WO2019120879A1 - Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands - Google Patents

Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands Download PDF

Info

Publication number
WO2019120879A1
WO2019120879A1 PCT/EP2018/082347 EP2018082347W WO2019120879A1 WO 2019120879 A1 WO2019120879 A1 WO 2019120879A1 EP 2018082347 W EP2018082347 W EP 2018082347W WO 2019120879 A1 WO2019120879 A1 WO 2019120879A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
stick
article
omniphobic
Prior art date
Application number
PCT/EP2018/082347
Other languages
English (en)
French (fr)
Inventor
Frank JÖRDENS
Carmen MARSCHNER
Andreas Pfuch
Jürgen Salomon
Gerhard Schmidmayer
Tina TÖLKE
Original Assignee
BSH Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeräte GmbH filed Critical BSH Hausgeräte GmbH
Priority to US16/772,202 priority Critical patent/US20210071009A1/en
Priority to CN201880081308.XA priority patent/CN111465585A/zh
Priority to EP18807983.4A priority patent/EP3728156A1/de
Publication of WO2019120879A1 publication Critical patent/WO2019120879A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D13/00After-treatment of the enamelled articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/63Adding a layer before coating ceramic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant

Definitions

  • the present invention relates to an article having a high-temperature resistant omniphobic non-stick coating which is scratch-resistant and easy to clean, and a method of manufacturing the article.
  • Temperature resistant, scratch resistant nonstick coatings for glass or enamel substrates that are well known for parts of household appliances such as cooking appliances (including glass ceramic cooktops or internal components of, for example, ovens or microwaves) that are heated or come into contact with heated foods.
  • These coatings may e.g. be applied to the surface to be coated by a sol-gel method.
  • these layers may be omniphobic, i. have both hydrophobic and oleophobic properties to improve their cleanability against e.g. To improve food residues.
  • WO 99/02463 discloses temperature-resistant and scratch-resistant non-stick coatings applied by a one-step sol-gel process. According to WO 99/02463, the layers are temperature resistant up to> 500 ° C. Investigations have shown, however, that these layers are stable only up to a maximum of 300 ° C over a longer period of time, and at temperatures greater than 300 ° C within a short time an increase in the surface energy occurs. This, in turn, causes a deterioration of the cleanability of e.g. burnt food residues and leads to a pronounced staining tendency. Thus, the high temperature resistance of these layers is insufficient.
  • nanoclean coatings containing nanoparticles for improving the scratch resistance such as the “Nanoclean” coatings from the company PEMCO, known.
  • these nanoclean coatings are nanoparticle-modified sol-gel Layers in which, in embodiments, a deposition of an SiO x intermediate layer takes place via a preceding flame treatment and silanization. These layers are only up to max. 300 ° C heat resistant.
  • EP2281916 A1 and DE102009030876 A1 show two-stage coating processes of substrates, so that a silicon dioxide layer as adhesion promoter layer, which is applied via an atmospheric pressure process, and a further layer, which is applied by means of a wet-chemical process, are obtained.
  • these methods require the prior application of a primer to the substrate to ensure the desired adhesion.
  • the temperature resistance of these layers is insufficient.
  • the object of the present invention is to provide an article which is easy to clean, has a high scratch resistance and which has a high temperature resistance of e.g. greater than 350 ° C, and to provide a method of making this article.
  • the present invention relates to an article having a high temperature resistant omniphobic release coating comprising: an inorganic substrate, an amorphous silica-containing adhesive layer, and an omniphobic release layer.
  • the amorphous silica-containing primer layer is located between the substrate and the omniphobic non-stick coating. It is also preferred if the non-stick coating is applied directly to the primer layer.
  • the primer layer be applied directly to the substrate, i. that e.g. no primer is used.
  • the article is comprised of an inorganic substrate, an amorphous silica-containing primer layer, and an omniphobic release layer.
  • High temperature resistant in the sense of the present invention means a resistance to temperatures higher than 350 ° C, preferably higher than 380 ° C, and in embodiments up to 400 ° C, over a period of at least 24 hours, preferably 48 hours.
  • High-temperature resistance in the sense of the present invention also means that, after at least ten contamination cycles, there is a cleanability of the surface of a suitably temperature-treated sample of baked food residues, i. that the treated layer does not differ from the original layer.
  • Omniphobe means both hydrophobic and oleophobic, i. repellent to polar substances, e.g. Water, as well as non-polar substances, e.g. organic compounds.
  • the primer layer according to the invention comprises amorphous silicon dioxide.
  • the proportion of amorphous silica in the layer is 70-100% by weight, preferably 90-99% by weight, particularly preferably 95-98% by weight.
  • the primer layer itself is amorphous.
  • the adhesion promoter layer preferably consists of amorphous silicon dioxide.
  • crystalline components e.g. crystalline nanoparticles, including nanoparticles of crystalline silica.
  • amorphous silicon dioxide (SiO 2 ) in the primer layer is, surprisingly, associated with positive effects compared to SiO x -containing primer layers in which the silicon oxide contains organic residual groups.
  • SiO 2 amorphous silicon dioxide
  • the reason for this is that the chemical compatibility of the Si0 2 layer to the inorganic substrate is larger in comparison to SiO x layers.
  • the omniphobic release layer can be more strongly bonded to the substrate, which in turn increases the scratch resistance and high temperature resistance.
  • the substrate is not limited according to the invention, as long as the substrate is inorganic.
  • the substrate may be planar (such as baking trays or slices) or three-dimensional in shape (such as oven tubes).
  • the organic substrate comprises a material selected from the group comprising glass, enamel, metal, or ceramic. All types of glass are suitable as substrate, e.g. Borofloate, soda-lime, or quartz glass.
  • the inorganic substrate is enamel, e.g. an enamelled metal surface.
  • the substrate comprises hydroxyl groups on the surface. These can form covalent bonds with the amorphous silicon dioxide-containing adhesion promoter layer with elimination of water, which in turn results in excellent adhesion of the adhesion promoter layer to the substrate.
  • the primer layer can be applied by any conventional coating method, e.g. with liquid coating methods (such as spray or dipping method), if appropriate using solvents or dispersants, or with deposition methods from the gas phase.
  • the primer layer is a primer layer obtainable by a process in which the substrate is coated at atmospheric pressure and is selected from the group of CVD plasma processes or flame treatment processes. With suitable setting of the process parameters, an amorphous silicon dioxide-containing adhesion promoter layer can be produced, which forms a good adhesion to the substrate as well as to the omniphobic non-stick layer.
  • the equipment required by atmospheric pressure processes is much lower than in processes that take place in a vacuum.
  • the amorphous Si0 2 in embodiments may be formed reactively during the deposition process, eg, from precursor substances (ie, precursors). Suitable precursors are not limited according to the invention, as long as they are able to form Si0 2 in the deposition process.
  • the primer layer is formed using a siloxane and / or silane precursor, preferably HMDSO (hexamethyldisiloxane), TEOS (tetraethylorthosilicate), DMS (dimethylsilane) or combinations thereof.
  • HMDSO hexamethyldisiloxane
  • TEOS tetraethylorthosilicate
  • DMS dimethylsilane
  • Suitable process conditions for a CVD plasma process at atmospheric pressure are as follows:
  • the ignition of the plasma in a plasma nozzle takes place by means of an electrical discharge.
  • the discharge can be both an arc discharge and a disabled discharge.
  • the treatment of the substrate surface can take place in a relative movement of the nozzle to the substrate surface.
  • adjustment parameters are possible in embodiments: 50-200 W, preferably 80-120 W, electrical power;
  • Treatment width 1-20 mm, preferably 5-10 mm;
  • Nozzle distance to substrate surface 1-20 mm, preferably approx. 5-10 mm.
  • Compressed air (flow rate: 1-20 l / min, preferably 5-10 l / min) can be used as the carrier gas.
  • the process gas can be added at a flow rate of 1-50 ml / min, preferably 20-40 ml / min.
  • Suitable process conditions for an atmospheric pressure flame treatment method are e.g. as follows:
  • As the fuel gas e.g. Propane and / or butane used.
  • a mixture of air, fuel gas and precursor gas may e.g. ignited in a Schlitzbrennerdüse and the substrate surface are traversed with the colorless area of the flame.
  • the "fuel gas: air" ratio may be e.g. 10 l / min: 5,000 l / min, preferably 50 l / min: 1,000 l / min.
  • the travel speed in embodiments is 1-10 cm / s, preferably about 4-6 cm / s.
  • the precursor gas flow in embodiments is 1-20 ml / min, preferably 5-15 ml / min.
  • the distance to the substrate surface is e.g. 10-100 mm, preferably 20-50 mm.
  • the layer thickness of the adhesion promoter layer is not critical.
  • the adhesion promoter layer has a layer thickness in the range of less than 500 nm, preferably 1-300 nm, more preferably 5-100 nm, more preferably 10-50 nm.
  • Such layer thicknesses allow a particularly good adhesion, so that the high temperature resistance is particularly good is guaranteed. This can be clarified by the fact that this low layer thickness enables a good mechanical connection of the non-stick layer to the substrate.
  • transparent coatings can be obtained which are preferred according to the invention.
  • the release layer is not limited as long as it has omniphobic properties. Omniphobic release coatings are known in the art. In particular, the commercially available "Nanoclean" coatings of the company. PEMCO can be used.
  • the non-stick layer is preferably applied wet-chemically and then dried, wherein the application preferably takes place via a spraying, dipping, flooding, abrading or spinning process.
  • the non-stick layer preferably comprises a silicon compound.
  • a particularly good adhesion to the adhesion promoter layer and to the substrate is the formation of covalent bonds possible, which in turn results in improved scratch resistance and high temperature resistance.
  • the release layer is an organic-modified network deposited via a sol-gel process.
  • an omniphobic non-stick coating can be produced which has a particularly good cleanability, scratch resistance and adhesion to the substrate.
  • the non-stick layer contains nanoparticles, which further increases the scratch resistance.
  • an alcoholic solution of a mixture of tetraethylorthosilicate and methyltriethoxysilane (or their homologues), which are acidic or basic activatable, can be used for the sol-gel process.
  • the non-stick layer preferably comprises fluorine-containing compounds, in particular preferably fluorine-containing silanes and / or siloxanes, such as e.g. 1 H, 1 H, 2H, 2H-perfluorooctyltriethoxysilane or its homologs.
  • fluorine-containing compounds in particular preferably fluorine-containing silanes and / or siloxanes, such as e.g. 1 H, 1 H, 2H, 2H-perfluorooctyltriethoxysilane or its homologs.
  • the layer thickness of the non-stick layer is not restricted according to the invention.
  • the non-stick layer has a layer thickness in the range of less than 100 nm, preferably 2-50 nm, more preferably 5-20 nm, more preferably 10-15 nm. This allows a particularly good high-temperature resistance. Furthermore, transparent coatings can thereby be obtained, which are preferred according to the invention.
  • the total layer thickness i. the sum of the adhesion promoter layer and anti-adhesion layer, 1-600 nm, preferably 10-500 nm, more preferably 20-400 nm.
  • the non-stick layer is omniphobic, and in particular exhibits a contact angle to a polar substance such as water of 90 ° or more and / or a contact angle to non-polar substances such as methylene iodide, ethylene glycol, thiodiglycol or diiodomethane of 70 ° or more.
  • a polar substance such as water of 90 ° or more
  • non-polar substances such as methylene iodide, ethylene glycol, thiodiglycol or diiodomethane of 70 ° or more.
  • the article in embodiments has a surface energy of 25 mN / m or less, preferably 20 mN / m or less, these surface energy requirements preferably after a temperature treatment at 350 ° C for 24 hours, more preferably at 48 ° C for 350 ° C Hours, get preserved.
  • the article is preferably selected from household or kitchen appliances, such as, for example, glass window covers, door panes, sight glasses, extractor hoods, or (kitchen) cupboard windows.
  • the article may be a kitchen accessory, such as baking trays, pans, pots, baking pans, cooking utensils, kettles, side or top parts of, for example, hobs or countertops, lamp covers, or a portion of cooking appliances, such as ovens or microwave ovens.
  • heating plates, glass ceramic hobs, oven tubes, door inner panes, chrome-plated accessory parts or parts made of stainless steel in or on the cooking chamber, such as, for example, grilling grills, grilled spit rods, receiving grids for baking trays, telescopic trays, steam strips, and / or air outlet shutters are suitable as parts of cooking appliances.
  • the article is an article that is heated and / or comes into contact with heated food.
  • the article is particularly preferably a baking tray or a pan.
  • the article may be completely or partially coated.
  • the coating is preferably on the part of the article that is heated and / or comes into contact with heated food.
  • the present invention relates to a method for producing an article having a high-temperature resistant non-stick coating.
  • the method comprises the steps of providing an inorganic substrate, applying an amorphous silicon dioxide-containing adhesion promoter layer to the substrate, applying an omniphobic non-stick layer to the adhesion promoter layer.
  • an article can be prepared that is easy to clean, has high scratch resistance, and that exhibits high-temperature resistance at temperatures of, for example, 60.degree. greater than 350 ° C.
  • aqueous detergents or organic detergents possibly existing coarse dirt such. Dust, oils, grease, fingerprints, etc. removed. So the liability can be increased.
  • the method is a method in which covalent bonds are formed by condensation reaction of hydroxyl groups of the substrate surface and reactive groups of the adhesion promoter when the adhesion promoter layer is applied to the substrate. So the liability can be further increased.
  • the adhesion promoter layer can be applied to the substrate at atmospheric pressure, the method being selected from the group of plasma CVD processes or flame treatment methods.
  • the method being selected from the group of plasma CVD processes or flame treatment methods.
  • the application of the adhesion promoter layer using a siloxane and / or silane precursor, in particular HMDSO, TEOS, DMS or combinations thereof.
  • the application of the non-stick layer by wet chemical deposition via a sol-gel process and subsequent drying, wherein the application is preferably carried out via a spraying, dipping, flooding, Abreibungs- or spinning process.
  • Spectral ellipsometry is a measurement method with which the dielectric material properties (complex permittivity or real or imaginary part of the complex refractive index) as well as the layer thickness of thin layers or layer systems can be determined. Ellipsometry determines the change in polarization state of light upon reflection (or transmission) on the sample. As a result of the measurements and by adaptation of a layer model, statements are made on the thickness and the refractive index of the applied layer.
  • the layer thickness was measured by means of spectral ellipsometry using a spectral ellipsometer SE850 from Sentech. It is measured in the wavelength range of 350-820 nm and based on a Cauchy model approach.
  • the contact angle was measured with an OCA 15 plus angle angle measuring device from Dataphysics according to the well-known contact angle measuring method according to Owens, Wendt, Rabel and Kaelble.
  • the contact angle is referred to as the contact angle, and is the angle that a liquid droplet forms on the surface of a solid to form a surface.
  • the balance of forces of an on-surface liquid drop is given by the surface tensions of the liquid and the solid and the interfacial tension between the two media. This balance determines whether a drop of liquid spreads on a surface (ie, the surface wets well) or whether the liquid remains as a drop (the surface wets poorly).
  • surface tension a distinction is made between polar and disperse interactions according to the underlying interaction mechanisms between the molecules. The polar forces have their cause in different ways Electronegativities of the atoms of a molecule, resulting in permanent dipoles.
  • the dispersion forces arise from temporarily asymmetrical charge distributions and are thus present between all molecules.
  • the surface tension results from the sum of the polar and the disperse fraction.
  • the determination of the surface tension of a solid is carried out by measuring the different contact angles which leave different test liquids on the solid.
  • the Owens, Wendt, Rabel and Kaelble method is a standard method for calculating the surface free energy of a solid from the contact angle with multiple liquids. The surface free energy is split into a polar part and a disperse part. In the tests, measurements were made on ten drops per sample, the result being the arithmetic mean of the measurements.
  • the test liquids used to determine the surface tensions are water, methylene iodide, ethylene glycol, thiodiglycol and diiodomethane.
  • the substrate used was an enamelled baking tray, which was pre-cleaned by washing and then dried.
  • an amorphous silica-containing primer layer was applied via a CVD plasma process at atmospheric pressure.
  • a plasma was ignited in a plasma nozzle by an electric arc discharge and treated in a relative movement of the nozzle to the substrate surface, the surface.
  • Setting parameters were: approx. 100 watts electrical power, approx. 10 mm treatment width, approx. 5 cm / s travel speed, approx. 10 mm nozzle distance to the substrate surface, approx. 5 bar compressed air (10 l / min).
  • HMDSO was used as process gas (flow rate: approx. 30 ml / min.).
  • the layer thickness of the transparent adhesion promoter layer was below 200 nm.
  • the surface coated with the adhesion promoter was provided with an omniphobic non-stick layer.
  • a commercially available "Nanoclean" coating from PEMCO was sprayed with a spray gun in accordance with the manufacturer's instructions.
  • the process conditions were as follows: pressure: 2.5 bar, distance 15 cm, 2 passes, drying at room temperature.
  • the total layer thickness of the resulting transparent coating (adhesion promoter + omniphobic non-stick layer) was less than 500 nm.
  • the properties of the coated baking tray after production were as follows: contact angle: greater than 90 ° (water); Contact angle greater than 70 ° (methylene iodide); Surface energy: less than 20 mN / m. After 24 hours of storage at 350 ° C of the coated baking sheet, the results were as follows: contact angle: greater than 90 ° (water); Contact angle greater than 70 ° (methylene iodide); Surface energy: less than 20 mN / m.
  • Example 2 The production of a coated baking sheet was carried out analogously to Example 1, with the difference that the amorphous silicon dioxide-containing adhesive layer was applied by means of flame treatment.
  • a gas mixture air, fuel gas and HMDSO precursor
  • the fuel gas to air ratio was 50 / 1,000 l / min, the travel speed 5 cm / s, the gas flow rate 10 ml / min (15% HMDSO), the distance to the substrate surface was 30 mm.
  • the layer thicknesses achieved were analogous to Example 1.
  • the coated baking sheet had a contact angle of greater than 90 ° (water) and a contact angle of greater than 70 ° (methylene iodide) both directly after preparation and after storage for 24 hours at 350 ° C ), as well as a surface energy of less than 20 mN / m.
  • a coated baking sheet is produced analogously to Examples 1 and 2, with the difference that an SiO x layer was applied instead of the amorphous silicon dioxide-containing adhesion promoter layers.
  • the substrate was silanized before application of the "Nanoclean" coating according to the manufacturer's instructions from PEMCO by flame treatment.
  • the so coated baking sheet had a surface energy of 20 mN / m directly after production. However, surface energy increased to 48 mN / m after 24 hours storage at 350 ° C, i. the temperature resistance was lower. As a result, the cleanability of the baking sheet was deteriorated in comparison with Examples 1 and 2.

Abstract

Die Erfindung betrifft einen Gegenstand mit einer hochtemperaturbeständigen omniphoben Antihaftbeschichtung, umfassend ein anorganisches Substrat, eine amorphes Siliziumdioxid enthaltende Haftvermittlerschicht, und eine omniphobe Antihaftschicht, sowie ein Verfahren zur Herstellung des Gegenstandes.

Description

Gegenstand mit einer hochtemperaturbeständigen omniphoben Antihaftbeschichtung, sowie Verfahren zur Herstellung des Gegenstands
Die vorliegende Erfindung betrifft einen Gegenstand mit einer hochtemperaturbeständigen omniphoben Antihaftbeschichtung, die kratzfest und leicht zu reinigen ist, sowie ein Verfahren zu Herstellung des Gegenstandes.
Stand der Technik
Temperaturbeständige, kratzfeste Antihaftbeschichtungen für Substrate aus Glas oder Emaille, die für Teile von Haushaltsgeräten wie Gargeräte (u.a. für Glaskeramikkochfelder oder Innen- bauteile von z.B. Backöfen oder Mikrowellen), die erhitzt werden oder mit erhitzten Lebensmit- teln in Kontakt kommen, sind allgemein bekannt. Diese Beschichtungen können z.B. über ein Sol-Gel Verfahren auf die zu beschichtende Oberfläche aufgetragen werden. Weiter können diese Schichten omniphob sein, d.h. weisen sowohl hydrophobe als auch oleophobe Eigen- schaften auf, um die Reinigbarkeit gegenüber z.B. Lebensmittelrückständen zu verbessern.
Die WO 99/02463 offenbart temperaturbeständige und kratzfeste Antihaftbeschichtungen, die mit einem einstufigen Sol-Gel Verfahren aufgetragen werden. Laut WO 99/02463 sind die Schichten bis > 500 °C temperaturbeständig. Untersuchungen haben allerdings ergeben, dass diese Schichten nur bis maximal 300°C über einen längeren Zeitraum beständig sind, und bei Temperaturen von größer als 300°C innerhalb kurzer Zeit ein Anstieg der Oberflächenenergie erfolgt. Dies wiederum bedingt eine Verschlechterung der Reinigbarkeit von z.B. eingebrannten Lebensmittelrückständen und führt zu einer ausgeprägten Verfleckungsneigung. Somit ist die Hochtemperaturbeständigkeit dieser Schichten ungenügend.
Weiter sind Beschichtungen, die Nanopartikel zur Verbesserung der Kratzfestigkeit beinhalten, wie z.B. die„Nanoclean“ Beschichtungen der Fa. PEMCO, bekannt. Gemäß“Schlegel, C.: „Glassy Surface Functionalisation by Nano-modified Sol-Gel Technology“, XXI International Enamellers Congress, 18. Mai 2008, Seiten 41-50, XP002599577“ sind diese Nanoclean Be- schichtungen mit Nanopartikeln modifizierte Sol-Gel Schichten, bei denen in Ausführungsformen eine Auftragung einer SiOx Zwischenschicht über eine vorhergehende Flammbehandlung und Silanisierung erfolgt. Diese Schichten sind allerdings auch nur bis max. 300°C hitzebeständig. Die EP2281916 A1 und DE102009030876 A1 zeigen zweistufige Beschichtungsverfahren von Substraten, so dass eine Siliziumdioxid-Schicht als Haftvermittlerschicht, die über einen Atmo- sphärendruckprozess aufgetragen wird, und eine weitere Schicht, die über einen nasschemi- schen Prozess aufgetragen wird, erhalten werden. Diese Verfahren erfordern aber die vorher- gehende Auftragung eines Primers auf das Substrat zur Gewährleistung der gewünschten Haf- tung. Weiter ist die Temperaturbeständigkeit dieser Schichten ungenügend.
Insbesondere vor dem Hintergrund, dass Gargeräte immer höheren Temperaturen ausgesetzt sind, da z.B. Backöfen immer schneller aufheizbar sind, so dass prozessbedingt allgemein Temperaturen von 350 °C oder höher erreicht werden, steigen auch die Anforderungen an die Beschichtungen in Bezug auf deren Temperaturbeständigkeit.
Allerdings sind im Stand der Technik keine omniphoben Antihaftbeschichtungen für z.B. Glas- oder Emaillesubstrate bekannt, die eine hohe Kratzfestigkeit und damit eine leichte Reinigbarkeit auch nach einer Hochtemperaturbehandlung von z.B. größer 350°C über einen längeren Zeit- raum aufweisen, d.h. es besteht der Bedarf an Gegenständen mit omniphoben Antihaftbeschich- tungen, die insbesondere bei Temperaturen von 350 °C und höher temperaturbeständig sind.
Aufgabe der Erfindung
Somit ist die Aufgabe der vorliegenden Erfindung das Bereitstellen eines Gegenstands, der leicht zu reinigen ist, eine hohe Kratzfestigkeit aufweist, und der eine Hochtemperaturbeständig- keit von z.B. größer 350°C aufweist, sowie das Bereitstellen eines Verfahrens zur Herstellung dieses Gegenstands.
Kurze Beschreibung der Erfindung
Diese Aufgabe wird durch den Gegenstand gemäß Anspruch 1 gelöst. Bevorzugte Ausführungs- formen des Gegenstands sind in den Unteransprüchen 2 bis 10 definiert, die auch in Kombinati- on untereinander umfasst sind. Weiter wird die Aufgabe durch das Verfahren gemäß Anspruch 1 1 gelöst. Bevorzugte Ausführungsformen des Verfahrens sind in den Ansprüchen 12 bis 15 definiert, die auch in Kombination untereinander umfasst sind.
Detaillierte Beschreibung der Erfindung
Die vorliegende Erfindung bezieht sich auf einen Gegenstand mit einer hochtemperaturbestän- digen omniphoben Antihaftbeschichtung, umfassend: ein anorganisches Substrat, eine amor- phes Siliziumdioxid enthaltende Haftvermittlerschicht, und eine omniphobe Antihaftschicht. Die amorphes Siliziumdioxid enthaltende Haftvermittlerschicht befindet sich zwischen dem Substrat und der omniphoben Antihaftbeschichtung. Es ist ebenfalls bevorzugt, wenn die Antihaftbe- schichtung direkt auf die Haftvermittlerschicht aufgebracht wird.
Erfindungsgemäß ist es insbesondere bevorzugt, dass die Haftvermittlerschicht direkt auf das Substrat aufgebracht wird, d.h. dass z.B. kein Primer verwendet wird. In Ausführungsformen besteht der Gegenstand aus einem anorganischen Substrat, einer amorphes Siliziumdioxid ent- haltenden Haftvermittlerschicht und einer omniphoben Antihaftschicht.
Überraschenderweise wurde gefunden, dass die spezifische Kombination aus anorganischem Substrat, amorphes Siliziumdioxid enthaltender Haftvermittlerschicht, und omniphober Antihaft- schicht leicht zu reinigen ist, eine hohe Kratzfestigkeit aufweist, und eine hohe Temperaturbe- ständigkeit besitzt.
Hochtemperaturbeständig im Sinne der vorliegenden Erfindung bedeutet eine Beständigkeit gegenüber Temperaturen von höher als 350°C, bevorzugt höher als 380°C, und in Ausführungs- formen bis 400°C, über einen Zeitraum von mindestens 24 Stunden, bevorzugt 48 Stunden. Hochtemperaturbeständigkeit im Sinne der vorliegenden Erfindung bedeutet auch, dass nach mindestens zehn Verschmutzungszyklen eine Reinigbarkeit der Oberfläche einer entsprechend temperaturbehandelten Probe von eingebrannten Lebensmittelrückständen gegeben ist, d.h. dass sich die behandelte Schicht nicht von der ursprünglichen Schicht unterscheidet.
Omniphob bedeutet sowohl hydrophob als auch oleophob, d.h. abweisend gegenüber polaren Substanzen, wie z.B. Wasser, sowie unpolaren Substanzen, wie z.B. organischen Verbindun- gen.
Die Haftvermittlerschicht weist erfindungsgemäß amorphes Siliziumdioxid auf. Insbesondere ist der Anteil an amorphem Siliziumdioxid in der Schicht 70-100 Gew.%, bevorzugt 90-99 Gew.%, insbesondere bevorzugt 95-98 Gew.%. In Ausführungsformen ist die Haftvermittlerschicht selbst amorph. Bevorzugt besteht die Haftvermittlerschicht aus amorphem Siliziumdioxid. Allerdings können auch kristalline Bestandteile, wie z.B. kristalline Nanopartikel, unter anderem Nanoparti- kel aus kristallinem Siliziumdioxid, enthalten sein.
Die Anwesenheit von amorphem Siliziumdioxid (Si02) in der Haftvermittlerschicht ist überasch- enderweise mit positiven Effekten im Vergleich zu SiOx-enthaltenden Haftvermittlerschichten, bei denen das Siliziumoxid organische Restgruppen enthält, verbunden. Das kann dadurch erklärt werden, dass Si02-Schichten eine höhere Haftung zum anorganischen Substrat ausbilden, was mit einer verbesserten Temperaturbeständigkeit einhergeht. Der Grund dafür liegt darin, dass die chemische Kompatibilität der Si02-Schicht zum anorganischen Substrat in Vergleich zu SiOx- Schichten größer ist. Somit kann auch die omniphobe Antihaftschicht stärker ans Substrat an- gebunden werden, was wiederum die Kratzfestigkeit und Hochtemperaturbeständigkeit erhöht.
Die Natur des Substrates ist erfindungsgemäß nicht beschränkt, solange das Substrat anorga- nisch ist. Das Substrat kann plan sein (wie z.B. Backbleche oder Scheiben) oder eine dreidi- mensionale Form besitzen (wie z.B. Backrohre). In Ausführungsformen umfasst das organische Substrat ein Material, das ausgewählt ist aus der Gruppe, umfassend Glas, Emaille, Metall oder Keramik. Es sind alle Glasarten als Substrat tauglich, wie z.B. Borofloat-, Kalk-Natron-, oder Quarzglas. Bevorzugt ist das anorganische Substrat Emaille, wie z.B. eine emaillierte Metall- oberfläche. In Ausführungsformen umfasst das Substrat an der Oberfläche Hydroxylgruppen. Diese können mit der amorphes Siliziumdioxid enthaltenden Haftvermittlerschicht kovalente Bin- dungen unter Abspaltung von Wasser ausbilden, was wiederum eine hervorragende Haftung der Haftvermittlerschicht ans Substrat bedingt.
Die Haftvermittlerschicht kann mit allen gängigen Beschichtungsverfahren aufgebracht werden, z.B. mit Flüssigbeschichtungsverfahren (wie Spray- oder Tauchverfahren), ggf. unter Verwen- dung von Lösungsmitteln oder Dispersionsmitteln, oder mit Abscheidungsverfahren aus der Gasphase. Insbesondere ist die Haftvermittlerschicht eine Haftvermittlerschicht, die durch ein Verfahren erhältlich ist, bei dem das Substrat bei Atmosphärendruck beschichtet wird, und das ausgewählt ist, aus der Gruppe von CVD Plasmaverfahren oder Beflammungsverfahren. Bei geeignetem Einstellen der Prozessparameter ist so eine amorphes Siliziumdioxid enthaltende Haftvermittlerschicht herstellbar, die eine gute Haftung zum Substrat, sowie zur omniphoben Antihaftschicht ausbildet. Weiter ist der apparative Aufwand von Atmosphärendruckprozessen wesentlich geringer als bei Prozessen, die im Vakuum ablaufen.
Das amorphe Si02 kann in Ausführungsformen während des Abscheidungsprozesses reaktiv z.B. aus Vorläufersubstanzen (d.h. Precursoren) gebildet werden. Geeignete Precursoren sind erfindungsgemäß nicht limitiert, solange sie in der Lage sind, beim Abscheidungsprozesses Si02 zu bilden. Insbesondere wird die Haftvermittlerschicht unter Verwendung eines Siloxan- und/oder Silan-Precursors, bevorzugt HMDSO (Hexamethyldisiloxan), TEOS (Tetraethylorthosilikat), DMS (Dimethylsilan) oder Kombinationen davon, gebildet. So ist eine effiziente und kostengünstige Ausbildung einer amorphes Siliziumdioxid enthaltenden Haftver- mittlerschicht gemäß der vorliegenden Erfindung möglich. Geeignete Prozessbedingungen für ein CVD Plasmaverfahren bei Atmosphärendruck sind z.B. wie folgt: Die Zündung des Plasmas in einer Plasmadüse erfolgt durch eine elektrische Entla- dung. Die Entladung kann sowohl eine Bogenentladung als auch eine behinderte Entladung sein. Die Behandlung der Substratoberfläche kann in einer Relativbewegung der Düse zur Sub- stratoberfläche erfolgen. Als Einstellparameter sind in Ausführungsformen möglich: 50-200 W, bevorzugt 80-120 W, elektrische Leistung; Behandlungsbreite: 1-20 mm, bevorzugt 5-10mm; Verfahrgeschwindigkeit: 1-10 cm/s, bevorzugt ca. 4-6 cm/s; Düsenabstand zur Substratoberflä- che: 1-20 mm, bevorzugt ca. 5-10 mm. Als Trägergas kann Druckluft (Flussrate: 1-20 l/min, be- vorzugt 5-10 l/min) verwendet werden. Das Prozessgas kann mit einer Flussrate von 1-50 ml/min, bevorzugt 20-40 ml/min, zugegeben werden.
Geeignete Prozessbedingungen für ein Beflammungsverfahren bei Atmosphärendruck sind z.B. wie folgt: Als Brenngas wird z.B. Propan und/oder Butan verwendet. Ein Gemisch aus Luft, Brenngas und Precursorgas kann z.B. in einer Schlitzbrennerdüse gezündet und die Substrat- oberfläche mit dem farblosen Bereich der Flamme abgefahren werden. Das„Brenngas : Luft“ Verhältnis kann z.B. 10 l/min : 5.000 l/min, bevorzugt 50 l/min : 1.000 l/min, sein. Die Verfahrgeschwindigkeit ist in Ausführungsformen 1-10 cm/s, bevorzugt ca. 4-6 cm/s. Der Precursorgasdurchfluss ist in Ausführungsformen 1-20 ml/min, bevorzugt 5-15 ml/min. Der Ab- stand zur Substratoberfläche ist z.B. 10-100 mm, bevorzugt 20-50 mm.
Die Schichtdicke der Haftvermittlerschicht ist nicht kritisch. In Ausführungsformen besitzt die Haftvermittlerschicht eine Schichtdicke im Bereich von unter 500 nm, bevorzugt 1 -300 nm, mehr bevorzugt 5-100 nm, weiter bevorzugt 10-50 nm. Durch solche Schichtdicken ist eine besonders gute Haftvermittlung ermöglicht, so dass die Hochtemperaturbeständigkeit besonders gut ge- währleistet ist. Dies lässt sich dadurch klären, dass durch diese niedrige Schichtdicke eine gute mechanische Anbindung der Antihaftschicht an das Substrat ermöglicht ist. Weiter können da- durch transparente Beschichtungen erhalten werden, die erfindungsgemäß bevorzugt sind.
Die Antihaftschicht ist nicht eingeschränkt, solange sie omniphobe Eigenschaften besitzt. Omniphobe Antihaftschichten sind im Stand der Technik bekannt. Insbesondere können die kommerziell erhältlichen„Nanoclean“ Beschichtungen der Fa. PEMCO eingesetzt werden. Die Antihaftschicht wird bevorzugt nasschemisch aufgebracht und anschließend getrocknet, wobei das Aufbringen bevorzugt über einen Sprüh-, Tauch-, Flut-, Abreibungs- oder Schleuderprozess erfolgt.
Die Antihaftschicht umfasst bevorzugt eine Siliziumverbindung. So ist eine besonders gute Haf- tung zur Haftvermittlerschicht und zum Substrat durch Ausbildung von kovalenten Bindungen möglich, was wiederum eine verbesserte Kratzfestigkeit und Hochtemperaturbeständigkeit be- dingt.
In bevorzugten Ausführungsformen ist die Antihaftschicht ein über ein Sol-Gel-Verfahren abge- schiedenes, organisch modifiziertes Netzwerk. So lässt sich eine omniphobe Antihaftbeschich- tung hersteilen, die ein besonders gute Reinigungsfähigkeit, Kratzfestigkeit und Haftung gegen- über dem Substrat besitzt. Insbesondere enthält die Antihaftschicht Nanopartikel, was die Kratz- festigkeit weiter erhöht.
Insbesondere kann eine alkoholische Lösung aus einem Gemisch aus Tetraethylorthosilikat und Methyltriethoxysilan (oder deren Homologe), die sauer oder basisch aktivierbar sind, für das Sol- Gel-Verfahren verwendet werden.
Bevorzugt umfasst die Antihaftschicht fluorhaltige Verbindungen, insbesondere bevorzugt fluor- haltige Silane und/oder Siloxane, wie z.B. 1 H, 1 H,2H,2H-Perfluorooctyltriethoxysilan oder dessen Homologe. Durch den Einbau solcher fluorhaltigen Verbindungen sind besonders gute omniphobe Effekte erzielbar.
Die Schichtdicke der Antihaftschicht ist erfindungsgemäß nicht eingeschränkt. In Ausführungs- formen besitzt die Antihaftschicht eine Schichtdicke im Bereich von unter 100 nm, bevorzugt 2- 50 nm, mehr bevorzugt 5-20 nm, weiter bevorzugt 10-15 nm. Dadurch ist eine besonders gute Hochtemperaturbeständigkeit ermöglicht. Weiter können dadurch transparente Beschichtungen erhalten werden, die erfindungsgemäß bevorzugt sind.
In Ausführungsformen ist die Gesamtschichtdicke, d.h. die Summe aus Haftvermittlerschicht und Antihaftschicht, 1 -600 nm, bevorzugt 10-500 nm, mehr bevorzugt 20-400 nm.
Die Antihaftschicht ist omniphob, und zeigt insbesondere einen Kontaktwinkel gegenüber einer polaren Substanz wie Wasser von 90° oder mehr und/oder einen Kontaktwinkel gegenüber unpolaren Substanzen, wie Methyleniodid, Ethylenglycol, Thiodiglycol oder Diiodmethan, von 70° oder mehr. Diese Anfordernisse an den Kontaktwinkel werden bevorzugt bei einer Tempera- turbehandlung bei 350°C für 24 Stunden, bevorzugt bei einer Temperaturbehandlung von 350°C für 48 Stunden, beibehalten.
Der Gegenstand besitzt in Ausführungsformen eine Oberflächenenergie von 25 mN/m oder we niger, bevorzugt 20 mN/m oder weniger, wobei diese Anfordernisse für die Oberflächenenergie bevorzugt nach einer Temperaturbehandlung bei 350°C für 24 Stunden, weiter bevorzugt bei 350°C für 48 Stunden, erhalten bleiben. Der Gegenstand ist bevorzugt ausgewählt aus Haushalts- bzw. Küchengeräten wie z.B. Glasbe- dienblenden, Türscheiben, Schaugläser, Dunstabzugshauben, oder (Küchen-)Schrankfenster. Weiter kann der Gegenstand ein Küchenzubehörteil, wie z.B. Backbleche, Pfannen, Töpfe, Backformen, Kochutensilien, Wasserkocher, Seiten- oder Deckenteile von z.B. Kochfeldern oder Arbeitsflächen, Lampenabdeckungen, oder ein Teil von Gargeräten, wie z.B. Backöfen oder Mikrowellengeräten, sein. Als Teile von Gargeräten sind insbesondere Heizplatten, Glaskeramikkochfelder, Backrohre, Türinnenscheiben, verchromte Zubehörteile oder Teile aus Edelstahl in oder am Garraum, wie z.B. Grillroste, Grillspießgestänge, Aufnahmegitter für Back- bleche, Teleskopauszüge, Schwadenleisten, und/oder Luftausblasblenden geeignet. Insbeson- dere ist der Gegenstand ein Gegenstand, der erhitzt wird und/oder mit erhitzten Lebensmitteln in Kontakt kommt. Besonders bevorzugt ist der Gegenstand ein Backblech oder eine Pfanne.
Der Gegenstand kann vollständig oder nur teilweise beschichtet sein. Wenn der Gegenstand teilweise beschichtet ist, befindet sich die Beschichtung vorzugsweise an dem Teil des Gegen- standes, der erhitzt wird und/oder mit erhitzten Lebensmitteln in Kontakt kommt.
Weiter betrifft die vorliegende Erfindung ein Verfahren zum Herstellen eines Gegenstands mit einer hochtemperaturbeständigen Antihaftbeschichtung. Das Verfahren umfasst die Schritte: Bereitstellen eines anorganischen Substrats, Aufbringen einer amorphes Siliziumdioxid enthal- tenden Haftvermittlerschicht auf das Substrat, Aufbringen einer omniphoben Antihaftschicht auf die Haftvermittlerschicht. Mit diesem Verfahren kann ein Gegenstand hergestellt werden, der leicht zu reinigen ist, eine hohe Kratzfestigkeit aufweist, und der eine Hochtemperaturbeständig- keit bei Temperaturen von z.B. größer 350°C aufweist.
Bevorzugt erfolgt eine vorhergehende Reinigung des Substrats mittels Waschen mit wässrigen (z.B. sauren oder basischen) Reinigungsmitteln oder organischen Reinigungsmitteln. Dabei wird evtl vorhandener Grobschmutz wie z.B. Staub, Öle, Fette, Fingerabdrücke usw. entfernt. So kann die Haftung erhöht werden.
In Ausführungsformen ist das Verfahren ein Verfahren, bei dem beim Aufbringen der Haftver- mittlerschicht auf das Substrat kovalente Bindungen durch Kondensationsreaktion von Hydro- xylgruppen der Substratoberfläche und reaktiver Gruppen des Haftvermittlers ausgebildet wer- den. So kann die Haftung weiter erhöht werden.
Insbesondere kann beim Verfahren das Aufbringen der Haftvermittlerschicht auf das Substrat bei Atmosphärendruck erfolgen, wobei das Verfahren ausgewählt ist aus der Gruppe von CVD- Plasmaverfahren oder Beflammungsverfahren. In einer bevorzugten Ausführungsform erfolgt das Aufbringen der Haftvermittlerschicht unter Verwendung eines Siloxan- und/oder Silan- Precursors, insbesondere HMDSO, TEOS, DMS oder Kombinationen davon. Bevorzugt erfolgt das Aufbringen der Antihaftschicht durch nasschemische Abscheidung über ein Sol-Gel- Verfahren und anschließender Trocknung, wobei das Aufbringen bevorzugt über einen Sprüh-, Tauch-, Flut-, Abreibungs- oder Schleuderprozess erfolgt.
Diese und weitere Ausführungsformen des Verfahrens und deren Vorteile sind in Bezug auf den erfindungsgemäßen Gegenstand detailliert beschrieben und werden hier nicht weiter erläutert.
Beispiele:
Die folgenden Messverfahren wurden zur Bestimmung der Parameter Schichtdicke, Kontaktwin- kel und Oberflächenenergie verwendet:
Die Spektralellipsometrie ist ein Messverfahren mit dem die dielektrischen Materialeigenschaften (komplexe Permittivität bzw. Real- oder Imaginärteil des komplexen Brechungsindex) sowie die Schichtdicke dünner Schichten oder Schichtsysteme bestimmt werden können. Die Ellipsometrie bestimmt die Änderung des Polarisationszustandes von Licht bei Reflexion (oder Transmission) an der Probe. Im Ergebnis der Messungen und durch Anpassung eines Schichtmodells enthält man Aussagen zur Dicke und zum Brechungsindex der aufgebrachten Schicht.
Die Schichtdicke wurde mittels Spektralellipsometrie unter Verwendung eines Spektralellipsometers SE850 der Firma Sentech gemessen. Dabei wird im Wellenlängenbereich von 350-820 nm und unter Zugrundelegen eines Cauchy-Modellansatzes gemessen.
Der Kontaktwinkel wurde mit einem Randwinkelmessgerät OCA 15 plus der Firma Dataphysics gemäß der allgemein bekannten Kontaktwinkelmessmethode nach Owens, Wendt, Rabel und Kaelble gemessen.
Der Kontaktwinkel wird als Randwinkel bezeichnet, und ist der Winkel, den ein Flüssigkeitstrop- fen auf der Oberfläche eines Feststoffes zu einer Oberfläche bildet. Das Kräftegleichgewicht eines auf der Oberfläche liegenden Flüssigkeitstropfens ist durch die Oberflächenspannungen der Flüssigkeit und des Festkörpers sowie der Grenzflächenspannung zwischen beiden Medien gegeben. Dieses Gleichgewicht bestimmt, ob ein Flüssigkeitstropfen auf einer Oberfläche sprei- tet (d.h. die Oberfläche benetzt gut) oder ob die Flüssigkeit als Tropfen erhalten bleibt (die Ober- fläche benetzt schlecht). Bei der Oberflächenspannung unterscheidet man entsprechend der zugrunde liegenden Wechselwirkungsmechanismen zwischen den Molekülen zwischen polaren und dispersen Wechselwirkungen. Die polaren Kräfte haben ihre Ursache in unterschiedlichen Elektronegativitäten der Atome eines Moleküls, woraus sich permanente Dipole ergeben. Die Dispersionskräfte entstehen durch temporär unsymmetrische Ladungsverteilungen und sind somit zwischen allen Molekülen vorhanden. Die Oberflächenspannung ergibt sich aus der Summe des polaren und des dispersen Anteils. Die Bestimmung der Oberflächenspannung ei- nes Festkörpers erfolgt durch Messung der unterschiedlichen Kontaktwinkel die verschiedene Testflüssigkeiten auf dem Festkörper hinterlassen. Die Methode nach Owens, Wendt, Rabel und Kaelble ist eine Standardmethode zur Berechnung der freien Oberflächenenergie eines Festkör- pers aus dem Kontaktwinkel mit mehreren Flüssigkeiten. Die freie Oberflächenenergie wird da- bei in einen polaren Anteil und in einen dispersen Anteil aufgespalten. Bei den Untersuchungen wurden Messungen an zehn Tropfen pro Probe durchgeführt, wobei das Ergebnis der arithmeti- sche Mittelwert der Messungen ist. Als Testflüssigkeiten zur Bestimmung der Oberflächenspan- nungen werden Wasser, Methyleniodid, Ethylenglycol, Thiodiglycol und Diiodmethan verwendet.
Die Oberflächenenergie wurde unter Verwendung der Software SCA20 der Firma Dataphysics auf der Basis der Kontaktwinkelmessdaten bestimmt.
Beispiel 1 :
Als Substrat wurde ein emailliertes Backblech verwendet, das durch Waschen vorgereinigt und anschließend getrocknet wurde.
Auf das Substrat wurde über einen CVD Plasmaprozess bei Atmosphärendruck eine amorphes Siliziumdioxid enthaltende Haftvermittlerschicht aufgetragen. Dabei wurde in einer Plasmadüse durch eine elektrische Bogenentladung ein Plasma gezündet und in einer Relativbewegung der Düse zur Substratoberfläche die Oberfläche behandelt. Einstellparameter waren: ca. 100 Watt elektrische Leistung, ca. 10 mm Behandlungsbreite, ca. 5 cm/s Verfahrgeschwindigkeit, ca. 10 mm Düsenabstand zur Substratoberfläche, ca. 5 bar Druckluft (10 l/min). Als Prozessgas wurde HMDSO verwendet (Flussrate: ca. 30 ml/min.). Die Schichtdicke der transparenten Haftvermitt- lerschicht war unter 200 nm.
Anschließend wurde die mit dem Haftvermittler beschichtete Oberfläche mit einer omniphoben Antihaftschicht versehen. Dabei wurde mit einer Sprühpistole eine kommerziell erhältliche„Na- noclean“ Beschichtung der Fa. PEMCO gemäß Herstellerangaben aufgesprüht. Die Prozessbe- dingungen waren wie folgt: Druck: 2,5 bar, Abstand 15 cm, 2 Durchläufe, Trocknung bei Raum- temperatur. Die Gesamtschichtdicke der erhaltenen transparenten Beschichtung (Haftvermittler + omniphobe Antihaftschicht) war kleiner als 500 nm. Die Eigenschaften des beschichteten Backblechs nach der Herstellung waren wie folgt: Kon- taktwinkel: größer 90°(Wasser); Kontaktwinkel größer 70° (Methyleniodid); Oberflächenenergie: kleiner 20 mN/m. Nach 24 Stunden Lagerung bei 350°C des beschichteten Backblechs waren die Ergebnisse wie folgt: Kontaktwinkel: größer 90°(Wasser); Kontaktwinkel größer 70° (Methy- leniodid); Oberflächenenergie: kleiner 20 mN/m.
Beispiel 2:
Die Herstellung eines beschichteten Backblechs erfolgte analog zu Beispiel 1 , mit dem Unter- schied, dass die amorphes Siliziumdioxid enthaltende Haftvermittlerschicht mittels Beflammung aufgetragen wurde. Dabei wurde ein Gasgemisch (Luft, Brenngas und HMDSO-Precursor) in einer Schlitzbrennerdüse gezündet und die Substratoberfläche mit dem farblosen Bereich der Flamme abgefahren. Das Brenngas-Luft-Verhältnis war 50/1.000 l/min, die Verfahrgeschwindigkeit 5 cm/s, der Gasdurchfluss 10 ml/min (15% HMDSO), der Abstand zur Substratoberfläche war 30 mm.
Die erzielten Schichtdicken waren analog zu Beispiel 1. Das beschichtete Backblech hatte so- wohl direkt nach der Herstellung als auch nach 24 Stunden Lagerung bei 350°C einen Kontakt- winkel von größer 90°(Wasser) und einen Kontaktwinkel von größer 70° (Methyleniodid), sowie eine Oberflächenenergie von kleiner 20 mN/m.
Verqleichsbeispiel
Als Vergleichsbeispiel wird ein analog zu den Beispielen 1 und 2 ein beschichtetes Backblech hergestellt, mit dem Unterschied, dass statt den amorphes Siliziumdioxid enthaltenden Haftver- mittlerschichten eine SiOx-Schicht aufgebracht wurde. Dabei wurde das Substrat vor Aufträgen der„Nanoclean“ Beschichtung gemäß den Herstellerangaben der Fa. PEMCO durch Flammbe- handlung silanisiert.
Das so beschichtete Backblech hatte direkt nach der Herstellung eine Oberflächenenergie von 20 mN/m. Allerdings erhöhte sich die Oberflächenenergie nach 24 Stunden Lagerung bei 350°C auf 48 mN/m, d.h. die Temperaturbeständigkeit war niedriger. Dadurch war die Reinigbarkeit des Backblechs im Vergleich zu den Beispielen 1 und 2 verschlechtert.

Claims

Ansprüche:
1. Gegenstand mit einer hochtemperaturbeständigen omniphoben Antihaftbeschichtung, umfassend: ein anorganisches Substrat, eine amorphes Siliziumdioxid enthaltende Haftvermittlerschicht, und eine omniphobe Antihaftschicht.
2. Gegenstand nach Anspruch 1 , wobei das anorganische Substrat ein Material umfasst, das ausgewählt ist aus der Gruppe, umfassend Glas, Email, Metall oder Keramik, bevor- zugt Email.
3. Gegenstand nach Anspruch 1 oder 2, wobei die Haftvermittlerschicht durch ein Verfah- ren erhältlich ist, bei dem das Substrat bei Atmosphärendruck beschichtet wird, und das ausgewählt ist unter CVD Plasmaverfahren oder Beflammungsverfahren.
4. Gegenstand nach mindestens einem der Ansprüche 1 bis 3, wobei die Haftvermittler- schicht unter Verwendung eines Siloxan- und/oder Silan-Precursors, insbesondere HMDSO, TEOS, DMS oder Kombinationen davon, gebildet ist.
5. Gegenstand nach mindestens einem der Ansprüche 1 bis 4, wobei die Antihaftschicht ei- ne Siliziumverbindung umfasst und bevorzugt ein über ein Sol-Gel Verfahren abgeschie- denes, organisch modifiziertes Netzwerk ist.
6. Gegenstand nach mindestens einem der Ansprüche 1 bis 5, wobei die Antihaftschicht fluorhaltige Verbindungen, bevorzugt fluorhaltige Silane und/oder Siloxane, umfasst.
7. Gegenstand nach mindestens einem der Ansprüche 1 bis 6, wobei die Haftvermittler- schicht eine Schichtdicke im Bereich von unter 500 nm, bevorzugt 1-300 nm, mehr be- vorzugt 5-100 nm, weiter bevorzugt 10-50 nm aufweist, wobei die Schichtdicke mittels Spektralellipsometrie gemessen wird.
8. Gegenstand nach mindestens einem der Ansprüche 1 bis 7, wobei die Antihaftschicht ei- ne Schichtdicke im Bereich im Bereich von unter 100 nm, bevorzugt 2-50 nm, mehr be- vorzugt 5-20 nm, weiter bevorzugt 10-15 nm aufweist, wobei die Schichtdicke mittels Spektralellipsometrie gemessen wird.
9. Gegenstand nach mindestens einem der Ansprüche 1 bis 8, wobei der Kontaktwinkel der Antihaftbeschichtung gegenüber Wasser 90° oder mehr ist und/oder der Kontaktwinkel gegenüber Methyleniodid 70° oder mehr ist, bevorzugt nach einer Temperaturbehand- lung bei 350°C für 24 h, wobei der Kontaktwinkel mit einem Randwinkelmessgerät ge- mäß der Kontaktwinkelmessmethode nach Owens, Wendt, Rabel und Kaelble gemessen wird.
10. Gegenstand nach mindestens einem der Ansprüche 1 bis 9, wobei die Oberflächenener- gie der Antihaftbeschichtung 25 mN/m oder weniger, bevorzugt 20 mN/m oder weniger ist, bevorzugt nach einer Temperaturbehandlung bei 350°C für 24 h, wobei die Oberflä- chenenergie auf der Basis von Kontaktwinkelmessdaten nach Owens, Wendt, Rabel und Kaelble bestimmt wird.
1 1. Verfahren zur Herstellung eines Gegenstandes mit einer hochtemperaturbeständigen Antihaftbeschichtung, umfassend die Schritte:
Bereitstellen eines anorganischen Substrats,
Aufbringen einer amorphes Siliziumdioxid enthaltenden Haftvermittlerschicht auf das Substrat,
Aufbringen einer omniphoben Antihaftschicht auf die Haftvermittlerschicht.
12. Verfahren nach Anspruch 1 1 , wobei beim Aufbringen der Haftvermittlerschicht auf das Substrat kovalente Bindungen durch Kondensationsreaktion von Hydroxylgruppen der Substratoberfläche und reaktiver Gruppen des Haftvermittlers ausgebildet werden.
13. Verfahren nach Anspruch 1 1 oder 12, wobei das Aufbringen der Haftvermittlerschicht auf das Substrat bei Atmosphärendruck über ein Verfahren erfolgt, das ausgewählt ist aus der Gruppe von CVD Plasmaverfahren oder Beflammungsverfahren.
14. Verfahren nach mindestens einem der Ansprüche 11 bis 13, wobei das Aufbringen der Haftvermittlerschicht unter Verwendung eines Siloxan- und/oder Silan-Precursors, insbe- sondere HMDSO, TEOS, DMS Order Kombinationen davon, erfolgt.
15. Verfahren nach mindestens einem der Ansprüche 11 bis 14, wobei das Aufbringen der Antihaftschicht durch nasschemische Abscheidung über ein Sol-Gel Verfahren und an- schließender Trocknung erfolgt, wobei das Aufbringen bevorzugt über einen Sprüh-, Tauch-, Flut-, Abreibungs-, oder Schleuderprozess erfolgt.
PCT/EP2018/082347 2017-12-22 2018-11-23 Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands WO2019120879A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/772,202 US20210071009A1 (en) 2017-12-22 2018-11-23 Object with a high-temperature-resistant omniphobic non-stick coating, and method for producing such an object
CN201880081308.XA CN111465585A (zh) 2017-12-22 2018-11-23 具有耐高温超疏液不粘涂层的物体和制造所述物体的方法
EP18807983.4A EP3728156A1 (de) 2017-12-22 2018-11-23 Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017223680.9A DE102017223680A1 (de) 2017-12-22 2017-12-22 Gegenstand mit einer hochtemperaturbeständigen omniphoben Antihaftbeschichtung, sowie Verfahren zur Herstellung des Gegenstands
DE102017223680.9 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019120879A1 true WO2019120879A1 (de) 2019-06-27

Family

ID=64457007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/082347 WO2019120879A1 (de) 2017-12-22 2018-11-23 Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands

Country Status (5)

Country Link
US (1) US20210071009A1 (de)
EP (1) EP3728156A1 (de)
CN (1) CN111465585A (de)
DE (1) DE102017223680A1 (de)
WO (1) WO2019120879A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962049B (zh) * 2020-08-26 2023-06-27 佛山市思博睿科技有限公司 等离子化学气相沉积的纳米超疏水涂层及其制备方法
CN114308574B (zh) * 2021-12-23 2023-04-07 清华大学 用于不粘锅的涂层及其制备方法、用于不粘锅的复合层及不粘锅

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002463A1 (de) 1997-07-05 1999-01-21 Miele & Cie. Gmbh & Co. Temperaturbeständige und kratzfeste antihaftbeschichtung
DE10310827A1 (de) * 2003-03-07 2004-09-23 Innovent E.V. Technologieentwicklung Schichtkombination mit hydrophoben Eigenschaften und Verfahren zu deren Aufbringung
EP1685075A2 (de) * 2003-11-04 2006-08-02 Schott AG Gegenstand mit leicht reinigbarer oberfläche und verfahren zu seiner herstellung
US20080241523A1 (en) * 2004-02-24 2008-10-02 Saint-Gobain Glass France Substrate, Such As A Glass Substrate, With A Hydrophobic Surface And Improved Durability Of Hydrophobic Properties
EP2261185A2 (de) * 2004-11-03 2010-12-15 Schott Ag Solarglas-Scheibe mit Barierrebeschichtung und Verfahren zur Herstellung einer Solarglas-Scheibe
DE102009030876A1 (de) 2009-06-29 2011-01-05 Innovent E.V. Verfahren zum Beschichten eines Substrats
WO2016190047A1 (ja) * 2015-05-22 2016-12-01 ダイキン工業株式会社 表面処理層を有する物品の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813787A1 (de) * 1998-03-27 1999-09-30 Bosch Siemens Hausgeraete Backofen mit Backofenmuffel
DE10063739B4 (de) * 2000-12-21 2009-04-02 Ferro Gmbh Substrate mit selbstreinigender Oberfläche, Verfahren zu deren Herstellung und deren Verwendung
US8158251B2 (en) * 2008-02-07 2012-04-17 E. I. Du Pont De Nemours And Company Article with non-stick finish and improved scratch resistance
CN101481554A (zh) * 2009-01-22 2009-07-15 广州化工研究设计院 一种高硬度耐高温非氟水性不粘涂料
DE102011076756A1 (de) * 2011-05-31 2012-12-06 Schott Ag Substratelement für die Beschichtung mit einer Easy-to-clean Beschichtung
DE102013209709A1 (de) * 2013-05-24 2014-11-27 BSH Bosch und Siemens Hausgeräte GmbH Beschichtung von gebrauchsoberflächen mit plasmapolymeren schichten unter atmosphärendruck zur verbesserung der reinigbarkeit
DE102014201639A1 (de) * 2014-01-30 2015-07-30 BSH Hausgeräte GmbH Backrohr
CN107150020B (zh) * 2017-06-20 2020-07-07 南京信息工程大学 一种高附着力耐磨耐温超双疏自清洁表面涂层及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002463A1 (de) 1997-07-05 1999-01-21 Miele & Cie. Gmbh & Co. Temperaturbeständige und kratzfeste antihaftbeschichtung
DE10310827A1 (de) * 2003-03-07 2004-09-23 Innovent E.V. Technologieentwicklung Schichtkombination mit hydrophoben Eigenschaften und Verfahren zu deren Aufbringung
EP1685075A2 (de) * 2003-11-04 2006-08-02 Schott AG Gegenstand mit leicht reinigbarer oberfläche und verfahren zu seiner herstellung
US20080241523A1 (en) * 2004-02-24 2008-10-02 Saint-Gobain Glass France Substrate, Such As A Glass Substrate, With A Hydrophobic Surface And Improved Durability Of Hydrophobic Properties
EP2261185A2 (de) * 2004-11-03 2010-12-15 Schott Ag Solarglas-Scheibe mit Barierrebeschichtung und Verfahren zur Herstellung einer Solarglas-Scheibe
DE102009030876A1 (de) 2009-06-29 2011-01-05 Innovent E.V. Verfahren zum Beschichten eines Substrats
EP2281916A1 (de) 2009-06-29 2011-02-09 Innovent e.V. Verfahren zum Beschichten eines Substrats
WO2016190047A1 (ja) * 2015-05-22 2016-12-01 ダイキン工業株式会社 表面処理層を有する物品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHLEGEL, C.: "Glassy Surface Functionalisation by Nano-modified Sol-Gel Technology", XXI INTERNATIONAL ENAMELLERS CONGRESS, 18 May 2008 (2008-05-18), pages 41 - 50

Also Published As

Publication number Publication date
DE102017223680A1 (de) 2019-06-27
US20210071009A1 (en) 2021-03-11
CN111465585A (zh) 2020-07-28
EP3728156A1 (de) 2020-10-28

Similar Documents

Publication Publication Date Title
EP1391249B1 (de) Reinigungsfreundliche Vorrichtung
EP1685075B1 (de) Gegenstand mit leicht reinigbarer oberfläche und verfahren zu seiner herstellung
DE102010050771B4 (de) Erzeugnis aus Glas oder Glaskeramik mit hochtemperaturstabiler Niedrigenergie-Schicht, Verfahren zur Herstellung derselben und Verwendung des Erzeugnisses
EP2545199B1 (de) Metallische oberflächen mit dünner, glas- oder keramikartiger schutzschicht mit hoher chemischer beständigkeit und verbesserten antihaft-eigenschaften
EP2041228B1 (de) Alkaliresistente beschichtung auf leichtmetalloberflächen
DE102005020168A1 (de) Entspiegelungsschicht und Verfahren zu deren Aufbringung
DE10131156A1 (de) Arikel mit plasmapolymerer Beschichtung und Verfahren zu dessen Herstellung
DE102005018246A1 (de) Glas- oder Glaskeramik-Artikel mit dekorativer Beschichtung
EP0897898A2 (de) Verfahren zur Abscheidung optischer Schichten
DE102005007825A1 (de) Verfahren zur Herstellung einer reflexionsmindernden Beschichtung
WO2009071317A1 (de) Substrat mit einer sol-gel-schicht und verfahren zur herstellung eines verbundmaterials
EP2158964A1 (de) Thermokatalytische Beschichtung
EP2177580A1 (de) Antihaft-Beschichtungen
WO2019120879A1 (de) Gegenstand mit einer hochtemperaturbeständigen omniphoben antihaftbeschichtung, sowie verfahren zur herstellung des gegenstands
DE102009044340A1 (de) Verfahren zur Herstellung von Bauteilen, insbesondere für Hochtemperaturanwendungen und Bauteil
CH709779A2 (de) Lackdispersion für die Herstellung von Antihaftschichten auf Oberflächen.
DE69816792T2 (de) Photokatalytisch aktivierter selbstreinigender ofen
EP1397319A1 (de) Leicht reinigbare beschichtung
DE102015116644A1 (de) Kratzresistente Beschichtungen mit verbesserter Reinigungsfähigkeit, Substrate mit kratzfesten Beschichtungen mit verbesserter Reinigungsfähigkeit und Verfahren zu deren Herstellung
DE4200449C1 (de)
SE504305C2 (sv) Belagt glas och förfarande för framställning av detsamma
DE202004021240U1 (de) Gegenstand mit leicht reinigbarer Oberfläche
EP3003581B1 (de) Beschichtung von gebrauchsoberflächen mit plasmapolymeren schichten unter atmosphärendruck zur verbesserung der reinigbarkeit
EP3917992A1 (de) Dotierte alkalisilikat-schutzschichten auf metall
DE2631761C3 (de) Kochgefäß für das Kochen, Sieden und Backen von Lebensmitteln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18807983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018807983

Country of ref document: EP

Effective date: 20200722