料ガスの割合が多くなる。その結果、原料ガスの無駄を減らすことができ、成膜時間を短くすることができる。
排気機構は、吸気口が複数設けられた管であることが好ましく、管の接続先(チャンバーの外)で真空ポンプ等の排気装置に接続されて、チャンバー内を排気することができるようになっている。
排気機構が、吸気口が複数設けられた管である場合、吸気口の開口面積は、成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口のそれぞれの開口面積よりも大きいことが好ましい。
吸気口の開口面積が大きいと、成膜原料や改質剤が吸気口及びその近傍に付着したとしても吸気口や排気機構の詰まりを防止することができる。
また、吸気口の向きは特に限定されるものではなく、吸気口は上向き、横向き、下向きのいずれであってもよい。
排気機構が、吸気口が複数設けられた管である場合、吸気口の開口面積は、成膜原料供給管、改質剤供給管及びキャリアガス供給管のガス吹き出し口のそれぞれの開口面積よりも大きいことが好ましい。
吸気口の開口面積が大きいと、成膜原料や改質剤が吸気口及びその近傍に付着したとしても吸気口や排気機構の詰まりを防止することができる。
また、吸気口の向きは特に限定されるものではなく、吸気口は上向き、横向き、下向きのいずれであってもよい。
図4には、ガス供給管のガス吹き出し口から吹き出されたガス流の向きを点線の矢印(図4における参照符号FR及びFL)で模式的に示している。図4に示す右側ガス供給管群30及び左側ガス供給管群40に含まれるガス供給管のガス吹き出し口の開口方向は上向きであるので、ガスはチャンバーの内壁(図4では内チャンバー11の内壁11a)に沿うようにしてチャンバーの上部に向けて流れる。
チャンバーの上部に到達したガスは、ワーク上に滞留させ、その後に排気機構に向かうようにするのが好ましいので、チャンバーの上部からワーク及び排気機構に向かうようにガスが流れるように、ガス流の向きを変えることが好ましい。
そのため、成膜装置には、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の向きを、排気機構に向かう向きに変更する整流部材をさらに備えるようにすることが好ましい。
そのため、成膜装置には、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の向きを、排気機構に向かう向きに変更する整流部材をさらに備えるようにすることが好ましい。
図4には、整流部材60を示すとともに、整流部材60に衝突したガス流の向きが変わる様子を示している。整流部材は断面T字状の部材であり、チャンバーの上部からチャンバーの下部に向かうようにガス流の向きを変更することができる。
整流部材60の下にはワークホルダー20が位置しており、ワークホルダー20にはワークWが保持されている。そして、ワークホルダー20に対して排気機構50が下に位置している。そのため、整流部材60によりガス流の向きが下向きに変更されると、ガスはワークW上に滞留し、そののちに排気機構50から排出されることとなる。
整流部材60の下にはワークホルダー20が位置しており、ワークホルダー20にはワークWが保持されている。そして、ワークホルダー20に対して排気機構50が下に位置している。そのため、整流部材60によりガス流の向きが下向きに変更されると、ガスはワークW上に滞留し、そののちに排気機構50から排出されることとなる。
また、チャンバーの内壁は、ラップ加工がされていることが好ましい。チャンバーの内壁がラップ加工されていると、成膜原料がチャンバーの内壁に付着しにくくなる。また、成膜原料がチャンバーの内壁に付着しても剥がしやすくなる。
なお、チャンバーの内壁とは、チャンバーが内チャンバーと外チャンバーの2重チャンバーからなる構成の場合、内チャンバーの内壁を意味する。
なお、チャンバーの内壁とは、チャンバーが内チャンバーと外チャンバーの2重チャンバーからなる構成の場合、内チャンバーの内壁を意味する。
本発明の成膜装置は、上記実施形態に限定されるものではなく、例えば、成膜装置の構成等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
本発明の成膜装置が2重のチャンバー構造を有する場合、内チャンバー及び外チャンバーは、それぞれ独立して水平方向に移動可能であることが好ましい。例えば、内チャンバー及び外チャンバーが一体となって水平方向に移動してもよいし、内チャンバーのみが水平方向に移動してもよい。
本発明の成膜装置は、上述したとおり、2重のチャンバー構造に限定されず、1重のチャンバー構造であってもよい。また、3重以上のチャンバー構造であってもよい。いずれの場合であっても、チャンバーは、水平方向に移動可能であることが好ましい。
本発明の成膜装置において、チャンバーは、水平方向に移動可能であることに加えて、水平方向に旋回可能であることがより好ましい。
チャンバーが水平方向に旋回可能であると、チャンバーの向きを作業しやすい位置に変えることができるため、メンテナンス作業が容易になる。
チャンバーが水平方向に旋回可能であると、チャンバーの向きを作業しやすい位置に変えることができるため、メンテナンス作業が容易になる。
1 成膜装置
10 チャンバー
11 内チャンバー
11a 内チャンバーの内壁
12 外チャンバー
13 ガイド
15 ヒーター
20 ワークホルダー
20a、20b 支え板
20c1、20c2、20c3、20c4 支柱
25 溝
30 右側ガス供給管群
31 成膜原料供給管
32、33、34、42、43、44 キャリアガス供給管
40 左側ガス供給管群
41 改質剤供給管
50 排気機構
60 整流部材
W ワーク
B ガス吹き出し口の開口方向の反対側の領域
C ワークの鉛直方向に平行な中心線
G ワークの重心
FR、FL ガス流の向き
10 チャンバー
11 内チャンバー
11a 内チャンバーの内壁
12 外チャンバー
13 ガイド
15 ヒーター
20 ワークホルダー
20a、20b 支え板
20c1、20c2、20c3、20c4 支柱
25 溝
30 右側ガス供給管群
31 成膜原料供給管
32、33、34、42、43、44 キャリアガス供給管
40 左側ガス供給管群
41 改質剤供給管
50 排気機構
60 整流部材
W ワーク
B ガス吹き出し口の開口方向の反対側の領域
C ワークの鉛直方向に平行な中心線
G ワークの重心
FR、FL ガス流の向き
Claims (5)
- 原子層堆積法による成膜装置であって、
前記成膜装置は、
内部を真空保持可能な筒状体のチャンバーと、
処理対象であるワークを、前記ワークの主面が鉛直方向に沿うように複数段に並べて保持するワークホルダーと、
成膜原料を前記チャンバー内に供給する成膜原料供給管と、
改質剤を前記チャンバー内に供給する改質剤供給管と、
キャリアガスを前記チャンバー内に供給するキャリアガス供給管と、
前記チャンバー内を排気する排気機構と、を備えており、
前記チャンバーを、ワークの主面と平行方向に切断した断面において、
前記成膜原料供給管、前記改質剤供給管及び前記キャリアガス供給管のガス吹き出し口の開口方向に対して、排気機構は反対側に位置しており、かつ、成膜原料供給管、改質剤供給管及びキャリアガス供給管から吹き出されるガス流の総量が、ワークの鉛直方向に平行な中心線に対して対称となることを特徴とする、成膜装置。 - 前記成膜原料供給管は、成膜原料とキャリアガスの混合ガスを前記チャンバー内に供給し、
前記改質剤供給管は、改質剤とキャリアガスの混合ガスを前記チャンバー内に供給し、
前記成膜原料供給管、前記改質剤供給管及び前記キャリアガス供給管の全てからキャリアガスを前記チャンバー内に常時供給する請求項1に記載の成膜装置。 - 前記チャンバーを、ワークの主面と平行方向に切断した断面において、
前記成膜原料供給管、前記改質剤供給管及び前記キャリアガス供給管のガス吹き出し口の開口方向が上向きであり、
前記排気機構は前記チャンバーの下部で前記ワークに対して下に位置している請求項1又は2に記載の成膜装置。 - 前記排気機構の吸気口の開口面積が、前記成膜原料供給管、前記改質剤供給管及び前記キャリアガス供給管のガス吹き出し口のそれぞれの開口面積よりも大きい請求項1~3のいずれかに記載の成膜装置。
- 前記成膜原料供給管、前記改質剤供給管及び前記キャリアガス供給管から吹き出されるガス流の向きを、前記排気機構に向かう向きに変更する整流部材をさらに備える請求項1~4のいずれかに記載の成膜装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880077140.5A CN111465714B (zh) | 2017-12-22 | 2018-12-06 | 成膜装置 |
JP2019560956A JP6965942B2 (ja) | 2017-12-22 | 2018-12-06 | 成膜装置 |
US16/901,600 US11377731B2 (en) | 2017-12-22 | 2020-06-15 | Film-forming device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-246513 | 2017-12-22 | ||
JP2017246513 | 2017-12-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/901,600 Continuation US11377731B2 (en) | 2017-12-22 | 2020-06-15 | Film-forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124099A1 true WO2019124099A1 (ja) | 2019-06-27 |
Family
ID=66994802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/044925 WO2019124099A1 (ja) | 2017-12-22 | 2018-12-06 | 成膜装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11377731B2 (ja) |
JP (1) | JP6965942B2 (ja) |
CN (1) | CN111465714B (ja) |
WO (1) | WO2019124099A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2879036C (en) | 2014-01-27 | 2022-03-22 | Building Materials Investment Corporation | Roofing material |
CN111465714B (zh) * | 2017-12-22 | 2022-06-28 | 株式会社村田制作所 | 成膜装置 |
WO2019124098A1 (ja) | 2017-12-22 | 2019-06-27 | 株式会社村田製作所 | 成膜装置 |
MX2019009338A (es) | 2018-08-06 | 2020-02-07 | Building Mat Investment Corp | Sistema de ripia de techado y ripias para usarse en el mismo. |
CA215337S (en) | 2020-02-29 | 2023-01-11 | Bmic Llc | Shingle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228123A (ja) * | 1988-03-09 | 1989-09-12 | Fujitsu Ltd | 半導体装置用処理装置 |
JPH09148259A (ja) * | 1995-11-24 | 1997-06-06 | Nec Kyushu Ltd | 横型反応装置 |
JP2009529223A (ja) * | 2005-11-22 | 2009-08-13 | ジーナス インコーポレーテッド | 小体積対称流れシングルウェハald装置 |
JP2011523444A (ja) * | 2008-05-27 | 2011-08-11 | ピコサン オーワイ | 堆積反応炉のための方法および装置 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59107071A (ja) | 1982-12-12 | 1984-06-21 | Nitto Kohki Co Ltd | 被処理物の外表面にスパッタリング膜を形成する装置 |
JPS59217615A (ja) | 1983-05-23 | 1984-12-07 | Toshiba Corp | アモルフアスシリコン成膜装置 |
JP3279686B2 (ja) | 1992-10-30 | 2002-04-30 | 株式会社日立国際電気 | 半導体製造装置 |
JPH07230962A (ja) | 1994-02-16 | 1995-08-29 | Fuji Electric Co Ltd | 半導体製造装置 |
JPH0936044A (ja) | 1995-07-19 | 1997-02-07 | Hitachi Ltd | 半導体製造装置および半導体ウエハの処理方法 |
JPH09134913A (ja) | 1995-11-09 | 1997-05-20 | Tokyo Electron Ltd | 熱処理装置及びその方法 |
JP2004048068A (ja) | 2003-10-14 | 2004-02-12 | Seiko Epson Corp | 減圧cvd装置、および薄膜装置の製造方法 |
JP4426518B2 (ja) * | 2005-10-11 | 2010-03-03 | 東京エレクトロン株式会社 | 処理装置 |
US20080072821A1 (en) | 2006-07-21 | 2008-03-27 | Dalton Jeremic J | Small volume symmetric flow single wafer ald apparatus |
JP5221089B2 (ja) | 2007-09-19 | 2013-06-26 | 東京エレクトロン株式会社 | 成膜方法、成膜装置および記憶媒体 |
JP5476006B2 (ja) | 2009-02-13 | 2014-04-23 | 株式会社国際電気セミコンダクターサービス | 基板処理装置、基板処理装置の基板保持具の固定部及び半導体装置の製造方法 |
WO2012026241A1 (ja) * | 2010-08-26 | 2012-03-01 | 株式会社日立国際電気 | 半導体装置の製造方法、及び基板処理装置 |
JP6049395B2 (ja) * | 2011-12-09 | 2016-12-21 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
JP6068130B2 (ja) * | 2012-12-25 | 2017-01-25 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
JP2015069987A (ja) * | 2013-09-26 | 2015-04-13 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及び基板処理方法 |
JP6069578B2 (ja) | 2014-02-24 | 2017-02-01 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及び記録媒体 |
JP6284285B2 (ja) * | 2015-01-07 | 2018-02-28 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
CN106356289B (zh) * | 2015-07-17 | 2020-03-03 | 株式会社国际电气 | 气体供给喷嘴、衬底处理装置及半导体器件的制造方法 |
WO2017138185A1 (ja) * | 2016-02-10 | 2017-08-17 | 株式会社日立国際電気 | 基板処理装置、基板保持具及び載置具 |
JP6602332B2 (ja) * | 2017-03-28 | 2019-11-06 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
WO2019124098A1 (ja) * | 2017-12-22 | 2019-06-27 | 株式会社村田製作所 | 成膜装置 |
CN111465714B (zh) * | 2017-12-22 | 2022-06-28 | 株式会社村田制作所 | 成膜装置 |
JP6789257B2 (ja) * | 2018-02-28 | 2020-11-25 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
JP6980106B2 (ja) * | 2018-05-28 | 2021-12-15 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法 |
JP6980624B2 (ja) * | 2018-09-13 | 2021-12-15 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
-
2018
- 2018-12-06 CN CN201880077140.5A patent/CN111465714B/zh active Active
- 2018-12-06 JP JP2019560956A patent/JP6965942B2/ja active Active
- 2018-12-06 WO PCT/JP2018/044925 patent/WO2019124099A1/ja active Application Filing
-
2020
- 2020-06-15 US US16/901,600 patent/US11377731B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228123A (ja) * | 1988-03-09 | 1989-09-12 | Fujitsu Ltd | 半導体装置用処理装置 |
JPH09148259A (ja) * | 1995-11-24 | 1997-06-06 | Nec Kyushu Ltd | 横型反応装置 |
JP2009529223A (ja) * | 2005-11-22 | 2009-08-13 | ジーナス インコーポレーテッド | 小体積対称流れシングルウェハald装置 |
JP2011523444A (ja) * | 2008-05-27 | 2011-08-11 | ピコサン オーワイ | 堆積反応炉のための方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111465714A (zh) | 2020-07-28 |
US11377731B2 (en) | 2022-07-05 |
US20200308701A1 (en) | 2020-10-01 |
JP6965942B2 (ja) | 2021-11-10 |
JPWO2019124099A1 (ja) | 2020-09-10 |
CN111465714B (zh) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019124099A1 (ja) | 成膜装置 | |
US11377732B2 (en) | Reactant vaporizer and related systems and methods | |
CN101819920B (zh) | 衬底处理装置 | |
US20240209501A1 (en) | Reactant vaporizer and related systems and methods | |
CN100419971C (zh) | 衬底处理装置以及半导体器件的制造方法 | |
TWI564429B (zh) | 真空成膜裝置 | |
US20140342555A1 (en) | Deposition chambers with uv treatment and methods of use | |
KR101204614B1 (ko) | 가스 공급 장치, 성막 장치, 및 성막 방법 | |
TWI685913B (zh) | 半導體反應室之噴淋頭 | |
JP7184145B2 (ja) | 成膜装置 | |
JP5009167B2 (ja) | 平板内に設けられた予備室を有するガス分配装置 | |
US11274368B2 (en) | Apparatus for selective gas injection and extraction | |
JP2011171566A (ja) | Ald成膜装置、および半導体装置の製造方法 | |
JP2009516077A (ja) | Ald反応容器 | |
KR102210390B1 (ko) | 유동가능한 cvd를 위한 이중 원격 플라즈마 소스들의 통합 | |
WO2019124101A1 (ja) | 成膜装置 | |
JP2009004642A (ja) | 基板処理装置 | |
JP2006216597A (ja) | 基板処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892645 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019560956 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892645 Country of ref document: EP Kind code of ref document: A1 |