WO2019119877A1 - 折叠螺旋桨、动力组件及无人机 - Google Patents
折叠螺旋桨、动力组件及无人机 Download PDFInfo
- Publication number
- WO2019119877A1 WO2019119877A1 PCT/CN2018/104149 CN2018104149W WO2019119877A1 WO 2019119877 A1 WO2019119877 A1 WO 2019119877A1 CN 2018104149 W CN2018104149 W CN 2018104149W WO 2019119877 A1 WO2019119877 A1 WO 2019119877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- folding propeller
- hub
- propeller according
- boss
- blade
- Prior art date
Links
- 238000001746 injection moulding Methods 0.000 claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 238000013016 damping Methods 0.000 abstract description 8
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
- B64C11/08—Blade mountings for non-adjustable blades
- B64C11/10—Blade mountings for non-adjustable blades rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
- B64C11/08—Blade mountings for non-adjustable blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
- B64C11/22—Solid blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
- B64C11/28—Collapsible or foldable blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
- B64C27/50—Blades foldable to facilitate stowage of aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/29—Constructional aspects of rotors or rotor supports; Arrangements thereof
- B64U30/293—Foldable or collapsible rotors or rotor supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
Definitions
- Embodiments of the present application relate to the field of propeller technology, and in particular, to a folding propeller, a power assembly to which the folding propeller is applied, and a drone to which the power assembly is applied.
- the unmanned aerial vehicle is a non-manned aerial vehicle that controls the flight attitude through radio remote control equipment and built-in programs. It is widely used in aerial photography because of its flexibility, quick response, driverless operation and low operational requirements. Plant protection, power inspection, disaster relief and many other fields. With the development of wireless Internet, wireless LAN and image processing technology, drones have been favored by more and more users.
- the propeller is an important component of the power module of the drone. It is usually composed of a hub and two or more blades distributed in an axisymmetric form. The blades are mounted on the hub, and the hub is fixedly mounted on the drive. on. When the driving device rotates, the blades are rotated together by the hub to provide forward power for the drone.
- the inventor found that at present, in order to facilitate the user to carry the drone and reduce the space occupied by the drone, the related art proposes some foldable propellers.
- the existing collapsible propeller generally mounts the blade on the hub through the clamping structure. In order to have the same rotational damping between the hub and the blade, it is necessary to adjust the two contact faces of the blade and the clamping structure. The friction is not convenient for mold adjustment.
- the embodiment of the present application provides a folding propeller, a power component, and a drone, which can solve the problem that the existing folding propeller is inconvenient to adjust the mold and has high production cost.
- one technical solution adopted by the present application is to provide a folding propeller including a hub, at least two blades, and at least two connecting members for folding the The propeller is mounted to the drive device, wherein
- the hub includes opposing first and second surfaces, the first surface facing the driving device, the second surface facing away from the driving device;
- Each of the blades is mounted to the second surface by one of the connectors associated therewith, each of the blades being rotatable relative to the hub.
- the hub includes a body portion and at least two laps connected to the body portion, the body portion and the lap portion each including oppositely disposed two surfaces, the body One surface of the portion is coupled to one surface of the overlapping portion to form the first surface, and the other surface of the body portion is coupled to the other surface of the overlapping portion to form the second surface;
- the lap portion is in one-to-one correspondence with the blade and the connecting member, and the lap portion is pivotally connected to the blade through the connecting member.
- each of the blades includes a pivoting portion, each of the pivoting portions overlapping a corresponding one of the overlapping portions, and pivoting through the connecting member and the overlapping portion Pick up.
- a lower surface of the pivot portion is in contact with the second surface.
- the hub further includes a boss disposed on the second surface
- a protruding edge extends from each of the pivoting portions, and the convex edge overlaps the boss.
- the lower surface of the ledge is in contact with the upper surface of the boss.
- the hub further includes a boss disposed on the second surface
- protruding edge extending from each of the pivoting portions, the protruding edge being located above the boss, and the protruding edge and the boss when the folding propeller is driven to rotate by the driving device Contact on the upper surface.
- the boss has a circular cross section.
- the centerline of the boss coincides with the centerline of the axis of rotation of the drive.
- the number of the bosses is two.
- the boss has a semi-circular or rectangular cross section.
- the convex edge is arcuate.
- the at least two overlapping portions are formed with through holes
- the at least two pivoting portions are formed with mounting holes corresponding to the through holes;
- the connecting member is disposed in the mounting hole and the through hole, and the blade is mounted on the overlapping portion.
- each of the connecting members includes a first abutting portion, a second abutting portion, and a connecting portion connecting the first abutting portion and the second abutting portion;
- the first abutting portion abuts against the first surface toward a surface of the second abutting portion
- the second abutting portion abuts against a surface of the first abutting portion and a side of the blade facing away from the overlapping portion;
- the connecting portion is bored in the mounting hole and the through hole.
- the paddle is fixedly coupled to the connector by injection molding, the hub being pivotally coupled to the connector.
- the connecting portion is provided with an annular groove
- the mounting hole is provided with an annular protrusion, and the annular protrusion is engaged in the annular groove.
- the second abutting portion includes a tooth portion, and the blade portion is provided with a limited position groove corresponding to the tooth portion, and the tooth portion is engaged in the limiting groove.
- the hub is fixedly coupled to the connector by injection molding, the blade being pivotally coupled to the connector.
- the connecting portion is provided with an annular groove
- the through hole is provided with an annular protrusion, and the annular protrusion is locked in the annular groove.
- the first abutting portion includes a tooth portion
- the hub is provided with a limit groove corresponding to the tooth portion, and the tooth portion is engaged in the limiting groove.
- a power assembly including: a driving device, and a folding propeller as described above mounted on the driving device.
- an unmanned aerial vehicle comprising: the power component as described above.
- the hub of the folding propeller provided by the embodiment of the present application includes a first surface and a second surface disposed opposite to each other, the first surface facing the folding propeller a connected driving device, the second surface faces away from the driving device, and each blade is mounted on the second surface by a corresponding connecting member thereof, so that only one contact surface is included between the blade and the hub, In the injection molding mode adjustment, only one frictional force of the contact surface needs to be adjusted to adjust the rotation damping between the blade and the hub, which is convenient for mold adjustment, which is beneficial to mass production and lower production cost.
- the hub of the folding propeller further includes a boss disposed on the second surface, and one end of each of the blades connected to the hub extends with a convex edge.
- the convex edge is overlapped on the boss, so that when the folding propeller rotates at a high speed, the force received by the end of the blade and the hub can be dispersed to the hub by the flange and the boss, without The provision of a clamping structure in the hub also ensures the reliability of the folding propeller during operation.
- FIG. 1 is a schematic perspective view of a folding propeller provided by one embodiment of the present application.
- Figure 2 is an exploded perspective view of the folding propeller of Figure 1;
- Figure 3 is a perspective view showing the structure of the hub in the folding propeller shown in Figure 2;
- Figure 4 is a perspective view showing another perspective of the hub of Figure 3;
- FIG. 5 is a schematic perspective structural view of another hub provided by an embodiment of the present application.
- FIG. 6 is a schematic perspective structural view of still another propeller hub according to an embodiment of the present application.
- Figure 7 is a perspective view showing the structure of the blade in the folding propeller shown in Figure 2;
- Figure 8 is a perspective structural view of the connecting member in the folding propeller shown in Figure 2;
- Figure 9 is a cross-sectional view of the folding propeller of Figure 1;
- Figure 10 is a partial enlarged view of the circled portion A shown in Figure 9;
- FIG. 11 is a perspective structural view of another connecting member provided by an embodiment of the present application.
- FIG. 12 is an exploded perspective view of a power assembly according to another embodiment of the present application.
- FIG. 13 is a schematic perspective structural view of a drone according to another embodiment of the present application.
- the folding propeller provided by the embodiment of the present application is a foldable propeller including only one contact surface between the blade and the hub.
- the folding propeller can be integrally formed by injection molding, and only one contact surface needs to be adjusted during injection molding.
- the frictional force can adjust the rotational damping between the blade and the hub, which is convenient for mold adjustment, which is beneficial to mass production and reduce production cost.
- the hub of the folding propeller further includes a boss disposed on the second surface, and one end of each of the blades connected to the hub extends with a convex edge.
- the convex edge is overlapped on the boss, so that when the folding propeller rotates high, the force received by the end of the blade and the hub can be dispersed to the hub by the flange and the boss, without The provision of a clamping structure in the hub also ensures the reliability of the folding propeller during operation.
- the folding propeller provided by the embodiment of the present application can be applied to any type of drone, such as a rotary wing unmanned aerial vehicle, a tilting rotor unmanned aerial vehicle, and the like.
- the rotor unmanned aerial vehicle includes but is not limited to: a single rotor, a double rotor, a quadrotor, or a six-rotor.
- FIG. 1 is a perspective structural view of a folding propeller provided by one embodiment of the present application
- FIG. 2 is an exploded perspective view of the folding propeller shown in FIG. 1.
- the folding propeller 100 includes a hub 10, two blades 20, and two connectors 30.
- the hub 10 is used to mount the folding propeller 100 to a drive device.
- the hub 10 includes opposing first and second surfaces 101, 102, the first surface 101 facing the drive, and the second surface 102 facing away from the drive, each The paddles 20 are mounted to the second surface 102 by a connector 30 corresponding thereto, each of the blades 20 being rotatable relative to the hub 10, and the axis of rotation 20a of each paddle 20 and the axial centerline of the hub 10 10a (or the centerline of the axis of rotation of the drive) is parallel.
- the rotation axis 20a may be an axial center line of the connecting member 30.
- each of the blades 20 can be folded to the left or right with respect to the hub 10.
- the damping between the paddle 20 and the hub 10 needs to be controlled within a certain range to ensure that the paddle 20 can normally open when rotated, and each The damping of the paddle 20 and the hub 10 must not differ greatly to ensure that the dynamic balance of the folding propeller 100 meets flight requirements.
- the hub 10 is used to mount the blade 20, and the folding propeller 100 is mounted on the drive unit and fixedly coupled to the rotating shaft of the drive unit.
- the hub 10 is rotated at a high speed by the rotating shaft of the driving device, the two blades 20 are unfolded by the centrifugal force, and between the two blades 20 and the hub 10 when the two blades 20 are deployed.
- one of the blades 20 can be rotated to the left about the corresponding connector 30 relative to the hub 10 while the other blade 20 is connected to its corresponding connection
- the piece 30 is rotated to the right with respect to the hub 10, thereby achieving folding of the blade, saving space and being convenient to carry.
- each blade 20 can also be mounted on the second surface 102 of the hub 10 by a greater number of connectors 30.
- the hub 10 includes a main body portion 11 , two overlapping portions 12 connected to the main body portion 11 , and a boss 13 extending from the main body portion 11 .
- the main body portion 11 and the lap portion 12 each include two oppositely disposed surfaces, one surface of the main body portion 11 is coupled to one surface of the lap portion 12 to form a first surface 101, and the other surface of the main body portion 11 and the lap portion 12 The other surface is joined to form a second surface 102.
- the boss 12 is disposed on the second surface 102 of the body portion 11.
- the first surface 101 of the main body portion 11 is extended with a fastening member 113 for quickly detaching the folding propeller 100 to a driving device corresponding thereto.
- the number of the fasteners 113 may include, but is not limited to, 1, 2, 3, or 5, and the like.
- the fastening member 113 includes N, it may be evenly distributed on the first surface 101 of the main body portion 11 at an angle of 360°/N.
- three fastening members 113 are used, and the three fastening members 113 are evenly distributed on the first surface 101 of the main body portion 11 at an angle of 120°.
- Each of the fastening members 113 has a T shape, and includes a connecting portion extending from the bottom of the main body portion 11 and a fastening portion formed at an end of the connecting portion.
- the fastening portion of the fastening member 113 has a thickness or average thickness of at least 1.2 mm, and the height or average height of the fastening member 113 is at least 3.0 mm.
- the fastening member 113 can be quickly assembled and detached to the corresponding driving device.
- the fastening member 113 can also be omitted, and the folding propeller 100 can be fixedly mounted on its corresponding driving device in other manners.
- the lap portion 12 and the main body portion 11 may be two portions that are independently formed from each other, or may be integrally formed.
- Each of the laps 12 is formed with a through hole 121 for mounting the blade 20.
- each of the laps 12 is further provided with a first groove 122 on the first surface 101.
- the center line of the first groove 122 coincides with the central axis of the through hole 121 for receiving the corresponding The connector 30 lifts the compactness of the folding propeller 100.
- the first groove 122 can also be omitted.
- the lap portion 12 is in one-to-one correspondence with the blade 20 and the connecting member 30, and the lap portion 12 and the blade 20 are pivotally connected through the connecting member 30, and therefore, in practical application.
- the number of the laps 12 is also not limited to two.
- the boss 13 is disposed on the second surface 102 of the main body portion 11 for dispersing the tensile force of the blade 20 to the hub 10 when the folding propeller 100 rotates at a high speed, and lowering the blade 20
- the bending moment of the end connected to the hub 10 prevents the joint between the blade 20 and the hub 10 from being deformed due to excessive force, ensuring the service life of the end of the blade 20 connected to the hub 10 and the folding propeller 100 reliability at work.
- the boss 13 has a circular cross section and is coaxially disposed with the rotation axis of the corresponding driving device, and has a center hole 131 formed therein for fitting the rotation shaft of the corresponding driving device.
- the center line of the boss 13 coincides with the center line of the rotating shaft of the driving device, so that all the blades 20 can be subjected to the force that is received by the boss 13 Disperse to the hub 10, thereby reducing the number of bosses 13, facilitating modeling and reducing production costs.
- the bosses 13 may be disposed at other locations, and the number may not be limited to one.
- the number of the bosses 13' may be two or two.
- the bosses 13' (or the bosses 13') may be respectively disposed corresponding to the paddles 20, that is, one paddle 20 corresponds to one boss 13' (or the boss 13").
- the cross-section of the boss 13 is annular, on the one hand for the rotation of the paddle 20 relative to the hub 10, and on the other hand for the paddle 20 and the boss 13
- the cross section of the boss 13 may also be other shapes.
- the boss 13' of the hub 10' has a semicircular cross section; or, as shown in FIG. As shown in Fig. 6, the boss 13" of the hub 10" has a rectangular cross section.
- the reliability of the folding propeller 100 during operation is improved by providing the boss 13, and in other embodiments, if the propeller is in operation, the paddle 20 and the paddle When the moment at which one end of the hub 10 is connected is small, the boss 13 may be omitted.
- each of the blades 20 includes a pivoting portion 21 for connecting to the hub 10, and each of the pivoting portions 21 is overlapped on a corresponding overlapping portion 12 thereof and passed through a connecting member 30.
- the lap portion 12 is pivotally connected.
- the lower surface of the pivoting portion 21 is in contact with the second surface 102 of the overlapping portion 12.
- the pivoting portion 21 is formed with a mounting hole 211 corresponding to the through hole 121 of the lap portion 12, and the corresponding connecting member 30 is disposed in the mounting hole 211 and the through hole 121, thereby mounting the blade 20 on the lap portion 12.
- the paddle 20 and the lap portion 12 can be joined together by injection molding.
- the pivoting portion 21 is disposed on a side away from the overlapping portion 12 with a second groove 212 disposed coaxially with the mounting hole 211 for The corresponding connector 30 is received.
- the second groove 212 can also be omitted.
- a pivoting edge 213 is further extended on the pivoting portion 21 , and the protruding edge 213 is overlapped on the boss 13 , and the lower surface of the protruding edge 213 and the upper surface of the boss 13 .
- the force that the pivoting portion 21 receives can be transmitted to the boss 13 through the flange 213 and finally to the body portion 11.
- the convex edge 213 when the pulling force generated by the blade 20 rotating at a high speed causes the tip of the blade 20 (ie, the end of the blade 20 away from the hub 10) to generate an upward deformation displacement, under the action of the lever (the center point of the lever is When the pivoting portion 21 and the lap portion 21 are pivoted, the convex edge 213 generates a downward deformation displacement. Since the protruding edge 213 overlaps the boss 13, the boss 13 generates a convex edge 213.
- the upward reaction force balances the torque generated by the tension of the pivoting portion 21 of the blade 20 by the pulling force, so that the bending moment of the pivoting portion 21 is reduced, thereby preventing the mounting hole 211 in the pivoting portion 21 from being affected by The force is excessively deformed to ensure the service life of the pivoting portion 21 and the reliability of the folding propeller 100 during operation.
- the lower surface of the convex edge 213 and the upper surface of the boss 13 may also be non-contact, that is, the convex edge 213 is suspended and disposed on the boss 13 Above.
- the folding propeller 100 is driven to rotate by the driving device, since the tip of the blade 20 is subjected to an upward pulling force, the suspended convex edge 213 is in contact with the upper surface of the boss 13 at the time of the lever as described above. .
- the convex edge 213 has an arc shape, so that when the convex edge 213 generates a downward deformation displacement under the action of the lever, on the one hand, the contact of the convex edge 213 with the boss 13 can be increased.
- the area increases the force receiving surface of the flange 213 to better balance the torque experienced by the pivoting portion 21; on the other hand, it can also disperse the stress inside the flange 213, thereby avoiding the stress on the flange 213 due to internal stress. Concentrated and broken.
- the convex edge 213 is disposed in an arc shape, which is only one of the preferred embodiments. In other embodiments, the process conditions and the pivoting portion are comprehensively considered.
- the convex edge 213 can also be set to other suitable shapes due to factors such as the specific force condition of 21.
- the connecting member 30 has an “work” shape, including a first abutting portion 31 and a second abutting portion 32 disposed opposite to each other, and connecting the first abutting portion 31 and the second abutting portion.
- the connecting portion 33 of the portion 32 After the hub 10, the blade 20 and the connecting member 30 are assembled, the connecting portion 33 of the connecting member 30 is disposed in the through hole 121 and the mounting hole 211, and the first abutting portion 31 faces the surface of the second abutting portion 32.
- the first surface 101 abuts; the second abutting portion 32 faces the side of the first abutting portion 31 and the side of the blade 20 facing away from the overlapping portion 12 .
- the first abutting portion 31 is received in the first recess 122
- the second abutting portion 32 is received in the second recess 212 .
- the paddle 20 in order to rotate the paddle 20 relative to the hub 10, the paddle 20 can be fixedly coupled to the connector by injection molding, and the hub 10 can be pivotally coupled to the connector 30.
- the mounting hole 211 of the pivoting portion 21 is fitted to the connecting portion 33 of the connecting member 30, and a uniform gap is left between the through hole 121 of the overlapping portion 12 and the connecting portion 33.
- the connecting portion 33 of the connecting member 30 is provided with an annular groove 331 corresponding to the mounting hole 211, so that when the blade 20 and the connecting member 30 are connected by injection molding, the injection molding liquid of the blade 20
- the annular groove 331 can be flowed into the annular groove 331.
- the annular hole 2111 is formed in the mounting hole 211 of the blade 20, and the annular protrusion 2111 is engaged in the ring.
- the groove 331 is so as to prevent the paddle 20 from sliding up or down with respect to the connector 30.
- the annular groove 331 may be replaced by an annular protrusion (in this case, the annular hole is correspondingly formed in the mounting hole 211), as long as the blade 20 can be prevented from being upward or upward with respect to the connecting member 30. It is sufficient to slide down; or, in consideration of cost, the annular groove 331 can be omitted.
- the connecting member 30' shown in FIG. 11 and the second abutting portion 32' may further include a tooth portion 321 so that the blade 20 and the connecting member are connected by injection molding.
- the injection molding liquid can flow into the gap of the tooth portion 321 .
- the blade 20 forms a limiting groove corresponding to the tooth portion 321 , and the tooth portion 321 is locked in the limiting groove.
- the paddle 20 is prevented from rotating relative to the connector 30', enhancing the robustness of the connection of the blade 20 to the connector 30'.
- the folding propeller 100 provided by the embodiment of the present application can be formed by injection molding.
- the connector 30 may first be placed in a corresponding mold of the blade 20, the blade 20 is formed by injection molding, and the blade 20 and the connector 30 are fixedly connected; then the formed blade 20 and the connection are connected.
- the member 30 is placed in a corresponding mold of the hub 10 to form the hub 10, and the hub 10 is pivotally coupled to the connector 30.
- the folding propeller 100 provided by the embodiment of the present application opens the blade 20, there is only one contact surface between the blade 20 and the hub 10, therefore, the blade 20 and the paddle are adjusted.
- only one blade 20 needs to adjust the frictional force of one contact surface, which is convenient for mold adjustment, which is advantageous for mass production and saves production cost.
- the paddle 20 and the connecting member 30 are integrally formed by injection molding, so that the hub 10 and the connecting member 30 are pivotally connected, so that the paddle 20 can be opposite to the paddle.
- the hub 10 rotates.
- the connecting member 30 and the hub 10 may be integrally formed, and the connecting member 30 is pivotally connected to the paddle 20, for example, the through hole 121 of the overlapping portion 12 is connected with the connecting portion 12 during injection molding.
- the portion 33 is fitted with a uniform gap between the mounting hole 211 of the paddle 20 and the connecting portion 33 of the connector 30.
- annular groove or the like may be provided at a position corresponding to the through hole 121 of the connecting portion 33 to restrict the upward sliding of the hub 10 relative to the connecting member 30 (
- an annular protrusion is formed in the through hole 121, the annular protrusion is locked in the annular groove, and/or a tooth portion or the like is disposed in the first abutting portion 31 to restrict the relative connection of the hub 10.
- the structure of the member 30 is rotated (correspondingly, the hub 10 forms a limit groove corresponding to the tooth portion, and the tooth portion is locked in the limiting groove).
- the power assembly 130 includes the folding propeller 100 and the driving device 200 as described in the above embodiments.
- the folding propeller 100 is mounted on the driving device 200 via the hub 10, and the rotating shaft of the driving device 200 is fitted to the center hole 131 of the hub 10.
- the driving device 200 When the driving device 200 is in operation, its rotating shaft can drive the folding propeller 100 to rotate in a specific direction (ie, the rotating direction of the driving device 200: clockwise or counterclockwise), thereby being movable for applying the power assembly 130.
- Objects, such as drones, provide the power to move.
- the driving device 200 may be any device capable of driving the rotation of the folding propeller 100.
- it may include, but is not limited to, a brush motor, a brushless motor, a DC motor, a stepping motor, an AC induction motor, and the like.
- a mounting member for fixing the folding propeller 100 is fixedly mounted on the driving device 200.
- the fastening member 113 on the folding propeller 100 cooperates with the mounting member to realize quick assembly and disassembly between the folding propeller 100 and the driving device 200. .
- the manner of fixing between the folding propeller 100 and the driving device 200 may be other manners, which is not specifically limited in the embodiment of the present application.
- FIG. 13 is a schematic diagram of a three-dimensional structure of a drone according to another embodiment of the present disclosure.
- the drone 300 includes a body 110 , an arm 120 extending from the body 110 , and an arm respectively disposed on the arm Power assembly 130 as described in the above embodiment on 120.
- the fuselage 110 generally includes a control circuit component composed of electronic components such as an MCU, and the control circuit component includes a plurality of control modules, such as a flight control module for controlling the flight attitude of the drone 300, for navigating without A Beidou module of the human machine 300, and a data processing module for processing environmental information acquired by an associated onboard device (eg, an imaging device).
- the power assembly 130 is mounted to the arm 120 for powering the drone 300 and driving the drone 300 to fly and adjust the flight attitude.
- the drone may also be other types of multi-rotor drones, such as a single-rotor drone, a double-rotor drone, a six-rotor drone, etc.; or, the unmanned
- the machine may also be a tilt-rotor drone, which is not specifically limited in this embodiment of the present application.
- the hub of the folding propeller provided by the embodiment of the present application includes a first surface and a second surface disposed opposite to each other, the first surface facing the driving device connected to the folding propeller
- the second surface faces away from the driving device, and each blade is mounted on the second surface by a corresponding connecting member thereof, so that only one contact surface is included between the blade and the hub, and the mold is being adjusted. Only need to adjust the friction of one contact surface to adjust the rotational damping between the blade and the hub, which is convenient for mold adjustment, which is beneficial to mass production and reduce production cost.
- the hub of the folding propeller further includes a boss disposed on the second surface, and one end of each of the blades connected to the hub extends with a convex edge.
- the convex edge is overlapped on the boss, so that when the folding propeller rotates at a high speed, the force received by the end of the blade and the hub can be dispersed to the hub by the flange and the boss, without The provision of a clamping structure in the hub also ensures the reliability of the folding propeller during operation.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Toys (AREA)
Abstract
本申请实施例涉及螺旋桨技术领域,具体公开了一种折叠螺旋桨、动力组件及无人机。所述折叠螺旋桨包括桨毂、至少两个桨叶以及至少两个连接件,所述桨毂用于将所述折叠螺旋桨安装至驱动装置;所述桨毂包括相对设置的第一表面和第二表面,所述第一表面朝向所述驱动装置,所述第二表面背离所述驱动装置;每个所述桨叶通过与其对应的一个所述连接件安装在所述第二表面,每个所述桨叶均能够相对所述桨毂旋转。通过上述方式,本申请实施例能够在注塑调模时仅需调整一个接触面的摩擦力即可调整桨叶与桨毂之间的转动阻尼,方便调模,有利于批量化生产,降低生产成本。
Description
本申请要求于2017年12月19日提交中国专利局、申请号为2017113773459、申请名称为“一种折叠螺旋桨、动力组件及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及螺旋桨技术领域,特别是涉及一种折叠螺旋桨、应用该折叠螺旋桨的动力组件以及应用该动力组件的无人机。
无人机是一种通过无线电遥控设备和内置的程序来控制飞行姿态的不载人飞行器,由于其具有机动灵活、反应快速、无人驾驶、操作要求低等优点,现已广泛应用于航拍、植保、电力巡检、救灾等众多领域。随着无线互联网、无线局域网和图像处理技术的发展,无人机更是得到了越来越多用户的青睐。
螺旋桨是无人机的动力组件中的重要组成部分,其通常由桨毂和两个或者多个呈轴对称形式分布的桨叶组成,桨叶安装在桨毂上,桨毂固定安装在驱动装置上。当驱动装置转动时,通过桨毂带动桨叶一起旋转,从而为无人机提供前进的动力。
在实现本申请的过程中,发明人发现:目前,为方便用户携带无人机,减小无人机占用的空间,相关技术提出了一些可折叠的螺旋桨。然而,现有的可折叠螺旋桨一般通过夹持结构将桨叶安装在桨毂上,为使桨毂和桨叶之间具有相同的转动阻尼,需要调节桨叶与夹持结构的两个接触面的摩擦,不便于调模。
发明内容
本申请实施例提供一种折叠螺旋桨、动力组件及无人机,能够解决现有折叠螺旋桨不便于调模,生产成本高的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种折叠螺旋桨,该折叠螺旋桨包括桨毂、至少两个桨叶以及至少两个连接件,所述桨毂用于将所述折叠螺旋桨安装至驱动装置,其中,
所述桨毂包括相对设置的第一表面和第二表面,所述第一表面朝向所述驱动装置,所述第二表面背离所述驱动装置;
每个所述桨叶通过与其对应的一个所述连接件安装在所述第二表面,每个所述桨叶均能够相对所述桨毂旋转。
在一些实施例中,所述桨毂包括主体部和至少两个与所述主体部连接的搭接部,所述主体部和所述搭接部均包括相对设置的两个表面,所述主体部的一个表面与所述搭接部的一个表面连接形成所述第一表面,所述主体部的另一个表面与所述搭接部的另一个表面连接形成所述第二表面;
所述搭接部与所述桨叶及所述连接件一一对应,所述搭接部与所述桨叶通过所述连接件枢接。
在一些实施例中,每个所述桨叶包括枢接部,每个所述枢接部搭接在与其对应的一个搭接部上,并通过一个所述连接件与所述搭接部枢接。
在一些实施例中,所述枢接部的下表面与所述第二表面接触。
在一些实施例中,所述桨毂还包括设置于所述第二表面的凸台;
每个所述枢接部上延伸有凸沿,所述凸沿搭接在所述凸台上。
在一些实施例中,所述凸沿的下表面与所述凸台的上表面接触。
在一些实施例中,所述桨毂还包括设置于所述第二表面的凸台;
每个所述枢接部上延伸有凸沿,所述凸沿位于所述凸台的上方,当所述折叠螺旋桨被所述驱动装置驱动而旋转时,所述凸沿与所述凸台的上表面接触。
在一些实施例中,所述凸台的横截面呈环形。
在一些实施例中,所述凸台的中心线与所述驱动装置的转动轴的中心线重合。
在一些实施例中,所述凸台的数量为两个。
在一些实施例中,所述凸台的横截面呈半圆形或矩形。
在一些实施例中,所述凸沿呈圆弧状。
在一些实施例中,所述至少两个搭接部均形成有通孔;
所述至少两个枢接部对应所述通孔形成有安装孔;
所述连接件穿设在所述安装孔和所述通孔内,将所述桨叶安装于所述搭接部。
在一些实施例中,每个所述连接件均包括第一抵持部、第二抵持部以及连接所述第一抵持部和所述第二抵持部的连接部;
所述第一抵持部朝向所述第二抵持部的表面与所述第一表面抵持;
所述第二抵持部朝向所述第一抵持部的表面与所述桨叶背离所述搭接部的侧面抵持;
所述连接部穿设在所述安装孔和所述通孔内。
在一些实施例中,所述桨叶通过注塑成型的方式与所述连接件固定连接,所述桨毂与所述连接件枢接。
在一些实施例中,所述连接部设有环形凹槽,所述安装孔内设有环形凸 起,所述环形凸起卡设于所述环形凹槽内。
在一些实施例中,所述第二抵持部包括齿部,所述桨叶对应所述齿部设置有限位槽,所述齿部卡设于所述限位槽内。
在一些实施例中,所述桨毂通过注塑成型的方式与所述连接件固定连接,所述桨叶与所述连接件枢接。
在一些实施例中,所述连接部设有环形凹槽,所述通孔内设有环形凸起,所述环形凸起卡设于所述环形凹槽内。
在一些实施例中,所述第一抵持部包括齿部,所述桨毂对应所述齿部设置有限位槽,所述齿部卡设于所述限位槽内。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种动力组件,该动力组件包括:驱动装置,以及,安装在所述驱动装置上的如上所述的折叠螺旋桨。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种无人机,该无人机包括:如上所述的动力组件。
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施例提供的折叠螺旋桨的桨毂包括相对设置的第一表面和第二表面,所述第一表面朝向与该折叠螺旋桨连接的驱动装置,所述第二表面背离所述驱动装置,每个桨叶通过与其对应的一个连接件安装在所述第二表面,从而,桨叶与桨毂之间仅包括一个接触面,在进行注塑调模时仅需调整一个接触面的摩擦力即 可调整桨叶与桨毂之间的转动阻尼,方便调模,有利于批量化生产,降低生产成本。
进一步地,在本申请实施例中,该折叠螺旋桨的桨毂还包括设置于所述第二表面的凸台,并且,每个所述桨叶与所述桨毂连接的一端延伸有凸沿,所述凸沿搭接在所述凸台上,从而,在该折叠螺旋桨高速旋转时,可以通过凸沿和凸台将桨叶与桨毂连接的一端所承受的力分散给桨毂,无需在桨毂中设置夹持结构也可保证该折叠螺旋桨在工作时的可靠性。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请其中一个实施例提供的一种折叠螺旋桨的立体结构示意图;
图2是图1所示折叠螺旋桨的立体结构分解图;
图3是图2所示折叠螺旋桨中的桨毂的立体结构示意图;
图4是图3所示桨毂的另一个视角的立体结构示意图;
图5是本申请实施例提供的另一种桨毂的立体结构示意图;
图6是本申请实施例提供的又一种桨毂的立体结构示意图;
图7是图2所示折叠螺旋桨中的桨叶的立体结构示意图;
图8是图2所示折叠螺旋桨中的连接件的立体结构示意图;
图9是图1所示折叠螺旋桨的剖视图;
图10是图9所示圆圈部分A的局部放大图;
图11是本申请实施例提供的另一种连接件的立体结构示意图;
图12是本申请另一实施例提供的一种动力组件的立体结构分解图;
图13是本申请又一实施例提供的一种无人机的立体结构示意图。
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“顶部”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请实施例提供的折叠螺旋桨是一种桨叶与桨毂之间仅包括一个接触面的可折叠型螺旋桨,该折叠螺旋桨可通过注塑一体成型,在进行注塑调模时仅需调整一个接触面的摩擦力即可调整桨叶与桨毂之间的转动阻尼,方便调模,有利于批量化生产,降低生产成本。
进一步地,在本申请实施例中,该折叠螺旋桨的桨毂还包括设置于所述第二表面的凸台,并且,每个所述桨叶与所述桨毂连接的一端延伸有凸沿, 所述凸沿搭接在所述凸台上,从而,在该折叠螺旋桨高旋转时,可以通过凸沿和凸台将桨叶与桨毂连接的一端所承受的力分散给桨毂,无需在桨毂中设置夹持结构也可保证该折叠螺旋桨在工作时的可靠性。
本申请实施例提供的折叠螺旋桨能够适用于任意类型的无人机,比如:旋翼无人飞行器、倾转旋翼无人飞行器等。其中,所述旋翼无人飞行器包括但不限于:单旋翼、双旋翼、四旋翼、或六旋翼等。
具体地,下面结合说明书附图对本申请实施例提供的折叠螺旋桨、动力组件及无人机进行详细说明。
图1是本申请其中一个实施例提供的一种折叠螺旋桨的立体结构示意图,图2是图1所示折叠螺旋桨的立体分解图。请一并参阅图1和图2,该折叠螺旋桨100包括一个桨毂10、两个桨叶20以及两个连接件30。桨毂10用于将该折叠螺旋桨100安装至驱动装置,桨毂10包括相对设置的第一表面101和第二表面102,第一表面101朝向驱动装置,第二表面102背离驱动装置,每个桨叶20通过与其对应的一个连接件30安装在第二表面102,每个桨叶20均能够相对桨毂10旋转,并且每个桨叶20的旋转轴线20a与桨毂10的轴向中心线10a(或者,驱动装置的转动轴的中心线)平行。其中,所述旋转轴线20a可以是连接件30的轴向中心线。由此,在本申请实施例中,每个桨叶20均可以相对桨毂10向左或者向右折叠。
其中,应当理解的是,在本申请实施例中,桨叶20与桨毂10之间的阻尼需要控制在一定的范围之内,以保证桨叶20在旋转时可以正常打开,并且,每个桨叶20与桨毂10的阻尼也不能差别很大,以保证该折叠螺旋桨100的动平衡满足飞行要求。
其中,桨毂10用于安装桨叶20,以及,将该折叠螺旋桨100安装在驱动装置上,并与驱动装置的转动轴固定连接。当桨毂10在驱动装置的转动轴的带动下高速转动时,两个桨叶20因受到离心力的作用而展开,在两个桨叶20展开时,两个桨叶20与桨毂10之间具有相同的转动阻尼;而当收纳该折叠螺旋桨100时,可以使其中一个桨叶20绕与其对应的连接件30相对桨毂10向左转动,同时使另一个桨叶20绕与其对应的连接件30相对桨毂10向右转动,从而实现桨叶的折叠,节省空间,方便携带。
其中,应当理解的是,虽然在本实施例中仅以两个桨叶20和两个连接件30为例进行说明,但在其他的一些实施例中,还可以包括更多数量的桨叶20以及连接件30,每个桨叶20也可以通过更多数量的连接件30安装在桨毂10的第二表面102上。
具体地,请一并参阅图3和图4,桨毂10包括主体部11、两个与主体部11连接的搭接部12以及自主体部11延伸的凸台13。主体部11和搭接部12均包括相对设置的两个表面,主体部11的一个表面与搭接部12的一个表面连接形成第一表面101,主体部11的另一个表面与搭接部12的另一个表面连接形成第二表面102。凸台12设置在主体部11的第二表面102上。
其中,在本实施例中,如图4所示,该主体部11的第一表面101延伸设置有用于将该折叠螺旋桨100快速装拆至与其对应的驱动装置的扣接件113。该扣接件113的数量可以包括但不限于:1个、2个、3个或者5个等等。当扣接件113包括N个时,可以按照角度为360°/N均布于该主体部11的第一表面101。其中,在本实施例中,采用三个扣接件113,这三个扣接件113按角度为120°均布于主体部11的第一表面101。其中,每一扣接件113呈T 形,包括从主体部11的底部延伸出的连接部以及在连接部末端形成的扣合部。特别地,为了提升将折叠螺旋桨100安装于其对应的驱动装置的稳固性,该扣接件113的扣合部的厚度或平均厚度至少为1.2毫米,扣接件113的高度或平均高度至少为3.0毫米。在本实施例中,通过在主体部11的第一表面101设置扣接件113,可以便于将该折叠螺旋桨100快速装拆至与其对应的驱动装置上。当然,在实际应用中,也可以省略该扣接件113,以其他方式将该折叠螺旋桨100固定安装在其对应的驱动装置上。
其中,在本实施例中,搭接部12与主体部11之间可以是相互独立成型的两个部分,也可以一体成型。每一个搭接部12均形成有通孔121,用于安装桨叶20。如图4所示,每一搭接部12在第一表面101还设置有第一凹槽122,该第一凹槽122的中心线与通孔121的中心轴线重合,用于收容其对应的连接件30,提升该折叠螺旋桨100的紧凑性。当然,可以理解的是,在一些实施例中,也可以省略该第一凹槽122。此外,还可以理解的是,在本实施例中,搭接部12与桨叶20及连接件30一一对应,搭接部12与桨叶20通过连接件30枢接,因此,在实际应用中,搭接部12的数量同样不限于两个。
其中,在本实施例中,凸台13设置在主体部11的第二表面102上,用于将该折叠螺旋桨100高速旋转时桨叶20所承受的拉力分散至桨毂10,降低桨叶20与桨毂10连接的一端所承受的弯矩,防止桨叶20与桨毂10的连接处因受力过大而变形,保证桨叶20与桨毂10连接的一端的使用寿命以及该折叠螺旋桨100在工作时的可靠性。特别地,在本实施例中,凸台13的横截面呈环形,并且与其对应的驱动装置的转动轴同轴设置,其中心形成有中心孔131,用于装配对应的驱动装置的转动轴。
其中,可以理解的是,在本实施例中,凸台13的中心线与驱动装置的转动轴的中心线重合,能够使得所有桨叶20均可与通过该凸台13将其所承受的力分散至桨毂10,从而可以减少凸台13的数量,方便建模,降低生产成本。而在其他的一些实施例中,凸台13也可以设置在其他的位置上,并且数量也可以不限于1个。比如,如图5所示的桨毂10'(或,如图6所示的桨毂10”)中,凸台13'(或,凸台13”)的数量也可以是两个,两个凸台13'(或,凸台13”)可以分别对应桨叶20设置,即,一个桨叶20对应一个凸台13'(或,凸台13”)。
此外,还可以理解的是,在本实施例中,凸台13的横截面呈环形,一方面是为了方便桨叶20相对桨毂10转动,另一方面是为了在桨叶20与凸台13抵持时增大凸台13与桨叶10的接触面积,增强受力的分散效果,进一步提升该折叠螺旋桨100在高速旋转时的稳定性。在其他的一些实施例中,凸台13的横截面也可以是其他的形状,比如,如图5所示,桨毂10'的凸台13'的横截面呈半圆形;或者,如图6所示,桨毂10”的凸台13”的横截面呈矩形。
再者,还可以理解的是,在本实施例中,通过设置凸台13提升折叠螺旋桨100在工作时的可靠性,在其他的一些实施例中,若在螺旋桨工作时,桨叶20与桨毂10连接的一端所承受的力矩较小时,也可以省略该凸台13。
请参阅图7,每一桨叶20包括用于与桨毂10连接的枢接部21,每个枢接部21搭接在与其对应的一个搭接部12上,并通过一个连接件30与搭接部12枢接。其中,该枢接部21的下表面与搭接部12的第二表面102接触。枢接部21对应搭接部12的通孔121形成有安装孔211,其对应的连接件30穿 设在该安装孔211与通孔121内,从而将桨叶20安装在搭接部12的上方(即,第二表面102)。特别地,在本实施例中,可以通过注塑成型的方式将桨叶20和搭接部12连接在一起。进一步地,为了提升该折叠螺旋桨100的紧凑性,枢接部21在远离搭接部12的一侧设置有第二凹槽212,该第二凹槽212与安装孔211同轴设置,用于收容其对应的连接件30。同样地,可以理解的是,在其他的一些实施例中,也可以省略该第二凹槽212。
具体地,请一并参阅图1和图7,枢接部21上还延伸有凸沿213,该凸沿213搭接在凸台13上,凸沿213的下表面与凸台13的上表面接触,从而,当该折叠螺旋桨100高速旋转时,枢接部21所承受的力可以通过凸沿213传递给凸台13,最后分散至主体部11。具体为,当桨叶20高速旋转而产生的拉力使桨叶20的叶尖(即,桨叶20远离桨毂10的一端)产生向上的形变位移时,在杠杆作用下(其杠杆中心点为枢接部21与搭接部21的枢接处),凸沿213会产生一个向下的形变位移,由于该凸沿213与凸台13搭接,所以凸台13会对凸沿213产生一个向上的反作用力,进而平衡桨叶20的枢接部21因受到拉力作用而产生的扭矩,使枢接部21所承受的弯矩减小,从而防止枢接部21内的安装孔211因受力过大而变形,保障枢接部21的使用寿命,以及,该折叠螺旋桨100工作时的可靠性。
其中,在另一些实施例中,在折叠螺旋桨100静止的自然状态下,凸沿213的下表面和凸台13的上表面也可以是不接触的,即,凸沿213悬空设置在凸台13的上方。当折叠螺旋桨100被驱动装置驱动而旋转时,由于桨叶20的桨尖受到向上的拉力,在如上所述的杠杆作用下,此时悬空的凸沿213才会与凸台13的上表面接触。
进一步地,在本实施例中,该凸沿213呈圆弧状,从而,当凸沿213在杠杆作用下产生向下的形变位移时,一方面,可以增加凸沿213与凸台13的接触面积,进而增大凸沿213的受力面,更好地平衡枢接部21所承受的扭矩;另一方面,还可以分散凸沿213内部的应力,避免凸沿213因内部承受的应力过于集中而断裂。
其中,可以理解的是,在本实施例中,将该凸沿213设置为圆弧状仅为其中一种较优的实施方式,在其他的一些实施例中,综合考虑工艺条件以及枢接部21的具体受力情况等因素,也可以将该凸沿213设置成其他合适的形状。
具体地,请参阅图8,连接件30呈“工”字型,包括相对设置的第一抵持部31和第二抵持部32,以及,连接第一抵持部31和第二抵持部32的连接部33。桨毂10、桨叶20和连接件30完成装配后,连接件30的连接部33穿设在通孔121和安装孔211内,第一抵持部31朝向第二抵持部32的表面与第一表面101抵持;第二抵持部32朝向第一抵持部31的表面与桨叶20背离搭接部12的侧面抵持。具体地,在本实施例中,第一抵持部31收容于第一凹槽122内,第二抵持部32收容于第二凹槽212内。
其中,在本实施例中,为了使得桨叶20可以相对桨毂10转动,可以通过注塑成型的方式使桨叶20与连接件固定连接,并且,使桨毂10与连接件30枢接。具体为,在注塑成型时,使枢接部21的安装孔211与连接件30的连接部33适配,而搭接部12的通孔121与连接部33之间留有均匀间隙。
进一步地,在本实施例中,连接件30的连接部33对应安装孔211设置有环形凹槽331,从而,当通过注塑的方式连接桨叶20和连接件30时,桨叶 20的注塑液可以流入该环形凹槽331,在注塑液冷却并成型后,如图9和图10所示,桨叶20的安装孔211内对应形成环形凸起2111,该环形凸起2111卡设于该环形凹槽331内,从而可以防止桨叶20相对连接件30向上或者向下滑动。当然,在其他的一些实施例中,也可以以环形凸起来代替该环形凹槽331(此时,安装孔211内对应形成环形凹槽),只要能够防止桨叶20相对连接件30向上或者向下滑动即可;或者,考虑到成本的因素,也可以省略该环形凹槽331。
此外,在另一些实施例中,如图11所示的连接件30',其第二抵持部32'还可以包括齿部321,从而,在通过注塑成型的方式连接桨叶20和连接件30'时,注塑液可以流入该齿部321的缝隙内,在注塑液冷却并成型后,所述桨叶20对应该齿部321形成限位槽,齿部321卡设于该限位槽内,从而防止桨叶20与连接件30'相对转动,增强桨叶20与连接件30'的连接的牢固性。
在实际应用中,可以通过注塑成型的方式形成本申请实施例提供的折叠螺旋桨100。比如,可以首先将连接件30放置在桨叶20对应的模具中,通过注塑成型的方式形成桨叶20,并将桨叶20和连接件30固定连接;然后将成型后的桨叶20和连接件30放到桨毂10对应的模具中形成桨毂10,并使桨毂10与连接件30枢接。其中,在注塑成型的过程中,由于本申请实施例提供的折叠螺旋桨100在打开桨叶20时,桨叶20与桨毂10之间仅有一个接触面,因此,在调整桨叶20与桨毂10之间的转动阻尼时,对应一个桨叶20仅需调整一个接触面的摩擦力,方便调模,有利于批量化生产,节省生产成本。
其中,可以理解的是,在本实施例中,通过注塑成型的方式使桨叶20与连接件30形成一体的结构,使桨毂10与连接件30枢接,从而使桨叶20能 够相对桨毂10转动。在其他的一些实施例中,也可以使连接件30与桨毂10为一体结构,连接件30与桨叶20枢接,比如:在注塑成型时,使搭接部12的通孔121与连接部33适配,而桨叶20的安装孔211与连接件30的连接部33之间留有均匀间隙。进一步地,为了提升桨毂10与连接件30之间的连接的稳固性,还可以在连接部33对应通孔121的位置设置环形凹槽等限制桨毂10相对连接件30上下滑动的结构(相应地,在通孔121内形成环形凸起,所述环形凸起卡设于所述环形凹槽内),和/或,在第一抵持部31设置齿部等限制桨毂10相对连接件30转动的结构(相应地,桨毂10对应所述齿部形成有限位槽,所述齿部卡设于所述限位槽内)。
请参阅图12,为本申请另一实施例提供的一种动力组件的立体分解图,该动力组件130包括:如上述实施例所述的折叠螺旋桨100和驱动装置200。该折叠螺旋桨100通过桨毂10安装在驱动装置200上,驱动装置200的转动轴装配于桨毂10的中心孔131。当驱动装置200运转时,其转动轴可带动该折叠螺旋桨100沿着特定的方向(即驱动装置200的转动方向:顺时针方向或者逆时针方向)旋转,从而为应用该动力组件130的可移动物体,比如,无人机,提供移动的动力。
其中,该驱动装置200可以是任意能够驱动折叠螺旋桨100转动的装置,比如,其可以包括但不限于:有刷电机、无刷电机、直流电机、步进电机、交流感应电机等。该驱动装置200上固定安装有用于固定该折叠螺旋桨100的安装件,折叠螺旋桨100上的扣接件113与该安装件配合,可以实现该折叠螺旋桨100与该驱动装置200之间的快速装拆。
当然,在其他的一些实施例中,折叠螺旋桨100与驱动装置200之间的 固定方式也可以是其他方式,本申请实施例对此不作具体限定。
请参阅图13,为本申请又一实施例提供的一种无人机的立体结构示意图,该无人机300包括:机身110、自机身110延伸的机臂120以及分别设置在机臂120上的如上述实施例所述的动力组件130。
其中,机身110内通常包括由MCU等电子元器件组成的控制电路组件,该控制电路组件包括多个控制模块,如,用于控制无人机300飞行姿态的飞行控制模块、用于导航无人机300的北斗模块、以及用于处理相关机载设备(如,摄像装置)所获取的环境信息的数据处理模块等。动力组件130安装于机臂120,用于为无人机300提供动力,并带动无人机300飞行以及进行飞行姿态的调整。
其中,可以理解的是,在本申请实施例中,仅以四旋翼无人机为例进行说明,但其并不用于限定本申请。在其他的一些实施例中,该无人机也可以是其他类型的多旋翼无人机,比如:单旋翼无人机、双旋翼无人机、六旋翼无人机等;或者,该无人机还可以是倾转旋翼无人机,本申请实施例对此不作具体限定。
总的来说,区别于现有技术的情况,本申请实施例提供的折叠螺旋桨的桨毂包括相对设置的第一表面和第二表面,所述第一表面朝向与该折叠螺旋桨连接的驱动装置,所述第二表面背离所述驱动装置,每个桨叶通过与其对应的一个连接件安装在所述第二表面,从而,桨叶与桨毂之间仅包括一个接触面,在进行调模时仅需调整一个接触面的摩擦力即可调整桨叶与桨毂之间的转动阻尼,方便调模,有利于批量化生产,降低生产成本。
进一步地,在本申请实施例中,该折叠螺旋桨的桨毂还包括设置于所述 第二表面的凸台,并且,每个所述桨叶与所述桨毂连接的一端延伸有凸沿,所述凸沿搭接在所述凸台上,从而,在该折叠螺旋桨高速旋转时,可以通过凸沿和凸台将桨叶与桨毂连接的一端所承受的力分散给桨毂,无需在桨毂中设置夹持结构也可保证该折叠螺旋桨在工作时的可靠性。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (22)
- 一种折叠螺旋桨,其特征在于,包括桨毂、至少两个桨叶以及至少两个连接件,所述桨毂用于将所述折叠螺旋桨安装至驱动装置,其中,所述桨毂包括相对设置的第一表面和第二表面,所述第一表面朝向所述驱动装置,所述第二表面背离所述驱动装置;每个所述桨叶通过与其对应的一个所述连接件安装在所述第二表面,每个所述桨叶均能够相对所述桨毂旋转。
- 根据权利要求1所述的折叠螺旋桨,其特征在于,所述桨毂包括主体部和至少两个与所述主体部连接的搭接部,所述主体部和所述搭接部均包括相对设置的两个表面,所述主体部的一个表面与所述搭接部的一个表面连接形成所述第一表面,所述主体部的另一个表面与所述搭接部的另一个表面连接形成所述第二表面;所述搭接部与所述桨叶及所述连接件一一对应,所述搭接部与所述桨叶通过所述连接件枢接。
- 根据权利要求2所述的折叠螺旋桨,其特征在于,每个所述桨叶包括枢接部,每个所述枢接部搭接在与其对应的一个搭接部上,并通过一个所述连接件与所述搭接部枢接。
- 根据权利要求3所述的折叠螺旋桨,其特征在于,所述枢接部的下表面与所述第二表面接触。
- 根据权利要求3或4所述的折叠螺旋桨,其特征在于,所述桨毂还包括设置于所述第二表面的凸台;每个所述枢接部上延伸有凸沿,所述凸沿搭接在所述凸台上。
- 根据权利要求5所述的折叠螺旋桨,其特征在于,所述凸沿的下表面与所述凸台的上表面接触。
- 根据权利要求3或4所述的折叠螺旋桨,其特征在于,所述桨毂还包括设置于所述第二表面的凸台;每个所述枢接部上延伸有凸沿,所述凸沿位于所述凸台的上方,当所述折叠螺旋桨被所述驱动装置驱动而旋转时,所述凸沿与所述凸台的上表面接触。
- 根据权利要求5-7任一项所述的折叠螺旋桨,其特征在于,所述凸台的横截面呈环形。
- 根据权利要求5-8任一项所述的折叠螺旋桨,其特征在于,所述凸台的中心线与所述驱动装置的转动轴的中心线重合。
- 根据权利要求5-7任一项所述的折叠螺旋桨,其特征在于,所述凸台的数量为两个。
- 根据权利要求10所述的折叠螺旋桨,其特征在于,所述凸台的横截面呈半圆形或矩形。
- 根据权利要求5-11任一项所述的折叠螺旋桨,其特征在于,所述凸沿呈圆弧状。
- 根据权利要求3-12任一项所述的折叠螺旋桨,其特征在于,所述至少两个搭接部均形成有通孔;所述至少两个枢接部对应所述通孔形成有安装孔;所述连接件穿设在所述安装孔和所述通孔内,将所述桨叶安装于所述搭接部。
- 根据权利要求13所述的折叠螺旋桨,其特征在于,每个所述连接件均包括第一抵持部、第二抵持部以及连接所述第一抵持部和所述第二抵持部的连接部;所述第一抵持部朝向所述第二抵持部的表面与所述第一表面抵持;所述第二抵持部朝向所述第一抵持部的表面与所述桨叶背离所述搭接部的侧面抵持;所述连接部穿设在所述安装孔和所述通孔内。
- 根据权利要求14所述的折叠螺旋桨,其特征在于,所述桨叶通过注塑成型的方式与所述连接件固定连接,所述桨毂与所述连接件枢接。
- 根据权利要求15所述的折叠螺旋桨,其特征在于,所述连接部设有环形凹槽,所述安装孔内设有环形凸起,所述环形凸起卡设于所述环形凹槽内。
- 根据权利要求15或16所述的折叠螺旋桨,其特征在于,所述第二抵持部包括齿部,所述桨叶对应所述齿部设置有限位槽,所述齿部卡设于所述限位槽内。
- 根据权利要求14所述的折叠螺旋桨,其特征在于,所述桨毂通过注塑成型的方式与所述连接件固定连接,所述桨叶与所述连接件枢接。
- 根据权利要求18所述的折叠螺旋桨,其特征在于,所述连接部设有环形凹槽,所述通孔内设有环形凸起,所述环形凸起卡设于所述环形凹槽内。
- 根据权利要求18或19所述的折叠螺旋桨,其特征在于,所述第一抵持部包括齿部,所述桨毂对应所述齿部设置有限位槽,所述齿部卡设于所 述限位槽内。
- 一种动力组件,其特征在于,包括:驱动装置,以及,安装在所述驱动装置上的如权利要求1-20任一项所述的折叠螺旋桨。
- 一种无人机,其特征在于,包括如权利要求21所述的动力组件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18891318.0A EP3730399B1 (en) | 2017-12-19 | 2018-09-05 | Foldable propeller, power component, and unmanned aerial vehicle |
US16/906,561 US12110097B2 (en) | 2017-12-19 | 2020-06-19 | Folding propeller, power component and unmanned aerial vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711377345.9 | 2017-12-19 | ||
CN201711377345.9A CN107891968B (zh) | 2017-12-19 | 2017-12-19 | 一种折叠螺旋桨、动力组件及无人机 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/906,561 Continuation US12110097B2 (en) | 2017-12-19 | 2020-06-19 | Folding propeller, power component and unmanned aerial vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019119877A1 true WO2019119877A1 (zh) | 2019-06-27 |
Family
ID=61807788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/104149 WO2019119877A1 (zh) | 2017-12-19 | 2018-09-05 | 折叠螺旋桨、动力组件及无人机 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12110097B2 (zh) |
EP (1) | EP3730399B1 (zh) |
CN (2) | CN107891968B (zh) |
WO (1) | WO2019119877A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230017339A1 (en) * | 2019-12-09 | 2023-01-19 | Aerovironment, Inc. | Systems and methods for starting a sensorless motor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107891968B (zh) | 2017-12-19 | 2024-06-07 | 深圳市道通智能航空技术股份有限公司 | 一种折叠螺旋桨、动力组件及无人机 |
CN108725774A (zh) * | 2018-06-14 | 2018-11-02 | 深圳市飞米机器人科技有限公司 | 桨叶、螺旋桨、动力装置及多旋翼飞行器 |
WO2020000239A1 (zh) * | 2018-06-27 | 2020-01-02 | 深圳市大疆创新科技有限公司 | 可折叠螺旋桨及无人飞行器 |
CN110770125A (zh) * | 2018-11-21 | 2020-02-07 | 深圳市大疆创新科技有限公司 | 多旋翼无人飞行器 |
WO2022077285A1 (zh) * | 2020-10-14 | 2022-04-21 | 深圳市大疆创新科技有限公司 | 多旋翼无人飞行器 |
KR20220056573A (ko) * | 2020-10-28 | 2022-05-06 | 현대자동차주식회사 | 에어모빌리티의 프로펠러 폴딩 장치 |
CN112607003B (zh) * | 2020-11-25 | 2023-06-20 | 常州市长昊机械有限公司 | 一种易收纳式航空叶片 |
CN114735208A (zh) * | 2022-03-01 | 2022-07-12 | 深圳飞马机器人科技有限公司 | 一种桨叶限位装置及无人机 |
EP4431386A1 (de) * | 2023-03-16 | 2024-09-18 | maxon international ag | Rotornabe für luftfahrzeuge mit propellerantrieb sowie baugruppe mit einer derartigen rotornabe |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252504A (en) * | 1978-10-10 | 1981-02-24 | Textron, Inc. | Helicopter blade folding system |
WO2014141154A1 (en) * | 2013-03-14 | 2014-09-18 | Aeryon Labs Inc. | Folding propellers system |
CN105035303A (zh) * | 2015-08-19 | 2015-11-11 | 无锡觅睿恪科技有限公司 | 折叠型航拍飞行器 |
CN205524938U (zh) * | 2016-01-19 | 2016-08-31 | 深圳市大疆创新科技有限公司 | 折叠螺旋桨、动力组件及无人机 |
CN205661662U (zh) * | 2016-06-07 | 2016-10-26 | 洛克希德(武汉)无人机科学研究院有限公司 | 一种应用于无人机的半封闭自吸带滤网动力装置 |
JP2017128258A (ja) * | 2016-01-21 | 2017-07-27 | 株式会社松田康利事務所 | ローターおよびマルチコプター |
CN206502024U (zh) * | 2016-12-30 | 2017-09-19 | 重庆零度智控智能科技有限公司 | 无人机及其折叠式螺旋桨固定结构 |
US20170284371A1 (en) * | 2016-03-30 | 2017-10-05 | Lockheed Martin Corporation | Wind-Powered Recharging for a Weight-Shifting Coaxial Helicopter |
CN107235145A (zh) * | 2017-06-01 | 2017-10-10 | 中科创达软件股份有限公司 | 桨叶自动折叠装置、无人机机臂及无人机 |
CN107891968A (zh) * | 2017-12-19 | 2018-04-10 | 深圳市道通智能航空技术有限公司 | 一种折叠螺旋桨、动力组件及无人机 |
CN207758997U (zh) * | 2017-12-19 | 2018-08-24 | 深圳市道通智能航空技术有限公司 | 一种折叠螺旋桨、动力组件及无人机 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2030879A (en) * | 1978-10-05 | 1980-04-16 | Walton J | A toy aircraft |
US4936526A (en) * | 1989-02-02 | 1990-06-26 | Williams International Corporation | Foldable counter-rotating propfan blades |
DE4420219A1 (de) * | 1994-06-06 | 1995-12-07 | Stemme Gmbh & Co Kg | Luftfahrzeug |
EP3145811A4 (en) * | 2014-05-23 | 2018-05-23 | LR Acquisition, LLC | Unmanned aerial copter for photography and/or videography |
CN105460206B (zh) * | 2014-09-10 | 2018-03-20 | 深圳一电航空技术有限公司 | 无人机 |
CN204548482U (zh) * | 2015-04-15 | 2015-08-12 | 武汉高德无人机科技有限公司 | 一种能定位展开与回收状态的折叠型螺旋桨机构 |
KR101726652B1 (ko) * | 2015-07-31 | 2017-04-13 | 한국항공우주연구원 | 무인 비행체용 날개 |
CN105564635B (zh) * | 2016-01-19 | 2019-04-02 | 深圳市大疆创新科技有限公司 | 折叠螺旋桨、动力组件、无人机及折叠螺旋桨制作方法 |
KR102451679B1 (ko) * | 2016-03-30 | 2022-10-07 | 삼성전자주식회사 | 무인 비행체 |
US10814968B2 (en) * | 2016-03-30 | 2020-10-27 | Lockheed Martin Corporation | Hinge mechanism for a weight-shifting coaxial helicopter |
CN107108028B (zh) * | 2016-04-13 | 2020-05-26 | 深圳市大疆创新科技有限公司 | 桨夹、折叠桨、动力套装及无人机 |
CN105947182B (zh) * | 2016-05-25 | 2019-02-19 | 李帜 | 一种可折叠螺旋桨和飞行器 |
CN205661661U (zh) * | 2016-06-05 | 2016-10-26 | 吴敏 | 螺旋桨桨叶定位折叠结构 |
CN207120874U (zh) * | 2016-08-31 | 2018-03-20 | 深圳市大疆创新科技有限公司 | 螺旋桨 |
US10543915B2 (en) * | 2017-03-10 | 2020-01-28 | Gopro, Inc. | Self-folding propeller |
JP3211001U (ja) * | 2017-04-07 | 2017-06-15 | 勉 横山 | プロペラ取付用マウント及びそれを備えた電動モータ |
CN207875978U (zh) * | 2017-10-31 | 2018-09-18 | 深圳市大疆创新科技有限公司 | 一种折叠桨及无人飞行器 |
-
2017
- 2017-12-19 CN CN201711377345.9A patent/CN107891968B/zh active Active
- 2017-12-19 CN CN202410644255.5A patent/CN118579293A/zh active Pending
-
2018
- 2018-09-05 WO PCT/CN2018/104149 patent/WO2019119877A1/zh unknown
- 2018-09-05 EP EP18891318.0A patent/EP3730399B1/en active Active
-
2020
- 2020-06-19 US US16/906,561 patent/US12110097B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252504A (en) * | 1978-10-10 | 1981-02-24 | Textron, Inc. | Helicopter blade folding system |
WO2014141154A1 (en) * | 2013-03-14 | 2014-09-18 | Aeryon Labs Inc. | Folding propellers system |
CN105035303A (zh) * | 2015-08-19 | 2015-11-11 | 无锡觅睿恪科技有限公司 | 折叠型航拍飞行器 |
CN205524938U (zh) * | 2016-01-19 | 2016-08-31 | 深圳市大疆创新科技有限公司 | 折叠螺旋桨、动力组件及无人机 |
JP2017128258A (ja) * | 2016-01-21 | 2017-07-27 | 株式会社松田康利事務所 | ローターおよびマルチコプター |
US20170284371A1 (en) * | 2016-03-30 | 2017-10-05 | Lockheed Martin Corporation | Wind-Powered Recharging for a Weight-Shifting Coaxial Helicopter |
CN205661662U (zh) * | 2016-06-07 | 2016-10-26 | 洛克希德(武汉)无人机科学研究院有限公司 | 一种应用于无人机的半封闭自吸带滤网动力装置 |
CN206502024U (zh) * | 2016-12-30 | 2017-09-19 | 重庆零度智控智能科技有限公司 | 无人机及其折叠式螺旋桨固定结构 |
CN107235145A (zh) * | 2017-06-01 | 2017-10-10 | 中科创达软件股份有限公司 | 桨叶自动折叠装置、无人机机臂及无人机 |
CN107891968A (zh) * | 2017-12-19 | 2018-04-10 | 深圳市道通智能航空技术有限公司 | 一种折叠螺旋桨、动力组件及无人机 |
CN207758997U (zh) * | 2017-12-19 | 2018-08-24 | 深圳市道通智能航空技术有限公司 | 一种折叠螺旋桨、动力组件及无人机 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3730399A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230017339A1 (en) * | 2019-12-09 | 2023-01-19 | Aerovironment, Inc. | Systems and methods for starting a sensorless motor |
Also Published As
Publication number | Publication date |
---|---|
EP3730399B1 (en) | 2024-07-10 |
CN118579293A (zh) | 2024-09-03 |
EP3730399A4 (en) | 2021-09-29 |
CN107891968A (zh) | 2018-04-10 |
US20200317325A1 (en) | 2020-10-08 |
US12110097B2 (en) | 2024-10-08 |
EP3730399A1 (en) | 2020-10-28 |
CN107891968B (zh) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019119877A1 (zh) | 折叠螺旋桨、动力组件及无人机 | |
WO2019033769A1 (zh) | 折叠螺旋桨、动力组件以及无人飞行器 | |
CN205554572U (zh) | 无人飞行器及其机架 | |
EP2604520B1 (en) | Multiple-yoke main rotor assembly | |
US11801935B2 (en) | Propeller, propeller kit, power assembly, power kit and unmanned aerial vehicle | |
EP3549872B1 (en) | Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle | |
US20190055003A1 (en) | Foldable propeller, power assembly and unmanned aerial vehicle | |
US20120043412A1 (en) | Rotor Hub and Controls for Multi-Bladed Rotor System | |
WO2019033768A1 (zh) | 一种螺旋桨、动力系统以及无人飞行器 | |
CN108750075B (zh) | 一种螺旋桨组件、动力组件及无人飞行器 | |
WO2019242225A1 (zh) | 无人飞行器及其机臂组件和转轴机构 | |
US9352830B2 (en) | Aircraft rotor with discrete flap hinge | |
WO2018076470A1 (zh) | 无人飞行器 | |
WO2024093476A1 (zh) | 共轴双旋翼无人机 | |
WO2019128313A1 (zh) | 一种螺旋桨、动力组件及无人机 | |
WO2018086203A1 (zh) | 电机及具有该电机的无人机 | |
WO2018077112A1 (zh) | 一种螺旋桨、动力组件及无人机 | |
CN207758997U (zh) | 一种折叠螺旋桨、动力组件及无人机 | |
WO2019062389A1 (zh) | 一种螺旋桨、动力组件及无人机 | |
WO2021013188A1 (zh) | 螺旋桨保护罩及飞行器 | |
CN207875976U (zh) | 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机 | |
CN217994770U (zh) | 一种飞行装置舵面传动机构 | |
CN218022167U (zh) | 一种巡检用的四旋翼无人机 | |
WO2019041509A1 (zh) | 云台、云台系统、无人机和无人机系统 | |
WO2022052645A1 (zh) | 无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18891318 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018891318 Country of ref document: EP Effective date: 20200720 |