WO2019033769A1 - 折叠螺旋桨、动力组件以及无人飞行器 - Google Patents

折叠螺旋桨、动力组件以及无人飞行器 Download PDF

Info

Publication number
WO2019033769A1
WO2019033769A1 PCT/CN2018/082659 CN2018082659W WO2019033769A1 WO 2019033769 A1 WO2019033769 A1 WO 2019033769A1 CN 2018082659 W CN2018082659 W CN 2018082659W WO 2019033769 A1 WO2019033769 A1 WO 2019033769A1
Authority
WO
WIPO (PCT)
Prior art keywords
paddle
blade
assembly
folding propeller
blade assembly
Prior art date
Application number
PCT/CN2018/082659
Other languages
English (en)
French (fr)
Inventor
罗东东
苏文兵
孙维
张海浪
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP18759836.2A priority Critical patent/EP3470334A4/en
Priority to US16/130,172 priority patent/US20190055003A1/en
Publication of WO2019033769A1 publication Critical patent/WO2019033769A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/28Collapsible or foldable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors

Definitions

  • the present application relates to the field of unmanned aerial vehicles, and more particularly to a folding propeller, a power assembly to which the folding propeller is applied, and an unmanned aerial vehicle to which the power assembly is applied.
  • the unmanned aerial vehicle is a non-manned aerial vehicle that controls the flight attitude through radio remote control equipment and built-in programs. Due to its flexibility, quick response, driverless operation and low operational requirements, it is widely used in aerial photography. Plant protection, power inspection, disaster relief and many other fields. With the development of wireless Internet, wireless local area network and image processing technology, unmanned aerial vehicles have been favored by more and more users.
  • the blades and blades of the propeller are usually integrally injection molded, so the blades of the propeller cannot be folded, resulting in a large size, inconvenient carrying and low space utilization of the unmanned aerial vehicle.
  • a tilt-rotor type unmanned aerial vehicle when it is horizontally cruising, it is usually possible to activate only the front end power assembly and stop the operation of the rear end power assembly. At this time, if the propeller that has been stopped on the rear-end power component is not folded, the tilting rotor-type unmanned aerial vehicle generates flight resistance during the horizontal cruising, which increases the installation of the rear-end power component. The wear of the propeller on the upper side has a certain impact on the flight of the tilting rotor type unmanned aerial vehicle.
  • the embodiment of the present application provides a folding propeller, a power component, and an unmanned aerial vehicle, which can solve the problem that the blades of the existing propeller cannot be folded, resulting in a large size, inconvenient carrying, and low space utilization of the unmanned aerial vehicle.
  • an embodiment of the present application provides a folding propeller, including: a paddle, at least two blade assemblies, and a connector for pivoting the paddle and the blade assembly, each of which The blade assembly is rotatable relative to the paddle and the axis of rotation of each of the blade assemblies is perpendicular to an axial centerline of the paddle.
  • the blade assembly includes a paddle and a pivoting member mounted to one end of the blade pivotally coupled to the paddle; the pivoting member includes a pivoting hole, the pivoting An axial centerline of the bore is perpendicular to an axial centerline of the paddle; the connector is mounted to the paddle through the pivot hole.
  • one end of the blade pivotally connected to the paddle includes a first side and a second side opposite to each other; the pivoting member further includes a first abutting portion and a second oppositely disposed And a connecting portion connecting the first abutting portion and the second abutting portion, wherein the pivot hole is disposed in the communicating portion and penetrates the first abutting portion and the first portion a second abutting portion; the communicating portion penetrates an end of the blade pivotally connected to the paddle, and the first abutting portion abuts the first side of the second abutting portion against the first side The second abutting portion abuts the second side surface toward a side surface of the first abutting portion.
  • the pivot member is a metal piece and is coupled to the blade by injection molding.
  • the paddle includes opposing first and second clamping arms; the blade assembly is mounted between the first and second clamping arms And, a uniform gap is disposed between the blade assembly and the first clamping arm, and/or a uniform gap is disposed between the blade assembly and the second clamping arm.
  • the paddle includes a limit stop disposed corresponding to the blade assembly, the limit stop abutting the blade assembly and the paddle when the folding propeller rotates One end of the pivotal connection.
  • the paddle includes a limit groove disposed corresponding to the blade assembly, each of the limit grooves being consistent with a root shape of a corresponding blade assembly.
  • an embodiment of the present application provides a power assembly including: a driving device and a folding propeller as described above mounted on the driving device.
  • an embodiment of the present application provides an unmanned aerial vehicle, including: the power component as described above.
  • the embodiment of the present application provides another unmanned aerial vehicle, including:
  • a main wing fixedly mounted to the body
  • a power assembly including a front end power assembly mounted to a front end of the short wing, and a rear end power assembly mounted to a rear end of the short wing;
  • a rear wing fixedly mounted to the rear of the fuselage
  • the rear end power assembly is one of the power assemblies as described above, and in the rear power assembly, the blade assembly is foldable upward relative to the paddle.
  • the front end power assembly is one of the power assemblies as described above, and in the front end power assembly, the paddle includes a limit stop disposed corresponding to the blade assembly, When the folding propeller rotates, the limiting stopper abuts against one end of the blade assembly pivotally connected to the paddle.
  • the utility model has the beneficial effects that the folding propeller, the power component and the unmanned aerial vehicle provided by the embodiment of the present application can be rotated relative to the paddle by setting the blade assembly of the folding propeller, and the rotation axis of the blade assembly and the paddle thereof
  • the axial centerline of the crucible is vertical, so that the blade of the folding propeller can be folded up or down with respect to its paddle.
  • the space utilization rate can be improved when the unmanned aerial vehicle using the folding propeller is accommodated, and the carrying is convenient.
  • the folding propeller is applied to the tilting rotor type unmanned aerial vehicle, it can also be folded when the tilting rotor unmanned aerial vehicle is horizontally cruised, so that even if the folding propeller stops working, the folding propeller will not be The flight of the tilting rotor unmanned aerial vehicle affected.
  • the blade of the folding propeller is folded based on the pivoting member, and the reliability thereof is higher, and the tightness between the propeller blade and the paddle is not affected by the characteristics of the material and the manufacturing process, and the reaming does not occur. In this case, the service life of the folding propeller can be extended.
  • FIG. 1 is a schematic perspective view of a folding propeller provided by an embodiment of the present application.
  • Figure 2 is a perspective view of the folding propeller shown in Figure 1 in a downwardly folded state
  • Figure 3 is an exploded perspective view of the folding propeller shown in Figure 1;
  • Figure 4 is a perspective view showing the structure of the paddle of the folding propeller shown in Figure 3;
  • FIG. 5 is a schematic perspective structural view of another folding propeller provided by an embodiment of the present application.
  • Figure 6 is a perspective view showing the folded structure of the folding propeller shown in Figure 5 in an upwardly folded state
  • Figure 7 is a perspective structural view of the paddle of the folding propeller shown in Figure 5;
  • FIG. 8 is an exploded perspective view of a power assembly according to an embodiment of the present application.
  • FIG. 9 is an exploded perspective view of another power assembly according to an embodiment of the present application.
  • Figure 10 is a perspective structural view of the rotor holder of the power assembly shown in Figure 9;
  • Figure 11 is a perspective view showing another perspective view of the rotor holder shown in Figure 10;
  • Figure 12 is a perspective structural view of the mounting member shown in Figure 9;
  • FIG. 13 is a schematic perspective structural view of an unmanned aerial vehicle according to an embodiment of the present application.
  • FIG. 14 is a schematic perspective structural view of another UAV provided by an embodiment of the present application.
  • the folding propeller provided by the embodiment of the present application can be rotated relative to the paddle by the blade assembly of the folding propeller, and the rotation axis of the blade assembly is perpendicular to the axial centerline of the paddle, so that the blade of the folding propeller can be opposite to the blade
  • the paddles are folded up or down for easy storage and carrying, and can be applied to any type of unmanned aerial vehicles such as rotorcraft unmanned aerial vehicles and tilting rotor unmanned aerial vehicles.
  • the rotor unmanned aerial vehicle includes but is not limited to: a single rotor, a double rotor, a quadrotor, or a six-rotor. It should be noted that, in this embodiment, the first side of the default blade assembly connected to the paddle is upper, and the side of the paddle connected to the corresponding driving device is below.
  • the folding propeller provided by the present application is applied to a tilting rotor unmanned aerial vehicle
  • the operation of one or more of the power components can be stopped when the tilting rotor unmanned aerial vehicle is in a horizontal cruising state.
  • the blades of the folding propeller in these power components can be folded back under the action of the wind (ie, the blades of the folding propeller are folded upward relative to the paddles), and the flight of the tilting rotor unmanned aerial vehicle is not caused.
  • the effect is to achieve low-energy cruising, and on the other hand reduce the wear on the blades of the propeller.
  • FIG. 1 and FIG. 2 is a folding propeller 101 according to an embodiment of the present application.
  • the folding propeller 101 includes: a paddle 10 , two blade assemblies 20 , and two connecting members 30 .
  • the blade assembly 20 is pivotally coupled together by a connector 30, each blade assembly 20 being rotatable relative to the paddle 10, and the axis of rotation 20a of each blade assembly 20 being perpendicular to the axial centerline 10a of the paddle 10.
  • the rotation axis 20a may be an axial center line of the connecting member 30.
  • the blade assembly 20 can be folded up or down relative to the paddle 10.
  • the blade assembly 20 when the folding propeller 101 is perpendicular to the ground and is not subjected to any external force, as shown in FIG. 2, the blade assembly 20 is folded downward with respect to the paddle 10 due to its own gravity, thereby presenting a paddle.
  • the blade assembly 20 is folded downward relative to the paddle 10; and when the folding screw 101 is driven by its corresponding driving device, the blade assembly 20 is opened by a centrifugal force that faces away from the center of rotation (the paddle 10).
  • the blade assembly 20 When it receives a centrifugal force that is much greater than its own weight, the blade assembly 20 can rotate in the plane in which the paddle 10 is located, exhibiting an expanded state as shown in FIG.
  • the blade assembly 20 when the folding propeller 101 rotates, the blade assembly 20 is also subjected to a vertical upward pulling force, but the centrifugal force of the blade assembly 20 is much greater than the pulling force by the proper structural design and rotational speed.
  • the blade assembly 20 can always be rotated in the plane in which the paddle 10 is located for normal flight.
  • the paddle 10 includes a paddle case 11 and a paddle cap 12 mounted on the top of the paddle case 11.
  • the paddle shell 11 and the spinner dome 12 may be fixedly connected by glue or ultrasonic waves.
  • the paddle shell 11 and the blade assembly 20 are pivotally connected together by a connecting member 30, and the pivotal portion of the paddle shell 11 and the blade assembly 20 is provided with oppositely disposed first clamping arms 111 and second clamping arms 112, the blades
  • the assembly 20 is movably mounted between the first clamping arm 111 and the second clamping arm 112 by a connector 30, and a uniform gap is provided between the blade assembly 20 and the first clamping arm 111, and/or A uniform gap is provided between the paddle assembly 20 and the second clamping arm 112.
  • the centrifugal force of the blade assembly 20 is much greater than the pulling force when the folding propeller 101 is rotated by setting a suitable uniform gap size and the length of the blades in the blade assembly 20, thereby preventing the folding of the propeller.
  • the blade assembly 20 is folded upward relative to the paddle 10, affecting the flight of the UAV.
  • the centrifugal force is a force that is away from the center of rotation (ie, the paddle 10) when the blade assembly 20 rotates.
  • the length of the blade of the blade assembly is constant, the smaller the uniform gap, the greater the centrifugal force generated.
  • the pulling force is a force that is perpendicular to the blade assembly 20 and that is oriented opposite to the advancing direction of the UAV due to the blade assembly 20 pushing a large amount of air backwards as the folding propeller 101 rotates.
  • the centrifugal force received by the blade assembly 20 is much greater than the tensile force, the tensile force it receives is negligible. At this time, the blade assembly 20 does not fold upward and can work normally.
  • the blade assembly 20 is folded upward relative to the paddle 10, and in the present embodiment, the paddle 10 further includes a limit stop 13 provided corresponding to the paddle assembly 20, when the folding propeller 101 rotates The limit stop 13 abuts against one end of the blade assembly 20 pivotally connected to the paddle 10, thereby restricting the blade assembly 20 from being folded upward relative to the paddle 10.
  • the limit stop 13 can be sandwiched between the first clamping arm 111 and the second clamping arm 112, and when the folding propeller 101 rotates, with the blade assembly 20 and the paddle The upper surface of one of the pivotal ends of 10 is resisted.
  • the limit stop 13 may also be a bump, and the end of the blade assembly 20 pivotally connected to the paddle 10 is correspondingly provided with a groove, and when the folding propeller 101 rotates, the protrusion The groove is snapped into the groove to be horizontally resisted by the blade assembly 20.
  • the limit stop 13 can also be omitted.
  • the bottom of the paddle housing 11 (i.e., the side of the paddle housing 11 facing away from the spinner dome 12) is extended with a fastening member for quickly detaching the folding propeller 101 to its corresponding driving device. 113.
  • the number of the fasteners 113 may include, but is not limited to, 1, 2, 3, or 5, and the like.
  • the fastening members 113 include N, they may be evenly distributed at the bottom of the paddle shell 11 at an angle of 360°/N.
  • three fastening members 113 are used, and the three fastening members 113 are evenly distributed on the bottom of the paddle shell 11 at an angle of 120°.
  • Each of the fastening members 113 has a T shape, and includes a connecting portion extending from the bottom of the paddle housing 11 and a fastening portion formed at the end of the connecting portion.
  • the fastening portion of the fastening member 113 has a thickness or an average thickness of at least 1.2 mm, and the height or average height of the fastening member 113 is at least 3.0 mm.
  • the fastening member 113 can be quickly assembled and disassembled on the corresponding driving device.
  • the fastening member 113 can also be omitted, and the folding propeller 101 can be fixedly mounted on its corresponding driving device in other manners.
  • the blade assembly 20 includes a paddle 21 and a pivoting member 22 mounted to one end of the paddle 21 that is pivotally coupled to the paddle 10.
  • the pivoting member 22 includes a pivoting hole 220.
  • the connecting member 30 extends through the pivoting hole 220 to mount the blade 21 between the first clamping arm 111 and the second clamping arm 112 of the paddle 10.
  • the axial centerline of the pivot hole 220 is the axis of rotation 20a of the blade assembly 20, which is perpendicular to the axial centerline 10a of the paddle 10.
  • one end of the paddle 21 that is pivotally connected to the paddle 10 includes a first side 211 and a second side 212 that are oppositely disposed.
  • the pivoting member 22 has an "H" shape, and includes a first abutting portion 221 and a second abutting portion 222 disposed opposite to each other, and a connecting portion 223 connecting the first abutting portion 221 and the second abutting portion 222,
  • the pivot hole 220 is disposed in the communication portion 223 and penetrates the first abutting portion 221 and the second abutting portion 222 .
  • the communication portion 223 of the pivoting member 22 passes through one end of the blade 21 that is pivotally connected to the paddle 10, and the first abutting portion 221 faces the side of the second abutting portion 222.
  • the first side surface 211 of the paddle 21 abuts, and the second abutting portion 222 abuts against the second side surface 212 of the paddle 21 toward the side surface of the first abutting portion 221 .
  • the blade 21 can be prevented from directly contacting the connecting member 30, and the wear between the blade 21 and the connecting member 30 can be reduced. Extend the life of the folding propeller 101.
  • the pivoting member 22 may be a metal member, such as a metal copper sleeve or an aluminum alloy workpiece.
  • the paddle 21 and the pivot member 22 can be joined together by injection molding.
  • the material of the blade 21 is plastic
  • the material of the connecting member 30 is metal.
  • the blade 21 and the connecting member 30 are directly connected by injection molding, on the one hand, due to the inherent characteristics of the plastic (for example, The plastic shrinks to reduce the assembly accuracy between the blade 21 and the connector 30; on the other hand, the wear between the blade 21 and the connector 30 is large, and after the blade 21 is folded for a long period of time, the blade 21 and the connector The connection of the 30 is prone to reaming, so that the image folds the reliability of the propeller 101.
  • a metal member pivot member 22
  • the blade 21 and the paddle 10 are not affected by the material characteristics and manufacturing process.
  • the blade assembly of the folding propeller can be rotated relative to its paddle, and the axis of rotation of the blade assembly is perpendicular to the axial centerline of its paddle such that the blade of the folding propeller can be opposed to its paddle Folding up or down, on the one hand, it can improve the space utilization rate when carrying the unmanned aerial vehicle with the folding propeller, and is convenient to carry; on the other hand, if the folding propeller is applied to the tilting rotor type unmanned aerial vehicle, It is also possible to fold when the tilting rotor unmanned aerial vehicle is cruising horizontally, so that even if the folding propeller stops working, the flight of the tilting rotor unmanned aerial vehicle will not be affected.
  • the blade of the folding propeller is folded based on the pivoting member, and the reliability thereof is higher, and the tightness between the propeller blade and the paddle is not affected by the characteristics of the material and the manufacturing process, and the reaming does not occur. In this case, the service life of the folding propeller can be extended.
  • FIG. 5 to FIG. 7 another folding propeller 102 is provided in the embodiment of the present application.
  • the folding propeller 102 is substantially the same as the folding propeller 101 provided in the first embodiment, except that in the embodiment, the paddle is The limit stop 13 is omitted, and the paddle 10 further includes a limit groove 14 provided for the corresponding blade assembly 20, and each limit groove 14 is maintained with the root shape of the corresponding blade assembly 20. Consistent.
  • the paddle assembly 20 can be folded upward relative to the paddle 10.
  • the limit grooves provided by the corresponding blade assemblies 20 are also included in the paddle 10, and each of the limit grooves 14 is consistent with the root shape of the corresponding blade assembly 20, the paddle assembly 20 is When the paddle 10 is folded upwardly, the root of the blade assembly 20 can conform to the corresponding limiting groove 14, thereby making the blade assembly 20 more compact when folded upward relative to the paddle 10, while reducing the paddle assembly 20 and paddle The wear between the crucibles 10 extends the life of the folding propeller 102.
  • One embodiment of the present application also provides a power assembly 201, as shown in FIG. 8, which includes a drive device 2011 and a folding propeller 101/102 in any of the above embodiments, the folding propeller 101/102 being mounted On the drive unit 2011, the drive unit 2011 drives its paddle assembly 20 to rotate.
  • the driving device 2011 can be any type of motor.
  • the power assembly 202 includes the folding propeller 101 as an example, but it does not constitute a limitation on the embodiment of the present application.
  • the power assembly 201 provided by the embodiment has the structural features of the folding propeller 101/102 and corresponding beneficial effects.
  • the technical details not described in this embodiment refer to Embodiment 1 and Embodiment 2.
  • FIG. 9 is another power assembly 202 according to an embodiment of the present application.
  • the power assembly 202 includes a driving device 50 and a folding propeller 101/102 in any of the above embodiments.
  • the folding propeller 101/102 is mounted on the driving device. 50 on.
  • the power assembly 202 includes the folding propeller 101 as an example, but it does not constitute a limitation on the embodiment of the present application.
  • the driving device 50 comprises a stator and a rotor.
  • the stator includes a stator base 52, a bobbin 53, and a plurality of coils 54 disposed on the bobbin 53, the plurality of coils 54 being connected to a power source through a power cord 51.
  • the stator base 52 is rotatably supported by a motor shaft 56 via a bearing 55 which is fixed to the body of the UAV by a washer 59.
  • the rotor is fixed to the motor shaft 56, which includes a rotor support 60, a rotor sleeve 62, and a plurality of magnetic members 63 corresponding to the stator coils 54.
  • the rotor sleeve 62 is mounted on the peripheral edge of the rotor holder 60, and the plurality of magnetic members 63 are mounted in the rotor sleeve 62.
  • the top of the rotor holder 60 is fixed with a mounting member 70 for quickly assembling and disassembling the folding propeller 101.
  • the mounting member 70 cooperates with the fastening member 113 of the folding propeller 101 to complete the attachment and detachment of the folding propeller 101.
  • An elastic component that facilitates quick release is movably mounted between the rotor bracket 60 and the mounting member 70.
  • the resilient assembly includes a button 72 and an elastic member 64, such as a spring, mounted between the button 72 and the rotor bracket 60.
  • the rotor bracket 60 is centrally disposed for passing through the shaft hole 69 of the motor shaft 56.
  • the edge of the rotor bracket 60 extends a plurality of flanges 66 for securing the rotor sleeve 62.
  • a plurality of screw holes 61 for fixing the mounting member 70 are formed in the middle of the rotor holder 60.
  • a button positioning groove 67 is provided in the middle of the rotor holder 60.
  • a plurality of ventilation holes 68 are defined in the middle of the middle portion of the rotor holder 60.
  • the mounting member 70 is provided with a screw hole 71 fixed to the rotor holder 60 by screw fitting screw holes 71, 65.
  • the mounting member 70 is provided with a stroke groove 74 corresponding to the elastic member, and the button 72 of the elastic member can reciprocate up and down in the stroke groove 74.
  • a guide hole 73 is further formed in the mounting member 70, and a mounting portion is disposed on the back surface of the mounting member 70.
  • the guiding hole 73 includes a matching hole with a larger opening and a guiding hole with a smaller opening.
  • a positioning pin 68 is also disposed on the mounting member 70.
  • the mounting portion is for fixing and engaging the engaging portion of the fastening member 113 of the folding propeller 101.
  • the mounting portion includes a buckle 76, a mounting groove 75, and retaining walls 77, 78 on both sides of the mounting groove 75.
  • the fastening portion of the fastening member 113 is aligned with the rotation of the propeller over the buckle 76 to fall into the mounting groove 75, and the fastening portion of the fastening member 113 is received by the retaining walls 77, 78 on both sides in the mounting groove.
  • the limit position, at the same time, between the propeller and the rotor support of the driving device has the function of the elastic member 64 and the button 72, which can prevent the unmanned aircraft from being accidentally caused by the propeller design.
  • the spinneret 12 or the blade 21 of the folding propeller 101 may be marked with a prompt for locking the rotational direction.
  • the fastening member 113 of the folding propeller 101 is aligned with the larger alignment hole of the opening 73 of the mounting member 70 such that the plurality of fastening members 113 of the folding propeller 101 simultaneously pass through the alignment hole.
  • the user holds the rotor sleeve 62 of the driving device 50 with one hand, and aligns the axial center line of the folding propeller 101 with the motor shaft 56 of the driving device 50 with one hand, and presses the folding propeller 101 with force.
  • the rotation is performed according to the locking rotation direction indicated on the blade 21 or the spinner dome 12 until the plurality of fastening members 113 of the folding propeller 101 touch the first blocking wall of the mounting member 70.
  • the hand is slowly released.
  • the plurality of fastening members 113 of the folding propeller 101 are engaged into the mounting groove 75 of the mounting member 70, that is, the installation of the propeller is completed.
  • the folding propeller 101 when the folding propeller 101 is disassembled, the user holds the rotor sleeve 62 of the driving device 50 with one hand, and gently presses the folding propeller 101 with one hand.
  • the reverse rotation is performed according to the locking rotation direction indicated on the blade 21 or the spinner dome 12, when the plurality of fastening members 113 of the folding propeller 101 touch the guide hole 73 of the mounting member 70.
  • the wall of the alignment hole having a large opening is opened, the folding propeller 101 is lifted up, that is, the disassembly of the propeller is completed.
  • a plurality of fastening members are also provided in the folding propeller 101/102, mounting members are arranged on the rotor of the driving device, and are folded.
  • An elastic component is disposed between the propeller and the mounting member, and the interlocking fastener and the mounting member are under the action of the elastic component, so that the folding propeller can be assembled and disassembled on the UAV in a simple, fast, convenient and firm manner.
  • an unmanned aerial vehicle 300 is provided in an embodiment of the present application.
  • the unmanned aerial vehicle 300 includes a body 310 and a power component 320 mounted to the body 310 .
  • the power component may be the power component 201 as described in Embodiment 3, or may be the power component 202 as described in Embodiment 4.
  • the power assembly 320 of the UAV 300 when the power assembly 320 of the UAV 300 is the power assembly 201 as described in Embodiment 3, it has the structural features and benefits corresponding to Embodiment 3; when the UAV 300 When the power assembly 320 is the power assembly 202 as described in Embodiment 4, it has the structural features and benefits corresponding to Embodiment 4, and will not be further described herein.
  • FIG. 14 is another unmanned aerial vehicle 400 provided by an embodiment of the present application.
  • the UAV 400 is a tilting rotor unmanned aerial vehicle (ie, an unmanned aerial vehicle as shown in FIG. 14 ), including: a fuselage 410 The main wing 420, the short wing 430, the power component 440, and the empennage 450; wherein the empennage 450 is fixedly mounted behind the fuselage 410, the main wing 420 is fixedly mounted on the body 410, and the short wing 430 is fixedly mounted on the main wing 420, and the power component 440 A front end power assembly 441 and a rear end power assembly 442 are included, a front end power assembly 441 is mounted to the front end of the short wing 430, and a rear end power assembly 442 is mounted to the rear end of the short wing 430.
  • the front end power assembly 441 is used to provide the main flying power for the unmanned aerial vehicle 400. Whether performing the vertical lifting or the horizontal cruising flight attitude, the front end power assembly 441 is required to provide the unmanned aerial vehicle 400 upward. Lift or forward pull.
  • the front end power component 441 can be any type of power component, such as a conventional power component, or a power component 201 as described in embodiment 3 or a power component 202 as described in embodiment 4. The embodiment does not specifically limit this.
  • the front end power assembly 441 is the power assembly 201 as described in embodiment 3 or the power assembly 202 as described in embodiment 4, since the front end power assembly 441 needs to provide primary flight power to the unmanned aerial vehicle 400, In order to prevent the blade assembly 20 of its folding propeller from being folded upward relative to the paddle 10 due to excessive pulling force (eg, if the current UAV 400 is in a vertical lift state, when the blade assembly 20 is subjected to an upward pulling force too large) The blade assembly 20 is easily folded upward; if the current unmanned aerial vehicle 400 is in a horizontal cruising state, as shown in FIG. 14, when the tension applied to the blade assembly 20 is too large, the blade assembly 20 is easily folded to the left), and may be selected.
  • the paddle 10 of the folding propeller includes a limit stop 13 disposed corresponding to the blade assembly 20, and the limit stop 13 abuts when the folding propeller rotates
  • the limit stop 13 abuts when the folding propeller rotates
  • One end of the blade assembly 20 of the folding propeller is pivotally coupled to the paddle.
  • the rear end power assembly 442 is used to assist the front end power assembly 441 to provide flight power to the unmanned aerial vehicle 400.
  • the UAV 400 needs to provide greater lift for the UAV 400 when performing a vertical ascending flight attitude, in which case the front end power assembly 441 and the rear end power assembly 442 need to be activated simultaneously; and the UAV 400 In performing the horizontal cruising flight attitude, the required pulling force is relatively small, and in order to save the energy consumption of the unmanned aerial vehicle 400, only the front end power assembly 441 can be activated to stop the operation of the rear end power assembly 442.
  • the rear end power assembly 442 employs the power assembly as described in embodiment 3.
  • 201 or the power module 202 of the embodiment 4 has substantially the same structure, except that the folding propeller in the rear power assembly 442 omits the limit stop disposed on the paddle so that the blade assembly can be externally Under the action of the opposite paddles folded upwards.
  • the short wing 430 is tilted such that the front end power assembly 441 and the rear end power assembly 442 are parallel to the ground.
  • the front end power assembly 441 can be simultaneously activated.
  • the rear end power assembly 442 provides an upward lift to the unmanned aerial vehicle 400 by controlling the magnitude of the lift to achieve vertical rise or fall of the unmanned aerial vehicle 400.
  • the front end power assembly 441 can provide sufficient lift, it is also possible to activate only the front end power assembly 441 without activating the rear end power assembly 442.
  • the blades of the folding propeller in the rear end power assembly 442 Folding downwards under the combined action of wind and gravity (ie, the blades are folded up relative to the paddles).
  • the short wing 430 is tilted so that the front end power assembly 441 and the rear end power assembly 442 are perpendicular to the ground, in order to save energy. It is possible to start only the front end power assembly 441 to provide the unmanned aerial vehicle 400 with a horizontally advanced pulling force to stop the operation of the rear end power assembly 442.
  • the blades of the folding propeller in the rear end power assembly 442 are folded upward relative to the paddle due to the wind force acting in the opposite direction to the advancing direction of the UAV 400 (as shown in FIG. The blade is folded to the right). It can be understood that, in the present embodiment, when the paddle assembly is described as being folded relative to the paddle, the side where the default paddle is connected to the paddle assembly is upward, and the side where the paddle is connected to the driving device is below.
  • the unmanned aerial vehicle 400 provided by the embodiment can start the front end power component only when the vehicle is in flight (especially during horizontal cruising), stop the work of the rear end power component, save energy consumption, and after stopping the work of the rear end power component
  • the blade assembly of the propeller in the rear end power assembly is folded upward relative to the paddle under the action of the wind, thereby reducing flight resistance.

Abstract

本申请公开了一种折叠螺旋桨、动力组件以及无人飞行器,其中,该折叠螺旋桨包括:桨榖、至少两个桨叶组件以及用于枢接所述桨榖和所述桨叶组件的连接件,每一所述桨叶组件可相对所述桨榖转动,并且每一所述桨叶组件的转动轴线与所述桨榖的轴向中心线垂直。在本申请实施例提供的折叠螺旋桨中,桨叶组件能够相对桨榖向上或者向下折叠,提升空间利用率,方便携带,并且,当将其应用于倾转旋翼无人飞行器时,还可以在飞行的过程中进行折叠,降低飞行阻力。

Description

折叠螺旋桨、动力组件以及无人飞行器
本申请要求于2017年08月15日提交的、申请号为201721024988.0、申请名称为“折叠螺旋桨、动力组件以及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人飞行器领域,特别是涉及折叠螺旋桨、应用该折叠螺旋桨的动力组件以及应用该动力组件的无人飞行器。
背景技术
无人飞行器是一种通过无线电遥控设备和内置的程序来控制飞行姿态的不载人飞行器,由于其具有机动灵活、反应快速、无人驾驶、操作要求低等优点,现已广泛应用于航拍、植保、电力巡检、救灾等众多领域。随着无线互联网、无线局域网和图像处理技术的发展,无人飞行器更是得到了越来越多用户的青睐。
当前,在无人飞行器设计中,螺旋桨的桨叶和桨榖通常是一体注塑成型,因此螺旋桨的桨叶不能进行折叠,导致无人飞行器的体积大,携带不方便以及空间利用率低。另一方面,对于倾转旋翼型无人飞行器而言,在其进行水平巡航时,通常可以只启动前端动力组件而停止后端动力组件的工作。此时,若安装在后端功力组件上的已经停止工作的螺旋桨不进行折叠,将该倾转旋翼型无人飞行器的水平巡航过程中产生飞行阻力,既增大了对安装在后端动力组件上的螺旋桨的磨损,又对倾转旋翼型无人飞行器的飞行造成一定影响。
因此,现有的无人飞行器的螺旋桨技术还有待于改进和发展。
发明内容
本申请实施例提供了一种折叠螺旋桨、动力组件以及无人飞行器,能 够解决现有的螺旋桨的桨叶不能进行折叠,导致无人飞行器的体积大,携带不方便以及空间利用率低的问题。
为解决上述技术问题,本申请实施例提供了一种折叠螺旋桨,包括:桨榖、至少两个桨叶组件以及用于枢接所述桨榖和所述桨叶组件的连接件,每一所述桨叶组件可相对所述桨榖转动,并且每一所述桨叶组件的转动轴线与所述桨榖的轴向中心线垂直。
在一些实施例中,所述桨叶组件包括桨叶和安装于所述桨叶的与所述桨榖枢接的一端的枢接件;所述枢接件包括枢接孔,所述枢接孔的轴向中心线与所述桨榖的轴向中心线垂直;所述连接件贯穿所述枢接孔将所述桨叶安装于所述桨榖。
在一些实施例中,所述桨叶的与所述桨榖枢接的一端包括相对设置的第一侧面和第二侧面;所述枢接件还包括相对设置的第一抵持部和第二抵持部,以及,连接所述第一抵持部和所述第二抵持部的连通部,所述枢接孔设置于所述连通部内并贯穿所述第一抵持部和所述第二抵持部;所述连通部贯穿所述桨叶的与所述桨榖枢接的一端,所述第一抵持部朝向所述第二抵持部的侧面与所述第一侧面抵持,所述第二抵持部朝向所述第一抵持部的侧面与所述第二侧面抵持。
在一些实施例中,所述枢接件为金属件,并与所述桨叶通过注塑的方式连接在一起。
在一些实施例中,所述桨榖包括相对设置的第一夹持臂和第二夹持臂;所述桨叶组件安装于所述第一夹持臂和所述第二夹持臂之间,并且,所述桨叶组件与所述第一夹持臂之间设置有均匀间隙,和/或,所述桨叶组件与所述第二夹持臂之间设置有均匀间隙。
在一些实施例中,所述桨榖包括对应所述桨叶组件设置的限位挡块,在所述折叠螺旋桨旋转时,所述限位挡块抵持于所述桨叶组件与所述桨榖枢接的一端。
在一些实施例中,所述桨榖包括对应所述桨叶组件设置的限位凹槽,每个所述限位凹槽与对应的桨叶组件的根部形状保持一致。
为解决上述技术问题,本申请实施例提供了一种动力组件,包括:驱 动装置和安装于所述驱动装置上的如上所述的折叠螺旋桨。
为解决上述技术问题,本申请实施例提供了一种无人飞行器,包括:如上所述的动力组件。
为解决上述技术问题,本申请实施例提供了另一种无人飞行器,包括:
机身;
主翼,其固定安装于所述机身;
短翼,其固定安装于所述主翼;
动力组件,其包括前端动力组件和后端动力组件,所述前端动力组件安装于所述短翼的前端,所述后端动力组件安装于所述短翼的后端;
以及,
尾翼,其固定安装于所述机身后方;
其中,所述后端动力组件为如上所述的其中一种动力组件,并且,在该后端动力组件中,桨叶组件能够相对桨榖向上折叠。
在一些实施例中,所述前端动力组件为如上所述的其中一种动力组件,并且,在该前端动力组件中,桨榖包括对应所述桨叶组件设置的限位挡块,在所述折叠螺旋桨旋转时,所述限位挡块抵持于所述桨叶组件与所述桨榖枢接的一端。
本申请实施例的有益效果是:本申请实施例提供的折叠旋桨、动力组件以及无人飞行器,通过设置折叠螺旋桨的桨叶组件可相对其桨榖转动,并且桨叶组件的转动轴线与其桨榖的轴向中心线垂直,使得该折叠螺旋桨的桨叶可以相对其桨榖向上或者向下折叠,一方面,可以在收纳应用该折叠螺旋桨的无人飞行器时,提升其空间利用率,方便携带;另一方面,若将该折叠螺旋桨应用于倾转旋翼型无人飞行器,还可以在倾转旋翼无人飞行器水平巡航时,进行折叠,从而,即便该折叠螺旋桨停止工作,也不会对该倾转旋翼无人飞行器的飞行造成影响。
进一步地,该折叠螺旋桨的桨叶基于枢接件进行折叠,其可靠性更高,不会因为材料的特性及制作工艺影响螺旋桨桨叶和桨榖之间的松紧度,并 且不会出现扩孔情况,从而可以延长该折叠螺旋桨的使用寿命。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种折叠螺旋桨的立体结构示意图;
图2是图1所示的折叠螺旋桨处于向下折叠状态时的立体结构示意图;
图3是图1所示的折叠螺旋桨的立体分解图;
图4是图3中所示的折叠螺旋桨的桨榖的立体结构示意图;
图5是本申请实施例提供的另一种折叠螺旋桨的立体结构示意图;
图6是图5所示的折叠螺旋桨处于向上折叠状态时的立体结构示意图;
图7是图5中所示的折叠螺旋桨的桨榖的立体结构示意图;
图8是本申请实施例提供的一种动力组件的立体分解图;
图9是本申请实施例提供的另一种动力组件的立体分解图;
图10是图9中所示的动力组件的转子支架的立体结构示意图;
图11是图10所示的转子支架的另一视角的立体结构示意图;
图12是图9中所示的安装件的立体结构示意图;
图13是本申请实施例提供的一种无人飞行器的立体结构示意图;
图14是本申请实施例提供的另一种无人飞行器的立体结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“顶部”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解 为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请实施例提供的折叠螺旋桨通过设置折叠螺旋桨的桨叶组件可相对其桨榖转动,并且桨叶组件的转动轴线与其桨榖的轴向中心线垂直,使得该折叠螺旋桨的桨叶可以相对其桨榖向上或者向下折叠,方便收纳和携带,能够应用于任意类型的无人飞行器,如:旋翼无人飞行器和倾转旋翼无人飞行器等。其中,所述旋翼无人飞行器包括但不限于:单旋翼、双旋翼、四旋翼、或六旋翼等。其中,需要说明的是,在本实施例中,默认桨叶组件与桨榖连接的第一侧为上方,桨榖与其对应的驱动装置连接的一侧为下方。
特别地,若将本申请提供的折叠螺旋桨应用于倾转旋翼无人飞行器,则,在该倾转旋翼无人飞行器处于水平巡航状态时,可以停止其中一个或者多个动力组件的运行,此时,这些动力组件中的折叠螺旋桨的桨叶可以在风力的作用下向后折叠(即,该折叠螺旋桨的桨叶相对其桨榖向上折叠),不会对该倾转旋翼无人飞行器的飞行造成影响,从而实现低能耗巡航,另一方面也降低了对螺旋桨的桨叶的磨损。
下面结合附图对本申请提供的折叠螺旋桨、动力组件和无人飞行器作进一步说明。
实施例1
请参考图1和图2,为本申请其中一实施例提供的一种折叠螺旋桨101,该折叠螺旋桨101包括:一个桨榖10、两个桨叶组件20以及两个连接件30,桨榖10和桨叶组件20通过连接件30枢接在一起,每一桨叶组件20可相对桨榖10转动,并且每一桨叶组件20的转动轴线20a与桨榖10的轴向中心 线10a垂直。其中,所述转动轴线20a可以是连接件30的轴向中心线。由此,在本申请实施例中,桨叶组件20可以相对桨榖10向上或者向下折叠。
在本实施例中,当该折叠螺旋桨101垂直于地面且没有受到任何外力的作用时,如图2所示,桨叶组件20因自身的重力作用相对桨榖10向下折叠,从而呈现出桨叶组件20相对桨榖10向下折叠的状态;而当该折叠螺旋桨101被其对应的驱动装置驱动时,桨叶组件20因受到一个背离旋转中心(桨榖10)的离心力而被甩开,当其受到的离心力远远大于其自身重力时,桨叶组件20可以在桨榖10所在的平面旋转,呈现出如图1所示的展开状态。此外,在本实施例中,在折叠螺旋桨101旋转时,桨叶组件20还会受到一个垂直向上的拉力,但只要通过合适的结构设计和旋转速度保证桨叶组件20受到的离心力远远大于拉力,就可以使桨叶组件20始终在桨榖10所在的平面旋转,实现正常飞行。
应当理解的是,虽然在本实施例中仅以两个桨叶组件20和两个连接件30为例进行说明,但在其他的一些实施例中,还可以包括更多数量的桨叶组件20以及与该桨叶组件20的数量相对应的连接件30。
其中,在本实施例中,如图3和图4所示,桨榖10包括桨壳11和安装在桨壳11的顶部的桨帽12。其中,桨壳11和桨帽12可以通过胶水或者超声波固定连接。
桨壳11和桨叶组件20通过连接件30枢接在一起,桨壳11和桨叶组件20的枢接处设置有相对设置的第一夹持臂111和第二夹持臂112,桨叶组件20通过连接件30可活动安装于第一夹持臂111和第二夹持臂112之间,并且,桨叶组件20与第一夹持臂111之间设置有均匀间隙,和/或,桨叶组件20与第二夹持臂112之间设置有均匀间隙。在本实施例中,可以通过设置合适的均匀间隙大小以及桨叶组件20中桨叶的长度来保证该折叠螺旋桨101在旋转时桨叶组件20受到的离心力远远大于拉力,从而防止在折叠螺旋桨101旋转时,桨叶组件20相对桨榖10向上折叠,影响无人飞行器的飞行。其中,所述离心力为桨叶组件20旋转时受到的背离旋转中心(即桨榖10)的力,当桨叶组件的桨叶的长度一定时,该均匀间隙越小,所产生的离心力越大;所述拉力为折叠螺旋桨101旋转时由于桨叶组件20将大量空气向后推而产生的垂直于桨叶组件20并且方向与无人飞行器的前进方向相反的力。 当桨叶组件20受到的离心力远远大于拉力时,其受到的拉力可以忽略不计,此时,桨叶组件20不会向上折叠,能够正常工作。
为了进一步防止折叠螺旋桨101旋转时,桨叶组件20相对桨榖10向上折叠,在本实施例中,桨榖10还包括对应桨叶组件20设置的限位挡块13,在折叠螺旋桨101旋转时,该限位挡块13抵持于桨叶组件20与桨榖10枢接的一端,从而限制桨叶组件20相对桨榖10向上折叠。其中,如图1所示,该限位挡块13可以夹设于第一夹持臂111和第二夹持臂112之间,并且在折叠螺旋桨101旋转时,与桨叶组件20与桨榖10枢接的一端的上表面抵持。或者,在其他的一些实施例中,限位挡块13也可以为一凸块,桨叶组件20与桨榖10枢接的一端对应设置有凹槽,当折叠螺旋桨101旋转时,该凸块卡合入该凹槽,从而与该桨叶组件20水平抵持。
当然,应当理解的是,在实际应用中,为了适应不同的需求,比如,将该折叠螺旋桨应用于倾转旋翼无人飞行器中时,也可以省略该限位挡块13。
此外,在本实施例中,桨壳11的底部(即,桨壳11中背离桨帽12的一侧)延伸设置有用于将该折叠螺旋桨101快速装拆至与其对应的驱动装置的扣接件113。该扣接件113的数量可以包括但不限于:1个、2个、3个或者5个等等。当扣接件113包括N个时,可以按照角度为360°/N均布于该桨壳11的底部。其中,在本实施例中,采用三个扣接件113,这三个扣接件113按角度为120°均布于桨壳11底部。其中,每一扣接件113呈T形,包括从桨壳11的底部延伸出的连接部以及在连接部末端形成的扣合部。特别地,为了提升将折叠螺旋桨101安装于其对应的驱动装置的稳固性,该扣接件113的扣合部的厚度或平均厚度至少为1.2毫米,扣接件113的高度或平均高度至少为3.0毫米。在本实施例中,通过在桨壳11底部设置扣接件113,可以便于将该折叠螺旋桨101快速装拆在对应的驱动装置上。当然,在实际应用中,也可以省略该扣接件113,以其他方式将该折叠螺旋桨101固定安装在其对应的驱动装置上。
其中,在本实施例中,如图3所示,桨叶组件20包括桨叶21和安装于桨叶21的与桨榖10枢接的一端的枢接件22。其中,该枢接件22包括枢接孔220,连接件30贯穿该枢接孔220,将桨叶21安装于桨榖10的第一夹持臂111和第二夹持臂112之间。其中,枢接孔220的轴向中心线即桨叶组件 20的转动轴线20a,其与桨榖10的轴向中心线10a垂直。
具体地,桨叶21的与桨榖10枢接的一端包括相对设置的第一侧面211和第二侧面212。枢接件22呈“H”字型,包括相对设置的第一抵持部221和第二抵持部222,以及,连接第一抵持部221和第二抵持部222的连通部223,枢接孔220设置于连通部223内并贯穿第一抵持部221和第二抵持部222。枢接件22与桨叶21完成装配之后,枢接件22的连通部223贯穿桨叶21的与桨榖10枢接的一端,第一抵持部221朝向第二抵持部222的侧面与桨叶21的第一侧面211抵持,第二抵持部222朝向第一抵持部221的侧面与桨叶21的第二侧面212抵持。在本实施例中,通过在桨叶21与桨榖10枢接的一端安装枢接件22,能够避免桨叶21与连接件30直接接触,减少桨叶21与连接件30之间的磨损,延长折叠螺旋桨101的寿命。
特别地,在本实施例中,枢接件22可以为金属件,如:金属铜套或者铝合金加工件等。桨叶21和枢接件22可以通过模具注塑连接在一起。一般地,桨叶21的材质为塑料,而连接件30的材质为金属,若直接将桨叶21和连接件30通过注塑的方式连接在一起,一方面,会因为塑料的固有特性(比如,塑料缩水)而降低桨叶21和连接件30之间的装配精度;另一方面,桨叶21和连接件30之间的磨损较大,桨叶21经长期折叠之后,桨叶21和连接件30的连接处容易出现扩孔现象,从而影像折叠螺旋桨101的可靠性。而在本实施例中,在桨叶21与桨榖10枢接的一端安装一金属件(枢接件22),则不会因为材料的特性及制作工艺影响桨叶21和桨榖10之间的松紧度,从而提高桨叶21和桨榖10之间的装配精度,降低制作工艺控制精度以及废品率;又,由于枢接件22和连接件30均为金属件,两者之间的耐磨性更高,从而也可以避免出现扩孔的现象,提升折叠螺旋桨101折叠的可靠性以及延长折叠螺旋桨101的使用寿命。
在本实施例中,通过设置折叠螺旋桨的桨叶组件可相对其桨榖转动,并且桨叶组件的转动轴线与其桨榖的轴向中心线垂直,使得该折叠螺旋桨的桨叶可以相对其桨榖向上或者向下折叠,一方面,可以在收纳应用该折叠螺旋桨的无人飞行器时,提升其空间利用率,方便携带;另一方面,若将该折叠螺旋桨应用于倾转旋翼型无人飞行器,还可以在倾转旋翼无人飞行器水平巡航时,进行折叠,从而,即便该折叠螺旋桨停止工作,也不会对该倾转旋翼 无人飞行器的飞行造成影响。进一步地,该折叠螺旋桨的桨叶基于枢接件进行折叠,其可靠性更高,不会因为材料的特性及制作工艺影响螺旋桨桨叶和桨榖之间的松紧度,并且不会出现扩孔情况,从而可以延长该折叠螺旋桨的使用寿命。
实施例2
请参阅图5至图7,为本申请实施例提供的另一种折叠螺旋桨102,该折叠螺旋桨102与上述实施例1提供的折叠螺旋桨101基本相同,区别在于:在本实施例中,桨榖10省略了限位挡块13,并且,该桨榖10还包括对应桨叶组件20设置的限位凹槽14,并且,每个限位凹槽14与对应的桨叶组件20的根部形状保持一致。
在本实施例中,由于去除了限位挡块13,所以,当折叠螺旋桨102不工作时,若桨叶组件20受到垂直向上作用力,桨叶组件20可以相对桨榖10向上折叠。此外,由于在桨榖10中还包括对应桨叶组件20设置的限位凹槽,并且每个限位凹槽14与对应的桨叶组件20的根部形状保持一致,因此,在桨叶组件20相对桨榖10向上折叠时,桨叶组件20的根部可以贴合对应的限位凹槽14,从而使得桨叶组件20相对桨榖10向上折叠时更加紧凑,同时,减少桨叶组件20与桨榖10之间的磨损,延长折叠螺旋桨102的使用寿命。
实施例3
本申请其中一个实施例还提供了一种动力组件201,如图8所示,该动力组件201包括驱动装置2011和上述任一实施例中的折叠螺旋桨101/102,折叠螺旋桨101/102安装在驱动装置2011上,由驱动装置2011驱动其桨叶组件20旋转。其中,该驱动装置2011可以是任意类型的电机。此外,在图8中,以该动力组件202包括折叠螺旋桨101为例进行说明,但其并不能构成对本申请实施例的限定。
此外,可以理解的是,本实施例提供的动力组件201具备折叠螺旋桨101/102的结构特征和相应的有益效果。未在本实施例中详尽描述的技术细节,可参见实施例1和实施例2。
实施例4
请参阅图9,为本申请实施例提供的另一种动力组件202,该动力组件202包括驱动装置50和上述任一实施例中的折叠螺旋桨101/102,折叠螺旋桨101/102安装在驱动装置50上。其中,在本实施例中,以该动力组件202包括折叠螺旋桨101为例进行说明,但其并不能构成对本申请实施例的限定。
其中,该驱动装置50包括定子以及转子。该定子包括定子座52、线圈架53、设置在线圈架53的若干线圈54,该若干线圈54通过电源线51连接至电源。该定子座52通过轴承55转动支撑电机轴56,该定子座52通过垫圈59固定在无人飞行器的机身上。
该转子固定在该电机轴56上,该转子包括转子支架60、转子套筒62以及对应该定子线圈54的若干磁性件63。该转子支架60四周边缘安装该转子套筒62,该转子套筒62内安装该若干磁性件63。
其中,该转子支架60的顶部固定有用于快速装拆折叠螺旋桨101的安装件70。该安装件70与折叠螺旋桨101的扣接件113配合完成折叠螺旋桨101的装拆。该转子支架60与该安装件70之间活动装设便于快拆的弹性组件。该弹性组件包括按钮72以及安装在按钮72和转子支架60之间的弹性件64,比如弹簧。
请参考图10和图11,该转子支架60中心设置用于通过电机轴56的轴孔69。转子支架60的边缘延伸若干用于固定转子套筒62的突边66。该转子支架60中部开设多个用于固定安装件70的螺孔61。该转子支架60中部设置按钮定位槽67。该转子支架60的中部靠外侧位置开设若干通风孔68。
请参考图12,该安装件70设置螺孔71,通过螺钉配合螺孔71、65固定在该转子支架60上。该安装件70对应该弹性组件开设有行程槽74,弹性组件的按钮72可在该行程槽74内上下往复运动。该安装件70上还开设有导孔73并在安装件70的背面设置安装部。其中,该导孔73包括开口较大的对位孔和开口较小的导引孔。该安装件70上还设置有定位销68。
该安装部用于固定和限位折叠螺旋桨101的扣接件113的扣合部。其中,该安装部包括扣榫76、安装槽75以及安装槽75两侧的挡壁77、78。该扣接件113的扣合部随着螺旋桨的旋转越过扣榫76对准落入安装槽75,并且 该扣接件113的扣合部在安装槽内受到两侧的挡壁77、78的限位,同时螺旋桨与驱动装置的转子支架间有弹性件64和按钮72的作用,可以防止无人飞行器因螺旋桨设计引起的炸机意外。
此外,在本实施例中,折叠螺旋桨101的桨帽12或者桨叶21上可以标注有锁定旋转方向的提示。
使用时,将折叠螺旋桨101的扣接件113与安装件70的导孔73开口较大的对位孔对齐,使得折叠螺旋桨101的多个扣接件113同时穿过对位孔。此时,用户一手托着驱动装置50的转子套筒62,一手将折叠螺旋桨101的轴向中心线对准驱动装置50的电机轴56,用力下压折叠螺旋桨101。当下压到弹性件64最小压缩量时,根据桨叶21或桨帽12上提示的锁定旋转方向进行旋转,直至折叠螺旋桨101的多个扣接件113碰触到安装件70的第一挡壁77时,慢慢松手,在弹性件64的作用下,折叠螺旋桨101的多个扣接件113卡合到该安装件70的安装槽75内,即完成螺旋桨的安装。
同理,在拆卸折叠螺旋桨101时,用户一手托着驱动装置50的转子套筒62,一手将折叠螺旋桨101轻轻用力下压。当下压到弹性件64最小压缩量时,根据桨叶21或桨帽12上提示的锁定旋转方向进行逆向旋转,当折叠螺旋桨101的多个扣接件113碰触到安装件70的导孔73开口较大的对位孔壁面时,将折叠螺旋桨101向上提起,即完成螺旋桨的拆卸。
在本实施例中,除了具备折叠螺旋桨101/102的结构特征和相应的有益效果外,还在折叠螺旋桨101/102中设置多个扣接件、在驱动装置的转子上设置安装件以及在折叠螺旋桨和安装件之间设置弹性组件,该相互配合的扣接件和安装件在弹性组件的作用下,使得折叠螺旋桨可以简单、快速、方便、牢固的在无人飞行器上实现装拆。
实施例5
请参阅图13,为本申请实施例提供的一种无人飞行器300,该无人飞行器300中包括机身310以及安装于该机身310的动力组件320。其中,该动力组件可以是如实施例3所述的动力组件201,或者,也可以是如实施例4所述的动力组件202。
在本实施例中,当该无人飞行器300的动力组件320为如实施例3所述 的动力组件201时,其具有与实施例3相应的结构特征和有益效果;当该无人飞行器300的动力组件320为如实施例4所述的动力组件202时,其具有与实施例4相应的结构特征和有益效果,此处均不再一一赘述。
实施例6
请参阅图14,为本申请实施例提供的另一种无人飞行器400,该无人飞行器400为倾转旋翼无人飞行器(即如图14所示的无人飞行器),包括:机身410、主翼420、短翼430、动力组件440以及尾翼450;其中,尾翼450固定安装于机身410后方,主翼420固定安装于机身410上,短翼430固定安装于主翼420上,动力组件440包括前端动力组件441和后端动力组件442,前端动力组件441安装于短翼430的前端,后端动力组件442安装于短翼430的后端。
其中,在本实施例中,前端动力组件441用于为无人飞行器400提供主要飞行动力,无论是执行垂直升降还是水平巡航飞行姿态,均需要启动前端动力组件441来为无人飞行器400提供向上的升力或者向前的拉力。该前端动力组件441可以是任意类型的动力组件,比如:其可以是常规的动力组件,也可以是如实施例3所述的动力组件201或如实施例4所述的动力组件202,本申请实施例对此不作具体限定。
特别地,当该前端动力组件441为如实施例3所述的动力组件201或如实施例4所述的动力组件202时,由于前端动力组件441需要为无人飞行器400提供主要飞行动力,因此,为了避免其折叠螺旋桨的桨叶组件20因受到过大的拉力而相对桨榖10向上折叠(如,若当前无人飞行器400处于垂直升降状态,当桨叶组件20受到向上的拉力过大时,桨叶组件20容易向上折叠;若当前无人飞行器400处于水平巡航状态,如图14所示,当桨叶组件20受到的拉力过大时,桨叶组件20容易向左折叠),可以选择采用如图1所示的折叠螺旋桨,即:该折叠螺旋桨的桨榖10包括对应桨叶组件20设置的限位挡块13,在该折叠螺旋桨旋转时,该限位挡块13抵持于该折叠螺旋桨的桨叶组件20与桨榖枢接的一端。
其中,在本实施例中,后端动力组件442用于辅助前端动力组件441为无人飞行器400提供飞行动力。一般地,无人飞行器400在执行垂直升降的 飞行姿态时,需要为无人飞行器400提供更大的升力,此时,需要同时启动前端动力组件441和后端动力组件442;而无人飞行器400在执行水平巡航的飞行姿态时,所需的拉力相对较小,为了节省无人飞行器400的能耗,可以只启动前端动力组件441而停止后端动力组件442的工作。因此,为了在后端动力组件442停止工作时,减少后端动力组件442中的螺旋桨产生的飞行阻力,在本实施例中,该后端动力组件442采用与如实施例3所述的动力组件201或者如实施例4所述的动力组件202基本相同的结构,其区别在于,该后端动力组件442中的折叠螺旋桨省略设置于桨榖的限位挡块,使得其桨叶组件能够在外力的作用下相对桨榖向上折叠。
在本实施例中,当无人飞行器400需要执行垂直升降飞行姿态时,倾转短翼430以使前端动力组件441和后端动力组件442平行于地面,此时,可以同时启动前端动力组件441和后端动力组件442为无人飞行器400提供向上的升力,通过控制升力的大小以实现无人飞行器400垂直上升或者下降。当然,在实际应用中,若前端动力组件441能够提供足够的升力,也可以仅启动前端动力组件441而不启动后端动力组件442,此时,后端动力组件442中的折叠螺旋桨的桨叶在风力和重力的共同作用下向下折叠(即,桨叶相对桨榖向上折叠)。当无人飞行器400需要执行水平巡航飞行姿态时(如图14所示为向左水平巡航状态),倾转短翼430以使前端动力组件441和后端动力组件442垂直于地面,为了节省能耗,可以仅启动前端动力组件441为无人飞行器400提供水平前进的拉力而停止后端动力组件442的工作。而当后端动力组件442停止工作时,后端动力组件442中的折叠螺旋桨的桨叶由于受到方向与无人飞行器400前进方向相反的风力作用而相对桨榖向上折叠(如图14所示,桨叶向右折叠)。其中,可以理解的是,在本实施例中,当描述桨叶组件相对桨榖折叠时,默认桨榖与桨叶组件连接的一侧为上方,桨榖与驱动装置连接的一侧为下方。
本实施例提供的无人飞行器400能够在其飞行时(尤其是水平巡航时)仅启动前端动力组件而停止后端动力组件的工作,节省能耗,并且,在停止后端动力组件的工作后,在风力的作用下后端动力组件中的螺旋桨的桨叶组件相对桨榖向上折叠,从而降低飞行阻力。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其 限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种折叠螺旋桨,其特征在于,包括:桨榖、至少两个桨叶组件以及用于枢接所述桨榖和所述桨叶组件的连接件,每一所述桨叶组件可相对所述桨榖转动,并且每一所述桨叶组件的转动轴线与所述桨榖的轴向中心线垂直。
  2. 根据权利要求1所述的折叠螺旋桨,其特征在于,
    所述桨叶组件包括桨叶和安装于所述桨叶的与所述桨榖枢接的一端的枢接件;
    所述枢接件包括枢接孔,所述枢接孔的轴向中心线与所述桨榖的轴向中心线垂直;
    所述连接件贯穿所述枢接孔将所述桨叶安装于所述桨榖。
  3. 根据权利要求2所述的折叠螺旋桨,其特征在于,
    所述桨叶的与所述桨榖枢接的一端包括相对设置的第一侧面和第二侧面;
    所述枢接件还包括相对设置的第一抵持部和第二抵持部,以及,连接所述第一抵持部和所述第二抵持部的连通部,所述枢接孔设置于所述连通部内并贯穿所述第一抵持部和所述第二抵持部;
    所述连通部贯穿所述桨叶的与所述桨榖枢接的一端,所述第一抵持部朝向所述第二抵持部的侧面与所述第一侧面抵持,所述第二抵持部朝向所述第一抵持部的侧面与所述第二侧面抵持。
  4. 根据权利要求2或3所述的折叠螺旋桨,其特征在于,所述枢接件为金属件,并与所述桨叶通过注塑的方式连接在一起。
  5. 根据权利要求1-4任一项所述的折叠螺旋桨,其特征在于,所述桨榖包括相对设置的第一夹持臂和第二夹持臂;
    所述桨叶组件安装于所述第一夹持臂和所述第二夹持臂之间,并且, 所述桨叶组件与所述第一夹持臂之间设置有均匀间隙,和/或,所述桨叶组件与所述第二夹持臂之间设置有均匀间隙。
  6. 根据权利要求1-5任一项所述的折叠螺旋桨,其特征在于,所述桨榖包括对应所述桨叶组件设置的限位挡块,在所述折叠螺旋桨旋转时,所述限位挡块抵持于所述桨叶组件与所述桨榖枢接的一端。
  7. 根据权利要求1-6任一项所述的折叠螺旋桨,其特征在于,所述桨榖包括对应所述桨叶组件设置的限位凹槽,每个所述限位凹槽与对应的桨叶组件的根部形状保持一致。
  8. 一种动力组件,其特征在于,包括驱动装置和安装于所述驱动装置上的如权利要求1-7任一项所述的折叠螺旋桨。
  9. 根据权利要求8所述的动力组件,其特征在于,所述桨榖包括对应所述桨叶组件设置的限位挡块,在所述折叠螺旋桨旋转时,所述限位挡块抵持于所述桨叶组件与所述桨榖枢接的一端。
  10. 根据权利要求8或9所述的动力组件,其特征在于,所述桨榖包括对应所述桨叶组件设置的限位凹槽,每个所述限位凹槽与对应的桨叶组件的根部形状保持一致。
  11. 一种无人飞行器,其特征在于,包括:如权利要求8-10任一项所述的动力组件。
  12. 一种无人飞行器,其特征在于,包括:
    机身;
    主翼,其固定安装于所述机身;
    短翼,其固定安装于所述主翼;
    动力组件,其包括前端动力组件和后端动力组件,所述前端动力组件 安装于所述短翼的前端,所述后端动力组件安装于所述短翼的后端;
    以及,
    尾翼,其固定安装于所述机身后方;
    其中,所述后端动力组件为如权利要求8或10所述的动力组件。
  13. 根据权利要求12所述的无人飞行器,其特征在于,所述前端动力组件为如权利要求9所述的动力组件。
PCT/CN2018/082659 2017-08-15 2018-04-11 折叠螺旋桨、动力组件以及无人飞行器 WO2019033769A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18759836.2A EP3470334A4 (en) 2017-08-15 2018-04-11 FOLDING PROPELLER, POWER SUPPLY AND AIR VEHICLE WITHOUT PILOT
US16/130,172 US20190055003A1 (en) 2017-08-15 2018-09-13 Foldable propeller, power assembly and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721024988.0U CN207141389U (zh) 2017-08-15 2017-08-15 折叠螺旋桨、动力组件以及无人飞行器
CN201721024988.0 2017-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/130,172 Continuation US20190055003A1 (en) 2017-08-15 2018-09-13 Foldable propeller, power assembly and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019033769A1 true WO2019033769A1 (zh) 2019-02-21

Family

ID=61666547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082659 WO2019033769A1 (zh) 2017-08-15 2018-04-11 折叠螺旋桨、动力组件以及无人飞行器

Country Status (3)

Country Link
EP (1) EP3470334A4 (zh)
CN (1) CN207141389U (zh)
WO (1) WO2019033769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113120214A (zh) * 2020-01-10 2021-07-16 苏州臻迪智能科技有限公司 动力组件,机臂组件,机臂连接件及无人机

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207141389U (zh) * 2017-08-15 2018-03-27 深圳市道通智能航空技术有限公司 折叠螺旋桨、动力组件以及无人飞行器
CN111976975A (zh) * 2018-04-03 2020-11-24 肖赟 一种智能设备用快捷拆卸螺旋桨式无人机
CN108438202B (zh) * 2018-04-12 2020-07-03 华南智能机器人创新研究院 一种无人机
CN108528708B (zh) * 2018-04-12 2020-07-03 华南智能机器人创新研究院 一种桨叶及无人机
CN208291466U (zh) * 2018-05-25 2018-12-28 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN108956081B (zh) * 2018-06-14 2020-12-25 南京航空航天大学 一种用于舰面旋翼起动过程的试验装置
CN108725774A (zh) * 2018-06-14 2018-11-02 深圳市飞米机器人科技有限公司 桨叶、螺旋桨、动力装置及多旋翼飞行器
WO2020000239A1 (zh) * 2018-06-27 2020-01-02 深圳市大疆创新科技有限公司 可折叠螺旋桨及无人飞行器
CN108928484A (zh) * 2018-07-17 2018-12-04 西安羚控电子科技有限公司 一种高效型无人机折叠桨叶和固定桨夹
CN108609171A (zh) * 2018-07-19 2018-10-02 深圳市道通智能航空技术有限公司 一种动力装置和无人飞行器
CN108688792A (zh) * 2018-07-31 2018-10-23 成都纵横大鹏无人机科技有限公司 一种折叠式螺旋桨、动力装置及无人机
CN109484618B (zh) * 2018-12-28 2024-02-06 河南三和航空工业有限公司 一种无人机折叠机翼展开到位锁定结构
CN111741895A (zh) * 2019-04-18 2020-10-02 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN110329499A (zh) * 2019-07-29 2019-10-15 谌薏冰 一种多功能智能飞行器
CN110550202B (zh) * 2019-07-30 2020-12-11 中国人民解放军陆军工程大学 一种飞行器用双向调节旋翼
CN111572767B (zh) * 2020-05-26 2021-07-20 黄河水利委员会黄河水利科学研究院 一种基于无人机的河势遥感监测装置
CN111806679B (zh) * 2020-06-19 2022-04-08 中国科学院地理科学与资源研究所 一种无人机复飞方法
CN114194380B (zh) * 2021-11-24 2024-01-05 北京机电工程研究所 螺旋桨与发动机空中配合起动方法及装置
CN115320843B (zh) * 2022-09-02 2023-07-14 中南大学 水空双动力倾转旋翼跨介质无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305423A (zh) * 1998-06-16 2001-07-25 丹佛·D·西科德 带有叶片折合和倾角调节装置的旋翼或螺旋桨
CN102905972A (zh) * 2010-06-15 2013-01-30 贝尔直升机泰克斯特龙公司 用于在飞行中折叠桨叶的方法和设备
US20140299708A1 (en) * 2011-05-23 2014-10-09 John Green Rocket or ballistic launch rotary wing vehicle
US20150274290A1 (en) * 2013-05-22 2015-10-01 Bell Helicopter Textron Inc. Folding of rotorcraft rotor blades
CN106573677A (zh) * 2014-03-18 2017-04-19 杰欧比航空有限公司 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机
CN106564592A (zh) * 2016-10-31 2017-04-19 深圳电航空技术有限公司 折叠收拢结构、旋翼动力组件以及倾转旋翼机
CN207141389U (zh) * 2017-08-15 2018-03-27 深圳市道通智能航空技术有限公司 折叠螺旋桨、动力组件以及无人飞行器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205524979U (zh) * 2016-02-05 2016-08-31 胡家祺 旋翼无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305423A (zh) * 1998-06-16 2001-07-25 丹佛·D·西科德 带有叶片折合和倾角调节装置的旋翼或螺旋桨
CN102905972A (zh) * 2010-06-15 2013-01-30 贝尔直升机泰克斯特龙公司 用于在飞行中折叠桨叶的方法和设备
US20140299708A1 (en) * 2011-05-23 2014-10-09 John Green Rocket or ballistic launch rotary wing vehicle
US20150274290A1 (en) * 2013-05-22 2015-10-01 Bell Helicopter Textron Inc. Folding of rotorcraft rotor blades
CN106573677A (zh) * 2014-03-18 2017-04-19 杰欧比航空有限公司 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机
CN106564592A (zh) * 2016-10-31 2017-04-19 深圳电航空技术有限公司 折叠收拢结构、旋翼动力组件以及倾转旋翼机
CN207141389U (zh) * 2017-08-15 2018-03-27 深圳市道通智能航空技术有限公司 折叠螺旋桨、动力组件以及无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113120214A (zh) * 2020-01-10 2021-07-16 苏州臻迪智能科技有限公司 动力组件,机臂组件,机臂连接件及无人机

Also Published As

Publication number Publication date
EP3470334A1 (en) 2019-04-17
EP3470334A4 (en) 2019-07-31
CN207141389U (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2019033769A1 (zh) 折叠螺旋桨、动力组件以及无人飞行器
US20190055003A1 (en) Foldable propeller, power assembly and unmanned aerial vehicle
WO2019033768A1 (zh) 一种螺旋桨、动力系统以及无人飞行器
US11420734B2 (en) Propeller, propeller kit, power assembly, power kit and unmanned aerial vehicle
US20200317325A1 (en) Folding propeller, power component and unmanned aerial vehicle
CN108473192B (zh) 顺桨螺旋桨离合器机构
WO2018076456A1 (zh) 无人机
CN206606355U (zh) 涵道快拆结构
CN106628161B (zh) 涵道快拆结构
CN209938946U (zh) 一种可在垂直墙体栖息和起飞的四旋翼飞行器
WO2022206852A1 (zh) 一种可倾转机翼及无人机
WO2021143449A1 (zh) 无人机脚架及无人机
CN114514175A (zh) 旋翼安装组件
WO2019062389A1 (zh) 一种螺旋桨、动力组件及无人机
CN212373650U (zh) 螺旋桨组件、动力装置及无人机
CN206155788U (zh) 自转旋翼机的旋翼装置及自转旋翼机
CN108622397B (zh) 一种可折叠多旋翼无人机
CN218022167U (zh) 一种巡检用的四旋翼无人机
CN208302195U (zh) 一种旋翼机构及无人飞行器
WO2017166275A1 (zh) 用于无人飞行器的机架连接组件及无人飞行器
CN211766247U (zh) 一种新型双叶片无人机旋翼及无人机
CN214499520U (zh) 俯仰结构及吹风装置
CN216290420U (zh) 一种便于拆卸的微电机封装结构
CN211685583U (zh) 一种飞行器
CN207697982U (zh) 一种飞行器自稳结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018759836

Country of ref document: EP

Effective date: 20181107

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18759836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE